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ABSTRACT 

Introduction: Worrying levels of bacterial resistance have been reported worldwide involving the failure of many available 
antibiotic treatments. Multidrug resistance (MDR) in Gram-negative bacteria is often ascribed to the presence of multiple and different 
resistance mechanisms in the same strain. RND efflux pumps play a major role and are an attractive target to discover new 
antibacterial drugs. Areas covered: This review discusses the prevalence of efflux pumps, their overexpression in clinical scenarios, 
their polyselectivity, their effect on the intracellular concentrations of various antibiotics associated with the alteration of the 
membrane permeability and their involvement in pathogenicity are discussed. 

Expert opinion: Efflux pumps are new targets for the development of adjuvant in antibiotic treatments by of efflux pump inhibition. 

They may allow us to rejuvenate old antibiotics acting on their concen- tration inside the bacteria and thus potentiating their activity 

while blocking the release of virulence factors. It is a pharmacodynamic challenge to finalize new combined therapy. 
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Article highlights 
● Efflux pumps play a major role in multidrug resistance in Gram- negative bacteria 
● The pharmacodynamic role of RND efflux pumps in antibiotic resis- tance opens up new perspectives to alternative therapeutics 

● Targeting efflux pumps consists in solving the problems of polyse- lectivity, drug accumulation, membrane permeability and pathogeni- city related to 
bacterial resistance mechanisms 

● How to validate efflux pumps as target for new combined therapy? 

● Efflux pump inhibitor could be used as adjuvant in antibiotic treatments 
 

 

1. Introduction 

For more than half a century, antibacterial drugs including 

antibiotics and biocides from natural or chemical origin have 

been considered as a magic bullet to cure infectious diseases. 

Already in 1945, after the discovery of penicillin, Alexander 

Fleming advised that bacteria could become resistant to this 

pioneer class of β-lactam drugs. In 2014, WHO reports [1] 

worrying levels of bacteria resistance worldwide involving 

the failure of many available antibiotic treatments for common 

and life-threatening infections acquired in hospitals and in the 

community. Indeed, the large use (human and veterinary) of 

new antibacterial drugs has strongly supported the emer- 

gence of resistance mechanisms to protect bacteria. The 

spreading of resistance is a natural advancing response for 

microorganisms, but it is increased by the continuous pressure 

exerted by widespread and misuse of antibiotics [2–6]. 

Moreover, antibacterial resistance has serious consequences 

on outcomes for patients and healthcare spending. Urgency 

is intensified by the lack of new therapeutics in research and 

development pipeline particularly for the treatment of gram- 

negative bacteria (e.g. intestinal bacteria such as Escherichia 

coli and Klebsiella, and environmental opportunistic bacteria 

such as Pseudomonas and Acinetobacter) infections (belonging 

to the ESKAPE group [7,8]). 

Resistance to antibiotics is multifaceted and multifactorial. 

Indeed, multidrug resistance (MDR) in gram-negative bacteria 

is often ascribed to the presence of multiple and different 

 
resistance mechanisms expressed in the same strain and 

active against various antibiotic families. The MDR phenotype 

has been attributed to both acquired and intrinsic mechan- 

isms of resistance. However, the resistance-nodulation-division 

(RND) efflux pumps in gram-negative bacteria play a major 

role in MDR, as the pathogen survival is dependent not only 

on enzymes to inactivate specific drugs but also on efflux to 

export them [9,10]. The expression of an efflux pump, together 

with the outer membrane barrier, contributes to a severe 

decrease in intracellular concentrations of various antibiotic 

classes and consequently in its reduced activity in gram-nega- 

tive MDR strains [9]. Efflux also affects biocidal agents com- 

prising disinfectants,  antiseptics, and preservatives that are 

commonly practiced in medicine [11,12]. Moreover, it is also 

involved in bacterial colonization and virulence [10,13–16] and 

contributes to the acquisition of additional mechanisms of 

resistance that includes the mutation in antibiotic  targets 

(e.g. mutation in gyrase/topoisomerase for quinolone) or the 

production of enzymes that degrade antibiotics (e.g. β-lacta- 

mases). In clinical isolates, efflux is also observed in association 

with the alteration of the outer membrane permeability 

[17,18] (e.g. loss of outer membrane porin channels). 

