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Multifocal clonal evolution characterized using
circulating tumour DNA in a case of metastatic
breast cancer
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Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer

genomes non-invasively but the extent to which it represents metastatic heterogeneity is

unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast

cancer receiving two lines of targeted therapy over 3 years. We characterize genomic

architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples

collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing.

Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of

tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate

with different treatment responses between metastatic sites. This comparison of biopsy and

plasma samples in a single patient with metastatic breast cancer shows that circulating

tumour DNA can allow real-time sampling of multifocal clonal evolution.
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I
ntra-tumour clonal heterogeneity limits efficacy and duration
of response to targeted treatments in metastatic cancer1–3.
Evaluating heterogeneity to guide choice and sequence of

therapy could be achieved by multiregional and repeated
metastatic tumour biopsies but this is impractical due to
associated risk of complications and costs. In contrast, analysis
of circulating tumour DNA in plasma (ctDNA) is a less-invasive
approach that could provide a summary of somatic alterations
contributed by distinct metastases4,5, potentially circumventing
the problem of spatial heterogeneity1. Serial analysis of ctDNA
has been shown to track tumour burden6–8 and to correlate with
treatment-driven clonal evolution3,4,9. Most studies of
concordance between tumour and plasma samples have
compared individual mutations or relied on single tumour
biopsies9. However, direct evidence comparing plasma with
multiregional tumour samples to establish the extent of clonal
heterogeneity captured in ctDNA is extremely limited5,10–13.

Here we present extensive analysis of eight tumour biopsies
and nine plasma samples collected from a patient with oestrogen
receptor-positive (ERþ ) human epidermal growth factor recep-
tor 2-positive (HER2þ ) metastatic breast cancer treated with
sequential targeted therapies (tamoxifen and trastuzumab,
followed by lapatinib) over a 3-year clinical course. We
performed whole-exome followed by deep amplicon sequencing
to validate and quantify several hundred somatic mutations. We
find that ubiquitous stem mutations (common to all tumour
biopsies) have the highest circulating levels in plasma followed by
metastatic-clade and private mutations. In addition, serial
changes during treatment in circulating levels of private somatic
mutations correlate with disease progression in their respective
tumour lesions on imaging. These results, from a single patient
with metastatic breast cancer, suggest that ctDNA reflects clonal
tumour hierarchy and captures sub-clonal dynamics in real time.

Results
Clinical case. A 42-year-old woman presented with a right breast
lump, lower back pain, loss of height, marked kyphosis and
hepatomegaly. Core biopsies from the breast lump showed ductal
carcinoma in situ (sample labelled P1.1; Supplementary Fig. 1 and
Supplementary Table 1). An additional biopsy from an ipsilateral
axillary lymph node (P1.2) revealed metastatic ductal adeno-
carcinoma (ERþ (8/8) and HER2þ (3þ )). Computed tomo-
graphy scan revealed widespread metastatic disease in bones,
pleura and liver (Supplementary Fig. 2 and Supplementary
Table 2). The patient was started on treatment with trastuzumab
and taxane-based chemotherapy, with a significant partial
response (Supplementary Fig. 3). After induction chemotherapy,
she was maintained on tamoxifen and trastuzumab. After 19
months on treatment, she presented with seizures and head
computed tomography revealed a large metastasis in the left
frontal lobe (Supplementary Fig. 4), which was resected (M2.1).
Therapy with tamoxifen and trastuzumab was continued and
collection of plasma samples was initiated (samples T1–T9). Four
months after surgery, she had enlarging liver lesions and a new
metastatic deposit in the left ovary (Supplementary Fig. 5).
Treatment was switched to a combination of lapatinib and
capecitabine, resulting in stable disease for 12 months
(Supplementary Fig. 6). General deterioration then occurred, with
disease progression in the chest (new pulmonary nodules, bilat-
eral pleural effusions and posterior chest wall mass,
Supplementary Fig. 7; Eastern Cooperative Oncology Group
performance status 2–3). Treatment was stopped and the patient
died B4 months later.

