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 D.S. BERNSTEIN

Multidomain 
Modeling of Nonlinear 

Networks and Systems
ENERGY- AND POWER-BASED PERSPECTIVES

M
any physical systems, includ-

ing mechanical, electrical,

electromechanical, fluid, and

thermal systems, can be

modeled by the Lagrangian

and Hamiltonian equations of motion [1]–

[5]. A key aspect of the Lagrangian and

Hamiltonian frameworks is the role of energy

storage. Apart from the fact that energy is a

fundamental concept in physics, there are

several motivations for adopting an energy-

based perspective in modeling physical sys-

tems. First, since a physical system can be

viewed as a set of simpler subsystems that

exchange energy among themselves and the

environment, it is common to view dynami-

cal systems as energy-transformationdevices.

Second, energy is neither allied to a particular

physical domain nor restricted to linear ele-

ments and systems. In fact, energies from dif-

ferent domains can be combined simply by

adding up the individual energy contribu-

tions. Third, energy can serve as a lingua

franca to facilitate communication among sci-

entists and engineers from different fields.

Lastly, the role of energy and the interconnec-

tions between subsystems provide the basis

for various control strategies [4], [6]–[8].

In multidomain Lagrangian and Hamil-

tonian modeling it is necessary to distin-

guish between two types of energies, energy

and co-energy. Energy is the ability to do

work, while co-energy is the complement of
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energy as defined and used in [3] and [9]–[15]. To elucidate

the distinction between energy and co-energy, consider a

point mass M > 0 moving in the x-direction. In the nonrela-

tivistic case, the momentum p is related to the velocity

v ¼ dx=dt by the linear constitutive relationship p ¼ Mv;

and Newton’s second law is given by F ¼ dp=dt, where F is

the force acting on the mass. If the mass is moved by the

force, then the increment of work done by the force is Fdx,

which can bewritten as

Fdx ¼
dp

dt
dx ¼ dp

dx

dt
¼ vdp ¼

p

M
dp:

Since the kinetic energy of the mass is given by the inte-

gral of the work done by the force, integrating v ¼ p=M

from zero to p results in

T ( p) ¼
p2

2M
:

When plotted in the v-versus-p plane as Figure 1(a), T (p) rep-

resents the area of the triangular region below the line p ¼ Mv

and to the left of the dashed vertical line. On the other hand,

the complementary kinetic energy, that is, the kinetic co-energy,

T � is defined to be the area of the triangular region above the

line p ¼ Mv and below the horizontal dashed line. The kinetic

co-energy cannot be obtained directly from work but rather

is defined in a complementary or dual fashion as the integral

of the momentum with respect to the velocity, which, refer-

ring to Figure 1(a), is tantamount to extracting the triangular

area defined by T (p) from the total square area defined by

the product pv, that is,

T �(v) ¼ pv� T (p) ¼
M

2
v2:

Note that the kinetic energy is quadratic in p, while the

kinetic co-energy is quadratic in v, and, furthermore,

T (p) ¼ T �(v). Because of this equality, it is traditional to

not make a distinction between T (p) and T �(v), and as a

result T �(v) is commonly called the kinetic energy rather

than the kinetic co-energy. When the momentum p and

the velocity v are not linearly related, however, T (p) and

T �(v) are generally different. In fact, when relativistic

effects are considered, p and v are related by the nonlinear

constitutive relationship

p ¼
M0vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p , (1)

where M0 denotes the rest mass and c is the velocity of

light. Consequently, for a relativistic mass, the area of the

region below the v-versus-p curve is not equal to the area of

the region above the v-versus-p curve, as shown in Figure

1(b), and thus the kinetic energy T (p) is no longer equal to

the kinetic co-energy T �(v), even though the units of both

T (p) and T �(v) are Joules ( J).

For mechanical systems, the starting point in setting up

the Lagrangian equations of motion is to determine the

Lagrangian. The Lagrangian is defined as the difference

between the total stored kinetic co-energy associated with

the masses and moments of inertia and the total potential

energy associated with gravitational forces and stiffness

elements. The Lagrangian equations of motion give a force

balance in terms of displacement and velocity, explaining

why, instead of the kinetic energy, the kinetic co-energy is

used for the Lagrangian. More details on co-energy and the

Lagrangian equations of motion are given in the section

‘‘Classical Energy-Based Framework.’’

An analogous situation occurs in the case of electrical

networks. For both linear and nonlinear electrical networks,

energy can be stored magnetically in inductors and electri-

cally in capacitors, and these quantities can be used to

derive Lagrangian equations of motion. In particular, the

magnetic energy is defined to be the integral of the current

with respect to the flux linkage, whereas the magnetic

co-energy is defined as the integral of flux linkage with

respect to current. For linear networks, the relationship

between flux linkage and current is linear, and thus the

magnetic energy and the magnetic co-energy are equal.

However, for nonlinear networks, these quantities are gen-

erally different, similar to the case of the kinetic energy and

kinetic co-energy of the relativistic mass described above.

The network Lagrangian is the difference between the total

magnetic co-energy and the total electric energy, where

the electric energy is the integral of voltage with respect to

v v

c

p p

= 0

(a) (b)

0 0

p − Mv = 0 M0v
p −

1 − v2 / c2√

FIGURE 1 Kinetic energy versus kinetic co-energy. (a) Constitutive

relationship of a nonrelativistic mass M plotted in the velocity v

versus momentum p plane. The kinetic energy is represented by the

region below the line defined by the equation p �Mv ¼ 0, whereas

the region above the line represents the kinetic co-energy. For a

constant mass, the areas of the two regions are equal. Hence the

kinetic energy coincides with the kinetic co-energy. Note that the

relationship between momentum and velocity expresses the original

version of Newton’s second law, that is, F ¼ dp=dt , with p ¼ Mv .

For a constant mass, the latter coincides with the version F ¼ Ma.

An advantage of stating Newton’s second law in terms of the rela-

tionship between momentum and velocity is that it is also valid when

M changes in time, a situation where F ¼ Ma loses its validity. (b)

For a relativistic mass, Newton’s second law can be extended to Ein-

stein’s relativistic law of motion by replacing the linear constitutive

relationship p ¼ Mv by the nonlinear function given in (1). In this

case, the kinetic energy clearly differs from the kinetic co-energy.
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State Functions

Akey aspect in the classical modeling procedures of analyti-

cal mechanics, due to Lagrange in the late 18th century, is

the use of state functions. A state function is a scalar function

that depends only on the current state of the system irrespective

of the way in which the system reached that state. To physically

motivate the idea of a state function, kinetic and potential energy

storage, which are in itself state functions, are combined to form

the Lagrangian. In the case of a conservative system, the equa-

tions of motion can be derived from the Lagrangian and thus

from knowledge of the kinetic and potential energy contributions

alone. Nonconservative forces, such as forces due to linear

viscous friction, can be included by means of a Rayleigh dissipa-

tion function, which was introduced in 1873 by Lord Rayleigh

[16]. Instead of energy, the values of this quadratic function have

the units of power. Many years later, Wells introduced a power

function that is applicable to a much wider range of nonconserva-

tive forces [S1], [S2]. In the context of nonlinear network theory,

the generalization of energy and power functions is due to Cherry

and Millar in the early 1950s. Cherry [9] introduced a function

dual to the energy called the co-energy, whereas Millar [18] gen-

eralized Maxwell’s minimum heat theorem to nonlinear networks

by defining the content and co-content functions. The use of co-

energy (at that time called dualistic or complementary energy)

can be traced to the work of Count M�enebr�ea [S3], Maxwell [S4],

and Essenger [13] in the 19th century.

The energy, co-energy, content, and co-content are now defined

on basis of the element quadrangle of Figure 2. The state functions

associated with memristive elements are known as action and co-

action [22]. We first discuss one-port (that is, two-terminal) ele-

ments. The extension tomultiport elements is then discussed.

INDUCTIVE ENERGYAND CO-ENERGY

An element that is characterized by a relationship between

flow f and generalized momentum p is called an inductive or

‘‘I’’ element. Examples of inductive elements include a

mechanical mass or an electrical inductor. More specifically,

an inductive element is described by either a p-controlled

constitutive relationship

f ¼ f̂ (p)

or an f -controlled constitutive relationship

p ¼ p̂(f ):

If both relationships are invertible, the element is said to be one

to one. Graphically, the constitutive relationships represent a

curve separating the associated f -p plane into two areas; see

Figure S1(a). The area below the curve represents the induc-

tive energy

T (p‘) ¼

Z p‘

0

f̂ (p)dp, (S1)

whereas the area above the curve represents the inductive co-

energy

T �(f‘) ¼

Z f‘

0

p̂(f )df : (S2)

Inductive energy and inductive co-energy are also referred to

as generalized kinetic energy and generalized kinetic co-

energy. Note that in the linear case the constitutive relations are

straight lines through the origin so that inductive energy coin-

cides with inductive co-energy, that is, T (p‘) ¼ T �(f‘).

CAPACITIVE ENERGYAND CO-ENERGY

An element that is characterized by a relationship between effort e

and generalized displacement q is called a capacitive or ‘‘C’’ ele-

ment. Examples of a capacitive element include a mechanical

0

0

0

0 f

f

p

pe

e

q

q

(a) (b)

(c) (d)

FIGURE S1 Constitutive relationships and state functions. The

graph in (a) illustrates the constitutive relationship of a nonlinear

inductive element. The area T below the curve is the inductive

energy, whereas the area T � above the curve is the inductive

co-energy. In the nonlinear case, inductive energy generally dif-

fers from inductive co-energy. However, for a linear inductive

element the constitutive relationship is a straight line through

the origin, and thus the inductive energy coincides with the

inductive co-energy. The constitutive relationship in (b) corre-

sponds to a capacitive element, where the capacitive energy

and capacitive co-energy are the areas V and V� below and

above the curve, respectively. In a similar fashion, the constitu-

tive relationship of a resistive element shown in (c) separates

the effort-flow plane into two areas, which are denoted as resis-

tive content D and co-content D�. Figure (d) shows the state

functions associated with a memristive element, which are the

memristive action A and the memristive co-action A�. Note that

in (c) the sum of the content and co-content defines the total

power of the element, whereas the sum of the energy and co-

energy, as well as the sum of the action and co-action, have no

physical meaning.
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spring or an electrical capacitor. More specifically, a capacitive ele-

ment is described by either a q-controlled constitutive relationship

e ¼ ê(q),

or an e-controlled constitutive relationship

q ¼ q̂(e):

If both relationships are invertible, the element is said to be one-to-

one. The constitutive relationships of a capacitive element sepa-

rate the associated e-q plane into two areas; see Figure S1(b).

The area below the curve represents the capacitive energy

V(qc ) ¼

Z qc

0

ê(q)dq, (S3)

whereas the area above the curve represents the capacitive co-

energy

V�(ec ) ¼

Z ec

0

q̂(e)de: (S4)

Capacitive energy and co-energy are often also referred to as

generalized potential energy and co-energy.

RESISTIVE CONTENTAND CO-CONTENT

A resistive or ‘‘R’’ element, such as viscous friction, electrical resist-

ance, externally supplied forces or velocities, and voltage and cur-

rent sources, relates effort with flow, or vice versa. Again we have

two specific situations, namely, an f -controlled resistive element

e ¼ ê(f ),

and an e-controlled resistive element

f ¼ f̂ (e),

separating the associated e-f plane into two areas. The area

below the curve of Figure S1(c) represents the resistive content

D(fr ) ¼

Z fr

0

ê(f )df , (S5)

whereas the area above the curve of Figure S1(c) represents

the resistive co-content

D�(er ) ¼

Z er

0

f̂ (e)de: (S6)

Note that the sum D(fr )þD�(er ) ¼ er fr of the content and co-

content defines the total power supplied to or extracted from the

element, whereas the sum of the energy and co-energy, as well

as the sum of the action and co-action defined below, is devoid

of physical meaning.

MEMRISTIVE ACTION AND CO-ACTION

A memristive or ‘‘M’’ element relates generalized momentum with

displacement, or vice versa, and admits a q-controlled relationship

p ¼ p̂(q),

or a p-controlled relationship

q ¼ q̂(p):

The area below and above the curve in the p-q plane (see

Figure S1(d)) represents the memristive action

A(qm) ¼

Z qm

0

p̂(q)dq, (S7)

and memristive co-action

A�(pm) ¼

Z pm

0

q̂(p)dp, (S8)

respectively.

SOURCES

Observe that in Figure 2 the four classifications are not mutually

exclusive. For example, a constant effort source, such as

gravity, can be regarded as either a resistive or a capacitive ele-

ment; for instance, in Figure S1(b) or (c), gravity can be repre-

sented by a horizontal line. Similarly, a flow source can be

regarded as either a resistive or an inductive element; see [S8]

for a discussion in the electrical domain.

MULTIVARIABLE CASE

Usually a system consists of more than one of each of the avail-

able elements. For example, for a system containing n‘ possibly

mutually coupled inductive elements, the flow and generalized

momentum variables f and p are n‘-dimensional vectors.

Hence, the constitutive relationships f ¼ f̂ (p) and p ¼ p̂(f ) are

vector functions, and T and T � represent the total inductive

energy and total inductive co-energy, respectively, which are

determined by the sum of the individual energy and co-energy

contributions, respectively. Thus,

T (p‘) ¼
Xn‘

k¼1

Z p‘k

0

f̂k ( . . . , pk , . . . )dpk

¼

Z p‘

0

f̂>(p)dp,

and

T �(f‘) ¼
Xn‘

k¼1

Z f‘k

0

p̂k ( . . . , fk , . . . )dfk

¼

Z f‘

0

p̂>(f )df :

Furthermore, T (p‘) and T �(f‘) are related through the Legendre

transformation

T �(f‘) ¼ p>
‘ f‘ � T (p‘),

where p‘ ¼ rf‘T
�(f‘) and f‘ ¼ rp‘T (p‘). Similar extensions

apply to the remaining state functions.
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charge. For fluid systems, the fluid kinetic co-energy and

the fluid potential energy are defined in the same manner

as for mechanical systems by using the analogy of force

and pressure, as well as the analogy of mass velocity and

flow velocity. Therefore, the fluid Lagrangian is the dif-

ference between the total fluid kinetic co-energy and the

total fluid potential energy. For multidomain systems,

such as electromechanical systems, the required energy

and co-energy functions follow by addition. Definitions,

details, and some historical facts on the relevant energies

and co-energies for the various engineering domains are

discussed in ‘‘State Functions.’’

The Lagrangian equations constitute a system of second-

order differential equations, which can be transformed into a

system of first-order differential equations, called the Hamil-

tonian equations, by performing a coordinate transformation

to express the dynamics in terms of alternative physical vari-

ables. For instance, in the mechanical domain the velocities

are transformed into their associated momenta. The Hamil-

tonian equations are generated from the Hamiltonian, which,

instead of the difference between the kinetic co-energy and

the potential energy, is defined to be the sum of the total

kinetic energy and the total potential energy. For electrical

networks, theHamiltonian is the sumof the total storedmag-

netic energy and the electric energy.

Similar to kinetic energy and kinetic co-energy, potential

energy and potential co-energy can be defined. The poten-

tial energy is defined as the integral of the force with respect

to the displacement, whereas the complementary potential

energy, called the potential co-energy, is defined as the inte-

gral of the displacement with respect to the force. The same

duality holds in the fluid domain, as well as in the electrical

domain, where electric co-energy is defined as the integral

of the capacitor charge with respect to the voltage. Other

types of duality can be found at the levels of variables, ele-

ments, and conservation laws. Dual variables and elements

include current and voltage, force and velocity, inductance

and capacitance, and inertia and stiffness. An example of

dual conservation laws is given by the relationship between

Kirchhoff’s current and voltage laws.

