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Multifeature Texture Analysis for the Classification
of Clouds in Satellite Imagery

Christodoulos I. Christodoulou, Silas C. Michaelides, and Constantinos S. Pat8ehisr Member, IEEE

Abstract—The aim of this work was to develop a system based point of view, only areas on the satellite image with a single
on mu_ltifea_tl_Jre texture analysis_and modL_JIar neural _networks deck of cloud were analyzed in the present research.
itrr:g ‘g’g' fgﬁl(l;lrt]a;e;hset :r%t‘\),vrnftergv'ir(‘jtsrgr‘;:ggggrg{zse%te;wg g}'(ggg ., Because the interpretation of satellite images by individual
waygfor classifyingycloud type[; that can be used as an operational vyeather fore_cas_te_rs |mp_||e_s a high level of personal estima-
tool in weather analysis. A series of 98 infrared satellite images 10N and subjectivity, artificial neural networks [2] and texture
from the geostationary satellite METEOSAT7 were employed, analysis have been employed in previous work, in order to
and 366 cloud segments were labeled into six cloud types after establish an objective methodology for such an interpretation
combined agreed observations from ground and satellite. From [1], [3]-[6]. Welch et al. [3] used texture features like the
the segmented cloud images, nine different texture feature o aiiq| gray-level dependence matrices (SGLDMs) by Haralick
sets (a total of 55 features) were extracted, using the following . .
algorithms: statistical features, spatial gray-level dependence [7] gnd gray-level difference Stat's_t'_cs (GLDS) by Wenska [8]
matrices, gray-level difference statistics, neighborhood gray tone On images from the LANDSAT orbiting satellite. Le¢al. [4]
difference matrix, statistical feature matrix, Laws’ texture energy ~ used neural networks and the K-nearest neighbor (KNN) clas-
measures, fractals, and Fourier power spectrum. The neural sifiers for the classification of clouds in three classes with an
”tet;’i"s(:irgalsﬁfferggrgtzgg fﬁgé‘;r(eKmsg’ c(lisos'i:f'i\g)r \i/':rs;iﬂgé ;’f‘gr ttni overall cloud identification accuracy of 93%, whereas Bankert
sta - o
classification of the cIoug(]j images. Furthermore, the classification 51, [6] us_ed a probabilistic neurfal network .(PNN) for the
results of the nine different feature sets were combined, improving Cclassification of Advanced Very High Resolution Radiometer
the classification yield for the six classes, for the SOFM classifier (AVHRR) imagery. Neural networks use in image texture anal-
to 61% and for the KNN classifier to 64%. ysis and in cloud classification has also been shown in [9]
where the PNN and the self-organizing feature map (SOFM)
classifiers were examined with the singular value decompo-
sition (SVD), and wavelet packet (WP) transformations, and
the SGLDM and spectral features. They reported an overall
classification accuracy of 91% for the SVD features, after a
EOSTATIONARY satellites have long been establishegostprocessing scheme that utilized the contextual information
as excellent cloud-observing platforms for variouf) the satellite images, where similar results were found for
meteorological applications, primary of which is short-rangdée WP and SGLDM features.
weather forecasting. Cloud patterns observed from such satelThe original aspects of this work are the following.
lites are interpreted from expert meteorologists and are usedl) The cloud images were obtained by the geostationary

Index Terms—Classification, clouds, K-nearest neighbor (KNN),
satellite images, self-organizing feature map (SOFM), texture.

. INTRODUCTION

in conjunction with several other weather forecasting tools in
their day-to-day practice [1]. Clouds are customarily classified
in three decks (etages): as low, medium, or high, depending,
among several other criteria, on the observed shape of the cloud
and the distance of the cloud base from the ground. This kind
of classification has been internationally agreed and used by
meteorological services worldwide. The cloud identification,
by using the combined ground and satellite observations, is
further complicated by the fact that the weather-observers
report the cloud as seen from below (i.e., from the earth’s
surface), whereas the satellite senses remotely the cloud from
above (i.e., from space). In order to avoid the confusion, which
may arise because of this discrepancy in the “observation”
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2)

satellite METEOSAT7 at 36000 km, whereas most of
the images used in previous work were recorded from
orbiting satellites with orbits about 180 km above the
earth [3]-[6]. The use of geostationary satellites is con-
sidered to be more consistent than that of orbiting satel-
lites. On the one hand, geostationary satellites observe
the same geographical area and from the same height, at
all times. On the other hand, images from geostationary
satellites are more frequent (every half hour) compared
to the much less frequent images from orbiting satellites.
Therefore, the development of an operational automated
technique for the identification of cloud could more easily
be adapted to imagery from geostationary satellites, es-
pecially in conjunction with appropriate image animation
software.

