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Abstract

Traditional stereo matching algorithms are limited in their ability to produce accurate results near

depth discontinuities, due to partial occlusions and violation of smoothness constraints. In this paper, we

use small baseline multi-flash illumination to produce a rich set of feature maps that enable acquisition of

discontinuity preserving point correspondences. First, from a single multi-flash camera, we formulate a

qualitative depth map using a gradient domain method that encodes object relative distances. Then,

in a multiview setup, we exploit shadows created by light sources to compute an occlusion map.

Finally, we demonstrate the usefulness of these feature maps by incorporating them into two different

dense stereo correspondence algorithms, the first based on local search and the second based on belief

propagation. Experimental results show that our enhanced stereo algorithms are able to extract high

quality, discontinuity preserving correspondence maps from scenes that are extremely challenging for

conventional stereo methods. We also demonstrate that small baseline illumination can be useful to

handle specular reflections in stereo imagery. Different from most existing active illumination techniques,

our method is simple, inexpensive, compact, and requires no calibration of light sources.

Index Terms

stereo matching, multi-flash imaging, depth discontinuities

I. INTRODUCTION

Stereo vision algorithms have been investigated for many years in computer vision in order

to infer 3D structure from images captured with different viewpoints. The most challenging

problem in stereo reconstruction is the establishment of visual correspondence among images.

This is a fundamental operation that is the starting point of most geometric algorithms for 3D

shape reconstruction and motion estimation.

Intuitively, a complete solution to the correspondence problem would produce: (1) a mapping

between pixels in different images where there is a correspondence, and (2) labels for scene

points that are not visible from all views – where there is no correspondence.
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In the past two decades, intense interest in the correspondence problem has produced many

excellent algorithms for solving the first part of the problem. With a few exceptions, most

algorithms for dense correspondence do not address occlusions explicitly [1]. The occlusion

problem is difficult partly because distinguishing sharp discontinuities in depth (also known

as depth edges or occluding contours) from edges caused by reflectance changes remains a

fundamental unsolved vision problem [2].

A promising method for addressing the occlusion problem is to use active illumination.

In fact, many techniques that make use of lighting changes have been proposed to solve the

correspondence problem in stereo reconstruction [3], [4], [5]. In general these techniques offer a

tradeoff between accuracy and cost of the equipment, as well as other issues such as compactness,

light source calibration, and number of images to be acquired. Other active shape reconstruction

approaches such as photometric stereo [6] and shape from shadows [7] avoid the correspondence

problem by using multiple images of the scene captured with variable illumination, but fixed

viewpoint. A common limitation of these methods is that the light sources must surround the

object in order to create sufficient shading and shadow variation from (estimated or known) 3D

light positions. This requires a fixed lighting rig, which limits the application of these techniques

to laboratory and industrial settings; such a setup is impractical to build into a self-contained

camera.

Recently, we have demonstrated a reliable method for detecting depth edges in real world

scenes [8]. Our approach is based on a simple and inexpensive modification of the capture setup:

a multi-flash camera is used with flashes strategically positioned to cast shadows along depth

discontinuities. We have shown the effectiveness of multi-flash imaging in different vision and

graphics applications, including non-photorealistic rendering [8], medical imaging [9], specular

reflection reduction [10], and visual recognition [11].

In this paper, we propose a stereo framework based on small baseline active illumination,

which allows accurate correspondence maps on scenes with high depth complexity and specular

reflections. In particular, we show how multi-flash illumination can be used to produce a rich
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set of feature maps that are useful in dense 3D reconstruction. Our feature maps are based on

important cues, including: (1) depth edges, (2) the sign of the depth edge (which tells the side

of the occluding object), and (3) information about object relative distances.

Starting with these cues, we derive a qualitative depth map from a single multi-flash camera.

In a multiview setup, we show how binocular half-occluded pixels can be explicitly and reliably

labeled, along with depth edges. We demonstrate how the feature maps can be used effectively by

incorporating them into two different dense stereo correspondence algorithms, the first based on

local search and the second based on belief propagation. Compared to passive stereo techniques,

our method offers significant improvements in accuracy, especially in regions near depth discon-

tinuities. Our feature maps could be used to complement existing active lighting approaches and

our method offers the advantages of being simple, inexpensive, and compact, while requiring no

calibration of light sources.

The remainder of this paper is organized as follows: Section II reviews related work and the

basic technique to detect depth edges with multi-flash illumination. Then, a brief overview about

the implementation setups used in our work is given in Section III. In Section IV, we formulate

a qualitative depth map, followed by the computation of an occlusion map in Section V. The

usefulness of these feature maps are demonstrated in local and global stereo algorithms in Section

VI. Finally, Section VII discusses pros and cons of our approach and provides comparison with

existing techniques.

II. RELATED WORK

Although significant progress has been made in dense two-frame stereo matching (see [1]

for a comprehensive survey), producing accurate results near depth discontinuities remains a

challenge. In general, dense stereo techniques can be classified as local or global, depending

whether they rely on local window-based computations or the minimization of a global energy

function. In local-based methods, the disparity computation at a given point depends only on

intensity values within a finite window. Clearly, these techniques assume that all pixels within

the window have the same disparity and thus are sensitive near object boundaries. Attempts to
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alleviate this problem include the use of adaptive windows [12] and shiftable windows [13].