The polyspecificity of efflux pumps makes difficult the 

identification of precise pharmacophoric groups at the drug 

surface involved  in the recognition  and transport by these 

pumps. However, efflux pumps represent attractive target in 

order to restore the intracellular concentration of antibacterial 

agents [19–22]. To rejuvenate the activity of old antibiotics by



	

 
targeting resistance mechanisms in clinical resistant isolates, 

these drugs can be combined with adjuvant molecules such as 

chemosensitizers (e.g. membrane permeabilizer or efflux inhi- 

bitor [19,23]). As the counteraction of influx and efflux routes 

finally determines the effective concentration of drugs inside 

bacterial cells, targeting membrane transporters could support 

a winning pharmacodynamic perspective against antibiotic 

resistance. 

 

 
2. Efflux pumps-based MDR in gram-negative 

bacteria 

In resistant clinical isolates of gram-negative bacteria, the 

widespread drug active transporter system is the AcrAB-TolC/ 

MexAB-OprM efflux pumps [9,10,24]. These tripartite efflux 

structures were first identified and characterized  in  E.  coli 

and P. aeruginosa strains [25,26]. Advances  in  biochemistry 

and molecular biology enabled the discovery of numerous 

related RND pumps in nearly all clinically important bacteria 

[27–30]. 

These efflux pumps promote the extrusion of a large diver- 

sity of compounds from the cell including disinfectants, dyes, 

detergents, organic solvents [31], and structurally unrelated 

antimicrobial agents [32,33], because of their broad substrate 

specificity [34–36]. Substrates of these pumps are very differ- 

ent in their structural features, while they all tend to have a 

significant lipophilic moiety [37]. In addition, a single 

bacterial species can contain multiple homologous RND 

pumps with overlapping specificities for different 

antibiotics. The redun- dancy of efflux pumps allows 

bacteria a compensation of the inhibition or loss of the 

pump functions with variable expres- sion of efflux 

components [38,39]. Some can also have a cooperative 

interaction with other family of drug transporters or act in 

sequential manner [40–43]. 

RND transporters cross both the inner and outer membrane 

forming a tripartite system including the pump located in the 

cytoplasmic membrane, the outer membrane channel, and the 

membrane fusion protein located in the periplasm (Figure 1). 

These three proteins ensure the substrate capture from the 

outer leaflet of the inner membrane bilayer or the periplasmic 

space and, the substrate transport across the periplasm and 

the outer membrane to the external medium receiving energy 

from the proton motive force [10,44]. The three-dimensional 

structure of the most documented RND pump AcrB of E. coli 

comprising 12 transmembrane helices was first described as a 

homotrimeric symmetrical protein [45]. Then crystallographic 

data (Figure 1) indicate that each subunit exhibits one of the 

three different conformations [46,47] representing a transport 

cycle in AcrB. The sequence starts with the loose binding of a 

substrate in the access pocket (L conformer) to a low affinity 

site, followed by the tight interaction with the binding pocket 

(T conformer), to finally release the substrate from the opened 

pocket (O conformer) toward the protein channel TolC. A 

proton/drug antiport is associated to these steps of substrate 

translocation. This peristaltic mechanism that involves sub- 

strate interactions with the AcrB-binding pocket puts into 

evidence the pharmacodynamic role of MDR efflux pumps in 

antibiotic resistance. 