The labeling of the different cloud cases was carried
out by combined agreed observations from ground and
satellite.

A large number (55) of texture features was investigated
using the following algorithms: statistical features, spa-
tial gray-level dependence matrices, gray-level difference
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statistics, neighborhood gray tone difference matrix, stogemm—er =~ == ¥ =5

tistical feature matrix, Laws’ texture energy measures
fractals, and the Fourier power spectrum. 3
4) A modular architecture incorporating a combiner witl;
weighted averaging was developed, which improve
significantly the overall correct classifications score
Moreover, the use of a correction factor is propos

distributions.

Il. DATA

The satellite images used in the present study originate fr
the thermal infrared channel onboard the Geostationary satel
METEOSAT?7. This thermal infrared channel operates with
the range of 10.5-12.pm. It detects infrared radiation from
the underlying earth’s surface and atmosphere within this ran
and it has a great advantage over visible radiation channels
it can be used equally well, day or night. Cold high clouds wit
low infrared radiance appear white, whereas warmer low-le
clouds appear gray, while land and sea, with high infrared
diance, will look relatively dark. The resolution of the infrared
radiometer at the subsatellite point amounts to 5 Kfowever, Fig. 1. Infrared satellite image from the geostationary satellite METEOSAT7
due to the curvature of the earth this resolution decreases towét@003 EUMETSAT).
the outer edges of the image. The satellite images consist of the

0000, 0600, 1200, and 1800 UTC images, corresponding to t.

main synoptic observing times and which are performed on th
basis of internationally agreed standards. The satellite imag
were contrasted to the actual observations reported at the eart
surface at the above times. These observations are plotted ‘
the respective synoptic maps and archived by the Meteorolo ’Jg:‘\
ical Office of Cyprus. Using this standardized information fro };
the human observers on the ground and the expertise of a n
teorologist, cloud types were identified on the satellite image «
and classified manually accordingly.

From atotal number of 98 satellite images, 366 samples we
manually classified by the expert meteorologist into the fol
lowing six cloud types:

¢ altocumulus-altostratus (ACAS);
¢ cumulonimbus (CB);

e cirrus-cirrostratus (CICS);

e cumulus-stratocumulus (CUSC);
« stratus (ST);

« clear conditions (CLEAR)

For the cloud type ACAS, 52 samples were collected, for CH
13, for CICS 73, for CUSC 126, for ST 34 and for CLEAR
68. Some of these cloud types like CUSC, ACAS and CIC{ Clear conditions (CLEAR)
are group types representing cloud usually observed together.

It should be emphasized that the labeling of the different caség 2. Examples of segmented cloud images.
was carried out after combined agreed observations from ground
and satellite. The cloud region of interest was manually outlined
and saved for feature extraction. The outline and identification
of the cloud was carried out very carefully by the expert meteo- In the feature extraction module multiple texture features
rologist, in order to include only one type of cloud and in ordenvere extracted from the manually classified samples, in order
to avoid including in the segmented image any land borderlings. be used for the classification. Texture contains important
Fig. 1 shows an infrared satellite image from the geostationanformation, which is used by humans for the interpretation
satellite METEOSAT7 and Fig. 2 illustrates examples of segnd the analysis of many types of images. Texture refers to the
mented cloud images for the six classes. spatial interrelationships and arrangement of the basic elements

Altocumulus — altostratus (ACAS)

%

Cumulonimbus (CB)

Cirrus-arrostratus (CICS)

Cumulus-stratocumulus (CUSC)

Stratus (3T)

Ill. TEXTURE FEATURE EXTRACTION
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of an image [10]. Visually, these spatial interrelationships and The above features were calculated for pixel displacements
arrangements of the image pixels are seen as variations in ¢he= (0,1),(1,1),(1,0),(1,—1), where§ = (Az,Ay), and
intensity patterns or gray tones. Therefore, texture featutbeir mean values were taken.