Tumour samples were obtained at diagnosis from the primary
breast site (P1.1) and an axillary lymph node (P1.2); after 19

months from the brain metastasis area (M2.1); and at autopsy
after 3 years on treatment (from the primary breast site, and from
metastatic deposits in the chest, liver, ovary and vertebrae,
labelled P3.1 and M3.1–M3.4, respectively). Serial plasma samples
were obtained over the last 500 days of clinical follow-up
(T1–T9). Tumour and plasma samples collected and the clinical
course are summarized in Fig. 1a,b.

Inferring clonal structure from multiregional tumour biopsies.
Exome sequencing of peripheral blood leukocytes (N1), 6/8
tumour samples and 3/9 plasma DNA samples (3 plasma exomes
reported previously4) was performed. Single-nucleotide variants
(SNVs) were further analysed by targeted amplicon deep
sequencing in all samples for orthogonal validation and
accurate measurement of allele fractions (AFs, Supplementary
Table 3). Of the 362 candidate non-synonymous SNVs identified
by exome sequencing in at least one sample, 310 were successfully
tested by deep sequencing (median coverage: 288� –8,248� for
plasma samples; 965� –2,777� for tumour samples). For each
candidate SNV, a mutation was called if AF was at least three
s.d.’s above the mean background error rate obtained by
analysing 12 control samples11.

Deep sequencing validated 207 functional mutations. We
identified 8 major mutation clusters based on variation in their
allele fractions across all tumour samples using Bayesian
clustering with PyClone (Fig. 1c–e), a data-driven method we
have developed and extensively validated for analysing clonal
hierarchies and inferring cellular prevalence in tumour biopsies
and to follow clonal dynamics in serially transplanted tumour
xenografts14–16. We also inferred tumour phylogeny using clonal
ordering of high-confidence mutations (with 42% allele fraction
in a tumour sample). A total of 23 stem mutations were detected
in all tumour samples (tumour cluster 1), 26 metastatic-clade
mutations were detected only in metastatic tumour samples
(tumour cluster 2) and 126 private mutations were detected at AF
42% only in one of the tumour samples (tumour clusters 3–8).
The most parsimonious pathway of evolution in this cancer
together with mutation clustering results is presented in Fig. 1d.
Stem and metastatic-clade mutation clusters inferred using
PyClone were identical to the results from clonal ordering.
Similarly, mutations in clusters 3, 4/5, 6 and 7 correspond to
private mutations in P3.1, M3.1, M2.1 and M3.2, respectively. A
total of 13/26 metastatic-clade mutations were detectable at low
levels in the lymph node biopsy samples (P1.2), consistent with a
common ancestor for metastasis as a minor clone at the axillary
lymph node site. The inferred phylogenetic structure was stable
using 5 and 10% allele fraction cutoffs for high-confidence
mutations (Supplementary Figs 8 and 9) and allele fractions for
stem mutations were highly correlated between all tumour
samples (Supplementary Fig. 10).

Serial plasma analysis and comparison with tumours. In
plasma, stem mutations were highest in abundance, with mean
plasma AFs ranging from 3.8 to 34.9% across the time series.
Metastatic-clade mutations were lower in abundance with mean
AFs ranging from 2.5 to 19.1% (Wilcoxon rank sum test
Po0.001, except T5 P¼ 0.001). The dynamic longitudinal
changes in plasma AFs for both mutation groups reflected the
observed overall tumour response, both clinically and on imaging
(Fig. 2a). Mutation clusters statistically inferred using PyClone
from variation in circulating mutant allele fractions (without
relying on tumour data, referred to as ‘plasma clusters’) over-
lapped significantly with clusters identified from multiregional
tumour sampling. A total of 21/23 stem mutations were assigned
to plasma cluster 1 (with highest cellular prevalence), and 19/26
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Figure 1 | Inference of clonal structure from multiregional tumour biopsies. (a) Tumour samples collected from the patient, labelled P (primary) and M

(metastasis). Numbers preceding dot (1,2 and 3) correspond to time of collection: 1, collected at diagnosis; 2, collected at the time of resection of brain

metastasis; 3, collected at autopsy. (b) Timeline describing clinical course, samples collected, treatments administered and selected imaging assessments.

