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Abstract: Fundus imaging is one of the crucial methods that help ophthalmologists for diagnosing
the various eye diseases in modern medicine. An accurate vessel segmentation method can be a
convenient tool to foresee and analyze fatal diseases, including hypertension or diabetes, which
damage the retinal vessel’s appearance. This work suggests an unsupervised approach for vessels
segmentation out of retinal images. The proposed method includes multiple steps. Firstly, from
the colored retinal image, green channel is extracted and preprocessed utilizing Contrast Limited
Histogram Equalization as well as Fuzzy Histogram Based Equalization for contrast enhancement. To
expel geometrical articles (macula, optic disk) and noise, top-hat morphological operations are used.
On the resulted enhanced image, matched filter and Gabor wavelet filter are applied, and the outputs
from both is added to extract vessels pixels. The resulting image with the now noticeable blood vessel
is binarized using human visual system (HVS). A final image of segmented blood vessel is obtained
by applying post-processing. The suggested method is assessed on two public datasets (DRIVE and
STARE) and showed comparable results with regard to sensitivity, specificity and accuracy. The
results we achieved with respect to sensitivity, specificity together with accuracy on DRIVE database
are 0.7271, 0.9798 and 0.9573, and on STARE database these are 0.7164, 0.9760, and 0.9560, respectively,
in less than 3.17 s on average per image.

Keywords: fundus images; vessel segmentation; matched filtering; Gabor wavelet; CLAHE; fuzzy
histogram; unsupervised

1. Introduction

Retinal vessel segmentation has a very vital character in the analysis, prognosis, and
diagnosis of cardiac and ophthalmic diseases. The inbuilt deep vessels of the eye can be
observed through the retina only. That is why the retinal blood vessels have essential
role in fundus image analysis. It is compulsory to diagnose sight-threatening diseases
like glaucoma, diabetic retinopathy, cataracts, hypertension, etc. at the early stage to help
patients get treated before the severity of the disease. Color fundus image inevitably lacks
contrast [1], thus making blood vessel segmentation more challenging task.

Although several state-of-the-art proposals have been presented achieving compara-
tively good sensitivity and accuracy but there is still room for improvement as many of
these are computationally inefficient. With the advent of high performance systems and
deep learning, many studies on retinal blood vessel segmentation achieve very high accu-
racy. Due to the availability of big data, the speed of the segmentation/detection systems
has become very important. Also apart from the advanced world, the practical deployment
of such diagnostic/prognostic systems requiring high computational power is out of reach
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for most of the world population. Therefore, along with the accuracy equally important
evaluation parameter should be speed of the designed algorithm or the computational
requirement of the system [2]. The main challenging task for vessel segmentation is the
low and varying contrast, non-uniform illumination and noise inherent in colored retinal
images. In the current paper, a novel and accurate approach for retinal vessel segmentation
is proposed by incorporating combination of different filters. The methodology is based on
preprocessing, vessel enhancing and binarization. Images are preprocessed using fuzzy
logic-based histogram equalization (FBHE) and Contrast Limited Histogram Equaliza-
tion (CLAHE). On the preprocessed images, vessels are enhanced using matched filter [3]
and Gabor wavelet filter [4]. While for binarization, human visual system (HVS) based
binarization as proposed in [5] is used. The proposed methodology is tested by utilizing
publicly available datasets of colored retinal images, namely DRIVE and STARE. The results
achieved with respect to the sensitivity, specificity and accuracy are 0.7271, 0.9798, 0.9573
and 0.7164, 0.9760, 0.9560 on DRIVE and STARE benchmark datasets, respectively.

In the remaining paper, Section 2 details the literature review of different methods.
Section 3 presents materials and methods. Section 4 gives the results while Section 5 gives
the conclusion of the paper.

