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Dynamic engineering systems are playing an increasingly important role in society, es-
pecially as active and autonomous dynamic systems become more mature and prevalent
across a variety of domains. Successful design of complex dynamic systems requires mul-
tidisciplinary analysis and design techniques. While multidisciplinary design optimization
(MDO) has been used successfully for the development of many dynamic systems, the es-
tablished MDO formulations were developed around fundamentally static system models.
We still lack general MDO approaches that address the specific needs of dynamic system
design. In this article we review the use of MDO for dynamic system design, identify
associated challenges, discuss related efforts such as optimal control, and present a vision
for fully integrated design approaches. Finally, we lay out a set of exciting new directions
that provide an opportunity for fundamental work in MDO.

Nomenclature

a(·) = analysis function

a,b = example problem parameters

α, β = energy domain designations

A = state matrix for a linear and time invariant system

B = input matrix for a linear and time invariant system

c = suspension damping coefficient

ε = convergence tolerance

f(·) = design objective function

f(·) = derivative function

fa(·) = algebraic constraint

g(·) = design constraint functions

gp(·) = physical system constraints

γ(t) = algebraic variable vector

hi = time step

i = time step index

j = Gauss-Seidel block index, multiple-shooting time segment index

k = iteration counter

ks = suspension spring stiffness

K = gain matrix

K∗ = optimal gain matrix
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L(·) = Lagrange or running cost term

m = number of Gauss-Seidel coordinate blocks

ns = number of states

nt = number of time steps

nT = number of time segments

φ(·) = cost function

φ∗(·) = optimal-value function (inner loop solution)

φ̂(·) = alternative plant design objective function

ψ(·) = Mayer or terminal cost term

π(·) = augmented Lagrangian penalty function

t = time

tF = length of the time horizon

ti = time at step i

Tj = time at the end of time segment j

u(t) = control input trajectories

u∗(t) = optimal control trajectories

ui = control input at time step i

U = matrix discretization of u(t)

x = optimization variable vector

x∗ = optimal solution

xk = solution estimate at iteration k

xc = control system design variable vector

xp = physical system design variable vector

xp∗ = optimal plant design

X = Cartesian product of closed convex sets

ξ(t) = state variable trajectories

ξ∗(t) = optimal state trajectories

ξi = state at time step i

ξ̂(t) = subset of state trajectories

ξ̇(·) = time derivative of ξ(t)

Ξ = discretization of ξ(t)

Ξ̂ = subset of discretized state trajectories

y = coupling variable

Y = matrix of initial state values for multiple shooting time segments

ζ(·) = defect constraint functions (residuals)

ζi(·) = defect constraint between time segments

I. Introduction

Dynamics, or system state evolution through time, is an increasingly important aspect of systems designed
by engineers. Most notably, ‘smart’ engineering systems that are actively controlled via electronic feedback
mechanisms are becoming exceedingly prevalent, and the dynamic behavior of these systems is core to system
value (e.g., renewable energy systems and vehicle electrification). In addition, many groups now recognize
the importance of autonomous1 and semi-autonomous2 dynamic systems across several domains, including
manufacturing and its impact on economic competitiveness.3,4 Active and autonomous systems, however,
pose special design challenges. Physical elements of active systems need to be designed differently than for
passive dynamic systems. Physical dynamics and control systems should be designed in an integrated way
to achieve the best possible system performance, and sometimes integrated design approaches are required
to obtain feasible designs for especially demanding dynamic systems.
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The value of integrated design approaches for mechatronic and other active systems has long been rec-
ognized,5,6 especially for systems with strong coupling between physical and control system design (e.g.,
flexible robotics7–9). From a dynamics perspective, the design of the physical elements of a system and its
control system are tightly integrated, yet compartmentalized design processes developed for the creation
of passive physical systems are still in widespread use. Often a sequential design process is used, where
the physical system is designed first (often relying on legacy design objectives and processes for mechanical
or other physical systems), followed by control system design. Fixing physical design before moving on to
control design reduces design flexibility and produces an artificially small feasible design domain, and except
in rare circumstances produces suboptimal results. In extreme cases, engineers may be unable to find any
design that meets system requirements using a sequential approach. Integrated approaches, however, can
lead to system-optimal designs by exploiting synergy between physical and control design decisions, and in
some cases enable solution of previously unsolvable problems.10

Adopting integrated dynamic system design approaches has clear benefit, but has proven to be challeng-
ing. Organizational and technical issues have made the transition toward integrated design methods difficult.
Even with extensive integration efforts, some system interactions may be overlooked, resulting in reduced
system performance. For example, modern agricultural harvesters maintain header height within a narrow
window in order to harvest crops effectively (a header is the component in front of the vehicle that is designed
to harvest a particular crop.) Difficulty in controlling header height is one factor that limits harvester speed.
It was discovered recently that further performance improvements cannot be obtained via control design
changes.11 The interaction between physical system and control system design was not fully accounted for
in the original vehicle design, and physical system redesign is necessary to achieve better performance.

Overlooking important interactions in a dynamic system model used for design may also result in un-
expected results and in some cases spectacular failures. For example, at the June 2000 opening of the
Millennium Bridge in the United Kingdom, pedestrians excited lateral vibrations in this passive dynamic
system. These vibrations required pedestrians to walk with a synchronized teetering motion to maintain
stability, amplifying lateral vibrations and rendering the bridge unusable.12–17 While designing the bridge,
engineers accounted for the effect of pedestrians walking on the bridge, but did not account for the effect of
bridge motion on pedestrians. Limited redesign18–21 was performed to attenuate lateral vibrations using ac-
tive control, but more comprehensive integrated modeling and design processes early on may have prevented
the need for expensive redesign. Similar unexpected behaviors that hamper dynamic system design efforts
across a broad range of engineering domains may be avoided by developing models with more complete
dynamic interactions, and by developing and adopting improved design methodologies created specifically
for dynamic systems.

In addition to organizational issues, such as compartmentalized legacy design processes and difficulties in
managing system interactions, several technical challenges exist as well. Optimization-based approaches for
integrated dynamic system design require sophisticated system models. Ideally these models provide accurate
representation of full system dynamics, are validated and accurate,22,23 and are computationally efficient.
Models for complete system design should also provide flexibility in both physical and control system design
spaces,24 as well as incorporate multiple disciplines and important system interactions.25–29 Models have
greater utility in design when fidelity can be adjusted to accommodate different needs at different design
phases.30 Many of these modeling objectives are competing, so tradeoffs must be made. Extensive efforts
have been made to improve the value of models in dynamic system design. For example, surrogate models
that approximate high-fidelity models are computationally less expensive to evaluate, but the expense of
sampling required to build surrogate models may be significant.31–34 Model reduction techniques may also
be used to reduce the computational expense of dynamic system models,34–37 but the resulting models have
reduced accuracy. Scaling techniques have been investigated as a way of providing flexibility in the physical
design space38,39 without needing to develop physics-based models, but are often valid only over a fairly
limited domain.

Models need to account for complete system dynamics while allowing for changes in physical system de-
sign. Often models developed for control system design provide outstanding predictions of system dynamics,
but are based on a fixed physical system design. For example, engineers developing a control system for an
electric motor can use a dynamic model based on measurable physical parameters, such as inductance or
resistance. This is fine as long as the physical design does not change. If it does, the parameters must be
identified and validated again. If another set of engineers is developing the physical design of a motor, they
would need a different type of model that can predict system behavior based on independent physical design
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variables — variables that engineers have direct control over — such as geometric dimensions. Models that
are developed for physical system design allow for physical design changes, but often are based on simplified
dynamics or static analysis. Achieving full design space flexibility simultaneously with an accurate represen-
tation of system dynamics normally requires a substantial investment in model development, and can be a
bottleneck in the adoption of fully-integrated dynamic system design.

While the transition to integrated design methods for dynamic systems may seem replete with obstacles,
this sort of transition is not without precedent. The coupling between physical system design and control
system design is analogous to the coupling between product design and manufacturing. In both cases,
the conventional approach is sequential, which often proves to be restrictive and inefficient. Design for
manufacture (DFM) has successfully addressed the coupling between product design and manufacturing by
accounting for manufacturing needs during product development.40 Achieving integrated design of dynamic
systems will require an effort similar in magnitude to the effort that was needed to develop successful DFM
methods.

Multidisciplinary design optimization (MDO) offers a solid framework for moving dynamic system design
theory and practice toward a more fully-integrated state. Traditionally, MDO work has aimed to integrate
previously independent analysis and design activities to improve engineering system performance and reduce
development costs.41,42 In this article we will review how MDO has been used in dynamic system design,
explore opportunities for enhanced design capabilities based on MDO, and identify promising new directions
for fundamental work in MDO.

While numerous dynamic systems have been designed using MDO methods, the established MDO for-
mulations largely are based on static system analysis or black-box simulations, and do not address system
dynamics explicitly. As a result, the nuances of dynamic behavior are implicitly deemphasized, and chal-
lenges related to system dynamics must be addressed on a case-by-case basis. The ever-growing scale and
complexity of modern dynamic systems is taxing conventional design methodologies. Fundamentally different
MDO formulations that embrace time-dependent behavior and address system dynamics directly are needed
to meet these demands and realize new dynamic system capabilities.

Here we define Multidisciplinary Dynamic System Design Optimization (MDSDO) as a branch of MDO
that deals with systems where the evolution of system state through time is a critical element of performance,
where multiple disciplines, energy domains, models, or subsystems must be integrated, and where the unique
properties of dynamic systems are exploited to improve system performance and yield efficient problem
solutions. Active systems—systems that use active control to govern behavior—are playing an increasingly
important role in society, and are a particularly important application of MDSDO.