Plasma DNA samples are labelled 1 through 9. Imaging assessments were performed using computed tomography scans. Histopathological and imaging

findings are summarized in Supplementary Tables 1 and 2 and Supplementary Figs 1–6. (c) Distribution of 207 validated functional mutations in tumour and

plasma samples, ordered by mutation clusters inferred using PyClone from mutant allele fractions in all tumours. Red rectangles indicate high-confidence

mutations with AF 42%. Blue rectangles indicated mutations detected significantly above background but with AF of 2% or lower. Stem mutations

(observed ubiquitously in all tumour samples and comprising tumour cluster 1) and metastatic-clade mutations (high confidence in metastatic tumours and

comprising tumour cluster 2) are readily identifiable/detectable in plasma samples. Detailed values of allele fractions are documented in Supplementary

Data 1–3. (d) Tumour phylogenetic tree, inferred by clonal ordering given distribution of high-confidence mutations in tumour samples shown in a. Length of

each branch of the tree correlates with the number of mutations on the branch as indicated. Exome-sequencing results for samples P1.2 and M3.4 were not

available and therefore private mutations for these branches cannot be identified. Assignment of mutations to each branch is documented in

Supplementary Data 1. (e) Mean predicted cellular frequency of each cluster identified by PyClone across the tumour samples.
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metastatic-clade mutations were assigned to plasma cluster 2
(Fig. 2b and Supplementary Data 1).

To assess whether plasma DNA captured differential response
across distinct metastatic sites during targeted treatment, the
relative plasma abundance of high-confidence private mutations
originating from each tumour site was calculated. During
lapatinib treatment, a rapid increase in the circulating abundance
of several mutations private to the chest mass was observed in
plasma samples T4–T9 (Fig. 2c), coinciding with significant
disease progression seen on imaging at this site. This was also
reflected in plasma-based PyClone mutation clusters; plasma
cluster 5 increased in circulating prevalence with disease
progression on lapatinib treatment and 10/11 mutations in this
cluster are private to M3.1 (and correspond to tumour clusters 4
and 5; Fig. 2b and Supplementary Data 1). At the time of
lapatinib resistance, the most abundant private mutation in
plasma was in the tyrosine kinase domain of ERBB4 (p.H809G;
plasma cluster 5; Fig. 2b,d and Supplementary Fig. 11). This

mutation was private to the chest wall mass (28.2% AF) with its
levels in plasma DNA increasing during lapatinib treatment up to
an AF of 12.2% at the time of disease progression on imaging
(compared with average stem and metastatic-clade AFs of 34.9
and 19.1% in the same plasma sample). The predicted functional
effect of this mutation17,18 and its exclusive molecular detection
in the chest wall mass (the main site of disease progression on
treatment) suggest it was a key determinant of resistance to
lapatinib.

Interestingly, 11 non-synonymous high-confidence SNVs were
identified and validated in plasma but not detectable at 42% AF
in any of the analysed tumour biopsies. Amongst these was an
actionable hotspot mutation in PIK3CA (p.E542K), identified in
plasma with an AF of 3.5% at the time of progression on
trastuzumab and tamoxifen (tumour cluster 8 and plasma cluster
4; Fig. 2e). After lapatinib treatment was started, the plasma levels
dropped to AF of 1.1% and then became undetectable. This
mutation was only marginally detectable (AF o1%) in two
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Figure 2 | Serial plasma analysis during systemic treatment. (a) Circulating levels of stem, metastatic-clade and private mutations during treatment.

Mean allele fractions at each time point are presented. Mean AF for private mutations is multiplied by 10 to highlight trend. Shaded areas represent

treatment lines. (b) Mean predicted cellular frequency of each cluster identified by PyClone across the plasma samples T2–T9. PyClone identified five

mutation clusters from variation of circulating allele fractions (without reliance on tumour data). Clusters 1 and 2 are largely comprised of stem and

metastatic-clade mutations. Cluster 5 is comprised of 11 mutations, 10 of which are private M3.1 mutations. (c) Plasma abundance calculated as the

product of AF in a tumour sample (normalized for mean of stem mutations) and the corresponding AF in a plasma sample, summed across all private

mutations for each tumour. To normalize for different number of private mutations in each tumour (3–70), we calculated plasma abundance relative to T1.