Similar to the duality between energy and co-energy, it

is also possible to define a dual, or complementary in the

sense of the energies, Lagrangian formulation, which gives

rise to the co-Lagrangian equations. The main difference

between the Lagrangian and co-Lagrangian equations is the

type of variables used in the description. For instance, in

the electrical domain, the co-Lagrangian is defined to be the

difference between the total electric co-energy and the total

magnetic energy. Consequently, the co-Lagrangian is ex-

pressed in terms of voltages and flux linkages, instead of

currents and charges. Similarly, for mechanical systems, the

co-Lagrangian is defined to be the difference between the

total potential co-energy and the total kinetic energy and

hence is expressed in terms of forces and momenta instead

of velocities and displacements.

In the context of mechanical systems, the application and

usefulness of the co-Lagrangian equations is limited. First,

most mechanical systems can be described by Lagrangian

and Hamiltonian equations. Second, the effect of gravity,

which can be included in the Lagrangian equations, cannot

be captured by a potential co-energy function since the rela-

tionship between gravitational force and its associated dis-

placement is not globally invertible. In other words, we

cannot define the integral of the displacement with respect

to the gravitational force. However, in other engineering

domains, the co-Lagrangian formulation is often useful—

and sometimes even necessary—to describe the dynamics in

an energy-based manner. Some examples of networks and

systems that cannot be described by a Lagrangian, but do

allow a co-Lagrangian description, are discussed in the sec-

tion ‘‘Limitations and Generalizations.’’ The dual form of the

Hamiltonian formulation is given by the co-Hamiltonian

equations. The corresponding co-Hamiltonian equals the total

stored co-energy. For the mechanical and electrical domains,

the form of the Lagrangian and Hamiltonian, as well as their

complements, the co-Lagrangian and co-Hamiltonian, are

summarized in Table 1.

Apart from energy storage, all physical systems are sub-

ject to energy dissipation and external energy sources. Con-

sequently, any practical usage of the Lagrangian and

Hamiltonian frameworks, or their dual forms, must include

these phenomena. Although independent energy sources

can usually be included through an energy function, such

as the gravitational force through the gravitational potential

energy, the constitutive relationships of dissipative ele-

ments must be modeled in terms of power. Even though

energy and power are often used interchangeably in com-

mon speech, they are of course different quantities; specifi-

cally, power is the change of energy per unit time. For linear

mechanical dissipation a Rayleigh dissipation function is

defined [16], [17]. The value of this function has the units of

power given by the product of force and velocity. For non-

linear mechanical dissipation as well as dissipation in other

engineering domains, the content and co-content functions

The Brayton-Moser equations rely on the existence of a function

called the mixed-potential function.
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are defined [18], where the adjective ‘‘co-’’ refers to the

complementary form of the content function. The values of

these functions have units of power as well. For instance, in

the electrical domain the content and co-content functions

involve products of voltage and current, whereas, in the

fluid domain, the content and co-content involve products

of pressure and volume flow. Such content and co-content

functions are called power functions.

Although the Lagrangian and co-Lagrangian frameworks

allow for a reasonably large class of nonlinear dissipative ele-

ments, their applicationmay be limited since both frameworks

reflect dual properties of the system. For instance, in compari-

son to the duality of Kirchhoff’s current and voltage laws, the

Lagrangian formulation of an electrical network explicitly cap-

tures Kirchhoff’s voltage laws, while the current laws are hid-

den in the definition of the configuration coordinates. Dually,

in the co-Lagrangian formulation the appearance of the volt-

age and current laws is reversed. While for mechanical sys-

tems it is sufficient to describe only the resultant of the forces

in terms of generalized displacements and velocities, for an

electrical system the dissipative elements or sources can be

such that either a Lagrangian or a co-Lagrangian formulation

alone may not be sufficient. In these cases it is necessary to

establish combinations of the Lagrangian and co-Lagrangian

formulations. In the context of electrical networks, this combi-

nation gives rise to the Brayton-Moser (BM) equations stem-

ming from the early 1960s [19], [20]. The BM equations rely on

the existence of a function called themixed-potential function.

This function consists of the difference between the content

and co-content functions plus an additional term that reflects

the instantaneouspower transfer between the subsystems.Con-

sequently, themixed-potential is a power function, which justi-

fies referring to the BM equations as a power-based modeling

framework. Besides providing a compact system description,

the mixed-potential function is useful for determining stability

criteria for nonlinear electrical networks, especially those con-

taining regions of negative resistance.

The purpose of this article is to provide an overview of

both the energy- and power-based modeling frameworks

and to discuss their mutual relationships. Furthermore, the

BM equations are shown to be applicable to a large class of

nonlinear physical systems, including lumped-parameter

mechanical, fluid, thermal, and electromechanical systems.

Systems containing switches, such as electrical power con-

verters and mechanical systems with impacts, are also dis-

cussed. The application to distributed-parameter systems is

illustrated using two examples, namely, a mechanical sys-

tem and Maxwell’s equations. Finally, a few applications of

the power-based framework are highlighted.

ENERGY-BASED MODELING

OF PHYSICAL SYSTEMS

To set up the Lagrangian and Hamiltonian frameworks, as

well as the power-based framework, in a sufficiently generic

manner, we adopt the signal analogies used in multi-

domain physical modeling disciplines such as bond graph

modeling [21]. The various signals are then reduced to a set

of four basic variables called the efforts e, the flows f , the gen-

eralized momenta p, and the generalized displacements q, where

p(t) ¼ p(t0)þ

Z t

t0

e(s)ds (2)

and

q(t) ¼ q(t0)þ

Z t

t0

f (s)ds, (3)

respectively. The four basic variables within each physical

domain are summarized in Table 2. The analogy between

the mechanical and electrical domains is the classical force-

voltage or mass-inductance analogy; see ‘‘Analogues, Duals,

and Dualogues.’’

The Four-Element Quadrangle

Since the variables e and p are related by (2), or equivalently,

_p ¼ e, and the variables f and q are related by (3), or equiva-

lently, _q ¼ f , there exist four distinct pairwise combinations

(p, f ), (q, e), (f , e), and (q, p) that lead to the following classifi-

cation of generalized system elements, inductive elements

(includingmechanicalmasses and electrical inductors), capaci-

tive elements (including mechanical springs and electrical

capacitors), resistive elements (including mechanical dampers

and electrical resistors), andmemristive elements. Thememris-

tive element has its origin in the electrical domain [22] as the

TABLE 1 Forms of the Lagrangian and Hamiltonian, and their complements, the co-Lagrangian and co-Hamiltonian,
for the mechanical and electrical domain.

Domain Lagrangian Hamiltonian Co-Lagrangian Co-Hamiltonian

Mechanical Kinetic co-energy Kinetic energy Potential co-energy Potential co-energy

� þ � þ
Potential energy Potential energy Kinetic energy Kinetic co-energy

Electrical Magnetic co-energy Magnetic energy Electric co-energy Electric co-energy

� þ � þ
Electric energy Electric energy Magnetic energy Magnetic co-energy
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Analogues, Duals, and Dualogues

In science and engineering, the ideas and concepts devel-

oped in one branch of science and engineering are often

transferred to other branches. One approach to transferring

these ideas and concepts is by the use of analogies. Histori-

cally, the first attempt to relate mechanical and electrical sys-

tems was due to James Clerk Maxwell and Lord Kelvin in the

19th century by using the similarity between force and voltage,

as is also apparent from the early use of the term electromotive

force (emf). This force-voltage (sometimes called classical)

analogy implies that a mechanical mass is analogous to an

electrical inductor. In addition to the analogy between mechani-

cal and electrical systems, it was observed that phenomena

from other physical domains exhibit similar properties, as sum-

marized in Table 2.

Once the force-voltage analogy had been established,

some scientists started to address some of its limitations.

These limitations led to the alternative force-current analogy,

which implies that a mechanical mass is analogous to an

electrical capacitor. The force-current (sometimes called

mobility) analogy can be traced back to Darriues (1929),

although it appears to have been discovered independently a

few years later by H€ahnle (1932) and Firestone (1933) [S5].

From a mathematical perspective it seems pointless to dis-

cuss which analogy—when it exists—is superior, since both

analogies lead to equally valid and self-consistent descriptions

of physical systems. Arguments in favor of the force-current

analogy are mainly related to the preservation of the structural

and topological resemblance. However, from a physical

perspective, one of the main arguments in favor of the force-

voltage analogy is the analogy between force and pressure

(for the force-current analogy, pressure is considered equiva-

lent to velocity). Furthermore, both current and velocity include

information about the direction in which energy is exchanged

within the system, whereas neither voltage nor force include

this information. For this reason it is natural to consider current

and velocity as flow variables. Although the contribution of the

present article does not depend on the type of analogy used,

the force-voltage analogy is the one considered here. For

further discussions on the force-voltage versus force-current

analogy, see [S6], [S7], and [3]. A fairly extensive overview

regarding the conception and evolution of both analogies is

given in [S5].

Another closely related concept is the principle of duality.

Examples of dual variables and elements are voltage and cur-

rent, force and velocity, inductance and capacitance, and mass

and stiffness. The various properties for mechanical and electri-

cal systems are depicted in Figure S2. For a similar diagram in

the context of the force-current analogy, see [3]. An analogue

of a dual phenomenon is called a dualogue. Hence, the force-

voltage analogue is the dualogue of the force-current analogue,

and vice versa.

In constructing analogies between mechanical and

electrical systems it is important to realize that the kinetic

energy of a mass is determined relative to an inertial refer-

ence frame [S8]. The force-voltage analogy therefore sug-

gests that the true electrical analogue of a mass is an

inductor whose energy can be determined relative to a single

current. Using the force-current analogy, the true electrical

analogue of a mass is a grounded capacitor. Hence, to obtain

a true mechanical analogue of an electrical circuit with induc-

tors that allow their currents to be expressed in terms of more

than one loop current, or with ungrounded capacitors in case

of the force-current analogy, a mechanical element called

the inerter is required [S7]. The inerter differs from a conven-

tional mass element since it has two independent terminals,

which eliminates the need for a reference frame. The inerter

constitutes the dual of a mechanical spring, which also has

two independent terminals, and constitutes the mechanical

analogue of an inductor, or a capacitor in case of the force-

current analogy. These analogues allow electrical circuits to

be translated over to mechanical systems in an unambigu-

ous manner.
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Capacitor

Analogue MassInductor

Dualogue

Spring

DualDual

Analogue

FIGURE S2 Electrical versus mechanical. Based on the force-

voltage analogy, a mechanical mass is the analogue of an

electrical inductor. Likewise, a mechanical spring is the ana-

logue of an electrical capacitor. Mass and spring elements are

complementary or dual elements. The same duality holds for

other inductive and capacitive elements, or flow-controlled and

effort-controlled resistive elements. Furthermore, an analogue

of a dual element is called a dualogue, as illustrated by the diag-

onal lines. For instance, an electrical inductor is the dualogue of

a mechanical spring. The force-current, or mobility analogy, is

the dualogue of the force-voltage analogy.
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missing element that constitutes a relationship between

charge and flux linkage. An electrical passive two-terminal

memristive device was not constructed until recently [23]. An

example of a mechanical memristor is the tapered dashpot,

which is a mechanical damper whose resistance depends on

the displacement of its terminals; see ‘‘The Memristor.’’ In a

generalized context, the memristive element establishes the

relationship between q and p, and hence fills the gap in the

four-element quadrangle shown in Figure 2. The associated

constitutive relationships and related properties of the four

basic elements are discussed in ‘‘State Functions.’’

The set of basic variables can be subdivided further into

power variables and energy variables. The power variables are the

efforts and flows since their product equals power [21], that is,

P(t) ¼ e(t)f (t): (4)

The time integral of power equals energy

E(t) ¼ E(t0)þ

Z t

t0

e(s)f (s)ds, (5)

where E(t0) denotes the energy at initial time t0. Substitut-

ing dp(s) ¼ e(s)ds or dq(s) ¼ f (s)ds into (5) yields either a

line integral that represents the energy stored by an induc-

tive element or by a capacitive element, respectively. For

TABLE 2 Domains and variables.

Effort e Flow f Generalized Displacement q Generalized Momentum p

Electric Voltage V [V] Current I [A] Charge q [C] Flux linkage / [V-s]

Translation Force F [N] Velocity m [m/s] Displacement x [m] Momentum p [N-s]

Rotation Torque s [N-m] Angular velocity x [rad/s] Angular displacement h [rad] Angular momentum b [N-m-s]

Fluid Pressure P [N/m2] Volume flow Q [m3/s] Volume V [m3] Pressure momentum C [N-s/m2]

Thermodynamic Temperature T [K] Entropy flow fs [W/K] Entropy S [J/K] —

f p

e q

Inductive

Capacitive

R
e
s
is

ti
v
e

M
e
m

ris
tiv

e

FIGURE 2 The four-element quadrangle. An inductive element cor-

responds to a static relationship between flow f and generalized

momentum p; a capacitive element corresponds to a static relation-

ship between effort e and generalized displacement q; and a resis-

tive element corresponds to a static relationship between flow and

effort. The fourth relationship, between generalized momentum and

generalized displacement, defines a memristive element. The

dynamic relationships are represented by the dashed diagonal

lines. Examples of inductive elements include a mechanical mass

M described by p ¼ Mv , where p and v denote its momentum and

velocity, respectively (see Table 2), or a linear electrical inductor,

with inductance L, described by / ¼ LI, where / and I denote its

associated flux linkage and current, respectively. The correspond-

ing dynamic relationships are given by _p ¼ F (Newton’s second

law) and _/ ¼ V (Faraday’s law). Examples of capacitive elements

include a linear mechanical spring with spring constant K ,

described by F ¼ Kx (Hooke’s law), where x and F denote its dis-

placement and force, or an electrical capacitor, with capacitance C,

described by q ¼ CV , where q and V denote its associated charge

and voltage, respectively. For these examples the corresponding

dynamical relationships are _x ¼ v and _q ¼ I, respectively. Exam-

ples of resistive relationships are Ohm’s law V ¼ RI, with resistance

R, or its mechanical analog F ¼ Rv , where R is the coefficient of

friction. The electrical memristor is discussed in ‘‘The Memristor,’’

while the general nonlinear versions of the four generic elements

are discussed in ‘‘State Functions.’’

C

C

M

M
R

FK

FM

FK

a

b

x1
K

v1
M

vM

v2
M

x2
K

xK
–

FIGURE 3 Mass-spring system. This translational mechanical system

consists of a rigid interconnection of a cart with constant massM and

an ideal linear spring with compliance C and natural unstretched

length �xK . The motion is restricted to be parallel to the horizontal axis

and relative to a point in a reference frame called ground. The end-

points of the spring are called terminals (or nodes). The relative dis-

placement of the spring is determined by the difference between the

terminal displacements, that is, xK ¼ x2
K � x1

K � �xK . The terminal dis-

placements x1
K and x2

K are both measured with respect to the same

ground. Since both sides of the mass are moving with the same

velocity, one terminal is associated with the velocity of its center of

gravity, while the other terminal is the velocity of the datum or ground.

Hence, the relative velocity of the mass equals vM ¼ v2
M � v1

M , with

v1
M ¼ 0. If the interconnection constraint of the mass and the spring is

determined by equating their positions at point b, as advocated in

[41], we first need to choose a ground, for instance, the wall on the

left (point a ). Consequently, x1
K ¼ 0 so that the position of the mass

is determined by xM ¼ xK þ �xK . The offset of the mass, which is

determined by only the natural length of the spring, coincides with the

spurious constant discussed in [41]. This offset can be eliminated by

shifting the reference to point b. Additionally, in a practical situation

the cart is subject to friction forces acting on the wheels. These

effects are often modeled by a resistive element with resistanceR.
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this reason, the generalized momenta and displacements

are often referred to as energy variables. For further details,

see ‘‘State Functions.’’

To distinguish between the variables associated with each

of the four elements, the variables e, f , q, and p are given a sub-

script from the set fr, ‘, c,mg, referring to resistive, inductive,

capacitive, andmemristive elements, respectively.