To better understand the polyspecificity of efflux pumps 

and the mode of interaction of substrates, the structure of the 

large binding pocket of the T conformer particularly draws the 

attention of researchers [46]. Polyspecificity means that sub- 

strates can interact with different regions of the binding 

pocket explaining the large diversity of their physicochemical 

properties. This was demonstrated with the study of the AcrB 

co-crystallized with minocycline and doxorubicine, two struc- 

turally  unrelated  drugs.  The  large  binding  cavity  has  a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Efflux pumps and pathways of drug influx and efflux across the outer membrane (OM) and the inner membrane (IM) in Gram negative bacteria with 
details of the AcrB structure of E. coli (2DHH from PDB) [46]. 
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hydrophobic area built with 6 phenylalanine residues (such as 

Phe136, Phe178, Phe610, Phe615, Phe617, and Phe628) and 

another more polar area with glutamine and asparagine resi- 

dues (Gln176 and Asn274, respectively). Interactions with 

these substrates are rather weak. Moreover, AcrB protein con- 

tains various hydrophobic areas involving nonspecific binding. 

Co-crystals with erythromycin and rifampicin have been 

reported in the access pocket [48]. Finally, the only co-crystal 

structure with an EPI was obtained with a pyranopyridine 

substrate [49]. The binding pocket is thus the determining 

position in the translocation through AcrB. But due to few 

data available and sufficiently relevant about amino acid resi- 

dues engaging interactions to identify a workable binding site, 

understanding this mechanism remains a challenge in the 

development of new therapeutics aiming at efflux target. So, 

other methods as computational ones are necessary to study 

the structure and function of efflux pumps that would allow 

new drug design. 

 

3. Efflux, membrane permeability, and intracellular 

drug  concentration 

Changes in membrane permeability allow bacteria to modu- 

late the internal concentration of antibiotics and thus affect 

the bacterial susceptibility to drugs that most often aim at 

intracellular targets. Using subinhibitory concentrations of 

antibacterial agents allows bacteria to trigger other resistance 

mechanisms via genetic regulation. Porin channels play a 

direct role in the translocation of polar antibiotics like β-lac- 

tams, whereas hydrophobic biocidal compounds diffuse 

through the lipid bilayer of  inner  membrane  barrier 

(Figure 1). Bacteria are able to modify the entrance or the 

exit of antimicrobial agents by a downregulation of porin 

production and an overexpression of efflux pumps, respec- 

tively. During infections, these bacterial synergistic strategies 

decrease the antibiotherapy efficacy and thereby ensure dis- 

semination and colonization to the patient. Various gene reg- 

ulation cascades control membrane permeability. Indeed, 

several global regulators such as MarA involved in MDR 

response, strongly affect the expression of porin genes and 

TolC in Enterobacteriaceae [17,33,50,51]. The transcriptional 

regulator SoxS is positively controlled by oxidative stress and 

can trigger MarA expression [26,52]. RamA is an additional 

global regulator in enteric bacteria (described in 

Enterobacter, Klebsiella, Salmonella and absent in E. coli) 

engaged either in the direct control of both porin and efflux 

expression or through the MarA cascade. This complex regula- 

tion mechanism combined with the versatile structure of the 

outer membrane barrier (i.e. two different lipid bilayers with 

lipopolysaccharides constituting the external side of the outer 

membrane) [18,53], governs the translocation of antibacterial 

agents with different molecular features. 

The critical part of the porin channel involved in antibiotic 

influx is the inner loop 3 determined from porin crystal struc- 

tures [18]. Alterations in the porin pattern (e.g. in the mutated 

Omp36 porin) were discovered in clinical resistant isolates as a 

new mechanism of resistance. Thus, mutations protect the 

pathogens against antibiotics while maintaining the bacterial 

survival without reducing the levels of porins for nutrients. 

This barrier to the outer membrane permeability is synergistic 

with the mechanism of resistance involving β-lactamases that 

catalyze the hydrolysis of the β-lactam drugs. However, for 

hydrophobic antibiotics, the multidrug efflux triggers higher 

increase of their MIC compared to the low process of drug 

influx through the bacterial membrane. 

Due to their polyspecificity, RND-type efflux systems 

extrude multiple drugs with very large diversity of structural 

and physicochemical properties, including ionic, neutral, polar, 

or hydrophobic molecules with a wide range of steric char- 

acters. However, in case of antibiotic classes as aminoglyco- 

sides and β-lactamines that are much less susceptible to AcrB 

efflux, bacteria take compensatory measures by overexpres- 

sing homologous (AcrD) [54,55] efflux components selective 

for the drugs. 