We acknowledge the extensive work related to dynamic system design performed in fields such as optimal
control,43,44 robotics,45 structural dynamics,46,47 and cyber-physical systems.48 Each of these areas tackles
an important piece of the larger dynamic system design problem. Here we aim to bring these and other
disciplines together, explore their complementary relationships, offer a high-level perspective regarding the
future of dynamic system design, and develop a comprehensive vision for MDSDO. Section II discusses more
deeply the elements of MDSDO, including multidisciplinary analysis, optimal physical system design, optimal
control, and integrated dynamic system design methods. Section III reviews how MDO has been applied so
far to dynamic system design, Section IV outlines research directions required to build more complete theory
and tools for MDO-based dynamic system design, and Section V offers concluding remarks.

II. Multidisciplinary Dynamic System Design Optimization

Here we are concerned with the design optimization of engineering systems where the evolution of system
state through time is central to the functionality or value of a system. These dynamic engineering systems
may be passive (time variation due only to natural system dynamics) or active (controlled via electronic feed-
back). In most real dynamic engineering systems, multiple interacting energy domains are involved, such as
mechanical, thermal, electronic, hydraulic, etc., so multidisciplinary analysis (MDA) is required for successful
design. These MDA models may be used to support physical or control system design decisions, or support
integrated design approaches that consider physical and control system design decisions simultaneously. In
this section, the current state of each of these topics will be reviewed.
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A. Multidisciplinary Analysis of Dynamic Systems

In performing MDA for dynamic systems we aim to capture the effects of each energy domain on the
dynamics of the other domains. For example, when analyzing robotic systems we must account for the
coupling between mechanical and electrical dynamics. Otherwise, an independent mechanical system model
might predict incorrectly that electric actuator state could change instantly. Suppose we have two energy
domains, α and β, with the respective state variable trajectories ξα(t) and ξβ(t). The dynamic response
of each domain can be modeled using its own set of governing differential equations, but a more complete
multidisciplinary model accounts for the dynamic interaction between α and β. The resulting coupled system
of differential equations is:

ξ̇α(t) = fα (ξα(t), ξβ(t),uα(t), t) (1)

ξ̇β(t) = fβ (ξα(t), ξβ(t),uβ(t), t) , (2)

where fα(·) and fβ(·) are the derivative functions for each domain, and uα(t) and uβ(t) are control in-

puts that are present if the system is actively controlled. Observe that ξ̇α(t) depends on ξβ(t), and ξ̇β(t)
depends on ξα(t). The fully integrated system model can be represented more compactly if we define

ξ(t) =
[

ξTα (t), ξ
T
β (t)

]T

, u =
[

uT
α(t),u

T
β (t)

]T

, and f(·) =
[

fTα (t), fTβ (t)
]T

:

ξ̇(t) = f(ξ(t),u(t), t). (3)

The multidisciplinary dynamic system model given in Eqn. (3) may be constructed using one of several
well-developed strategies, such as bond graph modeling for lumped-parameter system models29 or high-
fidelity multi-physics models for systems involving continuum mechanics.26–28 If a commercial tool that
integrates all the desired domains is unavailable, then a possible solution is to integrate separate software
tools. For example, a block-diagram modeling environment appropriate for control system modeling may be
incorporated with a multi-body dynamics model of a mechanical system using a co-simulation approach.49

In the development of dynamic engineering systems we would often like to impose constraints on state
trajectories (i.e., path constraints) for design requirements or modeling expedience. Adding an equality
constraint to a system of differential equations without adding a new state variable produces a system of
differential algebraic equations (DAEs).50 A DAE in semi-explicit form is:

ξ̇(t) = f(ξ(t),γ(t),u(t), t) (4)

0 = fa(ξ(t),γ(t),u(t), t), (5)

where fa(·) is an algebraic constraint and γ(t) is the algebraic variable (i.e., its time derivative γ̇(t) does
not appear in the equations). Most DAE algorithms require that Eqn. (5) can be solved for γ(t) (i.e., the
Jacobian of the algebraic constraint must not be singular). A DAE that satisfies this requirement is an
index-1 DAE, where the index identifies the number of differentiations required to transform a DAE into an
ordinary differential equation.

Inequality path constraints are sometimes needed to model a dynamic system design problem (e.g.,
temperature, position, or force limits). If these bounds are reached then algebraic inequality constraints
become active. Constraints may enter or exit activity multiple times during a simulation. An ODE can
be transformed into a DAE when an inequality path constraint becomes active. Imposing a new algebraic
relationship like this reduces a system’s degrees of freedom. For every lost degree of freedom, a state
variables must become an algebraic variable, i.e., a variable completely determined by state variables via
the algebraic constraint. In active systems, control inputs normally become the algebraic variable since they
are independent, while state variables must satisfy physics.51 As additional inequality constraints become
active, the DAE index may increase, increasing solution difficulty.

B. Optimal Control System Design

The value of MDA models extends beyond the analysis of existing systems; they are important for optimal
design of new systems. Simulations of MDA models predict system behavior given its specifications, but
can also be used for the inverse task (i.e., design): identifying a system specification that produces desired
behavior. Physical system design and control system design both contribute to overall dynamic behavior in
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actively controlled systems. While physical and control system design normally are tightly coupled, they
are often treated separately in conventional sequential design processes. Here we begin our exploration of
dynamic system design with a brief review of optimal control, a design approach that aims to identify the
control design that produces the best possible system performance.

In optimal control, a control design is sought that minimizes a cost function, often of this form:

φ(ξ(t),u(t), t) = ψ(ξ(tF ), tF ) +

∫ tF

0

L(ξ(t),u(t), t)dt, (6)

where ψ(·) and L(·) are the Mayer (terminal cost) and Lagrange (running cost) terms and tF is the length of
the time horizon considered in the design problem. If both terms are present, the function is often termed a
Bolza objective. The problem is an open-loop control problem if the control trajectory u(t) is the optimization
variable. Observe that optimal control problems are solved with respect to an infinite-dimensional control
trajectory, as opposed to a finite-dimensional optimization vector used in typical MDO formulations.

A classical approach for solving optimal control problems is to apply optimality conditions—such as
Pontryagin’s Maximum Principle (PMP)43,44—to identify the optimal control trajectory u∗(t) that minimizes
φ(·). If an analytical solution to the optimality conditions cannot be found, the resulting boundary value
problem (BVP) often can be solved numerically. This approach is an ‘optimize then discretize’ approach,
since a BVP obtained via optimality conditions is discretized and then solved.52

In most practical implementations we need to design a feedback controller (and often we need to design
an observer to estimate states that cannot be measured directly). A simple form of feedback control is a
full-state feedback regulator, where the control input is defined as u(t) = −Kξ(t). Assuming this control
structure, the optimal control problem may be solved with respect to the gain matrix K instead of the control
trajectory. In addition, if the system model is linear and time-invariant, i.e., the derivative function can be
written as:

ξ̇(t) = f(ξ(t),u(t)) = Aξ(t) +Bu(t),

and if φ(·) is quadratic, then a closed-form solution for u∗(t) = −K∗ξ∗(t) can be derived. The resulting
optimal control law is known as a linear quadratic regulator (LQR).53

Optimal control approaches based on PMP are known as indirect methods. Direct methods are an
alternative approach where optimal control problems are discretized first and then transcribed to a nonlin-
ear programming (NLP) formulation. In other words, an infinite-dimensional optimal control problem is
transcribed to a finite-dimensional NLP.52,54,55 Direct Transcription (DT) is a family of ‘discretize-then-
optimize’ methods for optimal control that use this strategy.52,56 DT is a special case of the all-at-once
(AAO) MDO formulation,57 also known as simultaneous analysis and design (SAND).58 In DT, an NLP al-
gorithm simultaneously solves the system state equations and the system optimization problem, eliminating
the need for forward simulation. This is accomplished by applying a numerical integration method (such as
collocation50,52) to convert differential state equations to a system of algebraic equations, and discretizing
the state and control trajectories. The resulting algebraic equations, known as defect constraints (ζ(·)), are
posed as equality constraints in the optimization problem, and the discretized state and control trajectories
are treated as optimization variables. If U is a matrix where row i is the control vector at time step i (i.e.,
ui), and Ξ is a matrix where row i is the state vector at time step i (i.e., ξi), then the following is a DT
formulation for optimal control:

min
U,Ξ

nt−1
∑

i=1

L(ui, ξi)hi

subject to: ζ(U,Ξ) = 0

(7)

Here only the Lagrange cost term is included in the objective, hi is the time step size at step i, and nt is
the number of time steps. Note that incorporating U and Ξ as optimization variables increases problem
dimension.

Historically DT has been applied only to open-loop optimal control (trajectory optimization in particu-
lar56,59–62), but recently has been extended to more general dynamic system design problems, including non-
linear feedback control design10,63,64 and integrated physical system and control system design (co-design).24

DT is related closely to other discretize-then-optimize techniques, such as pseudospectral methods,60,63,65–71

adjoint state methods,72–74 and temporal spectral element methods,75,76 as well as model predictive con-
trol.77 A number of commercial78–83 and open-source66,84,85 DT software implementations are available.
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The defect constraints in DT are solved simultaneously, meaning that forward simulation is not required
to obtain state trajectories. Higher-order implicit quadrature methods are normally impractical for forward
simulation, but work well when the resulting defect constraints are instead solved simultaneously. When
these higher-order methods are used with DT, high solution accuracy can be maintained even with large
time steps, and larger step sizes reduce optimization problem dimension.52,62,86

Even with large time steps, DT optimization problems still have much higher dimension than other
discretize-then-optimize approaches. Why then would one consider using DT? First, DT optimization prob-
lems have special structures that promote efficient computation, in some cases even exponential conver-
gence.65 Optimization variables appear explicitly in constraint functions, making sensitivities easier to
compute, and when analytical derivatives are impractical to obtain, the Jacobian sparsity pattern enables
efficient application of sparse finite differences.56 In addition, defect constraints are independent, enabling
fine-grained parallel computing. For linear dynamic systems, DT problem formulations are often either
quadratic or linear programs, allowing for especially efficient problem solution.