2. Literature Review

Retinal vessel segmentation has wide range of applications and it is an active research
area. Therefore, there is an ample amount of research work going on. Different approaches
have been recommended which can be roughly subdivided into (a) multiscale, (b) matched
filtering, (c) mathematical morphology, (d) hierarchical, (e) model-based, and additionally
deep learning approaches [6]. Among these methods, matched filter (MF) and Gabor
wavelet techniques are one of the fast methods for the segmentation of blood vessels. MF
was first proposed by Chaudhuri [3] for segmenting blood vessel. In case of MF, it is
presumed that the blood vessel has a Gaussian-shaped profile. Until now, many variants
of MF have been proposed. Al-Rawi et al. optimized the MF using genetic algorithm [7].
MF along with ant colony based technique for segmenting retinal vessel was suggested
in the study of Cinsdikici et al. [8]. Zhang et al. [9] proposed MF with Gaussian’s first-
order derivative to retinal vessel extraction. Utilizing multiscale production for matched
filter responses was suggested by Quin et al. [10]. Oliveira et al. [11] suggested retinal
vessel segmentation approach utilizing combined filters where they combined responses of
different filters including MF, Gabor wavelet and Frangi’s filter. SK Saroj et al., suggested a
matched filter based on Fréchet PDF [12].

3. Materials and Methods

The suggested technique is applied on the two famous and most frequently used
public benchmark datasets, the DRIVE [13] and STARE [14] datasets which contain colored
images of retina.

Images from the DRIVE dataset were taken with the help of a Canon CR5 camera
in the Netherland with a forty five degrees Field of View (FOV). The DRIVE dataset
comprises of forty images (in which seven images contain pathology) and contains the
manual segmentation of vessels as well. The sizes of the images are 768 × 584, eight bit
per color channel whereas their FOV is 540 pixels in diameter approximately. The format
of these pictures is Joint Photographic Experts Group (JPEG). These forty images have
been subdivided into two sets, which are train and test set, where twenty images are
there in each. The training set has three images that contain pathology while the testing
set consists of four images containing pathology. The images in the DRIVE dataset are
segmented through two observers manually. The training images of the dataset have one
manual segmentation, while the testing images have two. The STARE dataset comprises
twenty digitized images, which were captured by a Top Con TRV-50 fundus camera with
thirty five degrees FOV. These images have a 605 × 700 pixels resolution. The FOV of the
images is almost equal to 650 × 550 pixels diameter. In twenty images, ten images contain
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pathologies. These images were manually segmented according to two observers. In this
regard, the first observer segmented the pixels of vessels in a percentage of 10.4 while the
second observer segmented the pixels of vessels in a percentage of 14.9.

The overall block diagram of our suggested work has been described in Figure 1. In
pre-processing, the morphological operators are required to eradicate the noise and to
expand and enhance the contrast of an image. The color retinal images usually consist
of non-uniform illumination problems, contrast variation and various types of structural
abnormalities. Because of these factors achieving better segmentation becomes a very
challenging task. These issues can be tackled by applying a proper preprocessing step.
After pre-processing, we applied MF and Gabor wavelet filters for blood vessels segmenta-
tion. HVS is used to binarize the resultant image which is then post-processed to get the
final image.
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3.1. Preprocessing

In the preprocessing stage of the proposed method, two techniques are applied in
parallel for improvement of the image contrast. The first is “fuzzy logic-based histogram
equalization (FBHE)” [15] and second is “contrast limited adaptive histogram equalization
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(CLAHE)”. To apply FBHE, the RGB image is converted to the color space of HSV. In which
V component is extended and stretched through conserving the chromatic information
like Hue (H) as well as Saturation (S). Such approach is implied exclusively for improving
the low contrast along with low bright regions in the color images. Here in, stretching of
the component ‘V’ is implemented considering the effect of the enhancement parameters
average intensity value ‘M’, where ‘K’ is the degree to which ‘V’ is intensified. This
stretching will exactly transform the value ‘x’ for current intensity into the improved
intensity value ‘Xe’. The parameter ‘M’ splits the intensities into two classes. For the first
class, the Xec1 can be computed as given in Equation (1).

Xec1 = X + µD1(x)K (1)

For the second class, the Xec2 can be computed as given in Equation (2).

Xec2 = (XµD2(x)) + (E− µD2(x)K)) (2)

here,

µD1 =
1− (M− X)

M
(3)

µD2 =
E− X
E−M

(4)

where ‘E’ is the maximum possible value of intensity, and µD1 and µD2 are fuzzy member-
ship values of class one and class two respectively. Details can be found at [15]. The image
after enhancing using FBHE is shown in the middle of the second row, Figure 1.

