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Abstract

We contribute the largest publicly available

dataset of naturally occurring factual claims

for the purpose of automatic claim verification.

It is collected from 26 fact checking websites

in English, paired with textual sources and

rich metadata, and labelled for veracity by hu-

man expert journalists. We present an in-depth

analysis of the dataset, highlighting character-

istics and challenges. Further, we present re-

sults for automatic veracity prediction, both

with established baselines and with a novel

method for joint ranking of evidence pages and

predicting veracity that outperforms all base-

lines. Significant performance increases are

achieved by encoding evidence, and by mod-

elling metadata. Our best-performing model

achieves a Macro F1 of 49.2%, showing that

this is a challenging testbed for claim veracity

prediction.

1 Introduction

Misinformation and disinformation are two of the

most pertinent and difficult challenges of the in-

formation age, exacerbated by the popularity of

social media. In an effort to counter this, a signif-

icant amount of manual labour has been invested

in fact checking claims, often collecting the results

of these manual checks on fact checking portals or

websites such as politifact.com or snopes.com. In

a parallel development, researchers have recently

started to view fact checking as a task that can

be partially automated, using machine learning

and NLP to automatically predict the veracity of

claims. However, existing efforts either use small

datasets consisting of naturally occurring claims

(e.g. Mihalcea and Strapparava (2009); Zubiaga

et al. (2016)), or datasets consisting of artificially

constructed claims such as FEVER (Thorne et al.,

2018). While the latter offer valuable contribu-

tions to further automatic claim verification work,

they cannot replace real-world datasets.

Feature Value

ClaimID farg-00004
Claim Mexico and Canada assemble

cars with foreign parts and send
them to the U.S. with no tax.

Label distorts
Claim URL https://www.factcheck.org/2018/

10/factchecking-trump-on-trade/

Reason None
Category the-factcheck-wire
Speaker Donald Trump
Checker Eugene Kiely
Tags North American Free Trade

Agreement
Claim Entities United States, Canada, Mexico
Article Title FactChecking Trump on Trade
Publish Date October 3, 2018
Claim Date Monday, October 1, 2018

Table 1: An example of a claim instance. Entities are

obtained via entity linking. Article and outlink texts,

evidence search snippets and pages are not shown.

Contributions. We introduce the currently

largest claim verification dataset of naturally

occurring claims.1 It consists of 34,918 claims,

collected from 26 fact checking websites in

English; evidence pages to verify the claims; the

context in which they occurred; and rich metadata

(see Table 1 for an example). We perform a

thorough analysis to identify characteristics of the

dataset such as entities mentioned in claims. We

demonstrate the utility of the dataset by training

state of the art veracity prediction models, and

find that evidence pages as well as metadata

significantly contribute to model performance. Fi-

nally, we propose a novel model that jointly ranks

evidence pages and performs veracity prediction.

The best-performing model achieves a Macro F1

of 49.2%, showing that this is a non-trivial dataset

with remaining challenges for future work.

1The dataset is found here: https://copenlu.

github.io/publication/2019_emnlp_

augenstein/

https://www.factcheck.org/2018/10/factchecking-trump-on-trade/
https://www.factcheck.org/2018/10/factchecking-trump-on-trade/
https://copenlu.github.io/publication/2019_emnlp_augenstein/
https://copenlu.github.io/publication/2019_emnlp_augenstein/
https://copenlu.github.io/publication/2019_emnlp_augenstein/
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2 Related Work

2.1 Datasets

Over the past few years, a variety of mostly small

datasets related to fact checking have been re-

leased. An overview over core datasets is given in

Table 2. The datasets can be grouped into four cat-

egories (I–IV). Category I contains datasets aimed

at testing how well the veracity3 of a claim can be

predicted using the claim alone, without context or

evidence documents. Category II contains datasets

bundled with documents related to each claim – ei-

ther topically related to provide context, or serving

as evidence. Those documents are, however, not

annotated. Category III is for predicting veracity;

they encourage retrieving evidence documents as

part of their task description, but do not distribute

them. Finally, category IV comprises datasets an-

notated for both veracity and stance. Thus, ev-

ery document is annotated with a label indicat-

ing whether the document supports or denies the

claim, or is unrelated to it. Additional labels can

then be added to the datasets to better predict ve-

racity, for instance by jointly training stance and

veracity prediction models.