(d) Dynamics of ERBB4 mutation (p.H809G) in deep sequencing data. (e) Allele fractions measured by deep amplicon sequencing for the PIK3CAmutation

(p.E542K) identified in exome sequencing of plasma sample T2. Mutation was significantly detectable (43 s.d.’s above the mean allele fraction in

control samples) on days 727, 762 and 937 (yellow diamonds).
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tumour biopsies (axillary lymph node and vertebral metastasis).
These results suggest this PIK3CA mutation originated from a
minor tumour sub-clone that increased in size during treatment
with tamoxifen and trastuzumab, and then regressed on
treatment with lapatinib. Activation of the PI3K/AKT pathway
has been associated with resistance to both endocrine therapy and
trastuzumab19,20.

Discussion
In this paper, we have presented an extensive comparison of
biopsy and plasma samples collected from a metastatic breast
cancer patient over a 3-year clinical course. Our results show that
circulating tumour DNA provides a dynamic sampling of somatic
alterations reflecting the size and activity of distinct tumour sub-
clones. Analysis of ctDNA reflects the clonal hierarchy deter-
mined from multiregional tumour sequencing and tracks
different treatment responses across metastases. Unlike previous
reports, our results qualify tumour-plasma concordance of each
somatic mutation in context of the tumour phylogeny. Truncal
mutations that represent the majority of tumour lesions in a
patient have higher circulating levels and therefore, are more
likely to be detected in plasma, than clade or private mutations.

These results were obtained from deep analysis of a single
patient and need to be confirmed in a larger cohort of patients
with multiregional biopsies and serial plasma samples. If
confirmed, our observations have important implications for
future ctDNA studies. For monitoring tumour burden using
ctDNA, our results suggest that truncal mutations are the best
candidates, as they are highest in circulating levels and least likely
to drop out during follow-up. For molecular treatment stratifica-
tion, our results suggest that if multiple actionable somatic
mutations, or alterations that are known to confer resistance to
specific therapies, are identified in tumour analysis, their relative
circulating levels in pretreatment plasma samples may inform the
choice of targeted treatments for individual patients. The
potential of using plasma DNA for molecular stratification and
tracking of resistant clones in patients treated with targeted
therapies heralds a new era for precision cancer medicine.

Methods
Sample collection and exome sequencing. Informed consent was obtained and
research autopsy was performed under a study protocol approved by the Cam-
bridgeshire Research Ethics Committee (Cambridgeshire 3 REC 07/Q0106/
63MN.A). Collection, processing, DNA extraction and preparation of exome-
sequencing libraries for plasma samples T1, T2 and T9 have been described pre-
viously4. Exome sequencing of tumour samples and additional sequencing of
germline DNA (N1) was performed using commercially available kits. Tumour and
germline DNA were sheared using sonication to a target fragment size of 200 bp.
Whole-genome libraries were prepared from 32 to 50 ng of fragmented DNA using
ThruPLEX-FD (Rubicon Genomics) as per the manufacturer’s protocols, with
unique sample-specific molecular barcodes. Genomic libraries were quantified
using quantitative PCR and pooled for exome enrichment by hybridization using
the TruSeq Exome Enrichment Kit (Illumina). Enriched libraries were quantified
using quantitative PCR and pooled for sequencing on the HiSeq 2500 (Illumina).