In the second step of preprocessing, we have applied CLAHE [16] to expand the
contrast of green channel from color fundus images. In green channel, red objects such
blood vessels are well-contrasted. In CLAHE, the images are subdivided into contextual
regions along with histograms on each of which contextual region are computed locally. On
elevated peaks of the histogram, clipping is done as it shows noise. After that, histogram
specification is applied on contextual regions. The CLAHE enhanced image is obtained and
then bilinear interpolation is utilized to combine the individually enhanced histograms. The
level of clipping determines the noise level considered to be smoothened and the contrast
level intended to be increased in the histogram. The resulting image after applying CLAHE
is shown in the first row last column of Figure 1. Images obtained after applying FBHE and
CLAHE are added and scaled by a factor of 0.5, the resulting image is shown in the last
column second row of Figure 1. It can be noticed that vessels are well-contrasted now.

3.2. Morphological Filter

Morphological filters are very effective in removing low-frequency noise and geomet-
rical objects. In mathematical morphology, image is considered as a set, and the desired
objects can be extracted by probing the image with another set of a known shape. This
probing shape is known as the structuring element. Herein, the morphological filters can
be applied on binary image as well as on grayscale image. The structuring element can
have different shapes and sizes depending on the objects to be extracted. The various
morphological operators include dilate, erode, open and close. They are used to perform
different functions such as to remove image region boundary pixels. We used the top-hat
morphological filter with a disc shape element on grayscale image to remove objects such
ROI boundary. For a grayscale image I, it is defined as:

Top hat transform = I − (IoB) (5)

where, IoB represents the image (I) opening with structuring element B. The selection of
B is based on the shapes of the objects to be detected, in our case, these are round objects.
The opening operation removes all the objects of interest from the image. Subtracting an
opened image from the original image (top-hat transform) will result into removing all
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other objects and retains only the objects of interest. In this way using top-hat transform,
we can keep all the objects of interest based on their shape or morphology.

The top-hat morphological filter used in this proposed work has a disc-shape element
so that circular region boundaries such as the region of interest (ROI) boundary and the
optic disc boundary can be removed. Details can be found in [17]. The image obtained after
the application of the morphological filter is shown in the third row, right most column of
Figure 1.

3.3. Matched Filter

Chaudhuri et al. [3] for the first time used match filter (MF) for detecting blood vessels.
The cross-section of the blood vessel resembles Gaussian function. It produces a high
response to the vessels and a low response for the background of nearly constant intensity.
Mathematically, it is possible to express MF as

f(x,y) = −exp(−xˆ2/(2σˆ2)); ∀|y| ≤ L/2 (6)

In Equation (6), L denotes the length of the section for which a fixed orientation is
assumed for the vessel. And ‘σ’ refers to the width of vessel to be detected. Response
produced by the MF will be high when kernel and vessels are in the same direction.
Otherwise, for non-vessel, a relatively low response value is shown. In a non-ideal setting,
the above technique reduces the probability of false detection of blood vessels. Blood vessels
are located in different orientations in retinal fundus images. Therefore, to detect blood
vessels in different orientations, the f(x,y) kernel should be rotated in different directions. It
is rotated in 12 (at 15◦) directions in the proposed method since the vessels can be oriented
in any direction. The parameter values used in the proposed research are σ = 2 and L = 4.

3.4. Gabor Wavelet

A Gabor wavelet, Gabor kernel, Gabor filter or Gabor function represents the product
for elliptical Gaussian envelope as well as a complex plane wave. Gabor [18] found that
Gaussian-modulated complex exponentials realize the best trade-off among time and
frequency resolutions, similar to Heisenberg’s uncertainty principle in physics. For 2D
signals, mathematically it can be defined by:

ψk(x) =

∣∣∣∣∣∣k∣∣∣∣∣∣
σ2 e

||k||2 ||x||2
2σ2

[
ejk x − e

σ2
2

]
(7)

where, k being the frequency vector defines the scale and direction of Gabor functions.
k = kvejφO and kv = π