Another reason to consider DT is the ability to impose inequality constraints on trajectories, something
that generally cannot be done with indirect methods. Equality path constraints are also easily included,
extending applicability to DAE systems. DT also works well on challenging singular optimal control problems,
and is often successful at maintaining numerical stability when solving highly nonlinear problems.56

DT possesses the unique property that system dynamics are represented directly in the optimization
formulation, and offers one promising direction for development of MDO formulations for dynamic system
design. DT will be revisited in greater detail in Sections IV after additional context is developed, with
particular emphasis on extension of DT to co-design applications.

Dynamic engineering systems are often multidisciplinary, and MDA techniques are needed to model
interactions across multiple energy domains (cf. Eqn. (3)). In practice, multidisciplinary dynamic system
models are used widely, but design is usually limited to a single discipline. Even if interactions across
multiple domains are modeled with great sophistication, design efforts that concentrate on dynamic system
performance typically address control design only. For example, many aeroservoelasticity design studies
(e.g.,87–89) use advanced multidisciplinary models that capture complicated aerodynamic and structural
interactions, but the physical system is held fixed while the control system is designed. This addresses only
part of the dynamic system design problem. Physical system design has an important, if not dominant,
influence on system dynamics. By some definitions of MDO, optimal control studies do not constitute MDO,
even if MDA is used, since the design component involves only one discipline. A systems-oriented approach
incorporates multidisciplinary design in addition to MDA.

C. Optimal Physical System Design

The role of physical system dynamics should be a core consideration in dynamic engineering system design.
In other words, the onus of optimizing dynamic system performance rests also on engineers designing physical
elements of the system, not just the control system engineers. When making physical system design decisions
we should include comprehensive treatment of system dynamics if we want to capitalize on passive dynamics.
Many physical system design optimization efforts, however, incorporate simplified system dynamics—such
as steady-state or pseudo-static models—or static analysis that neglects dynamic effects altogether. Design
objectives are often approximations of actual dynamic system performance metrics (e.g., mass90 or gravity
balance91). While these simplifications are sufficient in some cases, performance can be improved by utilizing
more complete dynamic models when designing physical systems, and improved models will also enhance
the ability to design more challenging dynamic systems.

While comprehensive dynamic models are in use, they are normally developed for control design, and do
not allow for physical design changes. The next generation of system models need to incorporate realistic
dynamics while providing flexibility in the physical design space, i.e., we need models of the form:

ξ̇(t) = f(ξ(t),xp, t), (8)

where xp is a vector of physical system (or plant) design variables. Models of this type require more
development effort than models with a fixed physical system design (e.g., Eqn. (3)).
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Consider the following passive physical dynamic system design optimization problem:

min
xp

φ(ξ(t),xp, t)

s.t. gp(ξ(t),xp) ≤ 0 (9)

ξ̇(t)− f(ξ(t),xp, t) = 0

Here the system objective function is minimized with respect to xp only. We also introduce a new function,
gp(·), that quantifies physical system constraints such as stress, deflection, or geometric requirements.92

This function depends on both physical design and state variables, accounting fully for the influence of
dynamic response on physical design requirements. Other more simplified design formulations neglect direct
dependence of plant constraints on ξ(t). The objective function used here is the overall system objective that
depends on dynamic response, as opposed to a static or simplified dynamic physical design proxy objective.
Variants of the formulation given in Prob. (9) have been studied; Wang and Arora reviewed methods for
solving this class of problems.93 These formulations were based on DT where states were discretized and
treated as independent variables.

D. Optimal Dynamic System Design

Approaches for optimizing the physical and control system design of dynamic systems separately were just
reviewed. Independent solution of these problems, however, will not lead to the best possible system design.
An integrated solution approach is required to capitalize on the synergistic relationship between physical and
control system design. Conventional sequential system design approaches6,46,94–97 only account partially
for coupling between physical system (plant) and control system design decisions, producing suboptimal
results.98 In sequential design, control design is performed after plant design is complete. If optimization
is employed for each task, the sequential approach consists of solving Prob. (9) to obtain the optimal plant
design xp∗, which is then used as the basis for solving the optimal control problem—minimizing φ(·) from
Eqn. (6)—to obtain the optimal control trajectory u∗(t). This process is illustrated in Fig. 1.

min
xp

φ(ξ(t),xp)

s.t. gp(ξ(t),xp) ≤ 0

ξ̇(t)− f(xp, ξ(t), t) = 0

Plant Design Optimization Control Design Optimization

xp∗

min
u(t)

φ(ξ(t),u(t),xp∗
)

s.t. gp(ξ(t),xp∗
) ≤ 0

ξ̇(t)− f(ξ(t),u(t),xp∗
, t) = 0

Figure 1. Sequential design process for actively-controlled dynamic systems.

While this sequential process often produces feasible system design, better methods exist. As actively
controlled systems become more complex and performance requirements more stringent, sequential system
design may fall short, motivating the use of more integrated design methods.

The sequential system design process illustrated in Fig. 1 represents the case where plant design is based
on passive dynamics. For example, in designing a passive-active automotive suspension99 we may start by
designing the passive suspension (i.e., mechanical linkage, spring, damper, etc.) to optimize comfort and
handling, but with no control actuation. The resulting plant design may then be used as a basis for designing
the active control system (holding plant design fixed). Ideally we use the same system objective function
φ(·) in both design phases. Often, due to legacy design practices for physical systems, an alternative plant

design objective function φ̂(·) is used instead (e.g., mass). The effects of using separate plant and control
objective functions are discussed below.

We can classify plant design objectives into five types:

Case 1: Passive plant design, original system objective function: φ(ξ(t),xp).

Case 2: Passive plant design, approximate system objective function: φ̂(ξ(t),xp).
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Case 3: Static plant design, approximate system objective function: φ̂(xp).
Case 4: Active plant design, original system objective function: φ(ξ(t),u(t),xp).

Case 5: Active plant design, approximate system objective function: φ̂(ξ(t),u(t),xp).

Case 1 corresponds to Fig. 1. Case 2 involves an approximate system objective function that still depends on
the complete system dynamics, meaning that a dynamic system simulation is required to evaluate φ̂(·), but
is still limited because it does not incorporate active control. In addition, some systems cannot be simulated
without active control, so Cases 1 and 2 are not always available options. For example, an active automotive
suspension24 may be simulated in a passive mode, but a robotic manipulator requires control actuation to
simulate. Bowling et al., however, did introduce ‘dynamic capability’ equations based on system dynamics
that guide physical robot design toward improved active dynamic performance without requiring control
design.100

Case 3 is a more significant simplification where static or frequency-based analysis eliminates the need for
simulation. The objective depends only on plant design. Ravichandran et al. presented an example of a Case
3 sequential design approach for reducing energy consumption of a counterbalanced robotic manipulator.91

For very slow pseudo-static movements, energy consumption is approximately minimized if the manipulator
is designed to have perfect gravity balance (i.e., any manipulator position can be held with zero actuation

torque). Using gravity balance as the plant design objective φ̂(·) simplifies the problem, but is inaccurate for
high-speed motions.101 Allison presented a more complete formulation that produces system-optimal results
for high-speed counterbalanced manipulators.21 Trivedi et al. also used a Case 3 approach for soft robotic
manipulator design where a static model was used for physical system optimization.97

The commonly used Case 2 and 3 objectives arise when separate objectives for plant and control design
are specified. Several researchers have asserted that active control system design problems are fundamentally
multi-objective.102–104 While co-design problems may indeed be multi-objective because of intrinsic tradeoffs
in the system (e.g., cost vs. performance), a problem is not automatically multi-objective because it is
a co-design problem. When separate plant and control objectives are used, the plant objective is often
approximation of the real system objective (e.g., gravity balance approximating energy efficiency). Separate
plant objectives may also be used because of legacy design processes. For example, when physical design is
performed in isolation, using a plant objective that is not directly connected to dynamics or active control,
such as mass or other static measures, is a logical choice. These legacy design paradigms, however, are firmly
established. Abandoning familiar design objectives and adopting objectives that more accurately reflect
overall system purpose may be challenging when working to adopt an integrated systems design approach.
Part of designing with a holistic systems perspective is to develop system components that, when combined
together, produce the best overall system behavior, as opposed to optimizing the components individually.
Integrated system design requires consistent use of the same system objective across all system elements (or
the same set of objectives if the system design problem is inherently multi-objective). Cases 1 and 4 are
examples of approaches that utilize a common objective.