Occlusion has been modeled explicitly through global optimization approaches based on

dynamic programming [14], [15], [16]. Stereo matching is formulated as finding a minimum cost

path in the matrix of all pairwise matching costs between two corresponding scanlines. These

techniques, however, often show a streaking effect (as scanlines are matched independently)

and assume ordering constraints, which may be violated with thin objects in the scene. More

recently, global stereo approaches based on Markov Random Fields have received great attention

[17], [1]. These methods minimize an energy function (e.g., using belief propagation [18] or

graph cuts [19]) that includes a data term and a smoothness term. Although discontinuities and

occlusion can be explicitly modeled [19], [20], intensity edges and junctions are generaly used

as cues for depth discontinuities. Ideally, smoothness constraints should be supressed only at

occluding edges, not at texture or illumination edges.

The correspondence problem can be significantly simplified by using active illumination

methods based on structured light [21], [22]. A structured light system is based on the projection

of a single pattern or a set of patterns onto the scene which is then viewed by a single camera or

a set of cameras. Time-multiplexing or temporal coding [23], [24] is the most common pattern

projection technique. The basic idea is to project a set of different patterns successively onto the

scene, so that each point viewed by a camera has a specific codeword (formed by the sequence

of illumination values accross the projected patterns). These methods allow accurate computation

of correspondence maps, but are limited to handle dynamic scenes. This issue is addressed by

techniques that project a single pattern with pixel coding based on a spatial neigborhood [3].

However, depth discontinuities pose a problem as local smoothness of the measuring surface is

assumed in order to correctly decode the pixel neighborhood. Other techniques based on colored

patterns [25], and space-time stereo [26], [4] have also been proposed. Overall, compared to

passive stereo techniques, structured light methods offer high quality correspondence maps and

3D acquisition, but are in general much more expensive and limited to indoor scenes.

Photometric stereo [27] is a simple, inexpensive active lighting approach that acquires 3D
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information without relying on the correspondence problem. Multiple images of the scene are

captured under different illumination conditions (but fixed viewpoint) and used to estimate a field

of surface normals, which is then integrated to produce a surface. Photometric stereo methods

are suitable for reconstructing the shape of objects with uniform albedo, thus complementing

conventional stereo, which is best for textured surfaces with varying reflectance. They work well

for smooth surfaces, but are unstable near depth discontinuities or rapid surface normal changes.

In general, most techniques assume Lambertian surface reflectance, but recent research deals

with spatially varying bidirectional reflectance distribution functions (BRDF) [6].

Helmholtz stereo [5] is a technique that combines active lighting with viewpoint variation

to estimate both surface normals and depth with arbitrary surface reflectance. The idea behind

Helmholtz Stereopsis is to exploit the symmetry of surface reflectance, commonly referred to

as Helmholtz reciprocity. The image acquisition proceeds in two simple steps: first, an image

is acquired with the object/scene illuminated by a single point light source. Then, the positions

of the camera and light source are swapped, and the second image is acquired. By acquiring

the images in this manner, they ensure that for all corresponding points in the images, the ratio

of the outgoing radiance to the incident irradiance is the same. This is, in general, not true for

stereo pairs - unless the surfaces have Lambertian reflectance.

Techniques for shape from shadows (or darkness) [7] build a continuous representation (shad-

owgram) from a moving light source from which continuous depth estimates are possible.

However, it involves a difficult problem of estimating continuous heights and requires accurate

detection of start and end of shadows. Shadow carving was proposed by Savarese et al. [28] as

a technique to refine shape estimation using shadow consistency checks. Bouguet and Perona

[29] proposed a simple and inexpensive system where the user moves a pencil in front of a light

source to cast moving shadows on the object. The 3D shape of the object is extracted from the

spatial and temporal location of the observed shadow. In general these approaches do not allow

compact setups, due to the assumption of light sources surrounding the object. Good reviews of

shadow-based shape analysis methods are available in [30], [31].
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Fig. 1. (a) Multi-flash camera (b) Image taken with left flash. (c) Correspondent ratio image and traversal direction. (d)

Computed depth edges. Note that we can obtain the sign of each depth edge pixel, indicating which side of the edge is the

foreground.

A. Depth Edges with Multi-Flash

Before introducing our techniques, we briefly review the basic idea of detecting depth edges

with multi-flash imaging [8].

The main observation is that when a flash illuminates a scene during image capture, thin

slivers of cast shadow are created at depth discontinuities. Thus, if we can shoot a sequence of

images in which different light sources illuminate the subject from various positions, we can

use the shadows in each image to assemble a depth edge map using the shadow images.

Shadows are detected by first computing a shadow-free image, which can be approximated with

the maximum composite image, created by choosing at each pixel the maximum intensity value

among the image set. The shadow-free image is then compared with the individual shadowed

images. In particular, for each shadowed image, a ratio image is computed by performing a

pixel-wise division of the intensity of the shadowed image by the intensity of the maximum

image. Although the pixels in the ratio image are not constant from one point to another, they

are very similar and close to 1.0 for non-shadowed regions, and close to 0.0 for shadowed

regions. This allows us to segment shadows very reliably.

The final step is to traverse each ratio image along its epipolar rays (as given by the respective

light positions) and mark negative transitions as depth edges. We use an implementation setup

with four flashes at left, right, top and bottom positions, which makes the epipolar ray traversal

aligned with horizontal and vertical scanlines. Figure 1 illustrates the main idea of the depth

edge detection algorithm. Note that the sign of the edge is also obtained, indicating which part

is the background and which part is the foreground in a local neighborhood.
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III. MULTI-FLASH IMAGING SETUPS

Throughout this paper, we will investigate different multi-flash imaging setups for obtaining a

qualitative depth map of the scene, detecting occlusion pixels in stereo, and computing disconti-

nuity preserving disparity maps. In this section, we briefly discuss the purpose of these different

implementation setups.