2 f v . v is the scale of the wavelet, and f is the spacing factor between

kernels in frequency space. φO = πO
8 , O = 0, 1, 2, 3 . . . ,. While x = (x, y) is the spatial

domain variable. Thus, using 2D Gabor functions, we can enhance vessels and remove
noise as they are directional and have the ability of tuning to specific frequencies [2]. In
the proposed research work, we use single scale (v = 2) of Gabor functions as we are
also using a matched filter in parallel to the Gabor filter. We are using ten orientations,
i.e., O = 0, 1, 2, 3, ..9, while f = 20.5 and σ = π/3. Hence, ten Gabor wavelet kernels are
produced, and the image is filtered using these kernels which results in 10 images. In each
image thus obtained, square absolute values are calculated for each pixel and the resulting
images are added to obtain a single image denoted by Isum. Similarly, the real parts of
those 10 images are also added together to obtain another image called IsumR. Finally the
Gabor-filtered image (GabI(x, y)) is obtained by adding Isum with IsumR. The whole process
is mathematically described according to the subsequent equation.

GabI(x, y) = (
9

∑
O=0
|I(x, y) ∗ ψ2,O(x, y) |2) 1/2 + (

9

∑
O=0

real (I(x, y) ∗ ψ2,O(x, y))) (8)
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3.5. Human Visual System Based Binarization

To binarize the enhanced image, shown in Figure 1, last row middle image, the OFF-
center surround method is used. This method is inspired from human visual system
(HVS) [19,20] and was originally tested for document binarization and produced better
results for constraints like shadows, varying illumination, noise, smear, along with strain
degradations in the image. The ability to percept brightness from darkness in HVS is
promoted based on two distinct cell populations for antagonistic responses, which are ON
and OFF [19,20] center ganglion cells. Stimulations of the OFF cells is done based upon
light decrements (by using dark stimuli across bright background) as is the case of blood
vessel segmentation. The OFF center surround cells have two different sizes in order to
respond to small and large stimuli. At least, the surround size has to be wide like the width
of the thickest vessel in our case. First, the image is preprocessed pixel by pixel as described
by the following equation so as to make the pixel value 0–255:

O′ i,j =
Oi,j −Omin

Omax −Omin
× 255 (9)

where Omin represents the minimum for the original image O, Omax indicates its maximum,
in addition to O′ i,j that denotes the preprocessed pixel.

SurroundK
i j =

1

(2SK + 1)2

i+sK

∑
y=1 SK

j+SK

∑
x=j SK

O′ i,j (10)

CenterK
i j =

1

(2CK + 1)2

i+CK

∑
y=1 CK

j+CK

∑
x=j CK

O′y,x (11)

K = {S, L}S : L : large
SK > CK∀ K, SS < SL (12)

Surroundi,j =
WSs·SurroundS

i,j + WSL·SurroundL
i,j

WCS + WCL (13)

Centeri,j =
WCs·CenterS

i,j + WCL·CenterL
i,j

WCS + WCL (14)

SCi,j = Surroundi,j − Centeri,j (15)

Gi,j =

 (255+Surroundi,j)·SCi,j
Surroundi,j+CSi,j

∀SCi,j > 0

0 ∀SCi,j ≤ 0
(16)

SurroundK
i j and CenterK

i j are defined as the mean intensity of image O′ at (i, j) position
for the square areas, respectively from both surround and center, based on scale of K. K
refers the scale for center-surround cell and SK and CK the sizes for both surround and
center in K scale, respectively. Here, WSs, WSL represent the weights for the surround
values, WCs, WCL, represent the weights for the center values. Further details can be found
at [5]. After binarization, the image is postprocessed which consists of merging three pixels
apart objects and length filtering to remove objects which are 100 pixels or less.

4. Results and Discussion

The performance given by the suggested system is assessed with regard to 1) sensitivity
(Sen), 2) specificity (Spe) and 3) accuracy (Acc). These terms are mathematically defined
in Equations (17)–(19), based on True-Positives (TP), True-Negatives (TN), False-Positives
(FP), and False-Negatives (FP) are described in Table 1.

Sen = TP/(TP + FN) (17)
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Spe = 1 − TN/(TN + FP) (18)

Acc = (TP + TN)/(TP + TN + FP + FN) (19)

Table 1. Definitions of TP, TN, FP, and FN.