Example 1: A Mechanical Mass-Spring System

To illustrate the classification presented above, consider the

translational mechanical system depicted in Figure 3. This

system consists of the interconnection of a mass M > 0 and

a linear spring with spring constant K ¼ C�1, where C > 0

is the compliance. The mass defines the relationship

between its momentum pM and its velocity vM, which can be

expressed as either pM ¼ MvM, or vM ¼ M�1pM. Similarly,

the spring defines the relationship between its elongation xK
and the associated force FK, which in the linear case can be

expressed as either FK ¼ KxK (Hooke’s law) or xK ¼ CFK .

For a nonlinear spring, these relationships are expressed as

either FK ¼ F̂K(xK) or xK ¼ x̂K(FK), referring to a displace-

ment-controlled or a force-controlled spring, respectively.

Note that the mass belongs to the class of inductive ele-

ments, while the spring belongs to the class of capacitive ele-

ments. According to Table 2, the variables pM and vM
correspond to generalized momentum and flow, respec-

tively, whereas xK and FK correspond to generalized dis-

placement and effort, respectively. The corresponding

dynamical relationships are defined by _pM ¼ FM and

_xK ¼ vK, where FM and vK are the force and the velocity asso-

ciated with the mass and the spring, respectively. Further-

more, if themass is subject to viscous friction, with damping

coefficient R, then, in addition, FR ¼ RvR (mechanical ver-

sion of Ohm’s law), where FR and vR are the force (effort)

and velocity (flow) associated with the friction, respectively.

The effect of nonlinear friction is expressed either in terms of

FR ¼ F̂R(vR), referring to velocity-controlled friction, or

vR ¼ v̂R(FR), referring to force-controlled friction. n

The Memristor

Since electronics was developed, engineers designed cir-

cuits using combinations of three basic two-terminal ele-

ments, namely, resistors, inductors, and capacitors. From a

mathematical perspective, the behavior of each of these ele-

ments, whether linear or nonlinear, is described by relation-

ships between two of the four basic electrical variables,

namely, voltage, current, charge, and flux linkage. A resistor is

described by a relationship between current and voltage; a

capacitor by that of voltage and charge; and an inductor by

that of current and flux linkage. But what about the relationship

between charge and flux linkage? As pointed out in [22], a

fourth element must be added to complete the symmetry. This

‘‘missing element’’ is called the memristor, whose name is a

contraction of memory and resistance and refers to a resistor

with memory. The memory aspect stems from the fact that a

memristor ‘‘remembers’’ the amount of current that has

passed through it together with the total applied voltage. More

specifically, letting q denote the charge and / denote the flux

linkage, a two-terminal charge-controlled memristor is defined

by the constitutive relationship

/ ¼ /̂(q):

Since flux linkage is the time integral of voltage V and charge is

the time integral of current I, that is, V ¼ _/ and I ¼ _q, we obtain

V ¼ M(q)I, (S9)

whereM(q) :¼ d/̂(q)=dq is the incremental memristance. Simi-

larly, a two-terminal flux-controlled memristor (memductor) is

defined by

q ¼ q̂(/):

Differentiating the latter yields the dual of (S9), namely,

I ¼ W (/)V , (S10)

where W (/) :¼ dq̂(/)=d/ is the incremental memductance.

The four basic electrical elements are summarized in Figure S2.

V

I q

φ

FIGURE S3 The four-element quadrangle for the electrical

domain. As indicated by the arrows, an inductor corresponds to

a static relationship between current I and flux linkage /, a

capacitor corresponds to a static relationship between voltage V

and electric charge q, and a resistive element corresponds to a

static relationship between current and voltage. The fourth rela-

tionship, between / and q, defines a memristor. In the last case

the variables / and q do not necessarily have the interpretation

of a physical flux or charge and therefore must be considered as

integrated voltage or current, respectively.
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Classical Energy-Based

Framework

For ease of presentation, we begin

by considering a class of systems

consisting solely of intercon-

nected inductive and capacitive

energy-storage elements; see

Table 3 for the energy stored in

the elements of various engineer-

ing domains. The equations of

motion can be deduced from the dynamic relationships

associatedwith the elements togetherwith a set of constraint

relationships that define how the elements are intercon-

nected to form the overall system. In ‘‘State Functions,’’ par-

ticular energy functions are associated with the inductive

and capacitive elements. These functions are given in terms

of the individual element variables, but wemay equallywell

employ any other set of variables that uniquely define the

configuration of the system, and thus of every element. Any

such set of variables is called a complete set of generalized coor-

dinates. The number of degrees of freedom of the system is the

number of independent coordinates required to specify the

configuration of each element in the system.

Suppose that a system configuration with n degrees of

freedom can be described by the complete set of generalized

displacement coordinates q ¼ col(q1, . . . , qn). The Lagrangian

Observe that (S9) and (S10) are generalized versions of

Ohm’s law, in which the memristor and memductor are acting

as charge- and flux-modulated resistors, respectively. It is

important to realize that, for the special cases in which the

constitutive relations are linear, that is, when the incremental

memristance M(q) or the incremental memductance W (/) is

constant, a memristor and a memductor become an ordinary

resistor and conductor. Hence, memristors and memductors

are relevant only in nonlinear circuits.

To gain intuition for what distinguishes a memristor from a

resistor as well as from an inductor and a capacitor, let us briefly

consider the common analogy of a resistor and a pipe that car-

ries a fluid. The fluid can be considered analogous to charge,

the pressure at the input of the pipe is similar to voltage, and the

rate of flow of the fluid through the pipe is like current. As in the

case of a resistor, the flow of fluid through the pipe is faster if the

pipe is shorter or if it has a larger diameter. Now, an analogy for

a memristor is a flexible pipe that expands or shrinks according

to how fluid flows through it. If fluid flows through the pipe in one

direction, the diameter of the pipe increases, thus enabling the

fluid to flow faster. If fluid flows through the pipe in the opposite

direction, however, the diameter of the pipe decreases, thus

slowing down the flow of the fluid. If the fluid pressure is turned

off, the pipe retains its most recent diameter until the fluid pres-

sure is turned back on. Unlike a bucket (or a capacitor) a mem-

ristive pipe does not store the fluid but ‘‘remembers’’ how much

fluid flowed through it.

A physical electrical passive two-terminal memristive device

was constructed only recently when scientists at Hewlett-Pack-

ard Laboratories announced its realization. In particular, it is

shown in [23] that memristance naturally arises in nanoscale

systems when electronic and atomic transport are coupled

under an external bias voltage. The memristive effect is realized

by fabricating a layered platinum-titanium-oxide-platinum nano-

cell device.

It will be interesting to see what applications arise for this

device and whether it invokes a revival of network theory. On

the other hand, as pointed out in [43], in the mechanical domain,

the tapered dashpot is a mechanical damper whose resistance

depends on the displacement of its terminals; see Figure S4. In

practice the taper is achieved by a conical pin passing through

an orifice in the piston. The shape of the pin can be machined to

produce a desired memristive relation between displacement

and momentum, which are the mechanical analogies of charge

and flux linkages. Other examples of engineering systems in

which the memristor phenomena is apparent can be found in

[S9], [43], and [45]. An extension of the concept to a much

broader class of systems, called memristive systems, is

presented in [S10].
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x

FF

FIGURE S4 Example of a tapered dashpot. The friction coeffi-

cient depends on the displacement x . In practice the taper is

achieved by a conical pin passing through an orifice in the piston.

The shape of the pin can be machined to produce any desired

memristive relation between displacement and momentum.

TABLE 3 Domains and energy.

Domain Inductive Energy T or Co-Energy T � Capacitive Energy V or Co-Energy V�

Electric Magnetic (inductor) Electric (capacitor)

Translation Kinetic (mass) Potential (spring, gravity)

Rotation Kinetic (inertia) Potential (rotational spring)

Fluid Kinetic (tube, pipeline) Potential (tank)

Thermodynamic — (Heating)
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equations of motion are given by (see ‘‘Notation’’ for the

notation of partial derivatives)

d

dt
rfL(q, f )�rqL(q, f ) ¼ 0, (6)

where the flow variables f ¼ _q, with f ¼ col( f1, . . . , fn), are

called generalized velocities. Furthermore, the Lagrangian

L(q, f ) is defined by

L(q, f ) ¼ T �( f )� V(q),

where T �( f ) represents the total inductive co-energy and

V(q) the total capacitive energy, which are obtained as the

sums of the inductive co-energies and the capacitive ener-

gies in the constituent elements, respectively. See ‘‘State

Functions’’ for details on energy and co-energy.

The Lagrangian equations (6), in both the linear and non-

linear cases, can be derived in various ways. Perhaps the best

known methods are the derivations based on d’Alembert’s

principle and the principle of virtual work as well as deriva-

tions originating in variational methods such as Hamilton’s

principle [1], [17]. Alternative methods can be found in [24].

Furthermore, the Lagrangian equations (6) define a set of n

second-order differential equations that constitute an effort

balance, and the information necessary to describe the sys-

tem’s dynamic behavior is solely contained in the Lagrangian.

The Hamiltonian equations are established by consider-

ing the Legendre transformation.We thus define the general-

ized momenta p ¼ rfL(q, f ), with p ¼ col(p1, . . . , pn). Then,

under the assumption that f can be expressed in terms of p,

the set of n second-order equations (6) can be transformed

into 2n first-order equations of the form

_q ¼ rpH(q, p), (7)

_p ¼ �rqH(q, p), (8)

where theHamiltonianH is the total stored energy, that is,

H(q, p) ¼ T (p)þ V(q):

The Hamiltonian equations (7) and (8) constitute both a

flow and effort balance, respectively. Note that, like (6), the

system configuration in (7), (8) is still described in terms of

the generalized displacement coordinates q.

Example 1 Revisited: The Lagrangian

and Hamiltonian Equations

For themechanical system of Figure 3, assume that themass

moves without friction. In deriving the Lagrangian equa-

tions we need only the kinetic (inductive) co-energy associ-

ated with the mass and the potential (capacitive) energy

stored in the spring. According to the definitions given in

‘‘State Functions,’’ the kinetic co-energy is determined by

T �(vM) ¼
M

2
v2M,

whereas the potential energy is given by

V(xK) ¼
x2K
2C

:

The next step is to define the system configuration. Since

the system has one degree of freedom, a natural choice is to

take the displacement of the point b in Figure 3, that is,

x ¼ xK ¼ xM. With this choice, the Lagrangian is defined by

L(x, v) ¼
M

2
v2 �

x2

2C
, (9)

with corresponding velocity v ¼ _x. Substituting (9) into the

Lagrange equation (6) yields the second-order differential

equation

M€xþ
x

C
¼ 0: (10)

Concerning the Hamiltonian counterpart, we first define

themomentum

p ¼ rvL(x, v) ¼ Mv,

and introduce the Hamiltonian

H(x, p) ¼ ½pv� L(x, v)�v¼ p
M
¼

p2

2M
þ

x2

2C
:

Hence, according to (7) and (8), the Hamiltonian equations

for the system are given by

_x ¼
p

M
, _p ¼ �

x

C
: (11)

Note that the Lagrangian equation (10) equates only the

forces of the mass and the spring, whereas the Hamiltonian

equations (11) equates both the velocities and the forces in

terms of x and p. Furthermore, if in Figure 3 the point a is

chosen as the point of reference, the potential energy needs

to bemodified as

V(x) ¼
(x� �xK)

2

2C
,

where �xK is the relaxed length of the spring. n

Notation

Let

x ¼

x1

.

.

.

xn

2

64

3

75 ¼ col(x1, . . . , xn) 2 R
n

denote a column vector, and let V(x ) denote a scalar function

V : R
n ! R. The gradient of V(x ) with respect to x is denoted by

rxV(x ) ¼ col
@V

@x1
(x ), :::,

@V

@xn
(x )

� �
2 R

n :

Furthermore, the notation r2
xV(x ) 2 R

n3n denotes the Hes-

sian matrix.
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The Lagrangian equations of motion (6) and the Hamilto-

nian equations (7), (8) are represented in Figure 4 (solid

lines). The diagram suggests that there exists a dual form of

the Lagrangian equations of motion (6) if the system can be

expressed in terms of a set of generalizedmomentum coordi-

nates and their time-derivatives. The dynamics in terms of

the generalizedmomenta and efforts is called a co-Lagrangian

system. This system is obtained by replacing the Lagrangian

L(q, f ) in (6) by its complementary or dual form, called the co-

Lagrangian, defined by the difference between the total

capacitive co-energy and the total inductive energy, that is,

L�(p, e) ¼ V�(e)� T (p):

Hence, the co-Lagrangian equations ofmotion take the form

d

dt
reL

�(p, e)�rpL
�(p, e) ¼ 0, (12)

where the efforts e ¼ _p, with e ¼ col(e1, . . . , en), are generalized

force coordinates. Note that (12) again defines a set of n second-

order differential equations, but now constitutes a flow balance.

Example 1 Revisited:

The Co-Lagrangian Equations

For the mass-spring system of Figure 3, the formulation of

the co-Lagrangian means that instead of taking the displace-

ment of the connection point as the system configuration, a

suitable momentum variable must be chosen. One possible

choice is p ¼ �pM ¼ pK , where the minus sign stems from the

reference direction of the mass and spring forces. Conse-

quently, F ¼ _p ¼ FK, and the co-Lagrangian has the form

L( p, F) ¼
C

2
F2 �

p2

2M
,

which upon substitution into (12) yields the second-order

differential equation

C _Fþ
p

M
¼ 0: (13)

Note that (13) equates the velocities of the spring and mass

with vM ¼ �M�1p. n

The three representations considered above describe the

dynamics of a system consisting only of inductive and

capacitive elements. The underlying principle of the trans-

formations between the various energy functions is the exis-

tence of the associated Legendre transformations. The

diagram in Figure 4 shows that there exists a fourth equa-

tion set involving the variables e and f . Starting from the

Hamiltonian equations, the Legendre transformation of

both q 7! e and p 7! f is considered simultaneously, that is,

H�( f , e) ¼ q>eþ p>f �H(q, p),

where it is assumed that q can be expressed in terms of e, and p

can be expressed in terms of f , that is, if the respective relation-

ships e ¼ rqH(q, p) ¼ rqV(q) and f ¼ rpH(q, p) ¼ rpT (p)

are invertible. Thus the co-Hamiltonian is given by

H�( f , e) ¼ T �( f )þ V�(e),

where T �( f ) represents the total inductive co-energy and V�(e)

is the total capacitive co-energy. It is evident from Figure 4 that

the co-Hamiltonian equations relate in a cross-wise differential

manner, in the sense that _p ¼ e and _q ¼ f , as visualized by the

diagonal lines, with the Hamiltonian equations. Hence, the co-

Hamiltonian equations are given by

d

dt
rfH

�( f , e) ¼ e, �
d

dt
reH

�( f , e) ¼ f : (14)

The latter set of equations completes the quadrangle

in Figure 4.