By downregulating influx and upregulating efflux, bacteria 

control lowers and less effective internal concentrations of 

toxic agents are available for themselves, while developing 

resistance processes. 

 

4. Pumps and pathogenicity 

The active transport of toxic compounds to the outside of the 

cell allows the survival of bacteria. Nevertheless, RND pumps 

also have roles in bacterial pathogenicity. Indeed, they are 

involved in virulence, colonization, production of signaling 

molecules, and biofilm formation [28,33,56–58]. During infec- 

tion, bacteria have to overcome the host defense mechanisms 

to survive. Pathogens employ diverse strategies that include 

bypassing physical barrier, surviving antimicrobial agents, or 

producing signals. These strategies contribute to pathogeni- 

city. Clear evidence shows that overexpression of efflux pumps 

in gram-negative bacteria occurs concurrently with infection 

[28,33,58]. 

It was particularly well documented in Salmonella. 

Deactivation of the binding component of the efflux pump 

weakens the invasion of tissue culture cells in vitro and colo- 

nization in vivo. Indeed, it was shown that two inactivated or 

deleted efflux pump genes confer to Salmonella a lower ability 

to adhere to, or invade human intestinal cells compared to 

single acr mutants [58]. And when three of the efflux genes 

were disabled, adhesion or invasion of Salmonella is almost 

totally inhibited. 

A correlation also exists between RND pumps and the 

oxidative stress generated during the process of phagocytosis, 

an important part of the innate immune response during 

infection. Phagocytic cells produce reactive oxygen species 

as defense mechanism against bacterial pathogens. As seen 

in the previous chapter, there is a link between the overex- 

pression RND pumps and oxidative stress mediated by the 

regulation cascade in the center of which SoxS regulatory 

system is [26,52]. 

Inside a bacterial community, gram-negative bacteria use a 

communication system called quorum sensing that produces 

and detects signal molecules to coordinate their behavior in a 

cell-density-dependent manner and control biofilm formation 

[59]. The extracellular signals mediated by autoinducers allow 

bacteria to sense the cell density. Indeed, autoinducers trigger 

a signal production in bacteria that modifies the expression of 



	

 

various genes (e.g. autoinducer-dependent genes involved in 

autoinducer synthesis) in a coordinated response. The most 

common signaling molecules are N-acyl-homoserine lactones 

(acyl-HSLs) that can be sensed by specific receptor proteins 

(LuxR homologues) [60] localized within the cytoplasm or the 

cell membrane. However, other chemically distinct classes of 

quorum sensing signal have been discovered including quino- 

lones, boron diesters, and cyclic peptides [61,62]. The quorum 

sensing messenger system plays many roles in the regulation 

of bacterial growth, biofilm formation, virulence, and patho- 

genesis. Indeed, bacteria  get used  to environmental condi- 

tions by  selecting related acyl-HSLs among several 

autoinducers. The length of the acyl side chain (usually from 

4 to 18 carbons), saturation and oxidation state, determine the 

resulting structure of acyl-HSLs and thus their signal specifi- 

city. Commonly, acyl-HSLs short chains easily diffuse through 

membranes whereas with longer ones acyl-HSLs are effluxed. 

Particularly, it was demonstrated that MexAB-OprM RND 

pump selects acyl-HSLs and regulates quorum sensing in 

Pseudomonas aeruginosa [63]. 