Methods not shown in the table, but related

to fact checking, are stance detection for claims

(Ferreira and Vlachos, 2016; Pomerleau and Rao,

2017; Augenstein et al., 2016a; Kochkina et al.,

2017; Augenstein et al., 2016b; Zubiaga et al.,

2018; Riedel et al., 2017), satire detection (Ru-

bin et al., 2016), clickbait detection (Karadzhov

et al., 2017), conspiracy news detection (Tacchini

et al., 2017), rumour cascade detection (Vosoughi

et al., 2018) and claim perspectives detection

(Chen et al., 2019).

Claims are obtained from a variety of sources,

including Wikipedia, Twitter, criminal reports and

fact checking websites such as politifact.com and

snopes.com. The same goes for documents – these

are often websites obtained through Web search

queries, or Wikipedia documents, tweets or Face-

book posts. Most datasets contain a fairly small

number of claims, and those that do not, often lack

evidence documents. An exception is Thorne et al.

(2018), who create a Wikipedia-based fact check-

ing dataset. While a good testbed for develop-

ing deep neural architectures, their dataset is arti-

ficially constructed and can thus not take metadata

3We use veracity, claim credibility, and fake news predic-
tion interchangeably here – these terms are often conflated in
the literature and meant to have the same meaning.

about claims into account.

Contributions: We provide a dataset that,

uniquely among extant datasets, contains a large

number of naturally occurring claims and rich ad-

ditional meta-information.

2.2 Methods

Fact checking methods partly depend on the type

of dataset used. Methods only taking into account

claims typically encode those with CNNs or RNNs

(Wang, 2017; Pérez-Rosas et al., 2018), and poten-

tially encode metadata (Wang, 2017) in a similar

way. Methods for small datasets often use hand-

crafted features that are a mix of bag of word and

other lexical features, e.g. LIWC, and then use

those as input to a SVM or MLP (Mihalcea and

Strapparava, 2009; Pérez-Rosas et al., 2018; Baly

et al., 2018). Some use additional Twitter-specific

features (Enayet and El-Beltagy, 2017). More in-

volved methods taking into account evidence doc-

uments, often trained on larger datasets, consist

of evidence identification and ranking following a

neural model that measures the compatibility be-

tween claim and evidence (Thorne et al., 2018;

Mihaylova et al., 2018; Yin and Roth, 2018).

Contributions: The latter category above is

the most related to our paper as we consider ev-

idence documents. However, existing models are

not trained jointly for evidence identification, or

for stance and veracity prediction, but rather em-

ploy a pipeline approach. Here, we show that a

joint approach that learns to weigh evidence pages

by their importance for veracity prediction can

improve downstream veracity prediction perfor-

mance.

3 Dataset Construction

We crawled a total of 43,837 claims with their

metadata (see details in Table 11). We present

the data collection in terms of selecting sources,

crawling claims and associated metadata (Section

3.1); retrieving evidence pages; and linking enti-

ties in the crawled claims (Section 3.3).

3.1 Selection of sources

We crawled all active fact checking websites in

English listed by Duke Reporters’ Lab4 and on the

Fact Checking Wikipedia page.5 This resulted in

4https://reporterslab.org/

fact-checking/
5https://en.wikipedia.org/wiki/Fact_

checking

https://reporterslab.org/fact-checking/
https://reporterslab.org/fact-checking/
https://en.wikipedia.org/wiki/Fact_checking
https://en.wikipedia.org/wiki/Fact_checking
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Dataset # Claims Labels metadata Claim Sources

I: Veracity prediction w/o evidence
Wang (2017) 12,836 6 Yes Politifact
Pérez-Rosas et al. (2018) 980 2 No News Websites

II: Veracity
Bachenko et al. (2008) 275 2 No Criminal Reports
Mihalcea and Strapparava (2009) 600 2 No Crowd Authors
Mitra and Gilbert (2015)† 1,049 5 No Twitter
Ciampaglia et al. (2015)† 10,000 2 No Google, Wikipedia
Popat et al. (2016) 5,013 2 Yes Wikipedia, Snopes
Shu et al. (2018)† 23,921 2 Yes Politifact, gossipcop.com

Datacommons Fact Check2 10,564 2-6 Yes Fact Checking Websites

III: Veracity (evidence encouraged, but not provided)
Barrn-Cedeo et al. (2018) 150 3 No factcheck.org, Snopes

IV: Veracity + stance
Vlachos and Riedel (2014) 106 5 Yes Politifact, Channel 4 News
Zubiaga et al. (2016) 330 3 Yes Twitter
Derczynski et al. (2017) 325 3 Yes Twitter
Baly et al. (2018) 422 2 No ara.reuters.com, verify-sy.com
Thorne et al. (2018)† 185,445 3 No Wikipedia

V: Veracity + evidence relevancy
MultiFC 36,534 2-40 Yes Fact Checking Websites

Table 2: Comparison of fact checking datasets. † indicates claims are not ‘naturally occuring’: Mitra and Gilbert

(2015) use events as claims; Ciampaglia et al. (2015) use DBPedia tiples as claims; Shu et al. (2018) use tweets as

claims; and Thorne et al. (2018) rewrite sentences in Wikipedia as claims.