Example 1 Revisited: The

Co-Hamiltonian Equations

Returning to the mass-spring system of Figure 3, the co-

Hamiltonian takes the form

H�(v, F) ¼
C

2
F2 þ

M

2
v2, (15)

which upon substitution into (14) yields the first-order

differential equations

M _v ¼ F, � C _F ¼ v: (16)

Taking the system configuration of ‘‘Example 1 Revisited: The

Co-Lagrangian Equations’’ as a reference, the spring force is

f p

e q
f p

e q

f p

e q

Lagrangian

Hamiltonian

Co-Lagrangian

Co-Hamiltonian/
Brayton-Moser

p

e q

f

FIGURE 4 Relationship between the Lagrangian and Hamiltonian

equations and their complementary versions. The Lagrangian equa-

tions are described in terms of generalized displacements and their

corresponding flows (generalized velocities). The associated Hamil-

tonian equations are obtained by replacing the flows by generalized

momenta. The complementary or dual Lagrangian equations are

referred to as the co-Lagrangian equations since they are described

in terms of dual variables, namely, a set of generalized momenta and

its associated efforts (generalized forces). The complementary Ham-

iltonian formulation is represented by the co-Hamiltonian equations,

which are described in terms of flows and effort. The co-Hamiltonian

formulation coincides with the Brayton-Moser equations.
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given by FK ¼ F, while the velocity of the mass equals

vM ¼ �v. The co-Hamiltonian representation (16) provides both

the force and velocity balance, but now in terms of force (effort)

and velocity (flow) variables only. The original system configu-

ration variables x and p are eliminated from themodel. n

Including Resistive Elements

The frameworks considered above assume that the system

is free from dissipation and externally supplied efforts or

flows. Dissipation and supply effects can be included in the

Lagrangian framework by introducing a content function

D( f ), (see ‘‘State Functions’’) so that (6) is modified as

d

dt
rfL(q, f )�rqL(q, f ) ¼ �rfD( f ): (17)

Note that the contents exist only for resistive elements that

are flow-controlled. Effort-controlled resistive elements can

be included in the Lagrangian framework if their constitu-

tive relationships are one-to-one.

Similarly, the co-Lagrangian equations can be modified

by introducing a resistive co-content function D�(e) associ-

ated to the effort-controlled resistive elements, so that (12)

is modified as

d

dt
reL

�(p, e)�rpL
�(p, e) ¼ �reD

�(e): (18)

Flow-controlled elements can be included in the co-Lagran-

gian framework if their constitutive relationships are one-

to-one. As illustrated in the examples below, the possibility

of describing a system by either (17) or (18) strongly

depends on the system configuration.

Example 1 Revisited: Adding Dissipation

Suppose that the mass of the system of Figure 3 is subject to

viscous friction with friction coefficient R. We know that the

constitutive relationship can be represented by either

FR ¼ RvR (flow-controlled with f ¼ vR) or vR ¼ R�1FR (effort-

controlled with e ¼ FR). Since these relationships are linear,

and thus one-to-one, the corresponding content and co-content

functions exist. However, for the Lagrangian formulation only

the content is needed,which, by noting that vR ¼ v, is given by

D(v) ¼

Z v

0

RvRdvR ¼
R

2
v2: (19)

Hence the Lagrangian equation of motion for the lossless

situation (10) is modified as

M _vþ
x

C
¼ �rvD(v) ¼ �Rv: (20)

n

Example 2: Velocity- Versus

Force-Controlled Damping

A similar, but conceptually different, situation occurs when a

viscous damper is connected between the wall and the mass

as shown in Figure 5(a). The corresponding content function

coincides with (19), and, since the velocity of the wall is con-

sidered to be zero as a reference velocity, we again have

vR ¼ v. Hence, the system can be described by the same

Lagrangian equation as derived in (20). On the other hand, a

dual situation occurs if instead the damper is placed between

the spring and themass; see Figure 5(b). In this case the veloc-

ity of the damper cannot be related to the chosen velocity

coordinate, but rather shares the force (effort) of the spring,

that is, FR ¼ F. Hence, a direct way to describe the dynamics

of this system is bymeans of the co-Lagrangian equation

C _Fþ
p

M
¼ �rFD

�(F) ¼ �
F

R
, (21)

C

M

R

C M

R

C M

R1

R2

(a)

(b)

(c)

FIGURE 5 Mass-spring-damper systems. (a) Amechanical system con-

sisting of a constant mass M connected to a linear spring with compli-

ance C, and a linear viscous damper with friction coefficient R. The

damper can be modeled as a resistive element, which, at its terminals,

exerts an equal and opposite force that is a function of the relative veloc-

ity between these terminals. Taking the wall on the left as the ground

point, the relative velocity of the damper is determined by the velocity of

the mass. This damper configuration is referred to as a velocity-

controlled damper. In the case of (b), the same damper is placed

between the mass and the spring. The relative velocity of the damper is

now determined by the difference between the velocity of the mass and

the spring. However, in deriving the state equations, the constitutive

relationship of the damper is described rather as a function of its associ-

ated force. Dual to the configuration of (a), this damper configuration is

referred to as force-controlled damper. (c) Combination of (a) and (b).
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where the co-contentD�(F) is of the form

D�(F) ¼

Z F

0

FR
R
dFR ¼

F2

2R
: (22)

Note that this configuration of the damper does not contrib-

ute a force to the Lagrangian equation ofmotion (20). n

Example 2 shows that the Lagrangian and co-Lagrangian

frameworks complement each other. Indeed, as shown in the

section ‘‘The Brayton-Moser Equations,’’ both frameworks

can be naturally combined into a single system of equations

allowing for both effort- and flow-controlled resistive ele-

ments, as in the case of the systemof Figure 5(c).

Limitations and Generalizations

TheLagrangian andHamiltonian equations, togetherwith their

dual formulations, the co-Lagrangian and co-Hamiltonian

equations, respectively, introduced above are set up to explain

the relations between the four frameworks in a straightforward

manner. The two main assumptions that all four representa-

tions exist simultaneously are i) that the system configuration

can be described by either a set of generalized displacement

coordinates, or a set of generalized momentum coordinates, or

both, all having the samedimension n, and ii) that the Legendre

transformations from energy to co-energy, and vice versa, exist.

While these assumptions are satisfied by some electrical net-

works that have the same number of inductive and capacitive

elements, as well as some mechanical systems, such as the

mass-spring example treated above, the class of systems that

can bemodeled by all four representations is restricted.

The main limitation in the mechanical domain concerns

the existence of the potential co-energy function. If the

constitutive relationship between force and displacement,

say for a stiffness elementK, is nonlinear, that is, FK ¼ F̂K(xK),

it may be that its inverse xK ¼ x̂K(FK) does not exist. In the

absence of an inverse constitutive relationship it is not possi-

ble to evaluate the potential co-energy given by

V�(F) ¼

Z F

0

x̂K(FK)dFK:

An example for which the potential co-energy cannot be

evaluated, at least not globally, is in the case of systems that

are subject to gravity; see ‘‘Example 3 Revisited.’’ However,

for mechanical systems, the co-Lagrangian and co-Hamilto-

nian equations are sometimes invoked to model special

problems; see [15] for examples.

Besides mechanical systems, the dual formulation can be

insightful and sometimes even necessary for describing sys-

tems from other engineering domains. For instance, some

networks and systems, such as the tunnel diode circuit dis-

cussed in ‘‘History of the Mixed-Potential Function,’’ cannot

be described in a classical Lagrangian or Hamiltonian frame-

work since the tunnel diode characteristic is not one-to-one

and thus cannot be expressed in terms of a content function.

Additional examples that cannot be described in terms of a

Lagrangian, but do admit a co-Lagrangian formulation,

include electrical networks with varactors, which are nonlin-

ear voltage-controlled capacitive elements that cannot be

described in terms of the charge, and the Josephson junction

circuit model, which contains a flux-controlled inductive ele-

ment for which the Legendre transform does not exist.

An additional assumption that is introduced to further

simplify the setup of the four frameworks is that the induc-

tive co-energy does not depend on the generalized displace-

ments. This assumption means that the displacements

associated with the individual inductive elements can all be

expressed in terms of a set of independent generalized dis-

placement coordinates, that is, q‘ ¼ Uq, with U a constant

matrix of appropriate dimensions. The corresponding flows

f‘ ¼ _q‘ and f ¼ _q are then related by f‘ ¼ Uf , which means

that the total inductive co-energy can be expressed solely in

terms of f . Although U is typically constant for electrical

networks and translational mechanical systems, the selec-

tion of a set of generalized configuration coordinates for

rotating mechanical systems often gives rise to a displace-

ment-dependent mapping of the form

q‘ ¼ U(q), (23)

changing, for example, Cartesian coordinates to polar,

cylindrical, or spherical coordinates. Consequently, differ-

entiation of (23) with respect to time yields the flow

f‘ ¼ rqU(q)f ¼: Û(q, f ), (24)

which yields a function of both q and f , and thus extends

the inductive co-energy from T �( f ) to T �(q, f ). Another

instance where the inductive co-energy may become a

function of both q and f is the case in which connections are

made between different physical domains [4]. An example

for which it is convenient to perform a change of coordi-

nates is the inverted pendulum on a cart system.

Mb

Mc

x

y
l

θ

FIGURE 6 Inverted pendulum on a cart. The mass of the cart and

the point mass (the bob) at the end of the rod are denoted by Mc

andMb , respectively. The rod with length l is considered massless.
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History of the Mixed-Potential Function

At a June 1958 conference in Brussels, Leo Esaki presented

a new type of diode he had developed at Sony and for

which he received a Ph.D. in physics and, later, the 1973 Nobel

prize in physics. The characteristic curve of the Esaki or tunnel

diode, named for the quantum-mechanical tunneling effect it

exploited, contains a region in which the current decreases as

the voltage increases. This region of negative resistance made

it possible to construct bistable circuits, which were used as

switching or memory elements (flip-flops) in early computers.

To gain a better understanding and to guarantee safe operation

of these circuits, J€urgen Moser developed a mathematical

technique for analyzing their stability [S11]. His method was

based on the study of a power related scalar function leading to

quantitative restrictions on the circuit parameters so as to

ensure stable switchings. We now briefly outline Moser’s origi-

nal idea and motivation.

MOTIVATION FOR A NEW THEORY

Consider the tunnel diode circuit depicted in Figure S5, where

I ¼ IL denotes the current through the inductor L and V ¼ VC

denotes the voltage across the capacitor C. The differential

equations describing the circuit are given by

L_I ¼ E � RI � V , C _V ¼ I � Îg (V ), (S11)

where the function Îg (V ) characterizes the relation between the

voltage V and the current Ig through the branch of the tunnel

diode. In Figure S5 the characteristic curve is plotted, and the

three equilibrium points of the circuit are shown. Two of the

equilibria are asymptotically stable, whereas the equilibrium in

the region of negative resistance is unstable. For the design of

a flip-flop circuit it is useful to know when all trajectories tend to

the asymptotically stable equilibrium points to exclude bounded

trajectories, such as limit cycles, that never reach the equilib-

rium points. The most common way to proceed is to find a

Lyapunov function. As with many physical systems, a Lyapunov

function candidate is the total stored energy in the circuit. How-

ever, this function is not useful for investigating stability for the

tunnel diode circuit [S11].

ALTERNATIVE LYAPUNOVARGUMENT

To circumvent this problem, Moser’s key idea was to introduce

the scalar function

P(I,V ) ¼
1

2
RI2 � EI �

Z V

0

Îg (Vg )dVg þ IV , (S12)

so that the differential equations (S11) can be rewritten as

�L_I ¼ rIP(I,V ),

C _V ¼ rVP(I,V ):

(Here we use an opposite sign convention in comparison with

[S11].) Observe that the values of (S12) have the units of power

(current 3 voltage) and that its extrema coincide with the equili-

bria of (S11). However, (S12) does not qualify as a Lyapunov

function since its time derivative is indefinite. For that reason,

Moser introduced the alternative function

O(I,V ) ¼
L

2
(E � RI � V )2 þ

C

2
(I � Îg (V ))2, (S13)

whose time derivative implies that all trajectories tend to the set

of stable equilibria if Î 0g (V ) :¼ d̂Ig (V )=dV > 0, that is, the slope

of the characteristic curve of the tunnel diode must be positive

for all V . However, this function still does not take into account

the region of negative resistance. Finally, the combination of

the two functions S ¼ Oþ kP, with arbitrary constant k, yields

_S(I,V ) ¼ �
R þ kL

L2
(E � RI � V )2 �

Î 0g (V )� kC

C2
(I � Îg (V ))2:

The derivative _S(I,V ) is negative defi-

nite if k is chosen in the interval

�
R

L
< k <

Î 0g (V )

C
,

where it is assumed that Î 0g (V ) >

�CRL�1. The condition Î 0g (V ) >

�CRL�1 puts a restriction on the

steepness of the slope of the negative

resistance region of the tunnel diode

and guarantees that all trajectories

converge to the set of stable equilibria.

THEBRAYTON-MOSEREQUATIONS

Four years after [S11] appeared,

Moser generalized the theory together

with Brayton in [19] to the class of

Stable

Unstable

Stable

IL

VCE

R

L C

0

Ig

Ig

Vg

+−

FIGURE S5 Tunnel diode circuit. The tunnel diode has a nonlinear voltage-controlled consti-

tutive relationship that contains a region of negative resistance. This characteristic made it

possible to construct bistable circuits, which were used as switching or memory elements

(flip-flops) in early computers. Note that the constitutive relationship of the tunnel diode is

not invertible since it is not a single-valued function of the voltage. Consequently, the tunnel

diode circuit cannot be described using the Lagrangian equations because the associated

content is not globally defined.
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topologically complete circuits. A circuit is topologically complete

if each branch of the circuit can be expressed either in terms of

the inductor currents I, or the capacitor voltages V , or both, and

if it can be split up into two subcircuits, say Ra and Rb , where Ra

contains the current-controlled inductors and current-controlled

resistors, and Rb contains the voltage-controlled capacitors and

voltage-controlled resistors and conductors. The P-function for

such a circuit then takes the form

P(I,V ) ¼ D(I)�D�(V )þ V>NI, (S14)

where

D(I) ¼

Z Nr I

0

V̂
>

r (Ir )dIr

represents the resistive content capturing the current-controlled

resistors and sources contained in Ra, that is, the constitutive

relations between the currents through the resistors Ir and the

voltages across the resistors is given by Vr ¼ V̂r (Ir ), and

D�(V ) ¼

Z NgV

0

Î
>

g (Vg )dVg

represents the resistive co-content capturing the voltage-con-

trolled resistors, conductors, and sources contained in Rb , that

is, the constitutive relations between the voltages across the

conductors Vg and the currents through the conductors is given

by Ig ¼ Îg (Vg ). The term V>NI represents the instantaneous

power delivered from Ra to Rb . Here, the matrices Nr , Ng , and

N, with entries �1, 0, stem from applying Kirchhoff’s voltage

and current laws to the circuit. Thus, the circuit is completely

determined by a mix of three different potential functions; hence

Brayton and Moser call (S14) the mixed-potential function. In

compact notation, the dynamics of a possibly nonlinear RLC cir-

cuit can be described as

Q(z) _z ¼ rzP(z), (S15)

with z ¼ col(I,V ) and

Q(z) ¼
�L(I) 0

0 C(V )

� �
, (S16)

where L(I) andC(V ) are the incremental inductance and capac-

itance matrices. This system of differential equations is com-

monly known as the Brayton-Moser (BM) equations.

Although the BM equations (S15), together with (S16) and

the mixed-potential of the form (S14), are due to Brayton and

Moser [19], it is noteworthy to mention that similar ideas were

already developed earlier by Wells [S12] and St€ohr [S13]. In

particular, the similarity of the mixed-potential with Wells’s

power function is remarkable. In addition to including dissipa-

tive forces to describe the behavior of resistors, Wells used the

power function to include conservative forces to describe the

behavior of capacitors and externally applied forces to describe

external voltage sources. The terms in Wells’s power function

associated with the conservative forces coincide with the

instantaneous power transfer term of the mixed-potential func-

tion, where N is the identity matrix.

A FAMILYOF BRAYTON-MOSER DESCRIPTIONS

Motivated by the tunnel diode example, the principal application of

the mixed-potential function concerns its use in determining stabil-

ity criteria for possibly nonlinear networks admitting a description

of the form (S15), together with (S14) and (S16). Indeed, it is now

easily seen that _P(z) is a quadratic form in _z, that is,

_P(z) ¼ _z>Q(z) _z: (S17)

Hence for circuits without capacitors (RL circuits), we have

z ¼ I, Q(I) ¼ �L(I), and P(I) ¼ D(I). Under the condition that

L(I) is positive definite, as is usually the case, we obtain

_P(I) � 0 , which, by the invariant set theorem, implies that each

bounded I approaches the set of equilibria, as t ! 1. A similar

result pertains to circuits without inductors, that is, RC circuits.