TP a pixel decided by the proposed system as vessel pixel, and it represents also vessel pixel according to ground truth

TN a pixel decided by the proposed system as nonvessel pixel, and it is also non vessel pixel according to ground truth

FP a pixel decided by the proposed system as vessel pixel, but it is non vessel pixel according to ground truth

FN a pixel decided by the proposed system as non vessel pixel, but it represents vessel pixel according to ground truth

The unoptimized parameter values of HVS are given in Table 2.

Table 2. Unoptimized values of HVS params.

Scale k Surround Size, Sk Center Size, Ck WSK WCK

k = S, short 7 0 33 25

k = L, large 9 3 90 75

The strength and weaknesses of proposed algorithm is found using images of the
both above mentioned datasets. For the DRIVE dataset, separate images for training and
testing are provided which are a set of 20 images each while in the case of the STARE
dataset only 20 images are there. So there is no subdivision of dataset between train and
test. Hence, similar to [21], we have used the first five images to estimate parameters of the
proposed algorithm. In testing, all the 20 images from STARE dataset are used as described
in Table 3. The image-by-image results of the proposed algorithm are presented in Table 3,
where the first three columns are for the DRIVE dataset and the last three columns are for
the STARE dataset. On DRIVE dataset, the mean values for sensitivity (Sen), specificity
(Spe) and accuracy (Acc) are 0.7272, 0.9798, and 0.9573 respectively. The maximum values
obtained were 0.8303, 0.9874, and 0.9624 for Sen, Sep, and Acc, respectively. Similarly, For
the STARE dataset, the mean values obtained were 0.7164, 0.9760, and 0.9560 for Sen, Spe,
and Acc, respectively. The maximum values obtained were 0.8483, 0.9888, and 0.9751 for
Sen, Spe, and Acc, respectively. Shown in Figure 2 are the best-case accuracies obtained on
the DRIVE (first row) and STARE benchmark datasets (second row). The third column in
Figure 2 illustrates the segmented images using the proposed algorithm. White pixels are
the true vessel pixels, while the red are false positives and green represent missed vessel
pixels. It can be noticed that the proposed method is good at segmenting the thick vessel
very accurately, having very few false positives along the thick vessel edges. Figure 3,
describes the worst-case accuracies obtained on DRIVE (first row) and STARE benchmark
(second row) datasets. By observing Figure 3, it can be noted that the suggested technique
has missed many fine vessel pixels. The thick vessels are still detected more precisely and
clearly with very few false positives detected along their edges. In addition, there are
negligible numbers of false positive pixels due to the region of interest (ROI) boundary and
optic disc region, as can be observed both in the best-case and the worst-case accuracies,
shown in Figures 2 and 3, respectively. By careful observation of Figures 2 and 3, it can be
noticed that the suggested method is not able to segment many fine blood vessels. Also
in case of fine vessels, there are false positives near their edges. Thus limitation of the
suggested approach is the accurate detection for the fine vessel. A comparison of our
algorithm with the current state-of-the-art approaches is presented in Table 4 with respect
to of Acc, Sen, and Spe on DRIVE and STARE benchmark datasets.
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Table 3. Results of suggested technique.