Targeted amplicon sequencing. Targeted sequencing libraries were prepared
using droplet-based PCR amplification following the manufacturer’s protocols for
ThunderBolts Cancer Panel with specific modifications (RainDance Technologies).
Custom target-specific primers were designed using in-house primer design
pipelines (see Supplementary Data 5 for the list of primer sequences). Universal
adapters were added on the 50-end to allow sample-specific barcoding. Target-
specific amplification was performed using primers flanking 350 loci in multiplex
in a 40-ml volume PCR mix. Primer concentration was limited to 3.5 nM per
primer (an estimated 10,000 copies per 5 pl droplet). Droplets were generated on
the RainDrop Source instrument (8,000,000 droplets for a 40-ml volume). An input
of 2–18 ng (mean: 12.1 ng) of plasma DNA (1–10-ml volume of eluted DNA),
corresponding to the DNA extracted from a volume of 40–400 ml (mean: 280 ml) of
plasma, and 6–31 ng (mean: 21.5 ng) of genomic DNA from tumour and germline
samples were used for library preparation. PCR was performed for 55 cycles using
1 �C s� 1 ramp and following conditions: 94 �C for 30 s, 62 �C for 30 s and 68 �C for
1min followed by a final extension at 68 �C for 10min. Droplets were destabilized

using manufacturer-supplied reagents. PCR product was purified using magnetic
beads (SPRIworks) in 2:1 volume ratio. PCR product was eluted in 20 ml 1� Tris–
EDTA buffer (pH 8.0). A second 25 ml barcoding PCR was performed using 13 ml of
the eluted product and primers specific to the universal adapter with sample-
specific barcodes. PCR was performed for 10 cycles using 1 �C s� 1 ramp and
following conditions: 94 �C for 30 s, 56 �C for 30 s and 68 �C for 1min followed by
a final extension at 68 �C for 10min. An additional purification was performed
using magnetic beads (SPRIworks) in a 1.2:1 volume ratio. Libraries were quan-
tified using KAPA SYBR FAST LightCycler 480 qPCR kit (KAPA Biosystems) and
using DNA High Sensitivity Kit on BioAnalyzer (Agilent Technologies) and pooled
in 1:1 ratio. Paired-end sequencing was performed using MiSeq 150-cycle v3 kit
(Illumina).

Exome-sequencing analysis and mutation calling. Sequencing reads were
demultiplexed allowing zero mismatches in barcodes. Paired-end alignment to the
hg19 genome was performed using BWA version 0.5.9 for all exome-sequencing
data including germline samples, plasma samples and tumour samples21. PCR
duplicates were marked using Picard. Local realignment was performed using
Genome Analysis Tool Kit22. Pileup files were generated for the genomic regions
targeted by exome enrichment using samtools v0.1.1722 (ref. 23). For plasma
samples, properly paired reads with mapping quality Z60 were used to generate
the pileup. AFs for each single-base locus were calculated for all bases with phred
quality Z30. For germline DNA, an additional pileup file was generated (using a
mapping quality cutoff of Z1 and without any base quality cutoffs) and was used
as reference for calling somatic variants. All mutations were annotated for genes
and function as well as repeated genomic regions using ANNOVAR24.

A mutation was identified if (1) no mutant reads for an allele were observed in
germline DNA (N1) at a locus that was covered at least 10-fold, (2) at least five
reads supporting the mutant were observed in any tumour or plasma sample with
at least one read on each strand (forward and reverse) and (3) the binomial
probability of observing the number of mutant reads given total depth at that locus
was o0.001 assuming an error rate of 0.01.

Analysis of targeted sequencing data. Sequencing reads were extracted and
demultiplexed using Picard allowing zero mismatches in barcodes and a base
quality of Z30. Sequencing reads were clipped to remove universal adapter
sequences using ea-utils. Minimum amplicon length in our set was 80 bp. There-
fore, we removed any sequencing reads o70 bp in length following adapter clip-
ping to discard nonspecific amplification and primer dimers. Clipped sequencing
reads were aligned to the human genome hg19 using BWA version 0.7.10.
Unmapped reads, unpaired reads and supplementary alignments were removed. As
described previously, reads were demultiplexed to specific amplicons using known
amplicon start and end positions and expected amplicon length (accounting for
potential indels)11. Pileup files were generated using samtools including any reads
with mapping quality Z30 and base quality Z30. Pileup data were imported into
MATLAB.

For each locus and non-reference allele of interest, we assessed the allele
fraction in eight control plasma samples and four control genomic DNA samples.
We considered a mutation significantly detectable if the AF in a sample was 43
s.d.’s higher than the mean AF in control samples.