However, for RLC circuits the symmetric part of Q(z) is

indefinite. Brayton and Moser’s key observation is to generate a

new pair f ~Q, ~Pg such that the symmetric part of ~Q is at least

negative semidefinite. The construction is as follows. For each

constant symmetric matrix M and real number k, a new mixed-

potential is obtained from

~P(z) ¼ kP(z)þ
1

2
r>

z P(z)MrzP(z), (S18)

yielding _P(z) ¼ _z
> ~Q(z) _z, with

~Q(z) ¼ kQ(z)þr2
zP(z)MQ(z): (S19)

The original ideas of [S11] are then generalized into several

theorems [19], each imposing particular restrictions on the cir-

cuit parameters or the topology. The first three theorems

presented in [19] are summarized below.

Theorem S1

If R :¼ r2
I D(I) is constant and nonsingular, D�(V ) ! 1 as

jV j ! 1, and

L1=2(I)R�1N>C�1=2(V )
�� �� < 1,

then each trajectory of (106) tends to the set of equilibria as t !1.

The proof of the theorem follows by selecting k ¼ �1 and

M ¼ diag(2R�1, 0) in (S18) and (S19), and by invoking the

invariant set theorem. Note that for topologically complete cir-

cuits the theorem requires the resistors in Ra to be linear and to

have sufficient damping in each current coordinate. The latter

condition is satisfied if each inductor has some series resist-

ance, no matter how small. Also note that the conditions of the

theorem are independent of the resistors in Rb . The following

result is the complementary or dual version of Theorem S1.

Authorized licensed use limited to: University of Groningen. Downloaded on December 23, 2009 at 05:19 from IEEE Xplore.  Restrictions apply. 



44 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2009

Theorem S2

If G :¼ r2
VD

�(V ) is constant and nonsingular, D(I) ! 1 as

jIj ! 1, and

C1=2(V )G�1NL�1=2(I)
�� �� < 1,

then each trajectory of (S15) tends to the set of equilibria as t !1.

The proof of Theorem S2 is similar to the proof of Theorem

S1, except that k ¼ 1 andM ¼ diag(0, 2G�1), which means that

every capacitor must possess some parallel conductance. The

third theorem does not require the resistors to be linear, but

assumes linear inductors and capacitors.

Theorem S3

If L and C are constant, symmetric, and positive definite, and

l1 L�1=2R(I)L�1=2
� 	

þ l2 C�1=2G(V )C�1=2
� 	

> 0,

where lf�g represents the infimum of the eigenvalues of the

respective matrices, then each bounded trajectory of (S15)

tends to the set of equilibria as t ! 1.

Theorem S3 follows by selecting k ¼ ð1=2Þ(l2 � l1) and

M ¼ diag(L,C)�1. The requirement that M in (S18) and (S19)

must be chosen to be constant is precisely the reason for the dif-

ferent linearity assumptions on the admissible circuit elements.

In summary, Table S1 shows the assumptions on the circuit ele-

ments regarding the applicability of each of the three theorems.

It is important to realize that the requirements of theorems

S1, S2, and S3 are only sufficient conditions that establish com-

parisons between different time constants or frequencies.

Indeed, the application of Theorem S1 to the tunnel diode circuit

yields the condition R >
ffiffiffiffiffiffiffiffiffi
L=C

p
, which can be rewritten as

RC >
L

R
,

where both sides of the inequality have the units of seconds. A

similar discussion holds for the stability condition Î 0g (V ) >

�CRL�1 discussed above. Note that the same condition follows

from the application of Theorem S3. Theorem S2 cannot be

applied since it requires linearity of the resistors in Rb , which in

this case is the tunnel diode.

STATE OF THE ART

During the last four decades several notable extensions and

generalizations of the BM theory have been presented in the

literature. Most of these extensions are based on the topologi-

cal structure of the circuit. In [S14]–[S16], and [3], a topological

mixed-potential is derived from a variational point of view.

These observations are proved more rigorously in [S17]. The

inclusion of ideal transformers is treated in [S18]. In [S19], the

concept of pseudocontent and pseudohybrid content is intro-

duced to carry over the ideas of BM to topologically noncom-

pete circuits. The problem of finding the largest class of circuits

for which a mixed-potential function can be constructed is dis-

cussed in [S20] and [28]. Furthermore, based on the ideas

presented in [S19], the extension of Theorem S1 and S2 to cir-

cuits having noninvertible R or G matrices, as well as the

applicability of the stability theory to noncomplete circuits, is

presented in [26]. A generalization of Brayton and Moser’s

stability theorems that also includes the analysis of circuits that

contain nonlinear resistors, conductors, inductors, and capaci-

tors simultaneously is given in [S21]. Geometrical aspects of

the concept of the mixed-potential function can be found in

[S20], [S22]–[S26], and [11].
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TABLE S1 Assumptions for Brayton and Moser’s stabil-
ity theorems.

Type of Element Theorem S1 Theorem S2 Theorem S3

Resistive Linear Nonlinear Nonlinear

Conductive Nonlinear Linear Nonlinear

Inductive and

capacitive

Nonlinear Nonlinear Linear
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Example 3: Inverted Pendulum on a Cart

Consider the inverted pendulum mounted on a cart in

Figure 6. We assume that the rod with length l is massless,

and denote the cart mass by Mc and the point mass (the

bob) at the upper end of the inverted pendulum by Mb.

Since the system moves in the x-y plane, its configuration

can be described in terms of Cartesian coordinates, namely,

the displacement of the cart in the horizontal direction (x, 0)

and the displacement of the bob (xb, yb). The kinetic co-

energy in this case is given by

T �( _x, _xb, _yb) ¼
Mc

2
_x2 þ

Mb

2
( _x2b þ _y2b):

However, since the pendulum has only one degree of freedom,

a more convenient choice of configuration coordinates for the

bob is its angular displacement h with respect to the vertical

axis. Denoting q ¼ col(x, h) and q‘ ¼ col(x, xb, yb), we proceed

by applying a coordinate transformation of the form (23),with

U(q) ¼
x

xþ l sin (h)
l cos (h)

2

4

3

5:

Hence the velocities are given by f‘ ¼ col( _x, _xb, _yb), where

_x
_xb
_yb

2

4

3

5 ¼
1 0
1 lcos(h)
0 �lsin(h)

2

4

3

5 _x
_h

� �
¼: Û(q, f ),

so that the kinetic co-energy can be expressed as

T �(q, f ) ¼
Mc þMb

2
_x2 þMbl _x _h cos(h)þ

Mbl
2

2
_h2, (25)

which now depends on both generalized displacement and

velocity coordinates. n

THE BRAYTON-MOSER EQUATIONS

Having in mind the modified Lagrangian equations (17) and

(18), consider a system that consists of n‘ inductive and nr
resistive elements, either flow controlled or one to one, and

denote this system as Ra. The underlying configuration varia-

bles are the generalized displacements associated with the

inductive elements, that is, q ¼ col(q1, . . . , qn‘ ). Furthermore,

assume that the systemhas ne external ports (or ne þ 1 external

terminals) associated with a set of efforts ea and flows fa (see

Figure 7). The external flows are related to the inductive flows

f ¼ _q through the relationship fa ¼ Naf , whereNa is an ne 3 n‘
matrix. If the resistive elements admit a resistive content func-

tionD( f ), then the Lagrangian equations (17) take the form

d

dt
rfL( f ) ¼ �rf D( f )�

Z Naf

0

e>a dfa

� �
, (26)

where the Lagrangian is reduced to the total stored induc-

tive co-energy, that is, L( f ) ¼ T �( f ), and the right-hand

term inside parentheses represents the total content associ-

ated with the system Ra.

On the the other hand, consider a systemRb that consists of

nc capacitive and ng resistive elements, either effort-controlled

or one-to-one, having the same number of external ports or

terminals as Ra and as underlying configuration variables the

generalizedmomenta associatedwith the capacitive elements,

that is, p ¼ col(p1, . . . , pnc ). If the efforts and flows associated

with these external ports are denoted as eb and fb, respectively,

and eb ¼ Nbe, where e ¼ _p and Nb an ne 3nc matrix, then the

co-Lagrangian equations (18) take the form

d

dt
reL

�(e) ¼ �re D�(e)�

Z Nbe

0

f>b deb

� �
: (27)

In this case, the co-Lagrangian is reduced to the total stored

capacitive co-energy, that is, L�(e) ¼ V�(e), and the right-

hand term inside parentheses represents the total co-content

associatedwith the system Rb.

Suppose now that the two systems of Figure 7 are inter-

connected through ea ¼ �eb and fb ¼ fa, which in this case

is tantamount to connecting the respective terminals. Sub-

tracting the total content and co-content functions produces

the scalar function

P( f , e) ¼ D( f )�D�(e)þ e>Nf , (28)

wherewe use the fact that the sum of the two integrals appear-

ing at the right-hand sides of (26) and (27) reduce, bymeans of

integration by parts, to e>Nf , withN :¼ N>
b Na. Consequently,

(26) and (27) combine into one set of equations given by

�
d

dt
rfH

�( f , e) ¼ rfP( f , e), (29)

d

dt
reH

�( f , e) ¼ reP( f , e), (30)

whereH�( f , e) ¼ T �( f )þ V�(e) represents the total co-energy.

Equations (29) and (30), together with (28), are the BM equa-

tions, originally derived for nonlinear electrical circuits in [19]

Σa

Σb−

−

−

+

+

+
ea1

ea2
fa1

fa2

eak

fak

eb1

eb2

fb1

fb2

fbk

ebk

FIGURE 7 Brayton-Moser system. The subsystem Ra contains the

flow-controlled inductive and resistive elements, whereas Rb con-

tains the effort-controlled capacitive and resistive elements. Since

inductive and capacitive elements, as well as flow-controlled and

effort-controlled resistors, are complementary or dual elements

(see ‘‘Analogues, Duals, and Dualogues’’), the subsystems Ra and

Rb can also be considered as complementary or dual subsystems.
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and [20]. The scalar function (28) is termed the mixed-potential

function. The principle application of the mixed-potential is to

derive Lyapunov-type stability theorems; see ‘‘History of the

Mixed-Potential Function’’ for a historical overview. Although

the original construction of the mixed-potential function starts

from a differential version of Tellegen’s theorem, the above

derivation starts from the classical energy-based framework.

A similar exposition in the context of nonlinear electrical cir-

cuits can be found in [25]. From a system-theoretic perspec-

tive, the BM equations can be interpreted as a gradient system

with respect to the mixed-potential function (28) and the

indefinitemetric defined by the symmetric matrix

Q( f , e) ¼
�r2

fH
�( f , e) 0

0 r2
eH

�( f , e)

� �
: (31)

Note that the mixed-potential consists of three different

potential functions (hence the adjective ‘‘mixed’’), all of

which have values with units of power. Moreover, the term

e>Nf equals the instantaneous power delivered from Ra to

Rb, whereN can be considered as the ‘‘turns ratio’’ matrix of

a bank of ideal transformers. A proof of this fact can be

found in [26]. Evidently, if �N equals the identity matrix

and the system does not contain any resistive elements,

then the mixed-potential reduces to P( f , e) ¼ �e>f . Hence

the form of the resulting BM equations coincides with the

co-Hamiltonian equations (14), which suggests that (29)

and (30) can be considered as a generalized co-Hamiltonian

description.

For ease of notation, the BM equations (29) and (30) can

be compactly written as

Q(z) _z ¼ rzP(z), (32)

where z ¼ col( f , e) andQ(z) is given by (31).

We proceed by exemplifying the BM equations using the

mechanical mass-spring system in Figure 3, followed by the

elementary dc motor, a nonlinear fluid system, and a heat

exchanger. An example of a nonlinear electrical circuit is

presented in ‘‘History of the Mixed-Potential Function.’’

More involved examples are discussed in the section ‘‘Rotat-

ingMechanical Systems and Beyond.’’

Examples 1 and 2 Revisited:

The Brayton-Moser Equations

As a first example to illustrate the BM equations, let us once

more consider the mass-spring system depicted in Figure

3. Following the line of thought presented in the previous

section, suppose that the mass and the spring are repre-

sented by the subsystems Ra ¼ fMg and Rb ¼ fCg, respec-

tively. The next step is to define the system configuration.

For system Ra we select x ¼ xM and for system Rb we select

p ¼ pK, so that, as above, the flow equals v ¼ vM and the

effort equals F ¼ FK. The mixed-potential function is deter-

mined from the interconnection of the two subsystems Ra

and Rb. Since FM ¼ �F and vK ¼ v, we obtain

P(v, F) ¼ Fv, (33)

while the form of the co-Hamiltonian is given in (15).

Hence, substituting (33) into (29) and (30) yields the equa-

tions of motion

�M _v ¼ F, C _F ¼ v: (34)

Additionally, if the mass is subject to linear viscous fric-

tion or if a damper is placed between the wall and the mass,

such as in Figure 3 or Figure 5(a), we have Ra ¼ fM,Rg and

Rb ¼ fCg, respectively. Hence, the mixed-potential can be

modified with the addition of the resistive content function

P(v, F) ¼
R

2
v2 þ Fv:

If we also insert a damper between the mass and the spring,

as in Figure 5(c), we have Ra ¼ fM,R1g and Rb ¼ fC,R2g,

and thus

P(v, F) ¼
R1

2
v2 �

F2

2R2
þ Fv:

Note that the difference in sign between (34) and the

co-Hamiltonian equations (16) is due to the chosen refer-

ence directions in the selection of the system configura-

tion variables. n

Example 4: DC Motor [21]

In its simplest practical form the dc motor shown in Figure 8

consists of an armature inductance La, an armature resistance

Ra, and a rotor inertia Jr. The input of the system is the armature

voltageVa, and the load torque is denotedby sl. The total stored

co-energy is given by H�(Ia,xr) ¼ ð1=2ÞLaI
2
a þ ð1=2ÞJrx

2
r ,

where the flows Ia and xr denote the armature current and

the angular velocity of the rotor, respectively. Furthermore,

the armature inductance and the rotor inertia both belong

to the class of inductive elements. However, due to the

+

_

a

b

LaRa

kmVa

ωr

Ia
τl

Jr

FIGURE 8 A dc motor. The electrical energy supplied to the system by

the armature voltageVa is converted into rotational energy driving a load

with torque sl . The conversion of electric energy into mechanical energy

is represented by a gyrator whose gyration ratio given by the motor con-

stant km. The flow variables are represented by the current Ia through

the armature inductor La and the angular velocity xr of the rotor with

inertia Jr . Since the armature resistor Ra is connected in series with the

inductor it is considered as a current-controlled resistive element.
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gyrative nature of the system we cannot find a mixed-poten-

tial function for this setting. To circumvent this problem, we

use the fact that the inertia ‘‘seen’’ from the electrical terminals

a and b behaves like a capacitive element with capacitance

Cr :¼ k�2
m Jr and associated effort er :¼ kmxr, whereas the load

torque translates into the flow source fl :¼ k�1
m sl. Conse-

quently, we can split the system into a subsystem Ra ¼

fLa,Ra,Vag and a subsystem Rb ¼ fCr, flg. Setting fa ¼ Ia, the

corresponding content, co-content, and co-energy in terms of

flows and efforts are given by

D( fa) ¼
Ra

2
f 2a � Vafa, D�(er) ¼ erfl,

and

H�( fa, er) ¼
La
2
f 2a þ

Cr

2
e2r ,

respectively. The coupling between the two subsystems Ra

and Rb is represented by a unit transformer with N ¼ 1, so

that the mixed-potential takes the form

P( fa, er) ¼
Ra

2
f 2a � Vafa � erfl þ erfa:

Substituting P( fa, er) into (29) and (30) yields the equations

of motion

�La _fa ¼ er þ Rafa � Va,

Cr _er ¼ fa � fl,

or, equivalently, in terms of the electrical and mechanical

variables,

�La _Ia ¼ kmxr þ RaIa � Va,

Jr _xr ¼ kmIa � sl:
n

Example 5: A Fluid System

Consider the fluid system shown in Figure 9, which consists

of two open tanks with capacities C1 andC2, respectively. The

first tank, with pressure drop (effort) PC1
, is fed by a volume

flow source Qin and linked to the second tank, with pressure

drop (effort)PC2
, by a long pipewith fluid inertia Lp, resistance

Rp, and flow rate QLp (flow). The second tank discharges at

atmospheric pressure through an orifice dissipatorRo that can

be described by the nonlinear constitutive relationship

PRo ¼ G�1Q2
Ro
, where PRo and QRo denote the pressure drop

across and the flow rate through the orifice.Hence, the content

function isD(QLp ) ¼ ð1=2ÞRpQ
2
Lp
, the co-content function is

D�(PC1
,PC2

) ¼

Z PC2

0

ffiffiffiffiffiffiffiffiffiffiffi
GPRo

p
dPRo

�QinPC1
,

and the interconnection matrix is given by N ¼ ½�1 1�>.