Figure 2a shows the basic multi-flash camera setup with four flashes, used to detect depth

edges, as described in Section II-A. This setup uses a 4-megapixel Canon Powershot G3 (see

Figure 1a). A microcontroller board triggers sequentially the four flashes mounted around the

camera. The board synchronizes the flashes to the image capture process by sensing the flash

trigger signal from the camera hot shoe. We will show in Section IV that this particular setup

can also be used to obtain a qualitative depth map of the scene

Different camera-flash configurations may be used to combine small baseline multi-flash

illumination with stereo reconstruction. Figure 2b shows a stereo setup with two cameras where

each camera has its own set of flashes. This setup is particularly useful to detect occlusions in

stereo, as we will show in Section V.

An alternative implementation setup is shown in Figure 2c. In this case, the flashes surround

both cameras, and, for each flash, two images are captured simultaneously by the two cameras.

This setup would be more appropriate to process dynamic scenes (using lights with different

wavelength [44] or triggered in a rapid cyclic sequence). Compared to the setup showed in Figure

2b, it offers advantages in terms of acquisition time, while requiring only four light sources.

On the other hand, the top and bottom ratio image traversals for depth edge detection is not

aligned with the pixel grid, since the top and bottom flashes are positioned on the upper and

lower diagonals of the center of projection of the cameras.

Figure 2d shows an implementation setup that uses only one camera with a stereo adapter. With

such adapter, it is possible to obtain the stereo image pair with a single shot, eliminating the need

for camera synchronization. Experiments with this implementation setup will be demonstrated

in Section VI-C.
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Fig. 2. Different multi-flash implementation setups. (a) Basic setup used for depth edge detection and qualitative depth map

estimation. (b) Stereo multi-flash setup where each camera has its own flashes. This setup is useful for occlusion detection in

stereo matching. (c) Stereo setup with flashes surrounding both cameras, for faster acquisition. (c) Flashes surrounding only

one camera with a Pentax stereo adapter.

IV. QUALITATIVE DEPTH MAP

In this section, we use a single multi-flash camera to derive a qualitative depth map based

on shadow width information. Our method is related to shape from shadow techniques [7], but

differs significantly in methodology. At this point we are not interested in quantitative depth

measurements. Rather, we want to segment the scene, while simultaneously establishing object

depth-order relations and approximate relative distances. This turns out to be valuable prior

information for stereo.

A. Shadow Width Estimation

A natural way of extending our depth edge detection method to estimate shadow width is

to measure the length of regions delimited by a negative transition (which corresponds to the

depth edge) and a positive transition along the epipolar ray in the ratio images. However, finding

the positive transition is not an easy task, due to interreflections and the use of non-point light

sources.

Figure 3a-c illustrates this problem: note that the intensity profile along the vertical scanline

depicted in the ratio image has spurious transitions due to interreflections in the umbra region

and a smooth transition near the end of the shadow (in the penumbra region). Estimation of the

shadow width based on local-area-based edge filtering leads to unrealiable results. In contrast,

we take advantage of the global shadow information. We apply the mean-shift segmentation
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Fig. 3. (a) Ratio Image. (b) Original Image. (c) Intensity plot along the vertical scanline depicted in (a). Note that there is no

sharp positive transition. (d) Meanshift segmentation to detect shadow, shown in white color.

algorithm [32] in the ratio image to segment the shadows, allowing accurate shadow width

estimation (see Figure 3d). In Figure 3c, the small perturbations of the ratio values along the

non-shadowed region occur due to the rounded object surface near the depth edge. However,

this is not a problem for segmentation, since the negative transitions due to shadows are much

sharper.

B. Shadows and Relative Depth

We now look at the imaging geometry of the shadows, depicted in Figure 4, assuming a

pinhole model. The variables involved are f (camera focal length), B (camera-flash baseline),

z1, z2 (depths to the shadowing and shadowed edges), D (shadow width) and d (the shadow

width in the image plane). Assuming a flat background, we have the relationships d
f

= D
z2

and

D
z2−z1

= B
z1

. These relationships hold even if the edge of the object does not lie on the principal

axis of the camera. It follows that the shadow width in the image can be computed as:

d =
fB(z2 − z1)

z1z2
(1)



SUBMITTED TO IEEE TRANS ON PAMI, 2006 10

Fig. 4. Imaging geometry showing the relationship of shadows and relative depth.

Working on this equation, we have:

d

fB
=

1

z1
−

1

z2
(2)

Note that for each depth edge pixel, we can compute the left hand side of equation 2, which

encodes the relative object distances (difference of inverse depth magnitudes). This allows us to

create a gradient field that encodes sharp depth changes (with gradient zero everywhere except

at depth discontinuities) and perform 2D integration of this gradient field to obtain a qualitative

depth map of the scene. This idea is described in more detail below.