Control samples. A volume of 250ml pooled control plasma sample was pur-
chased from BioreclamationIVT (Baltimore, MD, USA). The sample was prepared
from equal number of male and female volunteers and collected with K2 EDTA
additive. We performed independent cell-free DNA extractions from 1-ml aliquots
of plasma and eight aliquots were used as control plasma samples. Four genomic
DNA control samples were used from the Human Random Control DNA Panel 3
(Sigma-Aldrich).

Calculation of plasma abundance for private mutations. Plasma abundance was
calculated as the product of AF of a private mutation in a tumour sample and the
corresponding AF in a plasma sample, summed across all private mutations for
each tumour. To account for cellularity of each tumour sample, we normalized the
tumour AF of each mutation by mean tumour AF of stem mutations. To normalize
for different number of private mutations in each tumour, we calculated plasma
abundance relative to T1.

Bayesian clustering using PyClone. PyClone (a Bayesian clustering method) was
used to infer the clonal population structures present in the tumour and plasma
samples from the amplicon sequencing data. Given the mutation allele frequencies
for each sample, PyClone clusters mutations that shift together across the samples
and estimates cellular prevalence for each cluster in each sample (adjusting for
copy number changes and normal cell contamination). To infer the clonal popu-
lation structure of each sample (either tumour sample or plasma sample), copy
number and depth of coverage information must be determined for each mutation
under analysis.

Copy number information at each mutation location was generated from the
whole-exome-sequencing data using the CopyWriteR Bioconductor package.
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CopyWriteR uses off-target read information from targeted sequencing data files to
determine copy number. CopyWriteR outputs segmented logarithmic depth of
coverage ratios (logR), which are converted to absolute copy number predictions.
Segments with logR below � 0.25 were assigned a copy number of 1 and those with
logR above 0.25 received a copy number of 3. A bin size of 100 kb was utilized
with hg19 as the reference genome. Whole-exome-sequencing data were available
from four metastatic samples, two primary tumour samples, three plasma
samples and patient’s germline DNA sample (used as the control in copy number
determination). Copy number predictions for other samples were assigned as the
median copy number calculated for all available samples of the same type (either
plasma, primary or metastasis). If the algorithm was unable to deduce copy number
at a given mutation locus, the sequentially nearest valid copy number assignment
was used. Inferred total copy number information for tumour and plasma samples
is presented in Supplementary Data 4.

Depth of coverage (for the normal and variant alleles at each mutation) was
computed using the bam2R function in the deepSNV Bioconductor package. The
amplicon sequencing files for each sample were used as input. Reads with a phred
quality of 30 or greater were included in the recorded read counts.

Depth of coverage and copy number information for each mutation was then
inputted into PyClone (a Bayesian clustering method) to infer the presence of clonal
mutations in both the tumour and plasma samples. Two PyClone analyses were
performed: one for the tumour samples and another for the plasma samples.
For each simulation, the PyClone algorithm was run for 40,000 iterations with a
burn-in of 20,000 iterations using the PyClone beta binomial model with the
‘total_copy_number’ option. A beta binomial value of 500 was utilized. Default
values were used for all other parameters. Cellularity for each sample (including
ctDNA samples) was estimated by computing the mean allele fraction for mutations
classified as ‘stem mutations’—these are reported in Supplementary Table 1. Mean
predicted cellular frequencies (in the case of ctDNA these should be interpreted as
clonal frequencies) for each cluster identified by PyClone are plotted in the Figs 1e
and 2b. Because PyClone corrects for normal cell contamination, the predicted
cellular frequencies shown in the figures represent the proportion of cancer cells
containing each set of clonal mutations (hence stem mutation cluster in plasma being
near 100% frequency). The T1 plasma sample was not included in the PyClone
analyses; data from the T1 sample were uncharacteristically noisy due to the sample’s
low cellularity (3%)—a reflection of low systemic tumour burden mid-treatment. The
PyClone inference results for two mutations (in the tumour sample simulation) were
ambiguous (the 5th–95th percentile credible range from the PyClone post-burn-in
trace data spanned more than 70% of the cellular frequency space), leading to
singleton clusters for each. Two mutations are not shown in Fig. 1e.
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