Hence, the mixed-potential for the system has the form

P(QLp ,PC1 ,PC2 ) ¼
Rp

2
Q2

Lp
�

Z PC2

0

ffiffiffiffiffiffiffiffiffiffiffi
GPRo

p
dPRo þQinPC1

þQLp (PC2
� PC1

):

Furthermore, the co-Hamiltonian is given by the total

stored fluid co-energy

H�(QLp ,PC1 ,PC2 ) ¼
C1

2
P2
C1

þ
C2

2
P2
C2

þ
Lp

2
Q2

Lp
:

Substituting P(QLp ,PC1 ,PC2 ) and H�(QLp ,PC1 ,PC2 ) into (29)

and (30) yields the equations of motion

�Lp _QLp ¼ RpQLp þ PC2
� PC1

,

C1
_PC1

¼ Qin �QLp ,

C2
_PC2 ¼ QLp �

ffiffiffiffiffiffiffiffiffiffiffi
GPC2

p
:

Note that Ra ¼ fLp,Rpg andRb ¼ fC1,C2,Ro,Qing. n

Example 6: A Heat Exchanger Cell [27]

Figure 10 shows aheat exchanger inwhich energy is exchanged

between a cold stream, with inlet and outlet temperatures Tci

and Tco , and a hot stream, with inlet and outlet temperatures

Thi and Tho , respectively. The associated thermal capacities are

denoted by Cc and Ch, whereas the heat transfer is modeled by

Ro

Qin

QLp

Rp, Lp

PC2
PC1

C1 C2

FIGURE 9 Fluid system. The two tanks are considered as the

capacitive elements with capacities C1 and C2. The pipe that con-

nects the two tanks is modeled as an inductive element Lp and a

resistance Rp . Furthermore, the fluid that is fed to the system and

the orifice dissipator Ro at the outlet are both modeled as nonlinear

effort-controlled resistive elements. The state variables are the

pressure drops associated with the two tanks and the flow rate

through the pipe.

fh, Thi

fc, Tci

Tco

Tho

FIGURE 10 A heat exchanger system in which energy is exchanged

between a hot stream and a cold stream. The system has two efforts

as state variables, namely, the temperature Tco of the cold stream

and the temperature Tho of the hot stream. The associated thermal

capacities are Co and Ch , respectively, whereas the heat transfer is

modeled by a thermal conductance Ghc . The inlet temperatures Tci

and Thi are assumed to be constant. The control variables are the

volumetric flow rates fc and fh.
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a thermal conductanceGhc. The system can be described by the

effort variables Tco and Tho . Under the assumption that the inlet

temperatures are constant and the volumetric flow rates fc and

fh are the control inputs, the total co-content is found as

D�(Tco ,Tho ) ¼
Ghc

2
(Tco � Tho )

2 �
cc
2
(Tco � Tci )

2fc

�
ch
2
(Tho � Thi )

2fh,

where the constants cc and ch depend on the density and

specific heat of the respective streams. Since there are no

inductive elements, D ¼ 0 and N ¼ 0. Then the mixed-

potential consists only of the co-content, that is, P(Tco ,Tho ) ¼

�D�(Tco ,Tho ), which, together with the co-Hamiltonian

H�(Tco ,Tho ) ¼ ð1=2ÞCcT
2
co
þ ð1=2ÞChT

2
ho
, yields the nonlinear

equations of motion

Cc
_Tco ¼ �Ghc(Tco � Tho )þ cc(Tco � Tci )fc,

Ch
_Tho ¼ Ghc(Tco � Tho )þ ch(Tho � Thi )fh:

Note that Ra ¼ [ andRb ¼ fCc,Ch,Ghc, fc, fhg. n

Topological Completeness

The main assumptions that lead to a mixed-potential func-

tion of the form (28) are i) that the system under considera-

tion can be split into the two subsystems Ra and Rb and ii)

that each element in Ra can be described by the flow varia-

bles associated with the inductive elements, and each ele-

ment in Rb can be described by the effort variables

associated with the capacitive elements without violating

the interconnection constraints applicable to the domain

under consideration, such as Kirchhoff’s laws or D’Alem-

bert’s principle. An electrical circuit that satisfies these

topological properties is said to be topologically complete; for

details, see ‘‘History of the Mixed-Potential Function.’’ This

terminology can naturally be administered to the multido-

main case treated here.

If a system is not topologically complete, we can try to

augment the system topology by adding inductive or

capacitive elements, as described in [19] and [28], so that the

augmented system becomes topologically complete. Indeed,

consider the linear mechanical system of Figure 11(a). Obvi-

ously, the system is not topologically complete since the

velocities and forces associated with the dampers R1 and R2

cannot directly be expressed in terms of the velocity v ¼ vM
of the mass M and the force F ¼ FK of the spring with com-

pliance C ¼ K�1. On the other hand, suppose that we add an

additional mass M0 as shown in Figure 11(b). Since vR1¼ v0

and vR2 ¼ v0 � v, with v0 ¼ vM0 , the augmented system is

now topologically complete, and the associated mixed-

potential function is given by

P0(v, v0, F) ¼
R1

2
(v0)2 þ

R2

2
(v0 � v)2 � Finvþ F(v0 � v) (35)

and has the form (28). However, to find a mixed-potential

for the original system we need to be able to eliminate the

additional velocity v0 from (35). Letting M0 ! 0 implies that

rv0P
0(v,v0,F)� 0, or, equivalently, R1v

0 þR2(v
0 � v)þ F� 0.

Consequently, the original topologically noncomplete sys-

tem is described implicitly by a set of differential algebraic

equations (DAEs). Solving the latter constraint for v0 yields

v0 ¼
1

R
(R2v� F), (36)

where R :¼ R1 þ R2. Substituting (36) into (35) then pro-

vides the mixed-potential function

P(v, F) ¼
R1R2

2R
v2 � Finv�

F2

2R
�
R1

R
Fv: (37)

Although (37) appears to be of the form (28), the content

and co-content in (37) are not simply the sums of the content

and co-content of the individual resistive elements in the

system, respectively. Moreover, R1 and R2 act as a force

divider that can be interpreted as a mechanical transformer

with transformation ratio N ¼ R1=R. Therefore, the system

cannot be decomposed into Ra and Rb since the interconnec-

tion structure depends on both R1 and R2. Thus, even

though themixed-potential for a topologically noncomplete

system cannot be interpreted as easily as in the topologi-

cally complete case, the concept per se remains applicable.

In [28] algorithms are provided for constructing mixed-

potential functions for a wide class of topologically non-

complete circuits. In addition, necessary conditions are

M

MM ′

C

C

vM

vMvM ′

R1

R1

R2

R2

Fin

Fin

(a)

(b)

FIGURE 11 Example of a mechanical topologically noncomplete sys-

tem. The system shown in (a) is not topologically complete since the

velocities and forces associated with the dampers R1 and R2 cannot

directly be expressed in terms of the velocity of the mass M and the

force of the spring C. As shown in (b), the system can be rendered

topologically complete by adding a small mass M 0 to the common

connection point of R1, R2, andC. Then letM 0 ! 0.
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given in [28] for the existence of the mixed-potential func-

tion. Mathematically speaking, the resulting DAE system

belongs to the subset of index 1 systems.

The procedure illustrated above can in many cases be car-

ried over to other domains. The original topologically non-

complete system is then considered as a limiting case of the

augmented system. Moreover, the addition of inductive and

capacitive elements can often be justified onphysical grounds

since these elements are often present as parasitic elements.

In the section ‘‘Rotating Mechanical Systems and Beyond’’

we provide necessary conditions for the existence of the

mixed-potential function for a large class of systems.

SWITCHED-MODE SYSTEMS

Switched-mode systems are systems for which the topology

may change depending on certain discrete parameters. Exam-

ples include electrical power converters and mechanical sys-

temswith impacts. The switchingsmay be induced internally,

as in the case of a diode in a power converter or an impact in a

mechanical system, or it may be triggered externally as in the

case of firing a thyristor in a power converter. Since the topol-

ogy of a system is determined by the interconnection structure

of the elements, it is not surprising that the BM description

yields amixed-potential function that depends on the position

of the switches. To illustrate how the mixed-potential is

altered by switching phenomena, we first extend the BM

equations for systems containing a single independent switch.

The switch position, denoted by the scalar function r, is

assumed to take values in the discrete set f0, 1g. Further-

more, we assume that, for each switch position, the associ-

ated system admits the construction of a mixed potential.

Adopting the terminology from [4], each mode can be char-

acterized by a set of BM parameters as follows. When the

switch position function takes the value r ¼ 1, the associ-

ated system, denoted by R
1, is characterized by a known set

of BM parameters R1 ¼ fQ1,P1g satisfying

Q1(z) _z ¼ rzP
1(z): (38)

Similarly, when the switch position function takes the value

r ¼ 0, the associated system is characterized by R
0 ¼

fQ0,P0g and satisfies

Q0(z) _z ¼ rzP
0(z): (39)

Hence, a switched system arising from the systems R1 and

R
0 defines a switched BM system whenever it is completely

characterized by the set of switched BM parameters

R
r ¼ fQr,Prgwith switchedmixed-potential

Pr(z) ¼ (1� r)P0(z)þ rP1(z), (40)

satisfying

Qr(z) _z ¼ rzP
r(z): (41)

TheQ-matrices are usually not altered by the switch positions,

in which case Qr(z) ¼ Q(z). Furthermore, the inclusion of

multiple switches is easily accomplished by appropriately

extending (40) with rj 2 f0, 1g, for j ¼ 1, . . . , ns, where ns
denotes the number of independent switches. Noncontrollable

switches, such as diodes, can be treated as nonlinear resistors.

Switched BM equations are closely related to the aver-

aged pulse-width modulation (PWM) models. See [4] for a

discussion on this subject in the Lagrangian andHamiltonian

framework. A PWMswitching functionmay be specified as

r(t) ¼
1 for tk � t < tk þ d(tk)T,
0 for tk þ d(tk)T � t < tk þ T,




for tkþ1 ¼ tk þ T, k ¼ 0, 1, 2, . . ., where tk represents a sam-

pling instant, T is the fixed sampling period (duty cycle),

and d(�) is the duty ratio function of the switch whose val-

ues are in the closed interval ½0; 1�. For (40) the averaging

process means that z is replaced by the average state �z,

representing the average efforts and flows, and the discrete

control r is replaced by its duty ratio function d. The consis-

tency conditions on the averaged mixed-potential functions

are thus given by

Pd(�z)jd¼1 ¼ P1(z),

Pd(�z)jd¼0 ¼ P0(z),

where P1(�z) is the mixed-potential function for the extreme

saturation value d ¼ 1, and P0(�z) is the mixed-potential

function for the extreme saturation value d ¼ 0. Note that

Pd(�z) can be considered as a weighted ratio, with weighting

parameter d, between P1(�z) and P0(�z).

Example 7: A Power Converter

Consider the single switch dc-to-dc boost power converter

depicted in Figure 12. Assume that the load resistor Ro,

1
0

σ = 0

σ = 1

σ VC

IL

Vin

Vin

Vin

Ro

Ro

Ro

L

L

L

C

C

C

+
−

+
−

+
−

FIGURE 12 A single switch boost converter topology. This power

converter is used to realize an output dc voltage greater than its

input dc voltage Vin. A boost converter is also called a step-up

converter since it increases the input voltage. The boosting effect is

accomplished by charging the inductor L with magnetic energy

(switch in position r ¼ 1). This magnetic energy is then released to

charge the capacitor C (switch in position r ¼ 0). Additionally, the

capacitor operates as a filter element to smooth the switching

effects in the current and voltage fed to the load Ro . In practice the

switch is realized by a transistor and a diode.
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capacitor C, and inductor L have linear constitutive rela-

tionships. The active switch r is the external control input

for the network. The converter has two stages, namely,

r ¼ 1 (switch ON) and r ¼ 0 (switch OFF). Letting I ¼ IL
denote the current (flow) through the inductor, and V ¼ VC

the voltage (effort) across the capacitor, then the total stored

co-energy equals H�(I,V) ¼ ð1=2ÞLI2 þ ð1=2ÞCV2. The

mixed-potential for the switch in position r ¼ 0 is given by

P0(I,V) ¼ �VinI �
V2

2Ro
þ VI,

yielding the differential equations

�L_I ¼ �Vin þ V,

C _V ¼ I �
V

Ro
:

Similarly, for the switch in position r ¼ 1, we have

P1(I,V) ¼ �VinI �
V2

2Ro
,

yielding the differential equations

�L_I ¼ �Vin,

C _V ¼ �
V

Ro
:

Substituting P0(I,V) and P1(I,V) into (40), we obtain the

switchedmixed-potential function

Pr(I,V) ¼ �VinI �
V2

2Ro
þ (1� r)VI,

which, in turn, provides the switched equations of motion

�L_I ¼ �Vin þ (1� r)V,

C _V ¼ (1� r)I �
V

Ro
:

The conditions for the transition from ON to OFF, and vice

versa, are determined externally by controlling the switch. n

Example 8: A Bouncing Pogo-Stick

Consider the vertically bouncing pogo stick depicted in Fig-

ure 13. The system consists of a massM and a massless foot,

interconnected by a linear spring with compliance C ¼ K�1

and a damper R. The mass can move vertically under the

influence of gravity g. The contact situation is described by

r ¼ 0 (foot has no ground contact, OFF) and r ¼ 1 (foot has

ground contact, ON). The co-energy storage in the mass and

the spring equals H�(v, F) ¼ ð1=2ÞMv2 þ ð1=2ÞCF2, where

v ¼ _xM denotes the velocity of themass and F ¼ KxK denotes

the force associated with the spring. Note that for r ¼ 0 the

mass is ‘‘disconnected’’ from the spring and damper, and the

system equations can be described with help of the mixed-

potential function

P0(v, F) ¼ Mgv�
F2

2R
,

yielding the no-contact dynamics

�M _v ¼ Mg,

C _F ¼ �
F

R
:

On the other hand, for r ¼ 1, we obtain

P1(v, F) ¼
R

2
v2 þMgvþ Fv,

from which we deduce the contact

dynamics

�M _v ¼ Fþ RvþMg,

C _F ¼ v:

The contact and no-contact situations

can be combined into a single switched

mixed-potential

Pr(v, F) ¼ r
R

2
v2

þMgv� (1� r)
F2

2R
þ rFv,

resulting in the switched BM system

�M _v ¼ r(Fþ Rv)þMg,

C _F ¼ rv� (1� r)
F

R
:

g

Sum of Forces

Zero on Foot

Spring and

Damper

in Series
Spring and

Damper

in Parallel
Foot Fixed to

Ground

M

KR xK

xM

FIGURE 13 The pogo stick as a switched-mode mechanical system. A pogo stick consists of a

pole with a handle at one end, footpads on the other, and a spring that supports the stick and

user when on the ground. Usually considered a children’s toy, it is used for hopping up and

down by use of the spring. The device was patented in 1919 by George Hansburg, an Illinois

toy designer. According to a legend, its origin can be traced back to a poor Burmese farmer

who made one for his shoeless daughter, named Pogo, so she could hop daily to pray at the

temple. Assuming the person that hops on the pogo stick can be modeled as a rigid body, the

system can bemodeled as a mass interconnected with a spring and a damper.
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Additionally, the conditions for switching between contact and

no-contact are functions of the states. Contact is switched from

OFF to ONwhen the velocity of the foot is either zero or nega-

tive in the contact situation, that is, when v� C _F � 0, and con-

tact is switched fromON toOFFwhen v� C _F > 0. n

ROTATING MECHANICAL

SYSTEMS AND BEYOND

As discussed above, for many mechanical systems, such as

rotating systems found in robotics, it is often convenient to

transform, for example, from Cartesian coordinates to polar

coordinates as in (23). This transformation is illustrated by the

inverted pendulum on a cart in Example 3. A consequence of

the transformation is that the kinetic co-energy function

becomes a function of both displacements and flows.