C. Gradient Domain Solution

Let Z(x, y) be the unknown two-dimensional depth map of the scene and G = ∇ 1
Z

be the

gradient of the inverse depth values. We define the gradient field Ĝ to be a modified version of

G, having the same values as G at depth edge locations, but zero values everywhere else:

Ĝ(x, y) = (0, 0)T if (x,y) is not a depth edge pixel (3)

Ĝ(x, y) = ∇
1

Z(x, y)
otherwise

We will first show that we can use equation (2) to compute Ĝ directly with the shadow width

information. Then, we use a Poisson solver to integrate Ĝ and obtain the 1
Ẑ

field, from which

we can obtain the qualitative depth map Ẑ, up to an unknown constant if the focal length and

camera-flash baseline are not known.
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As shown in equation (2), the quantity d
fB

encodes the gradient of inverse depth values ∇ 1
Z

at

depth edge locations, and therefore can be used to compute the gradient field Ĝ directly. Since Ĝ

is the gradient of a two-dimensional function, it is specified by two components, Ĝ = (Ĝh, Ĝv),

where Ĝh is the horizontal component and Ĝv is the vertical component. The shadow width

d is also specified by two components: dh corresponds to the width of the shadow along the

horizontal direction for a particular depth edge pixel, and dv corresponds to the width of the

shadow along the vertical direction. The shadows detected by the left and right flash are used

to set dh

fB
, while the shadows detected by the top and bottom flashes are used to set dv

fB
.

There is still another detail that we need to consider to compute the gradient field Ĝ. We need

to know the sign of each gradient component at each depth edge pixel. This information can

be easily obtained through the sign of the depth edge pixel in each orientation, which tells us

which part of the edge is the foreground and which part is the background (see Section II-A).

Let sh(x, y) be the sign (−1,+1) of the depth edge pixel (x, y) along the horizontal direction

and sv(x, y) be the sign for the vertical direction. We can now compute Ĝ = (Ĝh, Ĝv) with Ĝh

being defined as:

Ĝh(x, y) = 0 if (x,y) is not a depth edge pixel

=
dh(x, y)

fB
sh(x, y) otherwise (4)

And similarly for the vertical component:

Ĝv(x, y) = 0 if (x,y) is not a depth edge pixel

=
dv(x, y)

fB
sv(x, y) otherwise (5)

Our qualitative depth map can be obtained with the following steps:

• Compute the gradient Ĝ(x, y) using equations (4) and (5).

• Integrate Ĝ by determining M which minimizes

∣

∣

∣
∇M − Ĝ

∣

∣

∣

2

.

• Compute the qualitative depth map Ẑ = 1
M

.
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It is important to note that the gradient vector field Ĝ may not be integrable. In order to

determine the image M , we use a similar approach as the work of Fattal et al. [33]. The

observation is that the optimization problem to minimize |∇M − Ĝ|2 is equivalent to solving

the Poisson differential equation ∇2M = div Ĝ, involving a Laplace and a divergence operator.

We solve this partial differential equation using the standard full multi-grid method, which

involves discretization and the solution of a linear system in different grid levels. For specifying

boundary conditions, we pad the images to square images of size the nearest power of two, and

then crop the result image back to the original size. The final qualitative depth map is obtained

by 1
M

, since M contains the inverse of the real depth values.

For many applications, the background may be not flat and the focal length and camera-flash

baseline unknown. In this case, we can set fB to 1.0. Now we cannot obtain the absolute

distances from the background. Instead we get relative distances proportional to the shadow

width and a qualitative depth map with segmented objects. We will show in Section VI-B that

this is a very useful prior for stereo matching.

D. Synthetic Example

Figure 5 shows our qualitative depth map computation using synthetic images. We used as

input four images with manually created shadows corresponding to the top, bottom, left and

right flashes, as shown on the top of the figure. The resultant qualitative depth map, as well as

the correspondent 3D plot, are shown at the bottom of the figure. Note that the elevations of the

rectangular areas are proportional to the associated length of shadows in the images.

E. Real Images

Figure 6 illustrates results obtained for the qualitative depth map computation from real

images, using a single multi-flash camera. As we can see, our method effectively segments

the scene, encoding object relative distances through the shadow width information. Note that

the images have low intensity variation and small depth changes, a challenging scenario for most

3D reconstruction methods.
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Fig. 5. Top: Synthetic images with manually created shadows corresponding to the top, bottom, left and right flashes. Bottom:

Qualitative depth map and corresponding 3D plot.

Our qualitative depth map also offers the advantage of creating a slope in intensity when there

are gaps in the depth contours. Note in the hand image the smooth transition between the thumb

and the palm of the hand. This is a useful property for setting smoothness constraints in stereo

matching.

In Figure 7, we show a more complex example. The scene contains many depth discontinuities

and specular reflections, which poses a serious problem for most 3D reconstruction methods.

We used our previous work [10] to eliminate spurious edges due to specularities in the depth

edge map. The qualitative depth map and the 3D plot are shown in Figures 7b-c.

Clearly, our method is not able to handle slanted surfaces or rounded objects, since the depth

variation is smooth without a sharp discontinuity. This is not a problem if we use it as a prior

for stereo reconstruction.

V. OCCLUSION DETECTION

Binocular half-occlusion points are those that are visible in only one of the two views provided

by a binocular imaging system [34]. They are a major source of error in stereo matching

algorithms, due to the fact that half-occluded points have no correspondence in the other view,

leading to false disparity estimation.
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Fig. 6. From left to right: original image, qualitative depth map and the corresponding 3D plot. Note that our method captures

small changes in depth and is robust in the presence of low intensity variations across depth contours.