Cases 4 and 5 are fundamentally different from the others in that the objective depends explicitly on
control design. Control input is considered during plant design, but is held fixed. Incorporating the effects
of active control improves solution quality. It also opens up the possibility of an iterated sequential design
process where, after completing a single pass of sequential design, we can feed u∗(t) back into the plant design
problem and iterate. Pil and Asada demonstrated a modified form of Case 3 that allows for iteration and
incorporates physical prototyping guided by control design sensitivity data,105 and Padula et al. introduced
a three-stage iterated sequential method that includes plant, control, and system-level design.106

The iterated sequential method based on Case 4 is a special case of the Block Coordinate Descent
(BCD) optimization method.107 To understand this connection with BCD, suppose we have an optimization
problem: minx f(x),x ∈ X, where X = X1 × X2 × . . . × Xm and each Xj is a closed convex set. The
optimization vector may be partitioned into ‘blocks’ of coordinates: xj ∈ Xj , j = 1, . . . ,m. An optimization
subproblem for each coordinate block (j = 1, . . . ,m) may then be defined: minxj

f(x),xj ∈ Xj . Each
subproblem may either be solved simultaneously (Jacobi iteration), or in sequence using the most recently
updated values for x (Gauss-Seidel method), and iterated. BCD converges to the solution of the original
problem if each subproblem has a unique solution. When the iterated Case 4 sequential design approach is
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used, it is a BCD solution to the fully-integrated plant and control design (co-design) optimization problem:

min
xp,u(t)

φ(ξ(t),u(t),xp, t)

s.t. gp(ξ(t),xp) ≤ 0 (10)

ξ̇(t)− f(ξ(t),u(t),xp, t) = 0

The solution to Prob. (10) is the system-optimal design; it accounts for all dynamic system interactions
and plant-control design coupling, resulting in minimal φ(·). This solution is our standard of comparison for
all active system design methods. Note that the plant design constraints do not depend directly on u(t),
but are influenced indirectly by control design through state trajectories. The formulation in Prob. (10) is
often referred to as the simultaneous co-design method, since plant and control design decisions are made
simultaneously.

In a BCD solution of Prob. (10) using the Gauss-Seidel method (iterated sequential method Case 4),
the number of coordinate blocks is m = 2; j = 1 corresponds to the plant design coordinate block, and
j = 2 corresponds to the control design coordinate block. If we assume for generality that a vector xc is
a discretization (e.g., U from Eqn. (7)) or parameterization (e.g., full-state feedback gain matrix K) of the
control design, the co-design problem becomes a nonlinear program. Satisfaction of the state equations is
an important distinction between solution approaches, and will be discussed in the next section. The BCD
co-design algorithm is:

1) set k = 1, initialize xk and ε
2) xk+1

p = argminxp
φ(ξ(t),xc

k,xp), subject to: gp(ξ(t),xc
k,xp) ≤ 0

3) xk+1
c = argminxc

φ(ξ(t),xc,xp
k+1), subject to: gp(ξ(t),xc,xp

k+1) ≤ 0
4) if ‖xk+1 − xk‖ ≤ ε, terminate
5) k = k + 1, go to step 2,

where k is an iteration counter, ε is a convergence tolerance, and system dynamics are satisfied implicitly
via simulation. Note that in step 3, the most recently updated value of xp is used and control designs must
also satisfy plant constraints.

While BCD is often capable of producing system-optimal solutions, it can be computationally inefficient
depending on the problem at hand. This potential inefficiency motivates alternative solution approaches
that will be described in the following sections. To illustrate BCD solution efficiency, consider this simple
quadratic objective function:

φ(x) = a1(x1 − b1)
2 + a2(x2 − b2)

2 + a3x1x2 (11)

The ai’s and bi’s are constants, and x1 and x2 are analogous to plant and control design variables, respec-
tively. The third term is the interaction term; larger |a3| corresponds to stronger x1, x2 interaction (analogous
to strong plant/control design interaction). If a3 = 0, there is no interaction, and the optimal solution can
be obtained by solving each BCD subproblem once. Similarly, without plant–control interaction, the opti-
mization problems could be solved independently and co-design would be unnecessary. In reality, interaction
does exist between plant and control design, so integrated design approaches are required. In this simplified
illustrative example, if a = [1, 5,−4]T and b = [1, 2]T, then the optimal solution of x∗ = [25, 12]T is obtained
within a tolerance of ε = 1× 10−5 in 57 BCD iterations. Increasing the magnitude of a3 (coupling strength)
increases computational expense, as illustrated in Fig. 2.

The number of iterations is minimal when the BCD starting point x1 is aligned with x∗ in at least one
coordinate direction (e.g., a3 = −3.75), or if there is no interaction (a3 = 0). To put BCD computational
expense in perspective, consider the more efficient minimization of Eqn. (11) using Newton’s method; only
one step would be required (regardless of a3’s value) because φ(·) is quadratic.

107

We could improve upon sequential design without the computational expense of BCD by performing just
a few iterations of BCD. This approach is often used in design practice in an ad hoc manner, where design
iterations continue until time or budget constraints are reached.108 This inexact BCD approach, however,
produces results far from system-optimal for strongly coupled co-design problems.

Another strategy for avoiding complete iteration of BCD was introduced by Peters et al.;104 proxy
functions are incorporated into the plant design problem to account for some problem coupling without
iteration. This is a Case 2 or Case 3 sequential design method, depending on whether system dynamics are
considered in plant design.
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Figure 2. Influence of interaction term magnitude on BCD solution expense.

Difficulties arise when attempting to implement BCD based on Case 5. If the plant and control objectives
are not equivalent, BCD is not guaranteed to converge. If BCD does converge it will not converge to the
system optimum. In our numerical experiments, Case 5 BCD often cycles or diverges, and when it does
converge, it is usually to a point far from the optimum of either φ̂(·) or φ(·).

III. Existing Uses of MDO for Dynamic System Design

When applying multidisciplinary design optimization to the design of engineering systems, the aim is
to account for interactions between multiple disciplines (such as structural and aerodynamic analysis) or
physical subsystems (such as engine and wing). A core objective of MDO is to integrate (previously inde-
pendent) disciplinary analyses and design activities to yield better system performance and reduced system
development time and cost.41,42,109–111

Dynamic properties are of fundamental importance to the value of many multidisciplinary engineering
systems, but application of MDO to dynamic system design has often been done only in a simplified or
limited way. For example, rather than using simulation of nonlinear dynamics, simplified dynamic analysis
is used, such as frequency domain analysis,112–119 steady-state analysis,120 or pseudo-static models.91,97,121

Also, in many MDA models the interactions between disciplinary analyses are treated as static.108 In co-
design studies, a simplified dynamic or static model is often used for physical system design, while a more
complete dynamic model is used for control system design. This misalignment between physical and system
design formulations will prevent identification of a system-optimal solution.

One important factor that complicates the use of MDO for dynamic system design is the static nature of
fundamental MDO formulations. With only a few exceptions, MDO formulations have not been developed
in a way that addresses system dynamics explicitly. For example, Haftka and Sobieszczanski-Sobieksi ex-
plained that the analysis associated with MDO generally consists of nonlinear algebraic equations.122 While
dynamic system analysis may indeed be algebraic after discretization of differential equations, the ‘algebraic
equation analysis’ mindset prevents deeper treatment of the unique needs of dynamic system design prob-
lems. In addition, while many articles do address dynamics (often in a simplified way, as discussed above),
a large portion of MDO formulation development and testing has been based on example problems that are
purely static or algebraic.58,121,123–127 Some MDO test problems are abstract algebraic problems that, while
effective for testing algorithms, have no direct connection to engineering design (e.g.,41,123,124,128,129).

Although many MDO frameworks can be challenging to use for dynamic system design, multidisciplinary
optimization of dynamic systems has been investigated extensively in specific application areas, most notably
in the design of dynamic structures.47,75,76,130–139 Many studies have addressed control-structure design
interaction directly,9,46,102,106,116,120,140–147 while some focus on passive dynamic systems.112,148–151 Sensor
and actuator placement combined with control design is another extensively studied area of dynamic system
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design optimization.135,152–156 Other important applications include automotive suspension and powertrain
design,24,96,99,157–165 robotic system design,5,7, 8, 20,21,91,100,101,105,140,166–169 and energy systems.114,170–173

While substantial depth exists in select application areas for dynamic system design optimization, fun-
damental MDO formulations specifically designed for dynamic systems are largely not available. Many of
the above studies employed either the basic multidisciplinary feasible (MDF) formulation57,174—where all
analysis tasks are performed nested within a single optimization algorithm—or some form of the sequential
design processes discussed above. Often, even when multidisciplinary analysis is performed, design is only
conducted within one discipline (e.g., aeroelasticity). When multidisciplinary design is performed that in-
corporates physical system design, some aspect of dynamic analysis is usually simplified (e.g., co-design with
static plant analysis), whereas extensive work in the area of optimal control44 fully embraces the complexities
of system dynamics, but addresses only one design discipline: control.

All the components required for fully-integrated dynamic system design—multidisciplinary analysis, phys-
ical system design methodologies, optimal control, etc.—exist, but usually in fragmented form except for
specific case studies. Development of unifying MDO frameworks that can integrate these components would
support the more general application of integrated dynamic system design, broadening the impact of MDO.
This is an important opportunity for transformational progress in the design of dynamic engineering systems,
and an exciting direction for new fundamental work in MDO.

A. Current MDO Formulations and Dynamic System Design

We will now explore approaches for using existing MDO formulations for dynamic system design, and high-
light some of the difficulties that can arise. First we will look at how the MDF formulation can be applied
to dynamic system design problems, and then explore distributed MDO methods.