Unfortunately, in this case the construction of a BM descrip-

tion becomes more complicated. Before we proceed, we first

study the influence of a coordinate transformation as in (23)

on the Lagrangian andHamiltonian equations ofmotion.

Suppose that the total kinetic (inductive) co-energy of a

mechanical system is given by

T �( f‘) ¼
1

2
f>‘ Mf‘,

where M represents a constant mass or inertia (inductance)

matrix and f‘ denotes the corresponding velocities (flows)

associated with the mass and inertia elements. Furthermore,

suppose that the system has n degrees of freedom that can

be described by a set of generalized coordinates q such that

the relationship with the original (for example, Cartesian)

coordinates q‘ is given by (23). As in the case of the pendu-

lum on a cart system, the kinetic co-energy can be rewritten

in terms of the generalized coordinates and velocities as

T �(q, f ) ¼
1

2
f> r>

q U(q)MrqU(q)
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: D(q)

f , (42)

whereD(q) 	 0 is the generalized mass matrix. Consequently,

the Lagrangian becomes L(q, f ) ¼ T �(q, f )� V(q), so that (6)

extends to the form

D(q)_f þ B(q, f )f þrqV(q) ¼ 0, (43)

which is commonly used in robotics. Here the term B(q, f )f

reflects the coriolis and centrifugal forces, which stem from

the coordinate transformation and are workless. Further-

more, since the generalized momenta are now defined by

p ¼ rfL(q, f ) ¼ D(q)f , the corresponding Hamiltonian takes

the form

H(q, p) ¼
1

2
p>D�1(q)pþ V(q), (44)

fromwhich we obtain

_q ¼ D�1(q)p, (45)

_p ¼ �
1

2
rq(p

>D�1(q)p)�rqV(q): (46)

We refer to (45), (46) as a standard mechanical system.

Note that the existence of a co-Lagrangian and co-Hamil-

tonian (BM) description depends mainly on the ability to

express q in terms of ec. The presence of the coriolis and

centrifugal forces obscures the construction of the BM equa-

tions significantly. In the next two sections we outline two

methods that lead to a generalized form of the BM equa-

tions (32). In particular, the Q-matrix given by (31) loses its

block-diagonal form. The mixed-potential functions essen-

tially have the same form and interpretation as (28).

Standard Mechanical Systems: Method I

Suppose that the Legendre transformation

V�(ec) ¼ e>c q� V(q), (47)

where ec ¼ rqV(q) exists at least locally in some interval. In

such case, q ¼ q̂(ec) and the generalized velocities f ¼ _q can

be expressed in terms of the conservative forces as

f ¼ C(ec)_ec, (48)

with incremental compliance matrix C(ec) :¼ rec q̂(ec), so

that (43) becomes

D(q̂(ec))_f þ B(q̂(ec), f )C(ec)_ec þ ec ¼ 0: (49)

Now, introducing

P( f , ec) ¼ e>c f (50)

and

Q( f , ec) ¼
�D(q̂(ec)) �B(q̂(ec), f )C(ec)

0 C(ec)

� �
(51)

The purpose of this article is to provide an overview

of both the energy- and power-based modeling frameworks

and to discuss their mutual relationships.
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we can rewrite (48) and (49) in a BM form (32). However, the

Q-matrix (51) loses its interpretation as a pseudo-Rieman-

nian metric since it is not symmetric. On the other hand, the

mixed-potential (50) has the same interpretation as in (28)

and determines the instantaneous rate of energy flowing

from the kinetic part Ra, representing the masses, to the

potential part Rb, representing the stiffnesses of the system.

Themain obstacle, however, is the existence of the Legen-

dre transformation (47), or in other words, the invertibility

assumption of the conservative forces ec ¼ êc(q). Moreover,

C(ec) must have full column rank to ensure that fc ¼ f . While

the former condition is, at least locally, often satisfied for a

large class of systems, the latter restricts the range of applica-

tions since the full rank condition requires that there are as

many conservative forces as there are particles. Augmenta-

tion in a similar way as is done in the case of a topologically

noncomplete system can overcome this problem; see the sec-

tion ‘‘Topological Completeness.’’

Obviously, nonconservative forces can be included by

extending (50) to

P( f , ec) ¼ D( f )þ e>c f : (52)

In principle the mixed-potential function can include non-

conservative velocities bymeans of a co-content functionD�.

An extensive treatment of Method I can be found in [29] and

[30], where the concept of a pseudo-inductor is introduced as

the electrical analogue of a nonconstantmass-inertiamatrix.

Standard Mechanical Systems: Method II

One approach to circumventing the drawbacks of Method I

is to start from the Hamiltonian equations. First, we rewrite

(45)–(46) in the form

_z ¼ JrzH(z), (53)

with z ¼ col(p, q), and

J ¼
0 �In

In 0

� �
, (54)

where In denotes the n3 n identity matrix. Note that the

order of q and p are interchanged to be able to easily com-

pare our forthcoming developments to the previous results.

For standard mechanical systems J�1 ¼ J> exists. Hence,

the Hamiltonian equations (53) can be rewritten as

J�1
_z ¼ rzH(z), (55)

which directly gives rise to the suggestion of a BM type of

system description (32). However, the matrix J�1 is skew

symmetric and dimensionless, while the potential function

H(z) represents the total energy (44). On the other hand, bor-

rowing inspiration from [19], the dynamics (55) can also be

described by another pair, say ~Q and ~P, that is,

~Q _z ¼ rz
~P(z): (56)

Indeed, for any constant and symmetric matrix S such pairs

can be generated by

~P(z) ¼
1

2
r>

z H(z)SrzH(z),

~Q(z) ¼ r2
zH(z)SJ�1:

Having made these observations, our next task is to

select a matrix S such that ~P(z) in (56) takes a form similar to

(28). Selecting

S ¼
0 In

In 0

� �
,

we obtain

~P(z) ¼ r>
q V(q)D

�1(q)p

þ
1

2
rq(p

>D�1(q)p)D�1(q)p, (57)

together with

~Q(z) ¼
�D�1(q) rq(D

�1(q)p)

�r>
q (p

>D�1(q)) C�1(q, p)

" #

, (58)

where we define the inverse compliance matrix

C�1(q, p) :¼ r2
qV(q)þ

1

2
r2

q(p
>D�1(q)p):

Observe that the skew-symmetric terms of (58) are directly

associated with the coriolis and centrifugal forces. To show

that the values of ~P(z) have units of power, we use (45)–(46)

to arrive at

~P( � ) ¼ � _p> _q (force3velocity):

Note that (56) is closely related to the BM equations (32).

However, system (56) is still described in terms of q and p

instead of e and f . A representation in terms e and f is possible

if the Legendre transformation (47) exists. The same condition

appears inMethod I. The difference between the twomethods

is that for Method I the transformation from displacements to

forces is crucial for the construction of the mixed potential,

whereas for Method II it is only necessary to express the sys-

tem in terms of efforts and flows. In [31], a system of the form

(32), but expressed in variables other than efforts and flows, is

referred to as a homonymous BM system. Furthermore, note

that ifD(q) ¼ D is constant, then ~Q(z) reduces to

�D�1 0
0 r2

qV(q)

� �



�’’masses’’ 0
0 ’’springs’’

� ��1

:

Example 3 Revisited

Consider again the inverted pendulum on a cart of Figure 6.

The kinetic co-energy in terms of the generalized coordinates
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q ¼ col(x, h) is found in (25). The associated generalizedmass

matrix equals

D(h) ¼
Mc þMb Mbl cos (h)
Mbl cos (h) Mbl

2

� �
: (59)

The potential energy associatedwith the bob is

V(h) ¼ Mbgl cos (h), (60)

and

B(h, _h) ¼ 0 �Mbl _h sin (h)
0 0

� �
:

Let us first study the application ofMethod I.

Method I

Since the applicability of the first method relies on the exis-

tence of the Legendre transformation (47) we directly run

into trouble because the gradient of the potential energywith

respect to the x coordinate is zero. Hence, for this system we

cannot derive BM equations with (50) and (51). On the other

hand, suppose that the cart is attached to a linear springwith

compliance Cx. In this case, an additional term ð1=2ÞC�1
x x2 is

added to the potential energy. Now, under the additional

assumption that the motion of the bob is restricted to the

interval�p=2 < h < p=2, themappings

ecx ¼ rxV(x, h), ech ¼ rhV(x, h)

are locally invertible, hence allowing for the definition of a co-

energy function V�(ec). Thus, the generalized coordinates can

be expressed in terms of the generalized forces as x ¼ Cxecx and

h ¼ arcsin �
ech

Mbgl

� �
: (61)

Substitution of (61) into (49) yields a local BMdescriptionwith

mixed-potential function (50) and Q-matrix (51), where the

incremental compliancematrix takes the form

C(ech ) ¼
Cx 0
0 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Mbgl)
2�e2ch

p

" #

:

In the limit Cx ! 1 we obtain the equations of motion for

the original system [29].

Method II

Observing that the conjugate momenta are determined by

p ¼ D(q)f , with f ¼ col( _x, _h), we directly deduce the homon-

ymous BM description by substituting (59) and (60) into

(57) and (58), respectively. In this case there is no restriction

on the angle [31]. On the other hand, to translate the result

into a canonical BM description in terms of efforts and

flows, we need to impose the assumptions ofMethod I. n

General Nonlinear Systems

In the above developments we use the structural physical

information to construct mixed-potential functions, whether

in terms of efforts and flows or a set of aberrant variables

leading to homonymous BM equations. On a more abstract

level the underlying mechanism for generating a mixed-

potential function is Poincar�e’s lemma [32]. For autonomous

nonlinear systems of the form

_z ¼ F(z), (62)

with state variables z 2 R
n, this lemma states that given that

F : R
n ! R

n is a differentiable function, there exists a

P : R
n ! R such that F(z) ¼ rzP(z) if and only if

rzF(z) ¼ ½rzF(z)�
>:

We use this result to construct a BM description as follows.

If we can find a nonsingularmatrixQ : R
n ! R

n3 n such that

rz(Q(z)F(z)) ¼ ½rz(Q(z)F(z))�>, (63)

then the system (62) can equivalently be written as

Q(z) _z ¼ rzP(z), (64)

where

P(z) ¼

Z
½Q(z)F(z)�>dz: (65)

Depending on the choice of Q(z) and the type of state varia-

bles z, these expressions may lead to either a canonical or a

homonymous BM description. Some guidelines regarding

the choice ofQ(z) are provided in [32] and [33].

Example 9: Rigid Body Motion

In the absence of external torques, the Euler equations for

the rotational dynamics of a rigid body about its center of

mass are given by

I1 _x1 ¼ (I2 � I3)x2x3,

I2 _x2 ¼ (I3 � I1)x3x1,

I3 _x3 ¼ (I1 � I2)x1x2, (66)

where xk and Ik, for k ¼ 1, 2, 3, are the angular velocities of

the body resolved in the axis of a frame fixed to the body,

and the principle moments of inertia, respectively.

Letting

Q ¼

I1
I2�I3

0 0

0 I2
I3�I1

0

0 0 I3
I1�I2

2

64

3

75,

under the assumption that I1 > I2 > I3 > 0, and x ¼

col(x1,x2,x3), the BM equations of (66) are given by

Q _x ¼ rxP(x),

with mixed-potential function P(x) ¼ x1x2x3.

The Euler equations in the form (66) do not admit a

Lagrangian or a co-Lagrangian description. A classical way

to circumvent the difficulties occurring in the Lagrangian

approach is to use a description of the orientation of the body
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in terms of three Euler angles and their associated velocities.

However, this procedure yields six differential equations

instead of three. Alternatively, the Euler equations (66) can

be described by the Euler-Poincar�e equations [34]. n

In the next example, the above procedure extends to sys-

temswith independent inputs.

Example 10: A Magnetic Levitation System

Consider the system of Figure 14 consisting of an iron ball in

a vertical magnetic field created by a single electromagnet.

The voltage u applied to the electromagnet can be consid-

ered as the control input. Adopting the standard modeling

assumptions of unsaturated flux [35], the dynamic model of

the system can bewritten in the form

_z ¼ F(z, u),

with z ¼ col(z1, z2, z3) and

F(z, u) ¼

� R
a
(1� z2)z1 þ u

z3
M

z21
2a �Mg

2

64

3

75: (67)

Here z1 represents the flux linkage associated with the elec-

tromagnet, z2 is the ball displacement, and z3 is its momen-

tum. Furthermore, M is the mass of the ball, R is the coil

resistance, a is a positive constant that depends on the num-

ber of coil turns, and g is the acceleration due to gravity.

By letting [33]

Q(z) ¼
� 1�z2

a
� z1

a
0

z1
a

0 0
0 0 � 1

M

2

4

3

5, (68)

the system (67) can be written as (64), with

P(z) ¼
R(1� z2)

2z21
2a2

�
(1� z2)z1

a
uþ

z3
M

Mg�
z21
2a

� �
: (69)

To show that (69) is indeed apower function of a form similar to

(28), we first note that the current (electrical flow) through the

coil of the electromagnet equals L�1(z2)z1, with displacement-

modulated inductance L(z2) ¼ a(1� z2)
�1, and M�1z3 equals

the velocity (mechanical flow) of the ball. The term ð1=2Þa�1z21
represents the force of electrical origin (electrical effort) acting

on the ball, andMg represents the gravitational force (mechani-

cal effort) acting on the ball. Hence, the terms on the right-hand

side of (69) can be identified as, respectively, the electrical con-

tent associatedwith the resistance of the coil and the power sup-

plied by the voltage source, the mechanical content associated

with the power ‘‘supplied’’ by gravity, and the power delivered

from the electromagnet to the ball. Since the state variables of

the system are neither efforts nor flows, the present description

belongs to the class of homonymous BM equations. A canonical

description does not exist because there is no potential co-

energy storage in the system. n

DISTRIBUTED-PARAMETER SYSTEMS

We now briefly discuss how the mixed potential can be used

for distributed-parameter systems. We begin by considering

a one-dimensional chain consisting of n identical point

masses M connected to each other with identical ideal

springswith complianceC (see Figure 15). At rest the equilib-

rium distance between neighboring masses is Dl. The veloc-

ity (flow) in the z-direction associated with the kth mass is

denoted by vk, and the force (effort) associated with the kth

spring is Fk. Amixed-potential for this system is given by

P ¼ �
Xn

k¼1

Fk(vkþ1 � vk): (70)

Let us rewrite (70) as

P ¼ Dl
Xn

k¼1

Pk,

where

Pk ¼ �Fk
vkþ1 � vk

Dl

� 


is the mixed-potential associated to the kth subsystem.

z1

uL(z2)

z2

1

g, z3

M

FIGURE 14 A levitated ball system. This system consists of an iron

ball in a vertical magnetic field, which is created by a single electro-

magnet. The electromagnetic force created by the electromagnet is

used to counteract the effect of the gravitational force.

