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Multifeature Texture Analysis for the Classification
of Clouds in Satellite Imagery
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Abstract—The aim of this work was to develop a system based
on multifeature texture analysis and modular neural networks
that will facilitate the automated interpretation of satellite cloud
images. Such a system will provide a standardized and efficient
way for classifying cloud types that can be used as an operational
tool in weather analysis. A series of 98 infrared satellite images
from the geostationary satellite METEOSAT7 were employed,
and 366 cloud segments were labeled into six cloud types after
combined agreed observations from ground and satellite. From
the segmented cloud images, nine different texture feature
sets (a total of 55 features) were extracted, using the following
algorithms: statistical features, spatial gray-level dependence
matrices, gray-level difference statistics, neighborhood gray tone
difference matrix, statistical feature matrix, Laws’ texture energy
measures, fractals, and Fourier power spectrum. The neural
network self-organizing feature map (SOFM) classifier and the
statistical K-nearest neighbor (KNN) classifier were used for the
classification of the cloud images. Furthermore, the classification
results of the nine different feature sets were combined, improving
the classification yield for the six classes, for the SOFM classifier
to 61% and for the KNN classifier to 64%.

Index Terms—Classification, clouds, K-nearest neighbor (KNN),
satellite images, self-organizing feature map (SOFM), texture.

I. INTRODUCTION

GEOSTATIONARY satellites have long been established
as excellent cloud-observing platforms for various

meteorological applications, primary of which is short-range
weather forecasting. Cloud patterns observed from such satel-
lites are interpreted from expert meteorologists and are used
in conjunction with several other weather forecasting tools in
their day-to-day practice [1]. Clouds are customarily classified
in three decks (etages): as low, medium, or high, depending,
among several other criteria, on the observed shape of the cloud
and the distance of the cloud base from the ground. This kind
of classification has been internationally agreed and used by
meteorological services worldwide. The cloud identification,
by using the combined ground and satellite observations, is
further complicated by the fact that the weather-observers
report the cloud as seen from below (i.e., from the earth’s
surface), whereas the satellite senses remotely the cloud from
above (i.e., from space). In order to avoid the confusion, which
may arise because of this discrepancy in the “observation”
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point of view, only areas on the satellite image with a single
deck of cloud were analyzed in the present research.

Because the interpretation of satellite images by individual
weather forecasters implies a high level of personal estima-
tion and subjectivity, artificial neural networks [2] and texture
analysis have been employed in previous work, in order to
establish an objective methodology for such an interpretation
[1], [3]–[6]. Welch et al. [3] used texture features like the
spatial gray-level dependence matrices (SGLDMs) by Haralick
[7] and gray-level difference statistics (GLDS) by Wenska [8]
on images from the LANDSAT orbiting satellite. Leeet al. [4]
used neural networks and the K-nearest neighbor (KNN) clas-
sifiers for the classification of clouds in three classes with an
overall cloud identification accuracy of 93%, whereas Bankert
[5], [6] used a probabilistic neural network (PNN) for the
classification of Advanced Very High Resolution Radiometer
(AVHRR) imagery. Neural networks use in image texture anal-
ysis and in cloud classification has also been shown in [9]
where the PNN and the self-organizing feature map (SOFM)
classifiers were examined with the singular value decompo-
sition (SVD), and wavelet packet (WP) transformations, and
the SGLDM and spectral features. They reported an overall
classification accuracy of 91% for the SVD features, after a
postprocessing scheme that utilized the contextual information
in the satellite images, where similar results were found for
the WP and SGLDM features.

The original aspects of this work are the following.
1) The cloud images were obtained by the geostationary

satellite METEOSAT7 at 36 000 km, whereas most of
the images used in previous work were recorded from
orbiting satellites with orbits about 180 km above the
earth [3]–[6]. The use of geostationary satellites is con-
sidered to be more consistent than that of orbiting satel-
lites. On the one hand, geostationary satellites observe
the same geographical area and from the same height, at
all times. On the other hand, images from geostationary
satellites are more frequent (every half hour) compared
to the much less frequent images from orbiting satellites.
Therefore, the development of an operational automated
technique for the identification of cloud could more easily
be adapted to imagery from geostationary satellites, es-
pecially in conjunction with appropriate image animation
software.