38 websites in total (shown in Table 11). Out of

these, ten websites could not be crawled, as fur-

ther detailed in Table 9. In the later experimen-

tal descriptions, we refer to the part of the dataset

crawled from a specific fact checking website as a

domain, and we refer to each website as source.

From each source, we crawled the ID, claim,

label, URL, reason for label, categories, person

making the claim (speaker), person fact checking

the claim (checker), tags, article title, publication

date, claim date, as well as the full text that ap-

pears when the claim is clicked. Lastly, the above

full text contains hyperlinks, so we further crawled

the full text that appears when each of those hyper-

links are clicked (outlinks).

There were a number of crawling issues, e.g. se-

curity protection of websites with SSL/TLS pro-

tocols, time out, URLs that pointed to pdf files

instead of HTML content, or unresolvable encod-

ing. In all of these cases, the content could not be

retrieved. For some websites, no veracity labels

were available, in which case, they were not se-

lected as domains for training a veracity prediction

model. Moreover, not all types of metadata (cat-

egory, speaker, checker, tags, claim date, publish

date) were available for all websites; and availabil-

ity of articles and full texts differs as well.

We performed semi-automatic cleansing of the

dataset as follows. First, we double-checked that

the veracity labels would not appear in claims.

For some domains, the first or last sentence of the

claim would sometimes contain the veracity label,

in which case we would discard either the full sen-

tence or part of the sentence. Next, we checked

the dataset for duplicate claims. We found 202

such instances, 69 of them with different labels.

Upon manual inspection, this was mainly due to

them appearing on different websites, with labels

not differing much in practice (e.g. ‘Not true’, vs.

‘Mostly False’). We made sure that all such du-

plicate claims would be in the training split of the

dataset, so that the models would not have an un-

fair advantage. Finally, we performed some minor

manual merging of label types for the same do-

main where it was clear that they were supposed to

denote the same level of veracity (e.g. ‘distorts’,

‘distorts the facts’).

This resulted in a total of 36,534 claims with

their metadata. For the purposes of fact verifica-

tion, we discarded instances with labels that occur

fewer than 5 times, resulting in 34,918 claims. The

number of instances, as well as labels per domain,

are shown in Table 6 and label names in Table 10

in the appendix. The dataset is split into a train-

ing part (80%) and a development and testing part

(10% each) in a label-stratified manner. Note that
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the domains vary in the number of labels, ranging

from 2 to 27. Labels include both straight-forward

ratings of veracity (‘correct’, ‘incorrect’), but also

labels that would be more difficult to map onto a

veracity scale (e.g. ‘grass roots movement!’, ‘mis-

attributed’, ‘not the whole story’). We therefore

do not postprocess label types across domains to

map them onto the same scale, and rather treat

them as is. In the methodology section (Section

4), we show how a model can be trained on this

dataset regardless by framing this multi-domain

veracity prediction task as a multi-task learning

(MTL) one.

3.2 Retrieving Evidence Pages

The text of each claim is submitted verbatim as a

query to the Google Search API (without quotes).

The 10 most highly ranked search results are re-

trieved, for each of which we save the title; Google

search rank; URL; time stamp of last update;

search snippet; as well as the full Web page. We

acknowledge that search results change over time,

which might have an effect on veracity prediction.

However, studying such temporal effects is outside

the scope of this paper. Similar to Web crawl-

ing claims, as described in Section 3.1, the cor-

responding Web pages can in some cases not be

retrieved, in which case fewer than 10 evidence

pages are available. The resulting evidence pages

are from a wide variety of URL domains, though

with a predictable skew towards popular websites,

such as Wikipedia or The Guardian (see Table 3

for detailed statistics).

3.3 Entity Detection and Linking

To better understand what claims are about, we

conduct entity linking for all claims. Specifically,

mentions of people, places, organisations, and

other named entities within a claim are recognised

and linked to their respective Wikipedia pages, if

available. Where there are different entities with

the same name, they are disambiguated. For this,

we apply the state-of-the-art neural entity linking

model by Kolitsas et al. (2018). This results in

a total of 25,763 entities detected and linked to

Wikipedia, with a total of 15,351 claims involved,

meaning that 42% of all claims contain entities

that can be linked to Wikipedia. Later on, we use

entities as additional metadata (see Section 4.3).