DRIVE STARE

Image No. Sen Spe Acc Sen Spe Acc

1. 0.7797 0.9755 0.9579 0.5861 0.9715 0.9405

2. 0.7564 0.9825 0.9592 0.5115 0.9737 0.9427

3. 0.6944 0.9825 0.9536 0.7331 0.9617 0.9479

4. 0.6894 0.9874 0.9598 0.6490 0.9814 0.9566

5. 0.6795 0.9872 0.9581 0.6882 0.9826 0.9558

6. 0.6594 0.9865 0.9545 0.8365 0.9714 0.9620

7. 0.6976 0.9857 0.9592 0.8078 0.9681 0.9552

8. 0.7068 0.9759 0.9525 0.7920 0.9716 0.9582

9. 0.6949 0.9834 0.9599 0.8085 0.9707 0.9579

10. 0.7308 0.9816 0.9608 0.7373 0.9774 0.9579

11. 0.6877 0.9825 0.9559 0.7728 0.9767 0.9621

12. 0.7718 0.9737 0.9561 0.8483 0.9749 0.9650

13. 0.7028 0.9789 0.9517 0.7370 0.9752 0.9539

14. 0.7958 0.9728 0.9584 0.6646 0.9798 0.9511

15. 0.7506 0.9775 0.9612 0.6784 0.9803 0.9541

16. 0.7358 0.9781 0.9560 0.6051 0.9831 0.9442

17. 0.6797 0.9798 0.9542 0.7540 0.9828 0.9622

18. 0.7443 0.9756 0.9571 0.7206 0.9888 0.9751

19. 0.8303 0.9745 0.9624 0.7663 0.9775 0.9684

20. 0.7543 0.9735 0.9573 0.6305 0.9716 0.9486

Mean 0.7271 0.9798 0.9573 0.7164 0.9760 0.9560
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Figure 2. Best case accuracy: First column represents color images, second ground truth and third
segmented images. First row contains DRIVE images, and STARE images are there in the second row.
Last column: white indicate the pixels of true positives; while the green pixels denote the missed
vessel pixels, whereas red are false positives.
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Figure 3. Worst case accuracy: First column indicate color images, second ground truth and third
segmented images. First row contains DRIVE images and STARE images are there in the second row.
Last column, white indicate the pixels of true positives; while green pixels denote the missed vessel
pixels, whereas red refer false positives.

Table 4. Performance comparison of proposed method with other state-of-the-art methods.

Dataset DRIVE STARE

Method/First Author Year Acc Sen Spe Acc Sen Spe

Supervised

Thangaraj [22] 2018 0.9606 0.8014 0.9753 0.9435 0.8339 0.9536

Zhang [23] 2019 0.9544 0.8175 0.9767 0.9656 0.8068 0.9838

Tang [24] 2020 0.9477 0.7338 0.9730 0.9498 0.7518 0.9734

Adapa [25] 2020 0.9450 0.6994 0.9811 0.9486 0.6298 0.9839

Sayed [26] 2021 0.958 0.786 0.973 0.953 0.831 0.9630

Deep Learning

Yan [27] 2018 0.9542 0.7653 0.9818 0.9612 0.7581 0.9846

Soomro [28] 2018 0.9480 0.739 0.956 0.947 0.748 0.9620

Jiang [29] 2018 0.9624 0.7540 0.9825 0.9734 0.8352 0.9846

Alom [30] 2018 0.9556 0.7792 0.9813 0.9712 0.8298 0.9862

Khan [31] 2020 0.9649 0.8252 0.9787 - - -

Wu [32] 2020 0.9582 0.7996 0.9813 0.9672 0.7963 0.9863

Sathananthavathi [33] 2021 0.9577 0.7918 0.9708 0.9445 0.8021 0.9561

Unsupervised

Biswal [34] 2018 0.9500 0.7100 0.9700 0.9500 0.7000 0.9700

Pal [35] 2019 0.9431 0.6129 0.9744 - - -



Appl. Sci. 2022, 12, 6393 10 of 13

Table 4. Cont.