2) The labeling of the different cloud cases was carried
out by combined agreed observations from ground and
satellite.

3) A large number (55) of texture features was investigated
using the following algorithms: statistical features, spa-
tial gray-level dependence matrices, gray-level difference
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statistics, neighborhood gray tone difference matrix, sta-
tistical feature matrix, Laws’ texture energy measures,
fractals, and the Fourier power spectrum.

4) A modular architecture incorporating a combiner with
weighted averaging was developed, which improved
significantly the overall correct classifications score.
Moreover, the use of a correction factor is proposed
for handling classification problems with unequal class
distributions.

II. DATA

The satellite images used in the present study originate from
the thermal infrared channel onboard the Geostationary satellite
METEOSAT7. This thermal infrared channel operates within
the range of 10.5–12.5 . It detects infrared radiation from
the underlying earth’s surface and atmosphere within this range,
and it has a great advantage over visible radiation channels, as
it can be used equally well, day or night. Cold high clouds with
low infrared radiance appear white, whereas warmer low-level
clouds appear gray, while land and sea, with high infrared ra-
diance, will look relatively dark. The resolution of the infrared
radiometer at the subsatellite point amounts to 5 km. However,
due to the curvature of the earth this resolution decreases toward
the outer edges of the image. The satellite images consist of the
0000, 0600, 1200, and 1800 UTC images, corresponding to the
main synoptic observing times and which are performed on the
basis of internationally agreed standards. The satellite images
were contrasted to the actual observations reported at the earth’s
surface at the above times. These observations are plotted on
the respective synoptic maps and archived by the Meteorolog-
ical Office of Cyprus. Using this standardized information from
the human observers on the ground and the expertise of a me-
teorologist, cloud types were identified on the satellite images
and classified manually accordingly.

From a total number of 98 satellite images, 366 samples were
manually classified by the expert meteorologist into the fol-
lowing six cloud types:

• altocumulus-altostratus (ACAS);
• cumulonimbus (CB);
• cirrus-cirrostratus (CICS);
• cumulus-stratocumulus (CUSC);
• stratus (ST);
• clear conditions (CLEAR)

For the cloud type ACAS, 52 samples were collected, for CB
13, for CICS 73, for CUSC 126, for ST 34 and for CLEAR
68. Some of these cloud types like CUSC, ACAS and CICS
are group types representing cloud usually observed together.
It should be emphasized that the labeling of the different cases
was carried out after combined agreed observations from ground
and satellite. The cloud region of interest was manually outlined
and saved for feature extraction. The outline and identification
of the cloud was carried out very carefully by the expert meteo-
rologist, in order to include only one type of cloud and in order
to avoid including in the segmented image any land borderlines.
Fig. 1 shows an infrared satellite image from the geostationary
satellite METEOSAT7 and Fig. 2 illustrates examples of seg-
mented cloud images for the six classes.

Fig. 1. Infrared satellite image from the geostationary satellite METEOSAT7
(© 2003 EUMETSAT).

Fig. 2. Examples of segmented cloud images.

III. T EXTURE FEATURE EXTRACTION

In the feature extraction module multiple texture features
were extracted from the manually classified samples, in order
to be used for the classification. Texture contains important
information, which is used by humans for the interpretation
and the analysis of many types of images. Texture refers to the
spatial interrelationships and arrangement of the basic elements
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of an image [10]. Visually, these spatial interrelationships and
arrangements of the image pixels are seen as variations in the
intensity patterns or gray tones. Therefore, texture features
have to be derived from the gray tones of the image. Although
it is easy for humans to recognize texture, it is quite a difficult
task to be defined, and subsequently to be interpreted by digital
computers.

From the segmented satellite images used in this study, nine
different texture feature sets (a total of 55 features) were ex-
tracted. The used texture features briefly outlined below were
also used successfully in previous work for the classification of
ultrasound images of carotid plaques [11].