have to be derived from the gray tones of the image. Although

it is easy for humans to recognize texture, it is quite a difficuid. Neighborhood Gray Tone Difference Matrix (NGTDM)

task to be defined, and subsequently to be interpreted by digita!a\

computers. madasun and King [10] proposed the neighborhood gray

tone difference matrix in order to extract textural features, which

. From the segmented satellite images used in this study, nlﬂ)errespond to visual properties of texture. The following fea-
different texture feature sets (a total of 55 features) were &res were extracted. for a neighborhood size af®
tracted. The used texture features briefly outlined below were 1) coarseness: '

also used successfully in previous work for the classification of > trast:
ultrasound images of carotid plaques [11]. ) contrast,
3) business;

4) complexity;

A. Statistical Features (SF) 5) strength

The following statistical features were computed [12]:

1) mean value; E. Statistical Feature Matrix (SFM)
2) median value; The statistical feature matrix [13] measures the statistical
3) standard deviation; properties of pixel pairs at several distances within an image,
4) skewness; which are used for statistical analysis. Based on the SFM the
5) kurtosis. following texture features were computed:
1) coarseness;
B. Spatial Gray-Level Dependence Matrices (SGLDM) 2) contrast;

The SGLDMs as proposed by Haraliek al. [7] are based ~ 3) Periodicity;
on the estimation of the second-order joint conditional proba- 4) roughness.
bility density functions that two pixelgk, /) and (m, n) with The constantd.,., L. which determine the maximum inter-
distanced in direction specified by the anglehave intensities sample spacing distance were set in this work to= L. = 4.
of gray-levek and gray-levej. Based on the probability density
functions, the following texture measures [7] were computedF. Laws Texture Energy Measures (TEM)

1) angular second moment; For the Laws texture energy measures extraction [14], [15],
2) contrast; vectors of length = 7, L = (1,6,15,20,15,6,1), £ =
3) correlation; (-1,-4,-5,0,5,4,1), and S = (-1,-2,1,4,1,-2,-1)
4) sum of squares: variance were used, wheré performs local averagingy acts as edge
5) inverse difference moment; detector, and acts as spot detector. If we multiply the column
6) sum average; vectors of lengthl by row vectors of the same length, we
7) sum variance; obtain Laws’l x [ masks. In order to extract texture features
8) sum entropy; from an image, these masks are convolved with the image and
9) entropy; the statistics (e.g., energy) of the resulting image are used to
10) difference variance; describe texture. The following texture features were extracted:
11) difference entropy; 1) LL—texture energy from LL kernel;
12) and 13) information measures of correlation. 2) EE—texture energy from EE kernel;

For a chosen distaneg(in this workd = 1 was used) and for ~ 3) SS—texture energy from SS kernel,
anglesd = 0°, 45°, 9(°, and 135 we computed four values 4) LE—average texture energy from LE and EL kernels;
for each of the above 13 texture measures. In this work, the5) ES—average texture energy from ES and SE kernels;
mean and the range of these four values were computed for each) LS—average texture energy from LS and SL kernels.
feature, and they were used as two different feature sets.

G. Fractal Dimension Texture Analysis (FDTA)

C. Gray-Level Difference Statistics (GLDS) Mandelbrot [16] developed the fractional Brownian motion
The GLDS algorithm [8] uses first order statistics of locanodelin order to describe the roughness of natural surfaces. The
property values based on absolute differences between pairsigfst coefficientt (*) [15] was computed for image resolutions

gray levels or of average gray levels in order to extract the fdi-= 1, 2, 3. Asmooth surface is described by a large value of the
lowing texture measures: parametet{ whereas the reverse applies for a rough surface.

1) contrast, _
2) angular second moment; H. Fourier Power Spectrum (FPS)

3) entropy; The radial sum and the angular sum of the discrete Fourier
4) mean. transform [8] were computed in order to describe texture.
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The algorithms were developed and executed in MATLAB TABLE |
R12 by MathWorks. Table | tabulates the number of featurégUMBER OF FEATURES PER SET AND INDICATIVE PROCESSINGTIME NEEDED
NN . . 70 COMPUTE THE FEATURES FOR ANIMAGE OF 53 x 59 RXELS ON A 1.5-GHz
per set and indicative processing time needed to compute the PENTIUM 4 PERSONAL COMPUTERWITH 512-MB RAM
features for an image of 5359 pixels on a 1.5-GHz Pentium
4 personal compute_r with 512-MB RAM. B Feature Set No of Processing
For each of the nine feature. gets extracted, a clas§|f|er was Features Time [s]

developed, followed by a combining module that combined the
outputs of the nine classifiers. This architecture formed the mul- ! SF 3 0-032
tifeature/multiclassifier modular neural network system [2] that 2 SGLDM (mean) 13 0.343
is described in Sections IV and V. Building a classifier based on 3 SGLDM (range) 13 0.343
an optimal feature selection among the 55 texture features ex-