M
C

∆l

vk−1 vk vk+1

Fk−1 Fk Fk+1

FIGURE 15 Toward distributed-parameter systems. This example

illustrates the salient features of the transition from a lumped-

parameter to a distributed-parameter system given by an infinitely

long chain of equal mass points M connected by linear massless

springs with compliance C and natural unstretched length Dl . In the

limit Dl ! 0, the force (effort) Fk (t) and velocity (flow) vk (t), with

integer index k identifying the movement of the k -th mass and stiff-

ness, become continuous force and velocity fields F (z, t) and

v (z, t), respectively, with continuous spatial coordinate z.
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Now, suppose that n ! 1, while at the same time the

springs become infinitesimally short according to

Dl ! dz,
M

Dl
!

dM

dz
¼ l,

C

Dl
!

dC

dz
¼

1

E
,

and

vkþ1 � vk
Dl

!
@v

@z
¼: rzv,

where the constants l and E are the linear mass density and

Young’s modulus, respectively [17]. A direct consequence

of this transition is that the number of degrees of freedom

goes from a finite number n to infinity, where the infinitesi-

mal mass points are now identified by a continuous spacial

parameter z 2 Z. Hence, the mixed-potential function

becomes the functional

P½v, F� ¼

Z

Z

P(rzv, F)dz, (71)

with density

P(rzv, F) ¼ �Frzv: (72)

The derivatives of the mixed-potential functional (71) with

respect to the distributed flow field v(z, t) and effort field

F(z, t) are determined by invoking the functional (or varia-

tional) derivative playing a role analogous to the gradient

of a function. Since the chain is infinitely long, implying that

the natural boundary conditions are zero, there is in fact no

boundary at all. These derivatives thus reduce to Euler-type

equations [36], [37]

d(�)P :¼ r(�)P�rz(r(�)zP): (73)

The resulting distributed-parameter BM equations are

�l 0
0 E�1

� �
_v
_F

� �
¼

dvP

dFP

� �
¼

rzF
�Dzv

� �
, (74)

where _v and _Fmust be interpreted as the partial derivatives

of v and Fwith respect to time.

Suppose next that the chain has finite length, say one

meter, and that at z ¼ 0 an external force Fext is applied,

whereas at z ¼ 1 the chain is connected to a sliding massM1

that is subject to friction with friction coefficient R1; see Fig-

ure 16. Themixed-potential then becomes

P½F, v� ¼ �

Z 1

0

Frzvdzþ P
0 þ P

1,

where

P
0 ¼ �v0Fext

and

P
1 ¼

R1

2
(v1)2

are referred to as the boundary potentials. In this case the

power at both ends of the chain generally differs from zero

so that next to the Euler equations (73) we have the natural

boundary conditions

d(�)0P :¼ r(�)0P
0 �r(�)zPjz¼0, (75)

d(�)1P :¼ r(�)1P
1 þr(�)zPjz¼1, (76)

providing in addition to (74) the equations

0 ¼ dv0P ¼ �Fext þ F0, (77)

0 ¼ dF0P, (78)

�M1
_v1 ¼ dv1P ¼ R1v1 � F1, (79)

0 ¼ dF1P: (80)

Notice that the form of the mixed-potential functional

(71) is not unique since instead of (70) we could equally well

start from the discrete mixed-potential

P ¼
Xn

k¼1

vk(Fk � Fk�1): (81)

In the transition from a discrete to a continuous system, the

latter choice replaces the term �Frzv in (72) by vrzF. In a

similar fashion as before, these terms can be interpreted as

the instantaneous power density between the ‘‘inductive’’

part of the system Ra (including the distributedmasses) and

the ‘‘capacitive’’ part of the system Rb (including the distrib-

uted springs). Although both (70) and (81) lead to (74), the

latter choice affects the boundary potentials. See [38] and

[39] for more details.

It is noteworthy that, from the perspective of the analogy

used here, (74), together with the boundary conditions (77)–

(78), also describe a lossless electrical transmission line that

is driven on one end by a voltage source and on the other

end terminated by a inductor in series with a resistor. For a

more complete discussion on the application of the concept

of mixed-potential to electrical transmission lines, see [36].

A more recent and closely related application of the distrib-

uted-parameter BM equations is presented in [40], which

considers nonlinear activator-inhibitor equations to de-

scribe and control pattern-forming systems.

M1

R1

v0

v1

F 0

F1

Fext

FIGURE 16 Mixed lumped- and distributed-parameter systems. A cart

with massM1 is pushed or pulled with force Fext through a continuous

elastic rod. The mass is subject to frictionR1 in the wheels.
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As another example of a distributed-parameter sys-

tem we discuss Maxwell’s equations [10]. These equa-

tions govern the electromagnetic behavior in a medium,

say V, and can be split into two subsets, namely, Max-

well’s curl equations

curlE ¼ � _B, (82)

curlH ¼ _Dþ J, (83)

andMaxwell’s divergence equations

divD ¼ q, (84)

divB ¼ 0, (85)

in which the magnetic and electric flux densities B and D

are related with the field intensities H and E through the

constitutive relationships depending on the medium. The

vector J denotes the current density and q denotes the elec-

tric charge density. To cast Maxwell’s curl equations (82)

and (83) into a form similar to (32), we first make the obser-

vation that the field intensities H and E play a role of the

flows and efforts in (32). For ease of presentation, we

assume that the medium is time and space invariant, but

possibly nonlinear such that B ¼ bB(H) andD ¼ bD(E). Thus,

we focus on developing a BM description of

�lðHÞ _H ¼ curlE, (86)

eðEÞ _E ¼ curlH� J, (87)

where l(H) :¼ $H
bB(H) and e(E) :¼ rE

bD(E) represent the

incremental permeability and incremental permittivity,

respectively. Furthermore, we assume that the current

density is given by J ¼ bJ(E).
Similar to the mechanical mass-spring-damper chain dis-

cussed above, the number of degrees of freedom is infinite so

that the inductive and capacitive phenomena are identified by

the continuous spacial parameters x, y, z. The system can

again be subdivided into subsystems Ra and Rb associated

with the magnetic and electric field phenomena, respectively.

The associatedmixed-potential functional assumes the form

P½H,E� ¼ �D
�½E� þ N½H,E�, (88)

where

D
�½E� ¼

ZZ

V

Z Z
Ĵ(E) � dE

� �
dxdydz

represents the total co-content associated with the current

density J, whereas depending on the boundary conditions

we are left with two possible choices for the total power

transfer between Ra and Rb, that is,

Na½H,E� ¼

ZZ

V

Z
H � curlEdxdydz (89)

and

Nb½H,E� ¼

ZZ

V

Z
curlH � Edxdydz: (90)

Indeed, the choice N ¼ Na imposes the condition that the

magnetic field intensity at the boundary is continuous

(n̂3H ¼ 0, where n̂ is the inward normal) and in turn

ensures the set of functional derivatives

dHP ¼ curlE, dEP ¼ curlH� J:

Hence, letting X ¼ col(H,E) represent the field intensity

vector, Maxwell’s curl equations (86) and (87) define the

BM system

Q(X) _X ¼ dXP(X), (91)

with respect to the indefinite metric

Q(X) ¼
�l(H) 0

0 e(E)

� �
:

The remaining divergence equations (84) and (85) can be

considered as algebraic constraints. Together with (91)

these constraints establish a set of DAEs.

The same result can be obtained by starting from the possi-

bility N ¼ Nb accompanied by the assumption that now the

tangential electric field intensity at the boundary is continuous

(n̂3E ¼ 0). If the boundary is a perfect conductor the latter

condition seems natural, but the condition that the magnetic

field intensity at the boundary is continuous, associated with

the choice N ¼ Na, implies an unphysical situation. Further-

more, the specification of either n̂3E ¼ 0 or n̂3H ¼ 0 implies

that the net energy flow across the boundary is zero, meaning

that the system is isolated. In a similar fashion aswith the previ-

ous example, these conditions can be circumvented by adding

appropriate boundary potentials. Formore details, see [38].

CONCLUDING REMARKS

Energy Versus Power Variables

A practical advantage of the BM framework is that the sys-

tem variables are directly expressed in terms of easily

measurable quantities, such as currents, voltages, velocities,

Energy can serve as a lingua franca to facilitate communication among

scientists and engineers from different fields.
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forces, volume flows, pressures, or temperatures. This is

especially the casewhen the framework is used for controller

design where signals need to be measured for feedback. The

Lagrangian, co-Lagrangian, and Hamiltonian formulation

normally involve generalized displacements and momenta,

which inmany cases cannot bemeasured directly.

Spurious Constants

In [41] the modeling of the mass-spring system of Figure 3

(with R ¼ 0) is treated. The modeling based on efforts and

flows is critically discussed in [41], which notes that a spuri-

ous constant is needed to obtain the correct physics. How-

ever, when the spurious constant is not taken into account,

the assumption of a reference position is always present.

This fact can be seen better if the spring is not attached to the

wall with zero velocity but to another movingmass yielding

a mass-spring-mass system. In that case a reference position

is necessary, and the difference in positions of both masses

must be known to derive the equations of motion correctly.

On the other hand, in the present article we have seen that a

translational mass corresponds to a relationship between

velocity andmomentum,whereas a translational spring cor-

responds to a relationship between displacement and force.

In a behavioral parlance it seems thereforemost natural that,

when wewant to connect themass to the spring by equating

their displacements, a manifest variable assignment involv-

ing the displacement associated with the spring is selected,

that is, w ¼ xK. Indeed, for the mass-spring system of Figure

3, elimination of the latent variables yields a second-order

differential equation that precisely coincides with the differ-

ential equation for w, that is, (22) [41]. The selection of the

manifest variables depends on themodeler’s choice.

Port-Hamiltonian Systems

In this article we have explained only the classical Hamilto-

nian setting. However, in recent years many efforts have

Applications to Analysis and Control

As outlined in ‘‘History of the Mixed-Potential Function,’’ one

of the main motivations behind the construction of the

mixed-potential function concerns its use in determining Lyapu-

nov-based stability criteria for nonlinear electrical circuits. A

strong feature of the mixed-potential function method is that it

can also be applied to circuits with negative resistors. Several

theorems are available, each imposing particular restrictions on

the type of nonlinearity allowed in the circuit [19]. By analogy

these theorems can be carried over verbatim to the engineering

domains considered in the present article. We thus highlight

some recent developments that take the mixed-potential as a

starting point.

The energy-based Lagrangian and Hamiltonian modeling

methods have resulted in a renewed attention for control design

based on energy called passivity-based control (PBC); see [4],

[5], and [35]. The control objective is achieved through an energy

shaping and damping injection process to modify the energy and

dissipation structure of the system. From a network-theoretic

perspective, the damping injection process yields controllers that

forces the closed-loop dynamics to behave as if artificial resistors

(the control parameters) are added to the system. These energy-

based control methods, however, do not specify where to inject

damping and how to tune the controller. Using BM theory, and in

particular theorems S1, S2, and S3 from ‘‘History of the Mixed-

Potential Function’’ provides a tool for control design with damp-

ing injection tuning rules [S27].

For more industrially relevant applications of the BM theory

we refer to [40] and [S28]. BM theory is used in [40] to investi-

gate the stability of large arrays of actuators, whereas [S28]

applies the BM theory for controller tuning of a standard indus-

trial power converter.

There are several ways to achieve energy shaping. In the case

of energy-balancing PBC, the energy function assigned to the

closed-loop system is the difference between the total energy of

the system and the energy supplied by the controller [35]. How-

ever, the energy-balancing control method is stymied by the dissi-

pation obstacle—a term that refers to the existence of resistive

elements whose energy dissipation does not vanish at the desired

equilibrium point. The dissipation obstacle occurs, for instance, in

electrical and electromechanical systems that have equilibrium

states with currents or velocities not equal to zero. On the other

hand, a translational mechanical system in equilibrium always has

its velocities equal to zero, and hence does not suffer from the dis-

sipation obstacle. Energy-balancing control cannot be applied to

systems that suffer from the dissipation obstacle. Based on BM

theory and the mixed-potential function a power-shaping method

is developed in [S29] and [S30]. This method shapes the mixed-

potential function, and does not suffer from the dissipation obsta-

cle. Furthermore, in some cases the power-shapingmethod yields

better performance than energy-shaping methods, and therefore

it is also interesting to apply power shaping to mechanical and

other systems. The multidomain modeling approach of the

present article has led to the extension of the power-shaping

method to general nonlinear systems [32], [33].
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been undertaken to generalize the classical Hamiltonian

formalism to the port-Hamiltonian formalism, which has

turned out to be a powerful framework to model and con-

trol many physical systems based on energy considerations;

see [5] and later work. In some cases the port-Hamiltonian

framework, with a basis originating in the classical mechan-

ical literature, is more convenient, while in other cases the

BM framework, with a basis in electrical circuit theory, is

more convenient. For instance, occurence of the dissipation

obstacle in some electrical circuit models hinders the appli-

cation of some PBC techniques in the port-Hamiltonian

framework, whereas application of the power-shaping

method based on the BM models circumvents these prob-

lems; see ‘‘Applications to Analysis and Control.’’ On the

other hand, the existence of the mixed potential strongly

depends on the integrability of the constitutive relation-

ships of the interconnection and resistive structure. Typical

examples of systems that cannot be described in a BM fash-

ion are systems containing essential gyrators [42].

Inclusion of Memristive Phenomena

We have seen that each engineering domain rests on four

basic elements, namely, resistive, inductive, capacitive,

and memristive elements. Although we have highlighted

the main properties of the memristor, we did not discuss

howmemristive phenomena can be included in the energy-

and power-based frameworks. To suggest how a system

exhibiting memristive phenomena can be included, let us

consider an example. For that, suppose that the damper R

in the mechanical system of Figure 5(a) is replaced by a

damper D whose constitutive relationship depends on its

relative displacement, such as a tapered dashpot [43].

Denoting this relationship by pD ¼ p̂D(xD), the correspond-

ing state function is the action (see ‘‘State Functions’’)

defined by

A(xD) ¼

Z xD

0

p̂D(q)dq:

Hence, starting from the Lagrangian equations we obtain,

with Lagrangian (9) and by noting that xD ¼ x, the equa-

tions of motion

d

dt
rvL(x, v)�rxL(x, v) ¼ �

d

dt
rxA(x):

However, in passing on to the BM equations it is clear that

the memristive effect cannot be included in the mixed-

potential function. Instead, the BM equations need to be

augmented with the addition of the action in a similar fash-

ion as with the Lagrangian formulation above, that is,

�M _v�
d

dt
rxA(x)jx¼CF ¼ rvP(v, F),

C _F ¼ rFP(v, F),

with P(v, F) ¼ Fv. As pointed out in [43], it is a coincidence

that for this particular system it is possible to represent the

tapered dashpot as a modulated resistor since its displace-

ment is the same as the displacement of the spring and thus

proportional to the force in the spring (x ¼ CF). In general,

the generalized momenta and displacements of the memris-

tive elements in a system are independent from the general-

ized momenta and displacements of the inductive and

capacitive elements. Although a memristor is a purely dissi-

pative element, it is also a dynamic element since the associ-

ated Ohmian laws are expressed in terms of differential

equations. Consequently, the order of complexity of a system

is in general equal to the total number of inductive, capaci-

tive, and memristive elements [22]. For an extensive treat-

ment in the electrical domain on how memristive elements

can be included in a Lagrangian or BM description the reader

is referred to [44]. Since a memristor is described in terms of

generalized momenta and displacements, its most natural

habitat is the Hamiltonian formulation (see Figure 4) and all

of its generalizations. Current research is devoted to studying

memristive phenomena in the port-Hamiltonian framework.

See [45] for some preliminary results.
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