Fig. 7. (a) Complex scene with many depth discontinuities and specular reflections. (b) Qualitative depth map. (c) Corresponding

3D plot.
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Current approaches to detect occlusion points are passive (see [34] for a comparison among

five different techniques). They rely on the correspondence problem and thus are unable to

produce accurate results for many real scenes. In general, these methods report a high rate of

false positives and have problems to detect occlusions in areas of the scene dominated by low

spatial frequency structure.

A. Occlusions Bounded by Shadows

Rather than relying on the hard correspondence problem, we exploit active lighting to detect

binocular half-occlusions. Assume we have a stereo pair of multi-flash cameras with horizontal

parallax and light sources arranged as Figure 8. By placing the light sources close to the center of

projection of each camera, we can use the length of the shadows created by the lights surrounding

the other camera to bound the half-occluded regions.

This idea is illustrated in Figure 8. Note that the half-occluded region S is bounded by the

width of the shadows S1 and S2. Observing the figure, let IL1
, IR1

and IR2
be the images taken

by the left camera with light sources FL1
, FR1

and FR2
, respectively. The width of S1 and S2

can be determined by applying the meanshift segmentation algorithm in the ratio images
IR1

IL1

and

IR2

IL1

(as described in section IV-A). We then determine the half-occluded region by averaging the

shadowed regions: S = B
B1+B2

(S1 + S2), where B, B1, and B2 are the baselines of the camera

and each light source, as shown in the figure.

The occluded region is determined with precision for planar shadowed region and with close

approximation for non-planar shadowed region. In the non-planar case, the linear relationship

between baseline and shadow width does not hold, but the length of the occluded region is

guaranteed to be bounded by the shadows.

We used two Canon G3 cameras with light sources arranged as Figure 8 to test our half-

occlusion detection algorithm. Figure 9 demonstrates the reliable performance of our method. The

images contain occlusion points in both textured and textureless regions, which is a challenging

problem for passive algorithms that rely on pixel correspondence. For quantitative evaluation, we

selected a piecewise planar scene (Figure 9a-c), since it is easier to obtain the occlusion ground
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Fig. 8. The length of the half-occluded region S is bounded by shadows S1 and S2 created by flashes surrounding the other

camera.

truth (computed from the known disparity map). For this scene, our method reports 0.65% of

false positives and 0.12% of false negatives. The false positives rate is given by the number of

false alarm occluded pixels divided by the total number of detected occluded pixels. The false

negative rate is given by the number of false negative occluded pixels divided by the number of

ground truth occluded pixels. For very large depth differences our method may not give a precise

estimation (for non-planar shadowed regions, due to larger bounded regions) and it might fail

due to detached shadows with thin objects.

VI. ENHANCED STEREO MATCHING

In this section, we use our feature maps as prior information to enhance stereo matching

algorithms. We start by demonstrating an enhanced window-based, local stereo method that

takes advantage of depth edges and occlusions to produce disparity maps with very few com-

putations and much more accuracy than traditional correlation-based methods. Then, we show

how to incorporate our feature maps into global stereo methods based on Markov random field

optimization. We also analyse different stereo implementation setups and scenes with specular



SUBMITTED TO IEEE TRANS ON PAMI, 2006 17

Fig. 9. Detection of binocular half-occlusions in both textured and textureless regions. (a)-(b) Images taken with light sources

surrounding the other camera. (c) Our occlusion detection result marked as white pixels. 0.65% false positives and 0.12% false

negatives were reported. (d) Left view. (e) Right view. (f) Occlusion detection (white pixels).

reflections. Finally, we discuss limitations of our technique and compare with previous 3D

reconstruction approaches.

A. Enhanced Local Stereo

A major challenge in local stereo is to produce accurate results near depth discontinuities. In

such regions, the main assumption of local methods is violated: the same window (aggregation

support) contains pixels that significantly differ in disparity, often causing serious errors in

the matching process, due to perspective distortions. In addition, windows that include half-

occluded points near depth discontinuities are another source of error, since they do not have

correspondence in the other view.

The central problem of local methods is to determine the optimal size, shape, and weight

distribution of the aggregation support for each pixel. There is a trade-off in choosing the window

size: if the window is too small, a wrong match might be found due to ambiguities and noise. If

the window is too large, problems due to foreshortening and depth discontinuities occur, with the

result of lost detail and blurring of object boundaries. Previous solutions to this problem include

the use of adaptive windows [12] and shiftable windows [13], but producing clean results around

depth discontinuities still remains a challenge.
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1) Varying Window Size and Shape: We adopt a sliding window which varies in shape and

size, according to depth edges and occlusion, to perform local correlation. Given the quality of

the detection of depth edges and half-occluded points, results are significantly improved.

In order to determine the size and shape of the window for each pixel, we determine the set

of pixels that has aproximately the same disparity as the center pixel of the window. This is

achieved by a region growing algorithm (starting at the center pixel) which uses depth edges

and half-occluded points as boundaries.

Only this set of pixels is then used for matching in the other view. The other pixels in the

window are not considered, since they correspond to a different disparity.

2) Experiments: We first demonstrate the usefulness of depth edges in local stereo using

the 640x480 Tsukuba stereo pair of the Middlebury dataset (http://www.middlebury.edu/stereo).