A. Statistical Features (SF)

The following statistical features were computed [12]:

1) mean value;
2) median value;
3) standard deviation;
4) skewness;
5) kurtosis.

B. Spatial Gray-Level Dependence Matrices (SGLDM)

The SGLDMs as proposed by Haralicket al. [7] are based
on the estimation of the second-order joint conditional proba-
bility density functions that two pixels and with
distance in direction specified by the anglehave intensities
of gray-level and gray-level . Based on the probability density
functions, the following texture measures [7] were computed:

1) angular second moment;
2) contrast;
3) correlation;
4) sum of squares: variance
5) inverse difference moment;
6) sum average;
7) sum variance;
8) sum entropy;
9) entropy;

10) difference variance;
11) difference entropy;
12) and 13) information measures of correlation.

For a chosen distance(in this work was used) and for
angles , 45 , 90 , and 135 we computed four values
for each of the above 13 texture measures. In this work, the
mean and the range of these four values were computed for each
feature, and they were used as two different feature sets.

C. Gray-Level Difference Statistics (GLDS)

The GLDS algorithm [8] uses first order statistics of local
property values based on absolute differences between pairs of
gray levels or of average gray levels in order to extract the fol-
lowing texture measures:

1) contrast;
2) angular second moment;
3) entropy;
4) mean.

The above features were calculated for pixel displacements
, where , and

their mean values were taken.

D. Neighborhood Gray Tone Difference Matrix (NGTDM)

Amadasun and King [10] proposed the neighborhood gray
tone difference matrix in order to extract textural features, which
correspond to visual properties of texture. The following fea-
tures were extracted, for a neighborhood size of 33:

1) coarseness;
2) contrast;
3) business;
4) complexity;
5) strength.

E. Statistical Feature Matrix (SFM)

The statistical feature matrix [13] measures the statistical
properties of pixel pairs at several distances within an image,
which are used for statistical analysis. Based on the SFM the
following texture features were computed:

1) coarseness;
2) contrast;
3) periodicity;
4) roughness.

The constants , which determine the maximum inter-
sample spacing distance were set in this work to .

F. Laws Texture Energy Measures (TEM)

For the Laws texture energy measures extraction [14], [15],
vectors of length , ,

, and
were used, where performs local averaging, acts as edge
detector, and acts as spot detector. If we multiply the column
vectors of length by row vectors of the same length, we
obtain Laws’ masks. In order to extract texture features
from an image, these masks are convolved with the image and
the statistics (e.g., energy) of the resulting image are used to
describe texture. The following texture features were extracted:

1) LL—texture energy from LL kernel;
2) EE—texture energy from EE kernel;
3) SS—texture energy from SS kernel;
4) LE—average texture energy from LE and EL kernels;
5) ES—average texture energy from ES and SE kernels;
6) LS—average texture energy from LS and SL kernels.

G. Fractal Dimension Texture Analysis (FDTA)

Mandelbrot [16] developed the fractional Brownian motion
model in order to describe the roughness of natural surfaces. The
Hurst coefficient [15] was computed for image resolutions

, 2, 3. A smooth surface is described by a large value of the
parameter whereas the reverse applies for a rough surface.

H. Fourier Power Spectrum (FPS)

The radial sum and the angular sum of the discrete Fourier
transform [8] were computed in order to describe texture.
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The algorithms were developed and executed in MATLAB
R12 by MathWorks. Table I tabulates the number of features
per set and indicative processing time needed to compute the
features for an image of 5359 pixels on a 1.5-GHz Pentium
4 personal computer with 512-MB RAM.

For each of the nine feature sets extracted, a classifier was
developed, followed by a combining module that combined the
outputs of the nine classifiers. This architecture formed the mul-
tifeature/multiclassifier modular neural network system [2] that
is described in Sections IV and V. Building a classifier based on
an optimal feature selection among the 55 texture features ex-
tracted was not investigated in this study because this approach
was followed by our group in a similar problem for the clas-
sification of medical ultrasound images of the carotid plaque
based on texture analysis, and it yield poorer classification re-
sults [11] compared to the modular neural network system pro-
posed in this study. The feature selection procedures tested were
based on the interclass distance, or on more elaborate techniques
like forward and backward selection. Through these techniques
some features, which were highly dependent with features in
other feature sets, were eliminated.