When using MDF, all analysis tasks are performed within the optimization algorithm loop. MDF may be
used to solve the fully-integrated problem (Prob. (10)),9,160,175 or parts of a sequential design problem.106

Starting with the simplest case, consider the (potentially multidisciplinary) plant design optimization problem
introduced in Fig. 1. If we are using a Case 4 objective function that incorporates active control, the MDF
formulation for the plant design portion of the sequential approach is:

min
xp

φ(ξ(t),xc,xp)

s.t. gp(ξ(t),xp) ≤ 0 (12)

where: ξ̇(t)− f(ξ(t),xc,xp, t) = 0

Here the control design xc is fixed, and the state equations are solved for the state trajectories ξ(t) using a
forward simulation algorithm (such as a Runge Kutta algorithm50,176) for every plant design xp proposed
by the optimization algorithm. In other words, system analysis is nested within the optimization problem.
Solution of the state equations requires time discretization (t1, . . . , tnt

, where t1 = 0, tnt
= tF , hi = ti+1 − ti

and nt is the number of time steps). As noted above, the state trajectory solution may be represented in
matrix form Ξ, where the ith row of Ξ corresponds to ξi = ξ(ti). Also note that the state equations in
Prob. 12 may span multiple engineering disciplines (cf. Eqns. (1)–(3)). MDF is a ‘discretize-then-optimize’
approach since discretization is performed before optimization. When applied to dynamic system design
problems, MDF is also known as the single-shooting method.52

Once the MDF solution to the plant design problem is obtained (xp∗
), the optimal control problem may

be solved either via conventional optimal control methods (e.g., ‘optimize-then-discretize’ methods based on
PMP), or ‘discretize-then-optimize’ methods such as direct transcription or MDF. These are good alternatives
when the system Hamiltonian derivatives needed for PMP-based solutions are not obtained easily. The MDF
formulation of the optimal control problem is:

min
xc

φ(ξ(t),xc,xp∗
)

s.t. gp(ξ(t),xp∗
) ≤ 0 (13)

where: ξ̇(t)− f(ξ(t),xc,xp∗
, t) = 0

Sequential design processes will not produce system-optimal solutions unless a Case 4 formulation is
iterated and BCD convergence conditions are satisfied. A more efficient approach is to use MDF to solve
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the simultaneous problem defined in Prob. (10):

min
xp,xc

φ(ξ(t),xc,xp)

s.t. gp(ξ(t),xp) ≤ 0 (14)

where: ξ̇(t)− f(ξ(t),xc,xp, t) = 0

Here the analysis is completely integrated. Often this can be done within a single software environment, but
if this is not possible, disparate analysis tools may be integrated using techniques such as co-simulation to
coordinate multiple simulation environments.177

Nested co-design is a method that may be viewed as a special case of MDF.98,116 An outer optimization
loop optimizes the plant design, and an inner optimization loop identifies the optimal control for each plant
design tested by the outer loop. Note that this inner optimization loop may have a simulation nested within
it if a closed-form optimal control method (such as LQR53) or an AAO optimal control approach (such as
direct transcription) is not employed, resulting in a double-nesting. One advantage of nested co-design is the
ability to use existing optimal control algorithms (e.g., LQR, DT) to solve the inner loop problem efficiently
without the complication of managing plant design variables. The outer-loop formulation is:

min
xp

φ∗(xp)

s.t. gp(xp) ≤ 0 (15)

where for every objective function evaluation, the following inner-loop problem is solved to obtain φ∗(·):

min
xc

φ(ξ(t),xc,xp)

s.t. gp(ξ(t),xp) ≤ 0 (16)

where: ξ̇(t)− f(ξ(t),xc,xp, t) = 0.

The function φ∗(·) in the outer-loop problem is an optimal-value function that is calculated by solving the
inner loop problem. Plant design xp is held fixed during the inner-loop solution. Note that the plant
design constraints are retained (at least those influenced by state trajectories); gp(·) must be retained in
any implementation where plant and control design problems are solved separately (e.g., nested methods
or the sequential methods described above). Otherwise, design feasibility cannot be assured. Several have
proposed using LQR to solve the inner-loop problem for linear systems.46,98,178 If a detailed plant design
formulation with substantial plant constraints is used, LQR may not be practical as it cannot manage
inequality plant constraints. In this case a discretize-then-optimize approach would be more appropriate for
the inner loop. Also, by the nature of the nested co-design method, the plant and control objectives are
aligned since the outer loop objective is defined by the solution of the inner loop. The simultaneous and
nested MDF approaches currently are some of the most widely-used solution techniques for dynamic system
design problems.179

B. Distributed MDO Formulations

The MDF formulation is a fairly integrated approach to system design optimization. It uses a single op-
timization algorithm (and possibly an optimal-value function in the case of nested co-design), and system
analysis is performed in a unified manner. MDF is the simplest and most prevalent MDO formulation.180

Other formulations distribute analysis and possibly optimization tasks instead of centralizing them. These
approaches allow different strategies for integrating and coordinating system design problems, and often can
exploit problem sparsity for efficient computation (e.g., coarse-grained parallelism). Most of these methods,
however, were motivated by the need to stitch together existing disparate analysis codes with relatively
sparse interactions. This usually is not the case with systems that have abundant dynamic interactions.
While some efforts to apply established distributed MDO formulations to dynamic system design have been
successful, difficult challenges can arise in some cases.

To illustrate some of these potential difficulties, first let us explore the Individual Disciplinary Feasible
formulation (IDF),57 an MDO formulation with centralized optimization and distributed analysis. IDF
is especially useful for systems with low-dimension analysis coupling quantities, and can be more efficient
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than MDF under these conditions.174 If the quantities that couple subsystems, termed coupling variables
y, are instead high-dimension, IDF becomes inefficient. To clarify, consider a system analysis model that
is comprised of several interrelated disciplinary analysis tools. Each of these analysis components may be
represented by an analysis function ai(x,y), and the coupling variable yij is the quantity computed by
aj(·) and required as input to ai(·) (y is the collection of all coupling variables). The combination of all
analysis functions and coupling variables forms the equation y = a(x,y). Here we present the general IDF
formulation, and will demonstrate shortly how to adapt this formulation for co-design:

min
x,y

f(x,y)

s.t. g(x,y) ≤ 0 (17)

y − a(x,y) = 0.

Here f(·) is the design objective, g(·) are the design constraint functions, and the equality constraint ensures
analysis consistency. In MDF, analysis consistency is maintained at each optimization iteration by solving
y = a(x,y) with an algorithm for solving nonlinear equations, such as fixed-point iteration. In IDF, this
equation is solved by the optimization algorithm instead, and usually is not satisfied until convergence. In
IDF, each analysis function ai(·) is temporarily independent, enabling coarse-grained parallel computing.
One of the key points here is that in IDF, the coupling variables are optimization variables, whereas in
MDF they are not. We might consider using IDF if the dimension of y is small, while MDF usually is more
appropriate for densely-coupled problems.

IDF might be applied to dynamic system design problems in one of several ways, distinguished by how
the separate analysis functions are defined. To illustrate the first of three IDF approaches discussed in this
article, suppose the system analysis is in the form of a Simulink R© model. We could group model components
into clusters; a simulation of each cluster would comprise an analysis function, and the signals connecting
the clusters would become the coupling variables. Each cluster corresponds to a portion of the derivative
function, similar to the partitioned state equations in Eqns. (1-2). For example, the model in Fig. 3, based
on the vane airflow (VAF) sensor problem in reference,174 can be partitioned into blocks used to compute
torque due to air resistance, and blocks used to quantify the dynamic response of the sensor vane. This
partition cuts across torque (τ) and position (θ) signals (time histories are shown in Fig. 3).

The challenge with this decomposition approach is that each signal corresponds to a time history—a
function-valued quantity—not just a scalar or small vector. Signals that cut across partitions are coupling
variables, adding significantly to the number of optimization variables in the IDF formulation. In the VAF
example, IDF requires the optimization algorithm to specify the complete torque and position trajectories
so that the two subsystems may be simulated independently for each optimization function call.

If we assume that partitioned signals in this first IDF approach correspond to states, we can define ξ̂(t) as
the subset of state trajectories that cut across system partitions. Solving this IDF problem using nonlinear
programming requires that we discretize ξ̂(t). The matrix Ξ̂ is a subset of discretized state trajectories where

the ith row corresponds to the value of states that cross partitions at time ti. Ξ̂ are coupling variables, so
they are included in the set of optimization variables in this IDF formulation:

min
xp,xc,Ξ̂

φ (Ξ,xp,xc)

s.t. gp (Ξ,xp) ≤ 0

Ξ̂− a
(

Ξ̂,xp,xc

)

= 0.

(18)

Here Ξ is determined by simulating each of the subsystems. Each simulation requires a priori specification of
the state trajectories that are inputs to the corresponding subsystem (i.e., the corresponding elements of Ξ̂).

The components of Ξ̂ are local copies of state trajectories that correspond to trajectories computed in other
subsystem simulations. Having the optimization algorithm specify these local copies enables independent
simulation of each subsystem. The relationship between these quantities is made more clear by the last
constraint in Prob. (18). The analysis functions a(·) here output the state trajectories that cross subsystem
boundaries as computed by the simulations. The analysis function outputs must match the local state
trajectory copies Ξ̂. In other words, if we specify Ξ̂ and use it in evaluating a(·), the resulting state

trajectories must match the input Ξ̂. If the last constraint is satisfied, Ξ̂ is a fixed-point, and the solution
to this decomposed problem will match the solution to the undecomposed MDF formulation.
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Figure 3. Partitioning of a block diagram model of a vane airflow sensor design problem.

Accurate solution using the above IDF approach requires fine discretization of state trajectories (Ξ̂).

This fine discretization, however, increases IDF problem dimension since Ξ̂ is an optimization variable,
often resulting in computationally expensive solutions. In other high-dimension formulations (such as direct
transcription), problem structure and easily obtained analytical derivatives can be exploited for efficient
solution. Analytical derivatives are difficult to obtain for Prob. (18) due to the subsystem simulations.
While IDF partitioning enables coarse-grained parallelism, its problem structure does not readily allow for
further efficiency improvements.