The distribution of claim numbers according to the

number of entities they contain is shown in Figure

1. We observe that the majority of claims have

Domain %

https://en.wikipedia.org/ 4.425
https://www.snopes.com/ 3.992
https://www.washingtonpost.com/ 3.025
https://www.nytimes.com/ 2.478
https://www.theguardian.com/ 1.807
https://www.youtube.com/ 1.712
https://www.dailymail.co.uk/ 1.558
https://www.usatoday.com/ 1.279
https://www.politico.com/ 1.241
http://www.politifact.com/ 1.231
https://www.pinterest.com/ 1.169
https://www.factcheck.org/ 1.09
https://www.gossipcop.com/ 1.073
https://www.cnn.com/ 1.065
https://www.npr.org/ 0.957
https://www.forbes.com/ 0.911
https://www.vox.com/ 0.89
https://www.theatlantic.com/ 0.88
https://twitter.com/ 0.767
https://www.hoax-slayer.net/ 0.655
http://time.com/ 0.554
https://www.bbc.com/ 0.551
https://www.nbcnews.com/ 0.515
https://www.cnbc.com/ 0.514
https://www.cbsnews.com/ 0.503
https://www.facebook.com/ 0.5
https://www.newyorker.com/ 0.495
https://www.foxnews.com/ 0.468
https://people.com/ 0.439
http://www.cnn.com/ 0.419

Table 3: The top 30 most frequently occurring URL

domains.

Figure 1: Distribution of entities in claims.

one to four entities, and the maximum number of

35 entities occurs in one claim only. Out of the

25,763 entities, 2,767 are unique entities. The top

30 most frequent entities are listed in Table 4. This

clearly shows that most of the claims involve enti-

ties related to the United States, which is to be ex-

pected, as most of the fact checking websites are

US-based.

4 Claim Veracity Prediction

We train several models to predict the veracity of

claims. Those fall into two categories: those that
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Entity Frequency

United States 2810
Barack Obama 1598
Republican Party (United States) 783
Texas 665
Democratic Party (United States) 560
Donald Trump 556
Wisconsin 471
United States Congress 354
Hillary Rodham Clinton 306
Bill Clinton 292
California 285
Russia 275
Ohio 239
China 229
George W. Bush 208
Medicare (United States) 206
Australia 186
Iran 183
Brad Pitt 180
Islam 178
Iraq 176
Canada 174
White House 166
New York City 164
Washington, D.C. 164
Jennifer Aniston 163
Mexico 158
Ted Cruz 152
Federal Bureau of Investigation 146
Syria 130

Table 4: Top 30 most frequent entities listed by their

Wikipedia URL with prefix omitted

only consider the claims themselves, and those

that encode evidence pages as well. In addition,

claim metadata (speaker, checker, linked entities)

is optionally encoded for both categories of mod-

els, and ablation studies with and without that

metadata are shown. We first describe the base

model used in Section 4.1, followed by introduc-

ing our novel evidence ranking and veracity pre-

diction model in Section 4.2, and lastly the meta-

data encoding model in Section 4.3.

4.1 Multi-Domain Claim Veracity Prediction

with Disparate Label Spaces

Since not all fact checking websites use the same

claim labels (see Table 6, and Table 10 in the ap-

pendix), training a claim veracity prediction model

is not entirely straight-forward. One option would

be to manually map those labels onto one another.

However, since the sheer number of labels is rather

large (165), and it is not always clear from the

guidelines on fact checking websites how they can

be mapped onto one another, we opt to learn how

these labels relate to one another as part of the

veracity prediction model. To do so, we employ

the multi-task learning (MTL) approach inspired

by collaborative filtering presented in Augenstein

et al. (2018) (MTL with LEL–multitask learning

with label embedding layer) that excels on pair-

wise sequence classification tasks with disparate

label spaces. More concretely, each domain is

modelled as its own task in a MTL architecture,

and labels are projected into a fixed-length label

embedding space. Predictions are then made by

taking the dot product between the claim-evidence

embeddings and the label embeddings. By doing

so, the model implicitly learns how semantically

close the labels are to one another, and can benefit

from this knowledge when making predictions for

individual tasks, which on their own might only

have a small number of instances. When making

predictions for individual domains/tasks, both at

training and at test time, as well as when calculat-

ing the loss, a mask is applied such that the valid

and invalid labels for that task are restricted to the

set of known task labels.