IV. CLASSIFICATION

The classification was implemented using the neural network
self-organizing feature map (SOFM) classifier [17], and the
statistical KNN classifier [18]. The leave-one-out method was
used for evaluating the classification yield, where at each time
a single pattern from the dataset was evaluated in relation to the
remaining 365 patterns. The SOFM was chosen because it is an
unsupervised learning algorithm where the input patterns are
freely distributed over the output node matrix [17]. The weights
are adapted without supervision in such a way, so that the den-
sity distribution of the input data is preserved and represented
on the output nodes. This mapping of similar input patterns
to output nodes, which are close to each other, represents a
discretization of the input space, allowing a visualization of
the distribution of the input data. Unsupervised learning is
an advantage in case of overlapping classes (like ACAS with
CICS and ST with CLEAR), compared to supervised learning
algorithms like the back propagation (BP) or the radial basis
function (RBF), which cannot easily converge and cannot be
trained efficiently, thus providing poorer classification results.
Fig. 3 illustrates the distribution of each class on a 1212
SOFM using as input all the 55 features. The figure illustrates
the high degree of overlap between some of the six different
classes.

The SOFM was unsupervised trained for 5000 epochs with
the 366 cloud patterns, i.e., the pattern labels were not revealed
to the network during training. After the training, each pattern
(whose label is actually known) was assigned to one of the 144
output nodes of a 12 12 matrix, based on the similarity (Eu-
clidean distance) of the pattern vector to the weight vectors of
the trained SOFM. Similar patterns were assigned to the same
or neighboring output nodes performing a kind of clustering of
the input patterns. The classification for each pattern was im-
plemented based on the class labels of the other patterns in a
window 3 3 around the winning node where the test pattern

TABLE I
NUMBER OF FEATURESPER SET AND INDICATIVE PROCESSINGTIME NEEDED

TO COMPUTE THEFEATURES FOR ANIMAGE OF 53� 59 PIXELS ON A 1.5-GHz
PENTIUM 4 PERSONAL COMPUTERWITH 512-MB RAM

was assigned. So, the test pattern was considered to belong to the
majority of the rest of the patterns assigned in the 33 window
neighborhood. Patterns assigned on the neighboring nodes were
given less weight, i.e., their number was multiplied with 0.5
for the four nodes perpendicular to the winning node and with
0.3536 for the four nodes diagonally located. Because in this
work the number of patterns per class was unequal, a bias was
created in favor of the classes with a large number of members.
In order to alleviate the above bias, the number of counted pat-
terns on the node for each class, was multiplied with a correction
factor. The correction factor was computed as the total number
of patterns, (i.e., 366) divided by the number of members of each
class. Thus, classes with a smaller number of members were
given a greater weight in the classification process.

The above procedure was repeated for each one of the 366
cloud patterns, using as input vector the nine different feature
sets, i.e., nine different SOFM classifiers were trained and
evaluated. Furthermore, modular neural networks [2], [19]
were used in order to improve the overall system’s perfor-
mance. According to Haykin [2], a neural network is said to
be modular, if the computation performed by the network can
be decomposed into modules or subsystems, which operate
on distinct inputs without communicating with each other. In
this paper, the modular neural network was implemented by
combining the outputs of the nine different SOFM classifiers,
trained with the nine different texture feature sets, using the
following combining techniques: 1) majority voting and 2)
weighted averaging. In the majority voting, the input pattern
was assigned to the class of the majority of the nine classifi-
cation results. In the weighted averaging case, the six class
percentages of the number of patterns per class assigned in the
3 3 neighborhood of the winning output node, were summed
up for the nine classifiers sets. The input pattern was assigned
to the class with the greatest percentage value.

The statistical KNN classifier was also implemented and used
for cloud classification. In the KNN algorithm, the nearest
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Fig. 3. Distribution of the six cloud classes on a 12� 12 SOFM matrix using as input all 55 texture features. The figure illustrates the overlap among the different
classes.

neighbors of the test pattern were identified, based on their Eu-
clidean distance. The test pattern was assigned to the class of
majority of its neighbors. The classification was implemented
in a similar way to the SOFM classifier, using a correction factor
and combining techniques. For the KNN classifier, best results
were obtained with .