P. aeruginosa also produces two quinolone-based signaling 

molecules: the Pseudomonas quinolone signal (PQS) and the 2- 

heptyl-4(1 H)-quinolone (HHQ), which is a biosynthetic precur- 

sor [57].These two quinolone signals bind to the only receptor 

identified and named PqsR, with a lower affinity in the case of 

HHQ. PQS is involved in the regulation of several virulence 

factors and in other bacterial species it influences biofilm 

formation, bacterial growth, and motility. Affinity probes struc- 

turally related to PQS and HHQ have been designed and 

synthesized in the aim to identified new potential interacting 

targets from cell lysates of P. aeruginosa. PQS affinity probe 

has successfully captured an inner membrane  protein  identi- 

fied as the efflux pump MexG whereas there  is  no  capture 

from an alkyl quinolone deficient pqsR mutant. The PQS-MexG 

interactions were also confirmed using purified MexG in vitro 

and immobilized PQS. It was then shown that this interaction 

can be out-competed in the presence of ligand in excess. The 

role of MexG is currently not clear. These experiments show 

once again that the involvement of efflux systems in virulence 

and biofilm formation makes RND transporters attractive tar- 

get for the development of inhibitors. 

 

 
 

5. Efflux pump inhibitors 

The clear evidences on the major role of RND efflux pumps in 

both antimicrobial resistance and virulence of pathogenic 

bacteria allow considering the development of new combined 

therapy using common antibiotics and an efflux pump inhibi- 

tor (EPI) as adjuvant [9,19]. The behavior of the co-drug con- 

sists in no intrinsic antibacterial effect while inducing an 

increase of intracellular antibiotic concentration and addition- 

ally the compound may block the release of virulence factors. 

Distinct strategies targeting efflux pumps also consider the 

alteration of pump gene expression, the inhibition of mem- 

brane assembly of pump complex, the blocking of the outer 

membrane exit channel or the collapsing of the energy driven 

source [64–67]. But the development of inhibitors targeting 

RND component of efflux pump is now the main approach 

that is described and tested in gram-negative bacteria. Several 

series of compounds from both natural [68,69] and synthetic 

[70–74] sources displaying an EPI activity have been identified 

(Table 1). Structure–activity relationship (SAR) studies give 

relevant information about  the molecular  and the physico- 

chemical properties of EPIs useful in pharmacophore models 

to describe features that bind the target [75,76]. But they often 

have an incomplete characterization in the various aspects of 

gram-negative MDR. Crucial studies indicate that, despite their 

polyspecificity, RND proteins (AcrB or MexB) expel substrates 

that share identical molecular characteristics. Thus, research 

efforts are focused to increase affinity of inhibitors to RND- 

binding sites related not only to the antibiotic used but also to 

the homologous RND efflux pump expressed in a selected 

strain. Since 2002, several 3D-structures of RND proteins 

have been identified and submitted to the Protein Data Bank 

(Figure 1). It gives perspectives to increase knowledge about 

the mechanism of the substrate transport cycle between the 

three protein conformers and the mode of drug interaction in 

the ligand-binding sites for EPI-based drug discovery. 

Nevertheless, the number of EPIs identified by computer- 

aided molecular design associated with mutagenic studies is 

rather low due to few elucidated pump structures with co- 

crystallized ligands. Crystallographic structure studies give sig- 

nificant results but are not sufficient to understand all struc- 

tural aspects of ligand interaction-based drug design. 

Currently, despite progress in crystallogenesis, it remains diffi- 

cult to obtain co-crystals. 

Computational methods help understanding the relation- 

ship between the structure and the function of the protein 

under study by simulating molecular interactions and confor- 

mational changes of a model built from its 3D-structure and 

sequence homology. High-resolution 3D-structures make it 

achievable. Using rigid docking, it is possible to identify most 

energetically favorable poses of small molecules such as EPIs in 

a specific binding site. Diverse computational studies using 

virtual screening of broad compound databases [22] can assist 

the determination of the EPI mode of action analyzing how they 

bind to the efflux target at the molecular level. As an example, a 

chemical library of 30 compounds among which minocycline, 

doxorubicin, tetracycline, and levofloxacin has been virtually 

screened on a AcrB model of E. coli [70]. It was shown that 

compounds bind two sites called the ‘groove’ and the ‘cave’ 