Figure 10a shows one of the stereo input images. The disparity ground truth for each pixel is

shown in Figure 10b and the depth edge map computed from the ground truth is shown in Figure

10c. The results using a traditional correlation-based algorithm are shown in Figure 10d for a

window size of 9x9 pixels and Figure 10e for a window size of 31x31 pixels. The trade-off in

choosing the window size is clearly shown from these images: a smaller 9x9 window causes

noisy results, while a larger 31x31 window causes significant errors near depth discontinuities. In

order to verify the importance of depth edges in local stereo, we used our algorithm considering

as input the stereo pair and the depth edge map computed from the disparity ground truth.

Figures 10f and 10g show our results for 9x9 and 31x31 window sizes, respectively. Clearly, the

disparity map results are significantly improved near depth discontinuities. Note that this is a

synthetic example to illustrate the effect of depth discontinuities in stereo, since we are assuming

we have as input the depth edge map, which is difficult to obtain without active illumination.

Next we evaluate our method in a real scenario, using multi-flash imaging to compute depth

edges and occlusions. We used a horizontal slide bar for acquiring stereo images with a multi-

flash camera. Occlusions were estimated by moving the flashes properly to the shooting camera

positions.
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Fig. 10. (a) One image of the stereo pair. (b). Disparity map ground truth. (c) Depth edge map computed from the ground

truth. (d) Local correlation result with a 9x9 window. (e) Local correlation result with a 31x31 window. (f) Our enhanced local

stereo result with a 9x9 window. (g) Our enhanced local stereo result with a 31x31 window.

Figure 11a shows one of the views of a difficult scene we used as input. The image contains

textureless regions, ambiguous patterns (e.g., the background close to the book), a geometrically

complex object and thin structures. The resolution of the images is 640x480. We rectified them so

that epipolar lines are aligned with horizontal scanlines. We adopted a small baseline between the

cameras (maximum disparity equals 10), so that we can obtain a hand-labeled disparity ground

truth (Figure 11b).

Figure 11c shows our computed depth edges and half-occluded points. Note that some edges

do not appear in the ground truth (due to range resolution) and we also have some gaps in the

edges due to noise. This data was considered to test our algorithms under noisy conditions.

Traditional local-correlation approaches perform very poorly in this scene, as we show in
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Fig. 11. Enhanced Local Stereo (a) Original image. (b) Hand-labeled ground truth. (c) Detection of depth edges and binocular

half-occlusions. (d) Local correlation result with a 9x9 window. (e) Local correlation result with a 31x31 window. (f) Our multi-

flash local stereo result with a 31x31 window. (g) Analysis of the root-mean-squared error with respect to window wize. The

dashed line corresponds to traditional local correlation, while the solid line corresponds to our approach.

Figures 11d and 11e, using windows of size 9x9 and 31x31. In addition to noise, there are

major problems at depth discontinuities - corners tend to become rounded and thin structures

often disappear or expand. In contrast, our method preserve discontinuities with large windows

(Figure 11f). We show a quantitative analysis of the two methods with respect to the window

size in Figure 11g. The axis of the graph correspond to the root-mean-squared error (RMS) and

the window size in pixels. The error decreases significantly as the window grows for our method

(solid line). At some point, it will start growing again with larger windows due to gaps in the

depth edges. We could use our qualitative depth map here, but this would add an undesirable

computational load, since local-based approaches are attractive because of their efficiency.
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B. Enhanced Global Stereo

The best results achieved in stereo matching thus far are given by global stereo methods,

particularly those based on belief propagation and graph cuts [19], [18]. These methods formulate

the stereo matching problem as a maximum a posteriori Markov Random Field (MRF) problem.

In this section, we will describe our enhanced global stereo method, which uses belief propagation

for inference in the Markov network.

Some current approaches explicitly model occlusions and discontinuities in the disparity com-

putation [35], [36], but they rely on intensity edges and junctions as cues for depth discontinuities.

This poses a problem in low-contrast scenes and in images where object boundaries appear

blurred. However, we want to suppress smoothness constraints only at occluding edges, not at

texture or illumination edges. Our method makes use of the prior information to circumvent

these problems, including the qualitative depth map and the automatically detected binocular

half-occlusions described earlier.

1) Inference by Belief Propagation: The stereo matching problem can be formulated as a

MRF with hidden variables {xs}, corresponding to the disparity of each pixel, and observed

variables {ys}, corresponding to the matching cost (often based on intensity differences) at

specific disparities. By denoting X = {xs} and Y = {ys}, the posterior P (X|Y ) can be

factorized as:

P (X|Y ) ∝
∏

s

ψs(xs, ys)
∏

s

∏

t∈N(s)

ψst(xs, xt) (6)

where N(s) represents a neighborhood of s, ψst is called the compatibility matrix between nodes

xs and xt (smoothness term), and ψs(xs, ys) is called the local evidence for node xs, which is the

observation probability p(ys|xs) (data term). The belief propagation algorithm gives an efficient

approximate solution in this Markov network. We refer the reader to [18] for details about the

derivation of equation (6) and the inference based on belief propagation.

2) Qualitative Depth as Evidence: We can potentially use our computed depth edges to

suppress smoothness constraints during optimization. However, the depth contours may have

gaps. Fortunately, our qualitative depth image shows a desirable slope in intensity when gaps
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Fig. 12. (a) Compatibility matrix encouraging pixels to have the same disparity. Larger rectangles correspond to larger values.

(b) Compatibility matrix encouraging neighboring pixels to have different disparities according to the qualitative depth map.

(c) Same as (b), but considering a different sign of the depth edge so that the shift goes on the opposite direction.

occur (as we will show in our experiments), and hence it is a good choice to set the compatibility

matrix ψst. In addition, the qualitative depth map encodes the object relative distances via the

shadow width information, and we use the map to encourage discontinuities at a certain disparity

difference.