High-dimension coupling variables (such as Ξ̂), also known as vector-valued coupling variables (VVCVs),
can be approximated with low-dimension representations to aid efficient computation.181–183 We can extend
the usefulness of IDF and other MDO formulations for the design of dynamic systems using this and other
workarounds, but ‘force-fit’ approaches like this are fundamentally limited. There is a bound on how far
trajectory representation dimension can be reduced before solution accuracy suffers. We need to explore
fundamentally different solution methods that fit the properties of dynamic system design problems more
naturally.

Cutting across signals is not the only decomposition available for dynamic systems. Problems may be
partitioned temporally by splitting the simulation into nT time segments instead of partitioning system
model elements. The state trajectories across each one of these time segments is obtained via simulation.
We can consider each of these independent simulations to be an analysis function, and the state of the
system between time segments makes up the set of coupling variables. The coupling variables in this case are
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normally lower dimension than the coupling variables in the first IDF variant given in Prob. (18). This second
IDF decomposition approach, known as multiple-shooting,24,52 has practical motivations. It helps ameliorate
numerical instabilities for highly nonlinear systems, and also enables coarse-grained parallel computing. The
IDF formulation for this approach is:

min
xp,xc,Y

φ (Ξ,xp,xc)

s.t. gp (Ξ,xp) ≤ 0

ζi (Ξ,Y) = 0, i = 1, 2, . . . , nT .

(19)

Here Y is the matrix of coupling variables; each row corresponds to the state value at the beginning of a time
segment. ζi(·) are defect constraints that ensure the initial state values for each time segment (corresponding
to rows of Y) match the final state value from the previous time segment simulation (corresponding to the
appropriate rows of Ξ). These quantities are illustrated in Fig. 4. The optimization algorithm chooses initial
state values for the simulations in time segments 1 and 2. These initial values correspond to rows in Y. In
time segment 1 the state trajectory is obtained by simulating through t7. The defect constraint quantifies
the difference between ξ7 (the state value at t7 obtained via simulation in time segment 1) and the initial
state value used in time segment 2. At IDF convergence these two quantities should match. While not widely
used for co-design at present, this multiple-shooting approach is a well-known optimal control technique.

ξ(t)

t

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

time segment 1 time segment 2

ζ2

(j = 1) (j = 2)

T1 = t7T0 = t1 T2 = t12

Figure 4. Illustration of time discretization and defect constraint between multiple shooting time segments.

The third IDF approach involves a popular model for co-design problems that addresses the link between
plant analysis and control system analysis. Suppose the objective function takes the form φ(ξ(t),xc,xp), but
the dependence of φ(·) on xp is through intermediate variables y. For example, Allison and Han modeled
a passive-active automotive suspension where the system dynamics model depends on spring stiffness and
damping coefficients, ks and c, respectively.24 These coefficients, however, are not independent design
variables. They are intermediate (coupling) variables that depend on other quantities that designers have
direct control over, such as geometric dimensions. If y = [ks, c], we can represent this dependence using the
analysis function notation, y = a(xp), and the IDF formulation becomes:

min
xp,xc,y

φ (a(Ξ,xp),xc)

s.t. gp (Ξ,xp) ≤ 0

y − a(xp) = 0.

(20)

As with the other IDF approaches, Ξ is obtained via simulation, but in this case a single undecomposed
simulation is used. The coupling variables here are low-dimension, and offer yet another opportunity for
problem decomposition. In this way we can look at co-design as a two-discipline—plant design and control
design—MDO problem.106,160,184

Other decompositions are possible. Engineers may define subsystems that correspond to observers, dis-
tributed control systems, or multiple disciplines associated with plant design. Hybrids of the three IDF
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variants discussed above may also be implemented. For example, the second and third variants could be
combined to create a formulation with separate plant and control analyses, and multiple shooting is used to
perform the simulation in a distributed manner for each subsystem.

The IDF formulations involve a single optimization problem. Alternative ‘multi-level’ MDO formu-
lations employ multiple distributed optimization problems that each solve a piece of the system design
problem.185,186 Multi-level formulations are especially useful when desirable sparsity patterns exist in both
analysis couplings and design variable dependence structures.126 One important multi-level formulation is
augmented Lagrangian coordination (ALC),123,187 which is a non-hierarchical generalization of analytical
target cascading (ATC).124

The three dynamic system decompositions described above for IDF also apply to ALC. For example,
the third IDF variation has been demonstrated in several ALC studies where analysis functions compute
parameters that are used in a dynamic simulation. Alexander et al. demonstrated how to use this approach to
solve an electric vehicle design problem that involves function-valued coupling variables.181–183,188 An ALC
subproblem is defined for electric motor design, and a second subproblem is defined for powertrain or vehicle
system design. The vehicle design subproblem computes the system objective function based on dynamic
simulation. This vehicle-level simulation depends on motor properties, such as the torque-speed curve, that
are computed by the motor subproblem. These properties are coupling variables that link motor design to
the system objective function. While these coupling variables are not time histories, they are function-valued
and need to be represented using VVCVs. Reduced-dimension representations for this specific problem have
been investigated, some of which render solution via ALC practical.

Another way to extend the third IDF decomposition approach to ALC involves defining ALC subproblems
for plant and control design, but then capitalizing on existing optimal control theory to develop an ‘optimize-
then-discretize’ solution for the controls subproblem. Allison and Nazari demonstrated this approach using
an electric circuit design problem.184 As with the electric vehicle studies, the objective function in this case
is linked to the plant design variables via plant analysis functions and coupling variables. The suspension
co-design problem discussed above is another example of this decomposition approach, since the objective
function is linked to plant design variables via coupling variables: y = [ks, c] = a(xp).

The details of the two ALC approaches discussed above are available in the literature.181–184,188 Another
possible ALC formulation based on the second IDF decomposition (multiple shooting) is introduced here.
Suppose the objective function is of the form presented in Eqn. (6), but in discretized form:

φ(Ξ,xc) = ψ(ξnt
, tF ) +

∫ tF

0

L(Ξ,xp,xc)dt. (21)

Here we assume that numerical integration is performed using discretized state and control trajectories to
compute the Lagrange cost. The final state value at tF is ξnt

. Observe that this function is additively
separable if the problem is partitioned temporally into nT smaller time segments. If Tj is the time at the
end of time segment j (T0 = 0 and TnT

= tF = tnt
), and if Ξ(j) and xc

(j) are the discretized state and
control trajectories over time segment j, the objective function may be rewritten as:

φ(Ξ,xc) = ψ(ξnt
, tF ) +

nT
∑

j=1

∫ Tj

Tj−1

L(Ξ(j),xp,xc
(j))dt. (22)

The optimization problem now can be divided into nT subsystems, where the jth objective function is the
jth term of the sum in Eqn. (22), and the Mayer term is included in the objective function for subsystem nT .
If coordinated using ALC, the decomposed problem is equivalent to the original undecomposed problem. In
this ALC approach the states at time segment interfaces are coupling variables, and defect constraints ensure
that the states at these interfaces are consistent. More specifically, if y(j) is the state at the beginning of

time segment j (the coupling variable), it must match ξ
(j−1)
F , which is the state at the end of time segment

j − 1 obtained via simulation. The coupling variable y(j) is an independent optimization variable in the jth

ALC optimization subproblem, whereas ξ
(j−1)
F is computed in subproblem j−1 and held fixed in subproblem
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j. The formulation for ALC subproblem j (j 6= nT ) is:

min
xp

(j),xc
(j),y(j)

∫ Tj

Tj−1

L(Ξ(j),xp
(j),xc

(j))dt

+ π
(

y(j) − ξ
(j−1)
F , xp

(j) − xp
(j−1)

)

s.t. gp

(

Ξ(j),xp
(j)

)

≤ 0

(23)

Instead of posing the defect equations as equality constraints as in the multiple shooting formulation of IDF
given in Prob. (19), the defect constraints are enforced using an augmented Lagrangian penalty function
π(·). A coordination algorithm guides all of the subproblems toward agreement so that at ALC convergence
the defect constraints are satisfied within a given tolerance. Another primary difference between this ALC
formulation and the corresponding IDF formulation is that optimization tasks are distributed in addition
to analysis tasks. Also, xp

(j) is a local copy of the plant design vector, and at ALC convergence the copies
from all subproblems must match (enforced with π(·)). Here plant and control variables are solved for
simultaneously in the optimization subproblem. A variant of this ALC formulation is to adopt a nested
approach similar to Probs. (15) and (16). The outer loop of the ALC subproblem would solve for xp

(j) and
y(j), whereas xc

(j) would be obtained in an inner optimization loop.
To summarize, MDO has been utilized extensively for solving dynamic system design problems. In

most cases, however, a simple MDF formulation has been used to solve the simultaneous or nested co-
design problems, parts of a sequential design process, or the problem has been limited to MDA with single-
discipline design (e.g., optimal control). Solving dynamic system design problems with MDO formulations
that are more sophisticated than MDF has proven to be challenging. Some success has been realized via
distributed MDO methods, particularly when specialized optimization algorithms are employed or the unique
structure of dynamic systems is exploited (e.g., IDF variant two – multiple shooting). However, some
approaches for decomposing tightly integrated dynamic system models produce VVCVs (e.g., IDF variant
one) or are otherwise poorly-suited for solving dynamic system design problems. The solution approach
in these cases is not a good fit. Instead of attempting to ‘force-fit’ a particular solution method onto
a given problem, new MDO strategies should be developed and explored that are compatible with the
unique demands of dynamic system design. Multidisciplinary design problems that involve complex system
dynamics are fundamentally different from the static, pseudo-static, simplified dynamic problems that much
of MDO development has been based on. Returning to the foundations of MDO and developing formulations
specifically for dynamic systems will advance both MDO research and efforts to design increasingly complex
dynamic systems. The remainder of this article outlines promising directions for building up a more general
theory for multidisciplinary dynamic system design optimization (MDSDO).