. : R ) 4 GLDS 4 0.094
tracted was not investigated in this study because this approach
was followed by our group in a similar problem for the clas- 5 NGTDM 3 0.109
sification of medical ultrasound images of the carotid plaque 6 SFM 4 0.062
based on texture analysis, and it yield poorer classification re- 7 TEM 3 0,015
sults [11] compared to the modular neural network system pro- 2 STA 3 5350
posed in this study. The feature selection procedures tested were )
based on the interclass distance, or on more elaborate techniques 9 FPS 2 0.078
like forward and backward selection. Through these techniques Total - 55 1.466

some features, which were highly dependent with features in
other feature sets, were eliminated.

was assigned. So, the test pattern was considered to belong to the
IV. CLASSIFICATION majority of the rest of the patterns assigned in the3window

The classification was implemented using the neural netwofgighborhood. Patterns assigned on the neighboring nodes were
self-organizing feature map (SOFM) classifier [17], and th@Ven less weight, i.e., the_lr number was mult|plled with O..5
statistical KNN classifier [18]. The leave-one-out method w48 the four nodes perpendicular to the winning node and with
used for evaluating the classification yield, where at each tirfe3236 for the four nodes diagonally located. Because in this
a single pattern from the dataset was evaluated in relation to W@k the number of patterns per class was unequal, a bias was
remaining 365 patterns. The SOFM was chosen because it iCEfted in favor of the classes with a large number of members.
unsupervised learning algorithm where the input patterns afgorder to alleviate the above bias, the number of counted pat-
freely distributed over the output node matrix [17]. The weighf@ms onthe node fpr each class, was multiplied with a correction
are adapted without supervision in such a way, so that the gdagtor. The cprrectlon fggtor was computed as the total number
sity distribution of the input data is preserved and representfPatterns, (i.e., 366) divided by the number of members of each
on the output nodes. This mapping of similar input patter®&aSs- Thus, classes with a smaller number of members were
to output nodes, which are close to each other, represent@4n a greater weight in the classification process.
discretization of the input space, allowing a visualization of The above procedure was repeated for each one of the 366
the distribution of the input data. Unsupervised learning ©oud patterns, using as input vector the nine different feature
an advantage in case of overlapping classes (like ACAS wilts, i.e., nine different SOFM classifiers were trained and
CICS and ST with CLEAR), compared to supervised learnirgyaluated. Furthermore, modular neural networks [2], [19]
algorithms like the back propagation (BP) or the radial basigere used in order to improve the overall system'’s perfor-
function (RBF), which cannot easily converge and cannot lance. According to Haykin [2], a neural network is said to
trained efficiently, thus providing poorer classification resultdhie modular, if the computation performed by the network can
Fig. 3 illustrates the distribution of each class on ax1®2 be decomposed into modules or subsystems, which operate
SOFM using as input all the 55 features. The figure illustrates distinct inputs without communicating with each other. In
the high degree of overlap between some of the six differeiis paper, the modular neural network was implemented by
classes. combining the outputs of the nine different SOFM classifiers,

The SOFM was unsupervised trained for 5000 epochs wittained with the nine different texture feature sets, using the
the 366 cloud patterns, i.e., the pattern labels were not revedietbwing combining techniques: 1) majority voting and 2)
to the network during training. After the training, each pattenweighted averaging. In the majority voting, the input pattern
(whose label is actually known) was assigned to one of the 1vs assigned to the class of the majority of the nine classifi-
output nodes of a 1R 12 matrix, based on the similarity (Eu-cation results. In the weighted averaging case, the six class
clidean distance) of the pattern vector to the weight vectors pércentages of the number of patterns per class assigned in the
the trained SOFM. Similar patterns were assigned to the saBe 3 neighborhood of the winning output node, were summed
or neighboring output nodes performing a kind of clustering afp for the nine classifiers sets. The input pattern was assigned
the input patterns. The classification for each pattern was ito-the class with the greatest percentage value.
plemented based on the class labels of the other patterns in @he statistical KNN classifier was also implemented and used
window 3x 3 around the winning node where the test patteffior cloud classification. In the KNN algorithm, the nearest
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Fig. 3. Distribution of the six cloud classes on ax422 SOFM matrix using as input all 55 texture features. The figure illustrates the overlap among the different
classes.