Note that the setting here slightly differs from

Augenstein et al. (2018). There, tasks are less

strongly related to one another; for example, they

consider stance detection, aspect-based sentiment

analysis and natural language inference. Here, we

have different domains, as opposed to conceptu-

ally different tasks, but use their framework, as we

have the same underlying problem of disparate la-

bel spaces. A more formal problem definition fol-

lows next, as our evidence ranking and veracity

prediction model in Section 4.2 then builds on it.

4.1.1 Problem Definition

We frame our problem as a multi-task learning

one, where access to labelled datasets for T tasks

T1, . . . , TT is given at training time with a target

task TT that is of particular interest. The train-

ing dataset for task Ti consists of N examples

XTi = {xTi1 , . . . , xTiN} and their labels YTi =

{yTi
1 , . . . ,yTi

N }. The base model is a classic deep

neural network MTL model (Caruana, 1993) that

shares its parameters across tasks and has task-

specific softmax output layers that output a proba-

bility distribution pTi for task Ti:

pTi = softmax(WTih+ bTi) (1)

where softmax(x) = ex/
∑‖x‖

i=1 e
xi , WTi ∈

R
Li×h, bTi ∈ R

Li is the weight matrix and

bias term of the output layer of task Ti respec-

tively, h ∈ R
h is the jointly learned hidden rep-
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resentation, Li is the number of labels for task

Ti, and h is the dimensionality of h. The MTL

model is trained to minimise the sum of individual

task losses L1 + . . . + LT using a negative log-

likelihood objective.

Label Embedding Layer. To learn the relation-

ships between labels, a Label Embedding Layer

(LEL) embeds labels of all tasks in a joint Eu-

clidian space. Instead of training separate softmax

output layers as above, a label compatibility func-

tion c(·, ·) measures how similar a label with em-

bedding l is to the hidden representation h:

c(l,h) = l · h (2)

where · is the dot product. Padding is applied such

that l and h have the same dimensionality. Ma-

trix multiplication and softmax are used for mak-

ing predictions:

p = softmax(Lh) (3)

where L ∈ R
(
∑

i Li)×l is the label embedding ma-

trix for all tasks and l is the dimensionality of the

label embeddings. We apply a task-specific mask

to L in order to obtain a task-specific probabil-

ity distribution pTi . The LEL is shared across all

tasks, which allows the model to learn the relation-

ships between labels in the joint embedding space.

4.2 Joint Evidence Ranking and Claim

Veracity Prediction

So far, we have ignored the issue of how to obtain

claim representation, as the base model described

in the previous section is agnostic to how instances

are encoded. A very simple approach, which we

report as a baseline, is to encode claim texts only.

Such a model ignores evidence for and against a

claim, and ends up guessing the veracity based on

surface patterns observed in the claim texts.

We next introduce two variants of evidence-

based veracity prediction models that encode 10

pieces of evidence in addition to the claim. Here,

we opt to encode search snippets as opposed to

whole retrieved pages. While the latter would

also be possible, it comes with a number of ad-

ditional challenges, such as encoding large doc-

uments, parsing tables or PDF files, and encod-

ing images or videos on these pages, which we

leave to future work. Search snippets also have

the benefit that they already contain summaries of

the part of the page content that is most related to

the claim.

Figure 2: The Joint Veracity Prediction and Evidence

Ranking model, shown for one task.

4.2.1 Problem Definition

Our problem is to obtain encodings for N exam-

ples XTi = {xTi1 , . . . , xTiN}. For simplicity, we

will henceforth drop the task superscript and re-

fer to instances as X = {x1, . . . , xN}, as instance

encodings are learned in a task-agnostic fashion.

Each example further consists of a claim ai and

k = 10 evidence pages Ek = {e10 , . . . , eN10
}.

Each claim and evidence page is encoded with

a BiLSTM to obtain a sentence embedding, which

is the concatenation of the last state of the forward

and backward reading of the sentence, i.e. h =
BiLSTM(·), where h is the sentence embedding.

Next, we want to combine claims and evidence

sentence embeddings into joint instance represen-

tations. In the simplest case, referred to as model

variant crawled avg, we mean average the BiL-

STM sentence embeddings of all evidence pages

(signified by the overline) and concatenate those

with the claim embeddings, i.e.

sgi = [hai ;hEi
] (4)

where sgi is the resulting encoding for training

example i and [·; ·] denotes vector concatenation.
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However, this has the disadvantage that all evi-

dence pages are considered equal.

Evidence Ranking The here proposed alterna-

tive instance encoding model, crawled ranked,

which achieves the highest overall performance as

discussed in Section 5, learns the compatibility be-

tween an instance’s claim and each evidence page.