IV. Intrinsically Dynamic MDO Formulations

The need is clear for MDO methodologies that are deeply compatible with the nature of dynamic system
design problems, but how do we move forward? Optimization has been used very successfully for a number
specific dynamic system design applications, and in some cases MDO has been applied, but how do we move
toward a more general theory for MDSDO? MDSDO must extend to a wide array of dynamic engineering
systems, address dynamic issues directly, and be used more comprehensively throughout the product devel-
opment process. We envision MDSDO as a vital branch of MDO and believe that MDSDO should embody
the following characteristics:

• Intrinsically Dynamic: Most real engineering systems are dynamic. Many are nonlinear. System
dynamics must be a core component of MDSDO formulations, comparable to its importance in optimal
control.

• Multidisciplinary and Integrated: MDSDO should incorporate both multidisciplinary analysis
and multidisciplinary design. Integration should be central to MDSDO, spanning analysis domains,
time scales, and length scales. Decomposition should be strategic and congruent with dynamic system
characteristics.

• Systems-oriented: Legacy design mindsets should be replaced with a balanced approach to dynamic
system design, including avoiding unnecessary multi-objective co-design formulations and bias toward
control-design. Additionally, larger systems-of-systems views should be incorporated into MDSDO.
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• Utilize Passive Dynamics: A deeper treatment of physical system dynamics in an integrated
MDSDO approach enables greater use of passive dynamics, reducing control system demands and
advancing system capabilities.

• Parallel: Computational resources increasingly rely on more processors to enhance performance rather
than processor speed. It is imperative that algorithms used with MDSDO are parallel in nature to
exploit this trend.

In the remainder of this article we discuss four important fronts for advancing the state of MDSDO and
satisfying the above requirements.

A. Balanced Co-Design

Most co-design studies has been performed with a strong emphasis on control design, and tend to deem-
phasize physical system design.88,99 For example, while controls engineers often recognize the importance
of integrating control design with plant design, they often construct co-design implementations with fairly
simplified plant design formulations. Dependent quantities often are treated as independent plant design
variables. For example, Fathy et al. treat spring and damper coefficients as design variables,99,157 when in
reality these quantities depend on detailed geometric design variables, such as spring wire and helix diam-
eters. In other words, spring and damper coefficients are coupling variables y that link plant and control
design analyses. Using coupling variables in place of design variables results in an incomplete problem formu-
lation; its solution produces plant requirements instead of a plant design, and usually neglects plant design
constraints gp(·) (e.g., suspension packaging, fatigue, damper temperature, etc.24).

Plant design simplification is particularly problematic when working with nested co-design formulations.
The plant constraints, at least those that depend on state trajectories, should be included in both the inner
and outer loops (Eqns. (15-16)), but simplified plant design obscures this requirement. Fathy et al. presented
the nested co-design formulation sans gp(·) where the inner loop is solved using LQR (for linear systems).98

LQR, however, cannot incorporate plant constraints, so a more general inner-loop solution method, such as
MDF or direct transcription,24,52 must be used when more realistic plant design models are used in co-design.

Generations of engineers have developed mechanical systems without active control. Design paradigms
appropriate for passive systems have evolved, matured, and now permeated the collective engineering con-
sciousness. These mindsets often are taken as given, and it is hard to imagine any other design perspective,
even for engineers seeking multidisciplinary design solutions. These legacy design approaches are evident
in many existing co-design formulations in two ways. First, many studies posit that co-design is by nature
multi-objective,102–104 i.e., the plant design objective is distinct from the control design objective (Case 2, 3,
or 5 plant design). Often the objective used for the plant is passive or static, a clear artifact of legacy design
paradigms. These co-design formulations overlook to some degree the integrated nature of actively controlled
systems. Active systems are single, unified systems, not two systems each with a distinct design objective.
Plant and control systems work together toward a system-wide goal.189 Co-design formulations therefore
should include a single system-wide objective that reflects the primary purpose of the overall system (Case 4
plant design).142 As noted earlier, co-design problems may indeed be multi-objective due to inherent system
tradeoffs (e.g., cost vs. performance), but a problem is not automatically multi-objective if it is a co-design
problem. If fundamental tradeoffs exist, the set of multiple system objectives should be used consistently
across both plant and control design, qualifying as Case 4 plant design.

Second, co-design studies often assume unidirectional coupling between plant and control design, i.e.,
control performance depends on plant design: φ(a(xp),xc, ξ(t)), but not vice versa. This premise is under-
standable if a control system is viewed as an ‘add-on’ to the physical system due to legacy design mindsets.
The properties of active dynamic systems, however, typically depend simultaneously on plant and control
design. If this is the case, unidirectional formulations are incomplete. Many properly-modeled plant design
constraints depend on dynamic response ξ(t), which depends on both plant and control design. For example,
material fatigue constraints depend on stress oscillation properties, which are a function of state trajectories
(see the active suspension example in24). While bidirectional coupling is challenging to model, it is required
for co-design formulations to accurately represent the system design problem. Any of the co-design formu-
lations discussed above that use a Case 4 objective and include plant design constraint dependence on ξ(t)
are bidirectional.

A balanced approach to co-design, such as the approach demonstrated in reference,24 enables engineers
to construct a formulation based on what is best for the overall system, rather than retaining elements of
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legacy design formulations from plant or control design. These formulations appropriately balance plant
and control design depth, have single system objective functions (or consistently applied sets of multiple
objectives), and account for bidirectional coupling.

B. Passive Dynamics

Passive dynamics refers to the dynamic behavior of a system without active control. Many systems are de-
signed to operate passively (e.g., most automotive suspension systems,162,190 vibration absorbers,151 passive
walkers191), and often this design approach is desirable to reduce system complexity and improve stabil-
ity and reliability. Passive dynamics, however, play a critical role in active systems as well. The physical
elements of a system should be designed so that their passive dynamic properties combine synergistically
with active control to enhance performance.102,146,192,193 Doing so can have profound impact on dynamic
performance and energy consumption. For example, extensive research in building design has resulted in
numerous passive technologies for reducing energy consumption,194 such as night ventilation,195,196 passive
cooling,197 solar walls,198 and passive systems combined with advanced control systems.199

Most passive dynamics studies to date have employed a sequential design approach; the plant is designed
first as a passive system (Case 1 or 2 plant design), followed by control system design. While this strategy
may be effective, it cannot fully exploit the synergy between physical and control systems, and cannot
achieve system-optimality. Co-design can be an effective approach for tailoring passive dynamics to enhance
active system performance, but only if plant design is treated with sufficient depth, and if the plant design
objective matches the system objective (Case 4 plant design). Allison successfully demonstrated the co-
design of a robotic manipulator where the control effort and energy required to perform a task was reduced
dramatically.20,21 Future MDSDO development should enhance our ability to leverage passive dynamics. In
some cases, this may even eliminate the need for active control, or if not, significantly reduce control system
complexity and energy requirements.

C. Direct Transcription

Direct Transcription (DT) is a class of ‘discretize-then-optimize’ optimal control methods that was introduced
in Section II. Here we explore additional details, discuss its extension to co-design, and examine its role in
emerging MDSDO developments.

Exploring the relationship between DT (an AAO method) and IDF for dynamic system design provides
some useful insights. When using IDF, some of the system analysis burden is shifted to the optimization
algorithm via consistency constraints, whereas in AAO the optimization algorithm performs all system
analysis directly. In the case of IDF for dynamic systems (variant 2, or multiple shooting), simulations
of subdivided time segments comprise the analysis functions, and consistency (defect) constraints ensure
continuity between time segments. Now consider what happens if the time segment size is reduced to that
of a single time step. The number of coupling variables would increase to ns × nt (the number states times
the number of time steps), and a consistency constraint would be required for each time step. The coupling
variables would then be the complete set of discretized states Ξ, and the consistency constraints would be
the discretized state equations.

The optimal control formulation for DT (without inequality constraints) was presented in Prob. (7).
Allison and Han demonstrated an extension of DT for the solution of co-design problems,24 and Tava and
Suzuki employed a similar technique for launch vehicle co-design.200 Using DT for co-design produces a
problem that requires satisfaction of optimality conditions for both plant and control design, in addition to
satisfying defect constraints. The following is a simultaneous DT co-design formulation:

min
xp,U,Ξ

nt−1
∑

i=1

L(xp,ui, ξi)hi

subject to: ζ(xp,U,Ξ) = 0 (24)

gp(xp,Ξ) ≤ 0,

When DT is applied to optimal control, the defect constraint Jacobian typically has a sparse diagonal
structure that supports efficient problem solution. In the DT co-design extension, defect constraints are
dependent on xp, increasing constraint Jacobian density. In most practical co-design problems, the coupling
between plant and co-design is bidirectional, i.e., plant constraints depend on state trajectories, which in
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turn depend on control design. The dependence of plant constraints on both state and plant design variables
increases constraint Jacobian density further. While initial studies have addressed these challenges for specific
co-design problems, many open questions remain regarding the extension of DT for co-design. Note that
other DT co-design formulations are possible, such as nesting a DT optimal control implementation within
a plant optimization outer loop, or using DT to solve an ALC controls subproblem as described in.184

Computational efficiency, parallelism, and numerical stability are desirable properties of DT, but other
qualities motivate on a more fundamental level the investigation of formulations like DT for dynamic system
design. For example, Prob. (24) imposes no assumptions on control structure, which is especially helpful
during early-stage design when control architecture is undefined. DT solutions provide insights into upper
system performance limits without the restrictions imposed by specific control system designs. Open-loop
solutions also often provide insights into complex system dynamics and possible directions for physical
system design,173 and can also serve as a basis for developing implementable feedback control systems. Most
importantly, DT addresses system dynamics directly; dynamics are an integral part of the MDO formulation
in Prob. (24). The DT co-design extension is a fully-integrated approach for dynamic system design that
manages control, plant design, and state variables simultaneously.