regions. This docking study was supported by biochemical data 

from cell-based efflux pump activity assays. Molecular dynamics 

(MD) simulations are complementary techniques to elucidate 

functional biological targets. MD allows to estimate the con- 

tribution of the amino acid residues involved in the interaction 

with the ligand. This method confers a more realistic model of 

the binding site compared to the rigid docking. Indeed, it 

includes the flexibility of the binding site while taking into 

account the presence of water molecules. Using this method, 

the interaction of known structurally unrelated substrates of 

AcrB (such as minocycline, taurocholic acid, nitrocefin, chlor- 

amphenicol, ethidium, oxacillin, ciprofloxacin, cephalotin, and 

erythromycin), the two EPIs (Table 1) phenylalanyl-arginine-β- 

naphthylamide (PAβN) and 1-(1-naphthylmethyl)-piperazine 

(NMP) and the two non-substrates (such as kanamycin A and 

glucose) have been analyzed [71] in the distal binding pocket 



	

 

Table 1. Chemical series from natural (N) and synthetic (S) origin displaying EPI activity associated to antibiotics and bacterial species (updated from the previously 

published data in reference [19]). 
 

CHEMICAL SERIES 	 ANTIBIOTICS BACTERIAL 

SPECIES 

REFERE

NCES TERPENES (N) Lupulone Polymyxin B P. mirabilis [77] 

	 Humulone 	 S. marcescens 	
	 Xanthohumol 	 P. vulgaris 	
	 Eugenol β-lactams E. coli [78] 

	 	 Erythromycin P. aeruginosa 	
	 	 Chloramphenicol E. aerogenes 	
	 	 Polymyxin B S. typhimurium 	
	 	 Tetracycline P. vulgaris 	
	 	 Vancomycin 	 	
	 	 Rifampicin 	 	
	 Geraniol Chloramphenicol E. aerogenes [79] 

	 	 Norfloxacin E. coli 	
	 	 	 P. aeruginosa 	
	 	 	 A. baumanii 	

PEPTIDOMIMETICS 
(S) 

MC-04,124 

PAβN
a
 

Quinolones P. aeruginosa 
E. coli 

[32,46,65,80–
83] 

	 	 	 E. aerogenes 	
	 	 	 K. pneumoniae 	
	 	 	 S. enterica 

	
QUINOLINES/ BG814 Quinolones E. aerogenes [64,65,74,84–

86] QUINAZOLINES (S) BG1167 Phenicols 	 	
	 	 Cyclines 	 	
 

ARYLPIPERAZINES 

(S) 

NMP
b

 

Ethidium bromide 

Fluoroquinolones 
 

E. coli 

 

[87–92] 

	 	 	 A. baumanii 	
HYDANTOINES (S) Diphenylhydantoines Quinolones E. aerogenes [73,75,93] 

	 Arylidenehydantoines Chloramphenicol 	 	
PHENOTHIAZINES 
(S) 

Chlorpromazine Ethidium bromide B. pseudomallei [94–98] 

	 Thioridazine Aminoglycosides S. enterica 	
	 	 Levofloxacin M. avium 	
	 	 	 M. smegmatis 

	
	 	 	 E. coli 	

PYRANOPYRIDINES  
(S) 

MBX2319 Fluoroquinolones E. coli [49,99] 

	 	 β-lactams S. flexneri 	
	 	 Chloramphenicol K. pneumoniae 	
	 	 Erythromycin S. enterica 	
	 	 Linezolid E. cloacae 	
	 	 CEFOTAXIME P. AERUGINOSA 	

a
Phenylalanyl-arginine-β-naphthylamide. 

b
1-(1-naphthylmethyl)-piperazine. 

 

(identified by X-ray crystallography) in terms of the binding 

energy, hydrophobic surface matching, and the residues 

involved in the process. It was observed that only efflux sub- 

strates bound the distal pocket while EPIs preferred binding a 

glycine-rich loop known to control the access of substrates to 

the binding sites. As the predictive accuracy of these methods 

continuously increases, molecular modeling is the most promis- 

ing approach to design EPI. 