It ranks evidence pages by their utility for the ve-

racity prediction task, and then uses the resulting

ranking to obtain a weighted combination of all

claim-evidence pairs. No direct labels are avail-

able to learn the ranking of individual documents,

only for the veracity of the associated claim, so the

model has to learn evidence ranks implicitly.

To combine claim and evidence representations,

we use the matching model proposed for the task

of natural language inference by Mou et al. (2016)

and adapt it to combine an instance’s claim repre-

sentation with each evidence representation, i.e.

srij = [hai ;heij
;hai − heij

;hai · heij
] (5)

where srij is the resulting encoding for training

example i and evidence page j , [·; ·] denotes vec-

tor concatenation, and · denotes the dot product.

All joint claim-evidence representations

sri0 , . . . , sri10 are then projected into the binary

space via a fully connected layer FC, followed

by a non-linear activation function f , to obtain a

soft ranking of claim-evidence pairs, in practice a

10-dimensional vector,

oi = [f(FC(sri0 )); . . . ; f(FC(sri10 ))] (6)

where [·; ·] denotes concatenation.

Scores for all labels are obtained as per (6)

above, with the same input instance embeddings

as for the evidence ranker, i.e. srij . Final predic-

tions for all claim-evidence pairs are then obtained

by taking the dot product between the label scores

and binary evidence ranking scores, i.e.

pi = softmax(c(l, sri) · oi) (7)

Note that the novelty here is that, unlike for the

model described in Mou et al. (2016), we have no

direct labels for learning weights for this matching

model. Rather, our model has to implicitly learn

these weights for each claim-evidence pair in an

end-to-end fashion given the veracity labels.

Model Micro F1 Macro F1

claim-only 0.469 0.253
claim-only embavg 0.384 0.302
crawled-docavg 0.438 0.248
crawled ranked 0.613 0.441

claim-only + meta 0.494 0.324
claim-only embavg + meta 0.418 0.333
crawled-docavg + meta 0.483 0.286
crawled ranked + meta 0.625 0.492

Table 5: Results with different model variants on the

test set, ‘meta’ means all metadata is used.

4.3 Metadata

We experiment with how useful claim metadata

is, and encode the following as one-hot vectors:

speaker, category, tags and linked entities. We do

not encode ‘Reason’ as it gives away the label, and

do not include ‘Checker’ as there are too many

unique checkers for this information to be rele-

vant. The claim publication date is potentially rel-

evant, but it does not make sense to merely model

this as a one-hot feature, so we leave incorporat-

ing temporal information to future work. Since all

metadata consists of individual words and phrases,

a sequence encoder is not necessary, and we opt

for a CNN followed by a max pooling operation as

used in Wang (2017) to encode metadata for fact

checking. The max-pooled metadata representa-

tions, denoted hm, are then concatenated with the

instance representations, e.g. for the most elabo-

rate model, crawled ranked, these would be con-

catenated with scrij .

5 Experiments

5.1 Experimental Setup

The base sentence embedding model is a BiLSTM

over all words in the respective sequences with

randomly initialised word embeddings, following

Augenstein et al. (2018). We opt for this strong

baseline sentence encoding model, as opposed to

engineering sentence embeddings that work par-

ticularly well for this dataset, to showcase the

dataset. We would expect pre-trained contextual

encoding models, e.g. ELMO (Peters et al., 2018),

ULMFit (Howard and Ruder, 2018), BERT (De-

vlin et al., 2018), to offer complementary perfor-

mance gains, as has been shown for a few recent

papers (Wang et al., 2018; Rajpurkar et al., 2018).

For claim veracity prediction without evidence

documents with the MTL with LEL model, we use

the following sentence encoding variants: claim-
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only, which uses a BiLSTM-based sentence em-

bedding as input, and claim-only embavg, which

uses a sentence embedding based on mean aver-

aged word embeddings as input.

We train one multi-task model per task (i.e., one

model per domain). We perform a grid search over

the following hyperparameters, tuned on the re-

spective dev set, and evaluate on the correspod-

ing test set (final settings are underlined): word

embedding size [64, 128, 256], BiLSTM hidden

layer size [64, 128, 256], number of BiLSTM hid-

den layers [1, 2, 3], BiLSTM dropout on input and

output layers [0.0, 0.1, 0.2, 0.5], word-by-word-

attention for BiLSTM with window size 10 (Bah-

danau et al., 2014) [True, False], skip-connections

for the BiLSTM [True, False], batch size [32, 64,

128], label embedding size [16, 32, 64]. We use

ReLU as an activation function for both the BiL-

STM and the CNN. For the CNN, the follow-

ing hyperparameters are used: number filters [32],

kernel size [32]. We train using cross-entropy loss

and the RMSProp optimiser with initial learning

rate of 0.001 and perform early stopping on the

dev set with a patience of 3.