Consider {di}, i = 1..L. to be the set of possible disparities for all pixels, where d1 and dL

correspond to the minimum and maximum allowed disparities, respectively. The compatibility

matrix ψst(xs, xt) is expressed as a LxL matrix encoding the disparity relationship between

pixels s and t [18]. In fact, each entry (i, j) in the compatibility matrix ψst corresponds to the

likelihood of pixels s and t having disparities di and dj, respectively. This means that if the

matrix has higher values along its diagonal, neighboring pixels will be encouraged to have the

same values, imposing a smoothness constraint, which is commonly adopted in stereo algorithms.

Let P be the qualitative depth scaled to match the set of possible disparities di, i = 1..L. We

define the compatibility matrix ψst(xs, xt) = Cst
LxL, where Cst

ij is defined as:

Cst
ij = exp(−

|di − dj − ∆Pst|

F
) (7)

where ∆Pst is the intensity difference between pixels s and t in the qualitative map (which was

scaled to match possible disparities) and F is a constant scaling factor. Intuitively, if ∆Pst = 0,

there is no sharp discontinuity for neighboring pixels s and t and the compatibility matrix will

have larger values along its diagonal (see Figure 12a), encouraging neighboring pixels to have
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Fig. 13. (a) Standard belief propagation result. (b) Our enhanced global stereo method, given the knowledge of depth

discontinuities.

the same disparity. In contrast, if ∆Pst 6= 0, the larger values will be shifted to the disparity

encoded by ∆Pst (see Figures 12b-c). The direction of this shift depends on the sign of ∆Pst,

which is the sign of the corresponding depth edge.

We have also included the half-occlusion information in our method. Nodes corresponding to

pixels that have no match in the other view are eliminated, while a penalty is given for matching

a given pixel with an occluded point in the other view.

3) Experiments: Figure 13 shows a comparison of our algorithm with traditional global stereo

based on belief propagation. As before, we used the input images from the Middlebury dataset

with depth edges computed from the disparity map ground truth. For this example, we have not

used the information from occlusions and qualitative depth; we just used depth edges to stop

smoothness constraints in the energy function. As we can see, results are considerably improved

near depth discontinuities.

The computed qualitative map in our challenging stereo example is shown in Figure 14a. The

results for the standard belief propagation algorithm and our enhanced method are shown in

Figures 14b and 14c, respectively. The passive method fails to preserve discontinuities due to

matching ambiguities (we used the implementation available at http://cat.middlebury.edu/stereo/

with different weight and penalty parameters). Black pixels mean noisy values (zero disparity).

Our results clearly show significant improvements with a RMS of 0.4590 compared to 0.9589

for this input. It is important to note that (although we do not show in this scene) our method

handles slanted surfaces in exactly the same way as standard global methods. In other words,
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Fig. 14. Enhanced Global Stereo (a) Qualitative depth map. (b) Standard passive belief propagation result (RMS: 0.9589).

(c) Our enhanced global stereo method (RMS: 0.4590).

we do not sacrifice slanted surfaces to preserve discontinuities as opposed to [16].

C. Specular Scenes

Specularities pose a problem for stereo matching, since they are viewpoint dependent and can

cause large intensity differences at corresponding points. With multi-flash imaging, as shown in

our previous work [10], we can significantly reduce the effect of specular reflections in images,

thus enhancing stereo correspondence near specular regions.

We used the setup shown in Figure 2d to capture four image pairs of a specular scene under

different lighting conditions. Figures 15a and 15b show the stereo pair (left view and right view,

respectively), captured with one single shot, using the flash positioned to the right of the camera.

Note how specularities are different in the two views.

Using the remaining flash images, we can attenuate the effect of specular reflections with our

gradient-domain method described in previous work [10]. The specular-reduced image pair is
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Fig. 15. (a) Left view of a flash image. (b) Right view of a flash image. (c) Left view of our specular-reduced image. (d)

Right view of our specular-reduced image. (e) Disparity map for a region of interest using the flash image pair. (f) Disparity

map using the specular-reduced image pair.

shown in Figures 15c and 15d.

For stereo matching, we rectified the images and computed depth edges as pre-processing.

Our enhanced local stereo matching was applied to both flash and specular-reduced image pairs,

using a 31x31 search window. The disparity map results are shown for a region of interest

in Figures 15e and 15f. Note that we are able to reduce artifacts due to specularities in the

disparity map. The artifacts near the handle of the cup are due to partial occlusions, which were

not detected and processed in this experiment.

Our method uses flash images to handle specularities. The detection and attenuation of specular
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reflections in ambient (no-flash) images has been recently addressed by Agrawal et al. [37], using

flash and no-flash image pairs. The advantage of using flash images is that they are less noisy

and more appropriate for dark environments.

When specular boundaries overlap in most images, we are not able to remove specularities.

This is the reason why we still have some specular artifacts in Figure 15f.

D. Efficiency

Our qualitative depth map takes about two seconds to compute on a Pentium IV 1.8 GHz

for 640x480 resolution images. Our enhanced local-based stereo algorithm requires very few

computations since depth edges can be computed extremely fast [8]. Our enhanced global method

computation time is the sum of the time for the qualitative depth map computation plus the time

for belief propagation procedure. We refer to [38] for an efficient implementation of the belief

propagation algorithm.