EPIs can be regarded as new antibacterial agents devel- 

oped to bypass antibiotic resistance restoring drug concen- 

tration [65,80] inside the bacteria cell by blocking  efflux 

pump activity. Among them, competitive inhibitors of anti- 

biotic translocation through AcrB have been reported [64]. 

Only few studies evaluated EPIs in clinical isolates (e.g. E. 

coli, E. aerogenes, K. pneumoniae, or P. aeruginosa) expres- 

sing efflux pumps. As antibiotic drugs, the key step of EPIs 

effect is their uptake through the outer membrane of bac- 

teria [65]. EPIs activity is also notably dependent on  the 

class of the antibiotic to which they are combined thus 

resulting in discrepancies between the activity level of anti- 

biotic restored and the EPIs concentration used. This was 

examined in different comparative studies using quinoline/ 

quinazoline derivatives and PAβN as a standard 

[64,65,74,84–86].  It  was  observed  that  they  do  not  have 

the same chemosensitizing effect on ciprofloxacin, sparflox- 

acin, and erythromycin activity in E. aerogenes bacteria over- 

expressing AcrB efflux pump. The different affinity of 

antibiotic and EPI ligands for the efflux binding sites could 

influence their respective activity associated with the level 

and the nature of efflux pump expressed in a given strain 

and the conditions used in screening assays. Comparable 

results have been obtained between PAβN and NMP inhibi- 

tors [86] in E. coli, especially observed with the macrolide 

class of antibiotics. There is a strong relationship linking the 

specificity of efflux pump and the efficacy of EPIs which 

thus implies selecting the suitable drug design strategy. 

Actually, in this context  ligand-based  drug  design  seems 

the most promising approach. 

Finally, a clinically applicable EPI must fill in standard phar- 

macodynamic features [80] as: (i) increasing the susceptibility 

to antibiotics of bacterial-resistant strains expressing efflux 

pumps, (ii) action on susceptible strains deleted of specific 

drug efflux pumps, (iii) no pharmacological effect on eukar- 

yotic targets, (iv) no potentiation activity on not expelled 

antibiotics, (v) increasing the intra-bacterial concentration of 

efflux pump substrates, (vi) decreasing the extrusion level of 

efflux pump substrates, (vii) no impact on the membrane 

proton gradient. 



	

 

6. Conclusion 

It was shown that antibiotic efflux is the first line of bacterial 

defense against these drugs conferring only low level of resis- 

tance but allowing as a result the development of additional 

resistance mechanisms that lead to higher degree of resistance. 

Efflux proteins belonging to the RND family play an important 

role in the intrinsic resistance of gram-negative bacteria. But it is 

clear that antibiotic efflux is not their first physiological function. 

Understanding their original functions and the conditions that 

promote their expression would allow identifying the way to 

bypass MDR mediated by these pumps. This knowledge would 

be useful to predict the appearance of MDR phenotypes in clinic 

and could improve efficacy of treatment settings. The expression 

of efflux pumps is strongly regulating by a complex balance 

between local and global regulators. Diverse stress conditions 

mediated by global regulatory mechanisms also cause the over- 

expression of efflux pumps contributing to MDR phenotype. The 

broad specificity of RND pumps confers to bacteria exposed to 

one efflux substrate the capacity to develop cross-resistance to 

multiple antibiotics having different physicochemical properties. 

This polyspecificity is also an obstacle to the discovery and the 

design of new drugs. Nevertheless, clear evidence shows that 

aiming MDR gram-negative bacteria efflux pumps is a crucial 

strategy to develop new treatments to circumvent antibiotic/ 

antiseptic resistance and virulence by(i) decreasing intrinsic and 

acquired antibiotic resistance of bacteria, (ii) reversing the devel- 

opment of additional mechanisms of resistance, (iii) reaching an 

effective intracellular concentration capable to inhibit bacterial 

growth, (iv) inhibiting the release of virulence factors associated 

to the capacity of bacterial adhesion and invasion. 