V. RESULTS

Table II tabulates the classification results for the SOFM and
the KNN classifiers, for the nine texture feature sets and their
average, as well as when the nine classification results were
combined with majority voting and with weighted averaging.

In the SOFM case, the classification results tabulated represent
the average of three different runs in order to obtain a more re-
liable estimate for the correct classification score. Best results
were obtained with the KNN classifier, with an average yield for
the nine feature sets of 50.2% of cloud images correctly classi-
fied for the six classes, whereas the SOFM classifier yielded
44.7%. The feature sets that gave the highest correct classifica-
tions score for the KNN classifier were the SGLDMs (mean)
with 60.7%, followed by the SFs with 57.9% and the NGTDMs
with 54.1%. For the SOFM, the feature sets with the highest
correct classification score were also the SGLDMs (mean) with
57.1%, followed by the NGTDMs with 52.6%, the SFs with
52.2%, and the GLDS with 51.5%. The classification yield for
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TABLE II
CLASSIFICATION RESULTS OF THECLOUD CLASSIFICATION SYSTEM

TABLE III
CONFUSIONMATRIX OF THE CLASSIFICATION RESULTSAMONG THE SIX

DIFFERENTCLASSES, FOR THEKNN CLASSIFIER AND FOR THESGLDMs
(MEAN) FEATURE SET, WHICH GAVE THE BEST RESULTS

both systems was significantly improved when combined with
majority voting, and when combined with weighted averaging.
For the KNN system, the yield was also improved to 61.2% with
majority voting, and 64.2% with weighted averaging, whereas
for the SOFM system to 54.5% with majority voting, and 60.7%
with weighted averaging. The significant improvement of the
classification yield in the combined results can be attributed to
the relative large number of six classes. Due to that, misclassifi-
cations were distributed to a large number of classes and, hence,
when combined easily compensated. Table III tabulates a con-
fusion matrix of the classification results for the KNN classifier,
for the SGLDMs (mean) feature set that yielded the best results.
As seen from the table, the ACAS clouds were most often mis-
classified as CICS and vice versa, whereas the same occurred
with the ST and the CLEAR classes. These results are in agree-
ment with the pattern distribution displayed in Fig. 3, and with
the visual observation of the images as shown in Fig. 2.

VI. CONCLUSION

In this work, multifeature, multiclassifier analysis was used
for the classification of satellite cloud images received from an
operational geostationary meteorological satellite. The devel-
oped system was able to correctly classify cloud images with
a success rate of 64% for the six classes. The importance of
this work stems from the fact that the satellite cloud images
utilized were labeled after a respective ground observation, in
an effort to develop a system which will be able to classify
clouds based on their satellite images and which classification
will be in agreement with the ground observation. Such a system
will facilitate the automated objective interpretation of satel-
lite cloud images and can be used as an operational tool in
weather analysis. For the classification, combining techniques
with the neural SOFM classifier and the statistical KNN clas-
sifier were used, whereas the KNN performed better than the
SOFM with 64% compared to 61%. The texture feature sets
SGLDM, NGTDM, GLDS, and SF, which performed well for
cloud classification, also performed well in a similar study for
carotid plaques ultrasound images classification [11]. The clas-
sification success rate in this work was lower compared to the
success rate reported in other studies carried out using neural
networks and texture analysis for cloud classification [4], [9].
This can be attributed to the different datasets used and to the
labeling of the cloud regions using combined ground and satel-
lite observations. This seems to make the classification more
difficult since the weather observers report the cloud as seen
from below (i.e., from the earth’s surface), whereas the satel-
lite senses remotely the cloud from above (i.e., from space). In
conclusion, the results of the present work show that texture fea-
tures can be successfully used for cloud classification and that
a relatively good clustering of the different classes is provided.
Furthermore, combining techniques with multiple feature sets
and multiple classifiers can further improve the classification
yield of the system.
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