VII. DISCUSSION

In addition to the proposed methods described in the previous section, signed depth edges

could also be used as part of the matching cost computation. This would be very useful in

low-contrast scenes, where occluding boundaries may not correspond to intensity edges. The

disadvantage of matching depth edges is that problems may occur when a depth discontinuity

in one view corresponds to a surface normal discontinuity in the other view.

Small baseline multi-flash illumination could be used to enhance multiple view stereo algo-

rithms for 3D object modeling [39], [40], [41]. We refer to the work of Crispell [42] along this

direction, which shows the importance of depth edges and multi-flash photography to reconstruct

objects with concavities. In our work, we applied our feature maps to aid the establishment of

point correspondences between two images acquired with a pair of small baseline cameras.

A. Comparison with other techniques

Table I shows a comparison of our multi-flash stereopsis approach with other stereo methods.

Note that a small baseline flash setup means we do not need a laboratory setup as in photometric
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TABLE I

Comparison of our technique with other 3D reconstruction approaches.

stereo and the cost and complexity of a flash attachment is very low. In addition, for non-intrusive

applications, we can use readily available infra-red flash lighting, while projecting high frequency

structured patterns requires an infra-red projector.

Below we give a more detailed discussion of the pros and cons of our method compared with

stereo techniques:

1) Passive Stereo: As we showed in the previous section, our method significantly enhances

the establishment of point correspondences near depth discontinuities and specular highlights,

when compared to passive stereo methods. Both techniques will fail in large textureless regions.

Passive stereo methods are non-intrusive and more suitable for processing dynamic scenes. In

outdoor scenarios, when sun light has more intensity than flash light, we can not enhance passive

stereo matching.

2) Stereo Based on Structured Light: Active stereo techniques based on structured lighting

produce more accurate correspondence maps than our approach. On the other hand, our method

offers advantages in terms of low cost, simplicity, and portability. In addition, our feature maps

could be used to enhance structured light techniques. Even state of the art 3D scanners may
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Fig. 16. (a) Original Photo. (b) Our depth edge confidence map. (c) Depth map from active illumination 3Q scanner. Note the

jagged edges.

produce jagged edges along depth discontinuities, as shown in Figure 16.

3) Photometric Stereo: Photometric stereo techniques require a fixed lighting rig and thus

are limited to laboratory and industrial settings, contrasting with our method which can be built

into a self-contained camera. They produce excellent results for smooth, Lambertian surfaces,

but are unstable near depth discontinuities or rapid surface normal changes [43]. They offer the

advantage of handling textureless regions and estimating surface reflectance properties.

4) Helmholtz Stereo: Helmholtz stereopsis has the ability to handle surfaces with arbitrary

reflectance, in contrast to most previous methods that assume Lambertian reflectance. It also

offers the advantage of estimating surface normals in textureless regions. In regions with texture,

both depth and normals are estimated. Similarly to photometric stereo, light sources with large

baseline are assumed to allow sufficient photometric variation across reciprocal image pairs, so

that the normal field can be estimated. Hence, the setup is difficult to be built into a self-contained

device. In addition, the camera and light source must be calibrated and moved in a precise and

controlled fashion. Although the authors claim that shadows can be used in Helmholtz stereo as

a cue for detection of partial occlusions, no experiments are reported for obtaining discontinuity

preserving depth maps.

B. Limitations

Our approach has the following limitations:

• Although we significantly enhance passive stereo matching near discontinuities and specu-
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larities, our method suffers from other well-known problems in passive matching, such as

handling textureless regions, noise, and non-Lambertian surface reflectance. Some of these

problems are addressed by active stereo approaches, as we mentioned in the last section. Our

feature maps obtained with small baseline illumination could be used to enhance these active

illumination stereo methods as well, as most of them are sensitive near depth discontinuities.

• Our method fails for outdoor scenarios when the sun’s illumination is more intense than

the flashes. In this case, depth edges and occlusions can not be detected and used as prior

information in stereo. For local stereo, our algorithm would be equivalent to traditional

correlation-based approaches, since the window shape and size would keep constant along

the image. For global stereo, we would have to use intensity edges in addition to the

qualitative depth map to set smoothness constraints.

• When thin foreground objects are present in the scene, we may have problems with detached

shadows that are separated from the object. In our previous work [44], we have exploited

a multi-baseline approach (one camera with multiple flashes covering multiple baselines)

to handle this issue. We believe that detached shadows could also be used as a positive

source of information. For example, it could be used to handle ordering constraints in

stereo based on dynamic programming. In fact, the ordering assumption is often violated

when thin foreground objects are present in the scene.

• Motion is another cause of failure in our approach, since multiple images are taken sequen-

tially. Without proper image registration, our feature maps can not be computed reliably. A

possible solution to this problem is the use of light sources with variable wavelength [44],

which can be triggered at the same time to create shadows with different colors.

VIII. CONCLUSIONS

We have presented a set of techniques based on active lighting for reliable, discontinuity

preserving stereo matching. Our methods include the derivation of a qualitative depth map from

one single camera, detection of binocular half-occlusions, and enhanced local and global stereo

algorithms based on these features.
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Our techniques are reliable, simple, and inexpensive; the overall setup can be built into a

self-contained device, no larger than existing 3D cameras. In the future, we plan to extend our

multi-flash imaging framework to handle the general problem of classification of discontinu-

ities according to their physical origin, i.e, discriminating discontinuities in depth, reflectance,

illumination and surface normal.
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