The lack of new antibiotic therapies and the widespread of 

bacterial resistance to multiple drugs enlighten the  urgent 

need to identify and validate new targets. Original innovative 

pharmacodynamic perspectives in research and development 

are required for producing anti-infective drugs. Development 

of EPIs against RND efflux target as adjuvant of antibiotics 

would allow recovering, at least partly, the  golden age of 

antibacterial agents for some antibiotic families. 

 

 

7. Expert opinion 

As the alteration of the efflux functions in bacteria modulate the 

expression of homologous RND pumps, this bacterial compen- 

satory system must be taken into account to develop selective 

EPIs not only regarding the molecular structure of the expelled 

antibiotic but also the one of the RND efflux component. Indeed, 

on a one hand EPIs are able to potentiate the activity of some 

antibiotic classes but on the other hand EPIs decrease bacterial 

susceptibility to some others as in the case of aminoglycosides 

[58]. Conversely, as acyl-HSLs virulence factors are selective 

regarding efflux pumps to be released in the extracellular med- 

ium, the use of an EPI to inhibit multiple pumps in this case 

would allow obtaining an additive effect to reduce pathogenicity 

of bacteria. Improving selectivity would also allow decreasing 

adverse effects of EPIs that contributed till now to low progress in 

preclinical or clinical trials. The multipurpose of an EPI that inhibit 

all functions of efflux pumps is thus in question: choosing addi- 

tive effect or selective effect of an EPI must consider the impact 

of one or the other strategy on the subsequent pressure of 

selection on the bacterial population and thus on the emergence 

of resistance. So, advances in crystallography, in molecular mod- 

eling, and in dynamics simulations would allow a better deter- 

mination of how EPIs bind to the efflux site in order to improve 

their efficacy as adjuvant for a given antibiotic structural class. 

Moreover, this opens the way for a diagnostic tool detecting an 

important efflux phenotype in clinical isolates and thus facilitat- 

ing the treatment adaptation to combat the bacterium. 

Computer-aided drug design is a step in the way from drug 

candidate discovery to drug development. The finding of hit 

compounds can use two different approaches of virtual screen- 

ing: one based on the ligand structure another based on mole- 

cular fragments. From these two approaches, structurally 

unrelated EPIs have been  discovered in  the  last decade: ones 

are analogs of antibiotic substrates sharing the same scaffold and 

the same structural features interacting with the efflux transpor- 

ter but not those involved in the binding to  the  antibacterial 

target; and others having new distinct scaffolds. One of the 

advantages to use antibiotic analogs is preserving the available 

druggability parameters of the substance compared with those 

for which no pharmacokinetic data exist. But the major drawback 

to overcome is producing analogs sufficiently selective regarding 

homologous efflux pumps and also regarding antibacterial tar- 

get that have no intrinsic antibacterial effect while inducing an 

increase of intracellular antibiotic concentration. Another key 

challenge is the capacity to quantify in real time the antibiotic 

concentration required inside the bacterium to bring back an 

optimal antibacterial activity in the presence of an EPI adjuvant. 

Commonly, we use minimal inhibitory concentration (MIC) mea- 

surements to evaluate drug efflux comparing the activity in 

bacteria expressing differently efflux in the presence or in the 

absence of EPI, and radiolabeled substrates to quantify their 

accumulation inside bacteria. But SAR studies cannot be refined 

with MIC approach as only wide differences in MIC values allow 

to determine significant effects. Moreover, this is often difficult to 

find relationship between MIC values and direct efflux measure- 

ments using fluorescent dyes substrate of efflux (e. g. ethidium 

bromide, 1,2ʹ -dinaphthylamine, Hoechst H33342). Advances in 

new noninvasive methodologies using fluorescence  spectrome- 

try associated to cell imaging by microscopy allow detecting and 

quantifying drugs inside individual living bacteria [100]. The 

significant obstacle to these methods is the interfering fluores- 

cence of molecules used in the evaluation. The development of 

quantitative mass spectroscopy of compounds with any physi- 

cochemical properties can help in solving this aspect. All these 

techniques quantify efflux activity directly usable to refine SAR 

studies and rationalize the design of EPIs. 
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