While DT is promising for co-design, it can be challenging to implement at present. Commercial and
open-source software is available for using DT to solve optimal control problems, but using DT for co-design
changes the underlying problem structure and currently requires custom software development. Also, as
a fully integrated AAO approach, DT usually does not mesh well with popular modeling environments.
Sophisticated multidisciplinary analysis is difficult to incorporate, requiring integration at the equation level,
a decidedly ‘advanced maneuver’. Progress must be made in theoretical and algorithmic development, the
development of design tools, and awareness among design engineers before DT can become a practical solution
for co-design.

D. Dynamic System Topology Optimization

Design optimization with respect to continuous variables, such as geometric dimensions or control param-
eters, is fairly mature and often can be performed with efficient gradient-based algorithms. In continuous
optimization, however, system configuration is defined a priori. The design space is restricted, and in essence
we are ‘tuning’ existing designs rather than generating completely new designs. Fundamentally new designs
require configuration or topology modifications, i.e., changes in the existence of or interaction between system
elements.201 Topology design is traditionally the domain of engineering creativity and intuition, but often
we lack the intuition required to make decisions regarding large-scale complex system that deviate very far
from established design configurations (particularly if dynamics are important). The development of effi-
cient methodologies for topology design is particularly important because new configurations can precipitate
significant improvements in system performance, often much more so than continuous optimization alone.
Success in topology optimization will help MDO break free of its ‘gilded cage’202 and transition from design
improvement to design synthesis.

Topology optimization methods for continuum systems, such as homogenization methods for structural
topology optimization,166,203,204 are well-established. These methods, however, do not apply to dynamic
systems with discrete components with unique properties or functions (as opposed to a homogeneous con-
tinuum). For example, hybrid electric vehicle (HEV) powertrains combine multiple power sources to provide
forward motion, and we have numerous options in how to specify the number, type, and connectivity of
these power sources. Traditionally, engineers have explored design configurations via engineering intuition,
or by enumerating possible configurations205 (sometimes aided by automated modeling25) and comparing
the optimal designs of each. In either case, we are limited to investigating systems of only very small size,
or limited to only partial enumerations of larger systems. For example, design of genetic regulatory circuits,
a critical element of synthetic biology, has plateaued at a maximum circuit size of six nodes using scientific
intuition or exhaustive enumeration.206,207 Improved methods are required to develop circuits of practical
size.

Practical topology design problems are too large to use exhaustive enumeration as a solution approach.
We can solve larger non-continuum problems using heuristic methods, although these approaches lead to
improved instead of optimal solutions. For example, heuristic filters based on engineering knowledge can
help reduce the number of design configurations that we need to compare. Liu demonstrated the use of
heuristic filters in HEV powertrain design.208,209 Rule-based techniques can also be used to generate feasible
system topologies and reduce the number of designs that must be compared.210 Genetic algorithms and
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other heuristic algorithms have also been applied successfully for topology design,211 but largely are limited
to continuum design problems or small heterogeneous systems.

Many current topology optimization approaches use centralized decision-making, i.e., all configuration
decisions are micromanaged by an optimization algorithm, and the available decisions are usually determined
a priori. Centralization limits the scale of systems that can be considered. We need methods that can scale up
to larger systems and that can address the specific needs of dynamic system configuration design problems.
Theory and methods from complex systems research offer some promising directions for efficient large-scale
system topology design. In complex systems, global behavior emerges from distributed local decisions (e.g.,
market systems, ant colonies, immune systems). Keeping decisions local makes scaling up to very large
systems possible. If engineers adopt design methods that involve automated local decision-making, they can
concentrate their efforts on the rules that guide local decisions instead of on managing a large number of low-
level decisions. In this way a complex systems approach can help us abstract topology design problems and
operate at a higher level to ‘transcend the overwhelming details of individual systems’.212 Novel topology
design approaches based on complex systems will allow us to explore new design configurations without
requiring decisions at the lowest-level. Initial work in applying cellular automata to structural topology
optimization,213 and in applying cellular division algorithms to dynamic system topology design problems
has produced promising results,214–216 and is an example of the type of complex systems strategy that may
enable topology optimization of large-scale dynamic systems.

Individual mechatronic systems often are part of a larger ‘System-of-Systems’ (SoS), where many mecha-
tronic and other systems are coordinated to perform a larger task.189,217 Transportation systems,218 space
construction,219 military operations,189 and farming1 are all examples of SoSs. The interface between physical
and control systems is important to investigate, but the additional interfaces between individual mechatronic
systems and issues surrounding distributed control design220 lead to a particularly challenging topology de-
sign problem. SoS design should address simultaneously the interfaces at the individual system and SoS
level.

SoS design is sometimes referred to as ‘site-level design’, where we are not only interested in the design
of individual mechatronic systems, but also in how they communicate and interact with each other, the
environment, and humans. SoS design is too involved to perform from scratch whenever new needs evolve,218

often due to investment in existing infrastructure, complexity of associated social or economic systems, or
due to sheer complexity.19 When complete system design is impractical, strategic redesign of limited portions
of the larger system is performed instead;18,20,21 design methods that can accommodate uncertain future
changes in system requirements are vital in SoS design.

V. Conclusion

The design of multidisciplinary dynamic systems presents unique challenges to engineers, and is becoming
an increasingly important technical issue as the number and complexity of smart and autonomous systems
rises, and as their role in society becomes more crucial (e.g., energy and transportation systems). A phenom-
enal amount of work has been performed in the area of dynamic system design, but has addressed control
system design primarily. Physical system design is integral to the dynamic system design problem and must
be addressed as well. Unfortunately, dynamic properties are often simplified or neglected when performing
plant design. While control design efforts more fully embrace system dynamics, if the plant design problem
is addressed in conjunction with control design, the plant design problem is usually simplified (e.g., treating
dependent variables as design variables). Co-design methods have been developed to design dynamic sys-
tems in a more integrated way, but often exhibit a strong control systems emphasis, and sometimes retain
many elements of siloed design methodologies (i.e., separate plant and control design). For example, distinct
objectives for plant and control design often are kept instead of adopting a system-wide objective. A more
balanced system design approach is needed. While many have recognized the need for a more balanced and
integrated approach to engineering system design, we lack many of the methods and tools required to put
these concepts into practice.

We need a fresh systems perspective to advance MDSDO. It must be more than merging plant and control
design and constructing interface mechanisms between existing design frameworks. The underlying design
philosophies for plant and control systems need fundamental changes; each needs to move from a disciplinary
design approach toward a completely integrated approach focused on the system design problem. MDO is
the right framework for this transition.
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The problem of dynamic system design optimization with balanced consideration of physical and control
system design falls squarely into the domain of MDO. While MDO has been applied to the design of active
dynamic systems using basic formulations such as MDF, or within the limited scope of specific applications,
the established MDO formulations largely do not address explicitly the unique characteristics of dynamic
systems. We advocate for a concerted effort in the MDO research community to develop more general theory
and methodologies for MDSDO. These efforts should result in MDO approaches with intrinsically dynamic
formulations that provide a balanced approach to co-design, more fully utilize passive dynamics, embrace
more sophisticated dynamic plant design models, aid early-stage design efforts, and ultimately go beyond
individual mechatronic systems to support the design of dynamic systems-of-systems.
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171Muñoz, J. R., Costiner, S., and Ghosh, S., “A Multi-Disciplinary Optimization Approach for Process and Energy
Systems,” In the Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, No. AIAA-
2002-5467, AIAA, Atlanta, GA, USA, Sept. 2002.

172Benini, L., Bogliolo, A., and De Micheli, G., “A Survey of Design Techniques for System-Level Dynamic Power Manage-
ment,” IEEE Transactions on VLSI Systems, Vol. 8, No. 3, June 2000, pp. 299–316.

173Allison, J. T., Kaitharath, A., and Herber, D. R., “Wave Energy Extraction Maximization using Direct Transcription,”
In the Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, No. IMECE2012-86619,
ASME, Houston, TX, USA, Nov. 2012.

174Allison, J. T., Kokkolaras, M., and Papalambros, P. Y., “On Selecting Single-Level Formulations for Complex System
Design Optimization,” Journal of Mechanical Design, Vol. 129, No. 9, 2007, pp. 898–906.

28 of 30

American Institute of Aeronautics and Astronautics



175Ahn, K., Whitefoot, J., Atluri, V. P., Tate, E., and Papalambros, P. Y., “Comparison of Early-Stage Design Methods
for a Two-Mode Hybrid Electric Vehicle,” In the Proceedings of the 2011 Vehicle Power and Propulsion Conference, IEEE,
Sept. 2011, pp. 1–6.

176Shampine, L. F., Numerical Solution of Ordinary Differential Equations, Springer, Aug. 1994.
177Trc̆ka, M., Co-simulation for Performance Prediction of Innovative Integrated Mechanical Energy Systems in Buildings,

Ph.D. Dissertation, Eindhoven University of Technology, 2008.
178Belvin, W. K. and Park, K. C., “Structural Tailoring and Feedback Control Synthesis - An Interdisciplinary Approach,”

Journal of Guidance, Control, and Dynamics, Vol. 13, No. 3, May 1990, pp. 424–429.
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