Dataset DRIVE STARE

Method/First Author Year Acc Sen Spe Acc Sen Spe

Sundaram [36] 2019 0.9300 0.6900 0.9400 - - -

Khawaja [37] 2019 0.9553 0.8043 0.9730 0.9545 0.8011 0.9694

Upadhyay [38] 2020 0.9560 0.7890 0.9720 0.9610 0.7360 0.9810

Palanivel [39] 2020 0.9480 0.7375 0.9788 0.9542 0.7484 0.9780

Pachade [40] 2020 0.9552 0.7738 0.9721 0.9543 0.7769 0.9688

Tian [41] 2021 0.9554 0.6942 0.9802 0.9492 0.7019 0.9771

Mardani [42] 2021 0.9519 0.7667 0.9692 0.9524 0.7969 0.9664

Proposed Method 2022 0.9573 0.7271 0.9798 0.9560 0.7164 0.9760

In Table 4, it can be observed that the suggested technique has demonstrated a similar
performance as state-of-the-art approaches including supervised or unsupervised algo-
rithms with respect to accuracy. Furthermore, as expected, most of the deep learning-based
approaches performed better than the proposed method. In the unsupervised category
on the DRIVE dataset, the proposed algorithm realizes an accuracy of 0.9573, which is
the best amongst all the methods described under the unsupervised category in Table 4.
Similarly, we achieved an accuracy of 0.9560 on the STARE dataset, which is the second
highest (the highest being the method of Upadhyay et al. [38]). Additionally, among the
unsupervised category, the proposed system achieves the second highest specificity after
Tian et al.’s method [41]. However, with the sensitivity of 0.7 or more the proposed system
has the highest specificity among all the methods described under supervised and unsuper-
vised categories on the DRIVE dataset, as shown in Table 4. To summarize, deep learning
methods have performed much better with regard to Sen, Spe and Acc as compared to
conventional methods both supervised and unsupervised. The deep learning method given
in [29] reports the best results for both the DRIVE and STARE datasets. These are 0.9624,
0.7540 and 0.9825 for DRIVE and 0.973, 0.8352 and 0.9846 for STARE respectively, for Acc,
Sen and Spe. However, these high values are obtained at a cost of the high computational
requirement by a deep learning algorithm. Similarly, in conventional methods (other
than deep learning), supervised approaches realize better performance than unsupervised
approaches. For example, the best results in terms of Acc, Sen and Spe, reported in [22],
are 0.9606, 0.8014 and 0.9753, respectively, on the DRIVE dataset. While, on the STARE
dataset, 0.9656, 0.8068 and 0.9838 are obtained for Acc, Sen and Spe, respectively, reported
in [23]. On the other side, supervised methods require intense training which necessitates
computational resources and time. Table 5 presents the execution time comparison. It is
not possible to exactly judge the performance of the systems based on execution time as
the systems have different hardware specification and software used. But it gives some
clue about the execution time requirements. It is vivid from the Table 5 that the proposed
system is comparatively better than many of the entries in the table based on execution
time and accuracy.

The diseases such as hypertension and diabetes can be diagnosed at early stage,
through the identification of variations in the retinal blood vessels. The accurate segmen-
tation of blood vessels helps to provide such information to ophthalmologists for better
disease characterization [43]. Our method has shown promising results for large to medium
size blood vessel segmentation similar to state-of-the-art methods.
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Table 5. Execution time comparison.

DRIV STARE

Method System Specs Acc T in sec Acc T in sec

Thangaraj [22] 360 GHz Intel Core i7
20 GB RAM 0.9606 156 0.9435 203

Adapa [25] 2 * Intel Xeon E2620 v4, 64 GB RAM, Nvidia
Tesla K40 GPU 0.9450 9 0.9486 9

Alom [30] GPU machine besides 56 G of RAM and an
NIVIDIA GEFORCE GTX-980 Ti. 0.9556 2.84 0.9712 6.42

Sathananthavathi [33] Intel Core i5, 32 GB RAM 0.9577 10 0.9445 10

Biswal [34] Intel core i3, 1.7 GHZ, 4 GBRAM 0.9500 3.3 0.9500 3.3

Khawaja [37] Core i7, 2.21 GHz, 16 GB RAM 0.9553 5 0.9545 5

Palanivel [39] 2.9 GHz, 64 GB RAM 0.9480 60 0.9542 60

Pachade [40] Intel Xenon, 2.00 GHz,16 GB RAM 0.9552 3.47 0.9543 6.10

Proposed Method Intel(R) Xeon(R) 3.50GHz, 32 GB RAM. 0.9573 3.17 0.9560 3.17

5. Conclusions

Analysis of fundus images is vital in diagnosing various diseases whose symptoms
appear in the retina of patients. One of the symptoms is the thickening of retinal blood
vessels which can be studied through medical image analysis techniques like one proposed
in this paper. In this work, we have suggested an unsupervised blood vessel segmentation
method using color fundus images. Color fundus images normally suffer from varying
and low contrast. To overcome this problem, we pre-processed the color fundus images
using CLAHE and FBHE. Furthermore, we enhanced elongated objects using the tophat
transform and extract the candidate blood vessel pixels using matched filtering and Gabor
wavelet and finally obtained the blood vessel using the human visual system. The proposed
system is assessed using two public benchmark datasets named DRIVE and STARE. The
obtained mean values Sen, Spe and Acc are 0.7271, 0.9798, 0.9573 and 0.7164, 0.9760, 0.9560,
respectively, for the DRIVE and STARE datasets. These measures are similar to current
state-of-the-art methods albeit at a smaller computational requirement of 3.17 s.
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