neighbors of the test pattern were identified, based on their Hothe SOFM case, the classification results tabulated represent
clidean distance. The test pattern was assigned to the clasthefaverage of three different runs in order to obtain a more re-
majority of itsk neighbors. The classification was implementeliable estimate for the correct classification score. Best results
in a similar way to the SOFM classifier, using a correction factavere obtained with the KNN classifier, with an average yield for
and combining techniques. For the KNN classifier, best resuttee nine feature sets of 50.2% of cloud images correctly classi-
were obtained wittk = 3. fied for the six classes, whereas the SOFM classifier yielded
44.7%. The feature sets that gave the highest correct classifica-
tions score for the KNN classifier were the SGLDMs (mean)
with 60.7%, followed by the SFs with 57.9% and the NGTDMs
Table Il tabulates the classification results for the SOFM awdth 54.1%. For the SOFM, the feature sets with the highest
the KNN classifiers, for the nine texture feature sets and thewrrect classification score were also the SGLDMs (mean) with
average, as well as when the nine classification results w&&1%, followed by the NGTDMs with 52.6%, the SFs with
combined with majority voting and with weighted averagings2.2%, and the GLDS with 51.5%. The classification yield for

V. RESULTS
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TABLE 1l
CLASSIFICATION RESULTS OF THECLOUD CLASSIFICATION SYSTEM
Feature Set SOFM (%) KNN (%)
1 SF 522 57.9
2 SGLDM (mean) 57.1 60.7
3 SGLDM (range) 48.1 51.1
4 GLDS 51.5 53.0
5 NGTDM 52.6 54.1
6 SFM 42.8 52.2
7 TEM 41.7 51.9
8 FDTA 353 443
9 FPS 214 26.2
Average 44.7 50.2
Combine with 54.5 61.2
majority voting
Combine with 60.7 64.2
weighted averaging
TABLE I

CONFUSION MATRIX OF THE CLASSIFICATION RESULTS AMONG THE SIX
DIFFERENT CLASSES FOR THEKNN CLASSIFIER AND FOR THESGLDMs
(MEAN) FEATURE SET, WHICH GAVE THE BEST RESULTS

Cloud
Class

Classified as (%)
CICS

ACAS | CB cusc| Sr
ACAS | 46.2 9.6 269 | 135 00 | 3.8
CB 7.7 46.2 | 46.2 0.0 0.0 | 0.0
CICS | 260 | 205 | 452 8.2 0.0 0.0
cusc| 159 2.4 32 66.7 56 | 4.0
ST 2.9 0.0 0.0 59 824 | 8.8

Clear | 4.4 0.0 0.0 5.9 20.6 | 69.1

Clear

both systems was significantly improved when combined wit

VI. CONCLUSION

In this work, multifeature, multiclassifier analysis was used
for the classification of satellite cloud images received from an
operational geostationary meteorological satellite. The devel-
oped system was able to correctly classify cloud images with
a success rate of 64% for the six classes. The importance of
this work stems from the fact that the satellite cloud images
utilized were labeled after a respective ground observation, in
an effort to develop a system which will be able to classify
clouds based on their satellite images and which classification
will be in agreement with the ground observation. Such a system
will facilitate the automated objective interpretation of satel-
lite cloud images and can be used as an operational tool in
weather analysis. For the classification, combining techniques
with the neural SOFM classifier and the statistical KNN clas-
sifier were used, whereas the KNN performed better than the
SOFM with 64% compared to 61%. The texture feature sets
SGLDM, NGTDM, GLDS, and SF, which performed well for
cloud classification, also performed well in a similar study for
carotid plaques ultrasound images classification [11]. The clas-
sification success rate in this work was lower compared to the
success rate reported in other studies carried out using neural
networks and texture analysis for cloud classification [4], [9].
This can be attributed to the different datasets used and to the
labeling of the cloud regions using combined ground and satel-
lite observations. This seems to make the classification more
difficult since the weather observers report the cloud as seen
from below (i.e., from the earth’s surface), whereas the satel-
lite senses remotely the cloud from above (i.e., from space). In
conclusion, the results of the present work show that texture fea-
tures can be successfully used for cloud classification and that
a relatively good clustering of the different classes is provided.
Furthermore, combining techniques with multiple feature sets
and multiple classifiers can further improve the classification
yield of the system.
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