5.2 Results

For each domain, we compute the Micro as well

as Macro F1, then mean average results over all

domains. Core results with all vs. no metadata

are shown in Table 5. We first experiment with

different base model variants and find that label

embeddings improve results, and that the best pro-

posed models utilising multiple domains outper-

form single-task models (see Table 8). This cor-

roborates the findings of Augenstein et al. (2018).

Per-domain results with the best model are shown

in Table 6. Domain names are from hereon af-

ter abbreviated for brevity, see Table 11 in the ap-

pendix for correspondences to full website names.

Unsurprisingly, it is hard to achieve a high Macro

F1 for domains with many labels, e.g. tron and

snes. Further, some domains, surprisingly mostly

with small numbers of instances, seem to be very

easy – a perfect Micro and Macro F1 score of 1.0

is achieved on ranz, bove, buca, fani and thal. We

find that for those domains, the verdict is often al-

ready revealed as part of the claim using explicit

wording.

Claim-Only vs. Evidence-Based Veracity Pre-

diction. Our evidence-based claim veracity pre-

diction models outperform claim-only veracity

Domain # Insts # Labs Micro F1 Macro F1

ranz 21 2 1.000 1.000
bove 295 2 1.000 1.000
abbc 436 3 0.463 0.453
huca 34 3 1.000 1.000
mpws 47 3 0.667 0.583
peck 65 3 0.667 0.472
faan 111 3 0.682 0.679
clck 38 3 0.833 0.619
fani 20 3 1.000 1.000
chct 355 4 0.550 0.513
obry 59 4 0.417 0.268
vees 504 4 0.721 0.425
faly 111 5 0.278 0.5
goop 2943 6 0.822 0.387
pose 1361 6 0.438 0.328
thet 79 6 0.55 0.37
thal 163 7 1.000 1.000
afck 433 7 0.357 0.259
hoer 1310 7 0.694 0.549
para 222 7 0.375 0.311
wast 201 7 0.344 0.214
vogo 654 8 0.594 0.297
pomt 15390 9 0.321 0.276
snes 6455 12 0.551 0.097
farg 485 11 0.500 0.140
tron 3423 27 0.429 0.046

avg 7.17 0.625 0.492

Table 6: Total number of instances and unique labels

per domain, as well as per-domain results with model

crawled ranked + meta, sorted by label size

Metadata Micro F1 Macro F1

None 0.627 0.441

Speaker 0.602 0.435
+ Tags 0.608 0.460

Tags 0.585 0.461

Entity 0.569 0.427
+ Speaker 0.607 0.477
+ Tags 0.625 0.492

Table 7: Ablation results with base model

crawled ranked for different types of metadata

Model Micro F1 Macro F1

STL 0.527 0.388
MTL 0.556 0.448
MTL + LEL 0.625 0.492

Table 8: Ablation results with crawled ranked + meta

encoding for STL vs. MTL vs. MTL + LEL training

prediction models by a large margin. Unsur-

prisingly, claim-only embavg is outperformed by

claim-only. Further, crawled ranked is our best-

performing model in terms of Micro F1 and Macro

F1, meaning that our model captures that not ev-

ery piece of evidence is equally important, and can
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Figure 3: Confusion matrix of predicted labels with

best-performing model, crawled ranked + meta, on the

‘pomt’ domain

utilise this for veracity prediction.

Metadata. We perform an ablation analysis of

how metadata impacts results, shown in Table 7.

Out of the different types of metadata, topic tags

on their own contribute the most. This is likely be-

cause they offer highly complementary informa-

tion to the claim text of evidence pages. Only us-

ing all metadata together achieves a higher Macro

F1 at similar Micro F1 than using no metadata at

all. To further investigate this, we split the test

set into those instances for which no metadata is

available vs. those for which metadata is available.

We find that encoding metadata within the model

hurts performance for domains where no metadata

is available, but improves performance where it is.

In practice, an ensemble of both types of models

would be sensible, as well as exploring more in-

volved methods of encoding metadata.

6 Analysis and Discussion

An analysis of labels frequently confused with

one another, for the largest domain ‘pomt’ and

best-performing model crawled ranked + meta is

shown in Figure 3. The diagonal represents when

gold and predicted labels match, and the num-

bers signify the number of test instances. One

can observe that the model struggles more to de-

tect claims with labels ‘true’ than those with la-

bel ‘false’. Generally, many confusions occur over

close labels, e.g. ‘half-true’ vs. ‘mostly true’.

We further analyse what properties instances

that are predicted correctly vs. incorrectly have,

using the model crawled ranked meta. We find

that, unsurprisingly, longer claims are harder to

classify correctly, and that claims with a high di-

rect token overlap with evidence pages lead to a

high evidence ranking. When it comes to fre-

quently occurring tags and entities, very general

tags such as ‘government-and-politics’ or ‘tax’

that do not give away much, frequently co-occur

with incorrect predictions, whereas more specific

tags such as ‘brisbane-4000’ or ‘hong-kong’ tend

to co-occur with correct predictions. Similar

trends are observed for bigrams. This means that

the model has an easy time succeeding for in-

stances where the claims are short, where specific

topics tend to co-occur with certain veracities, and

where evidence documents are highly informative.

Instances with longer, more complex claims where

evidence is ambiguous remain challenging.

7 Conclusions

We present a new, real-world fact checking

dataset, currently the largest of its kind. It consists

of 34,918 claims collected from 26 fact checking

websites, rich metadata and 10 retrieved evidence

pages per claim. We find that encoding the meta-

data as well evidence pages helps, and introduce

a new joint model for ranking evidence pages and

predicting veracity.
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Websites (Sources) Reason

Mediabiasfactcheck Website that checks other news websites

CBC No pattern to crawl

apnews.com/APFactCheck No categorical label and no structured claim

weeklystandard.com/tag/fact-check Mostly no label, and they are placed anywhere

ballotpedia.org No categorical label and no structured claim

channel3000.com/news/politics/reality-check No categorical label, lack of structure, and no clear claim

npr.org/sections/politics-fact-check No label and no clear claim (only some titles are claims)

dailycaller.com/buzz/check-your-fact Is a subset of checkyourfact which has already been crawled

sacbee.com6 Contains very few labelled articles, and without clear claims

TheGuardian Only a few websites have a pattern for labels.

Table 9: The list of websites that we did not crawl and reasons for not crawling them.

Domain # Insts # Labels Labels

abbc 436 3 in-between, in-the-red, in-the-green
afck 433 7 correct, incorrect, mostly-correct, unproven, misleading, understated, exagger-

ated
bove 295 2 none, rating: false
chct 355 4 verdict: true, verdict: false, verdict: unsubstantiated, none
clck 38 3 incorrect, unsupported, misleading
faan 111 3 factscan score: false, factscan score: true, factscan score: misleading
faly 71 5 true, none, partly true, unverified, false
fani 20 3 conclusion: accurate, conclusion: false, conclusion: unclear
farg 485 11 false, none, distorts the facts, misleading, spins the facts, no evidence, not the

whole story, unsupported, cherry picks, exaggerates, out of context
goop 2943 6 0, 1, 2, 3, 4, 10
hoer 1310 7 facebook scams, true messages, bogus warning, statirical reports, fake news,

unsubstantiated messages, misleading recommendations
huca 34 3 a lot of baloney, a little baloney, some baloney
mpws 47 3 accurate, false, misleading
obry 59 4 mostly true, verified, unobservable, mostly false
para 222 7 mostly false, mostly true, half-true, false, true, pants on fire!, half flip
peck 65 3 false, true, partially true
pomt 15390 9 half-true, false, mostly true, mostly false, true, pants on fire!, full flop, half flip,

no flip
pose 1361 6 promise kept, promise broken, compromise, in the works, not yet rated, stalled
ranz 21 2 fact, fiction
snes 6455 12 false, true, mixture, unproven, mostly false, mostly true, miscaptioned, legend,

outdated, misattributed, scam, correct attribution
thet 79 6 none, mostly false, mostly true, half true, false, true
thal 74 2 none, we rate this claim false
tron 3423 27 fiction!, truth!, unproven!, truth! & fiction!, mostly fiction!, none, disputed!,

truth! & misleading!, authorship confirmed!, mostly truth!, incorrect attribu-
tion!, scam!, investigation pending!, confirmed authorship!, commentary!, pre-
viously truth! now resolved!, outdated!, truth! & outdated!, virus!, fiction! &
satire!, truth! & unproven!, misleading!, grass roots movement!, opinion!, cor-
rect attribution!, truth! & disputed!, inaccurate attribution!

vees 504 4 none, fake, misleading, false
vogo 653 8 none, determination: false, determination: true, determination: mostly true,

determination: misleading, determination: barely true, determination: huckster
propaganda, determination: false, determination: a stretch

wast 201 7 4 pinnochios, 3 pinnochios, 2 pinnochios, false, not the whole story, needs
context, none

Table 10: Number of instances, and labels per domain sorted by number of occurrences
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