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Abstract

We present a generalization of the standard chaos-game representation method introduced
by Je2rey. To this aim, a DNA symbolic sequence is mapped onto a singular measure on the
attractor of a particular IFS model, which is a perfect statistical representation of the sequence. A
multifractal analysis of the resulting measure is introduced and an interpretation of singularities
in terms of mutual information and redundancy (statistical dependence) among subsequence
symbols within the DNA sequence is provided. The multifractal spectrum is also shown to be
more sensitive for detecting dependence structures within the DNA sequence than the averaged
contribution given by redundancy. This method presents several advantages with respect to other
representations such as walks or interfaces, which may introduce spurious e2ects. In contrast
with the results obtained by other standard methods, here we note that no general statement can
be made on the in7uence of coding and non-coding content on the correlation length of a given
sequence. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The large accumulation of data in the DNA databases has aroused considerable inter-
est in the statistical analysis of DNA sequences in the recent years. Li and collaborators
have reviewed the early literature on the topic [1,2], including the pioneering work of
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two of them on the 1=f� spectrum of DNA sequences [3]. By mapping the sequence
onto a (1D) walk, Peng and others have built a kind of interface, whose statistics were
used to probe the range of correlation of the sequences [4,5]. Linguistic features were
claimed to have been found in noncoding DNA sequences [6], a point that has pro-
voked controversy [7–10]. Still others have emphasized the fractality hidden in some
or other representations of the sequences [11–14].

In this work, we will follow an approach pioneered by Je2rey [15] whose potential,
to our understanding, has not been previously fully acknowledged. The method works
by mapping a DNA sequence onto an orbit on the attractor of an iterated function
system (IFS), forming a graphical pattern of the DNA sequence. To this aim, Je2rey
considered an IFS model consisting of four transformations tA; tG; tT ; tC with contrac-
tive factors ki = 1

2 , each of them mapping the unit square onto a corner of itself. This
IFS model was inspired by the four letter (A, G, T , and C) composition of the DNA
sequence, representing the nucleotides adenine, guanine, thymine and cytosine, respec-
tively. In this case, the whole unit square is the attractor of the IFS and it can be
Glled by feeding the probabilistic algorithm known as the “chaos-game” [16] with a
random sequence. However, when using a DNA sequence to feed the chaos-game, a
special pattern (a subset of the unit square) is obtained, revealing the structure of the
nucleotides sequences by visual inspection. Je2rey’s study limited itself to a few gen-
eral (graphical) features of the attractor thus generated. These were proven to originate
simply in the distribution of mono-, di-, and trinucleotide probabilities in the sequence
[17]. However, in spite of the limitations of this representation, it has found several
interesting applications, such as representing amino-acid sequences, determining protein
structures, and characterizing the evolution of species [18–20].

Je2rey’s method only deals with the graphical pattern generated on the IFS attrac-
tor by the chaos-game orbit. However, the measure generated on the attractor by this
orbit provides much more information of the DNA sequence (see [21,22] and refer-
ences therein). This measure is a perfect statistical representation of the sequence and
presents several advantages with respect to other representations such as walks or in-
terfaces, since it probes directly into the distribution of subsequences, independent of
any mapping into a walk, interface, etc. Longer sequences provide more minute details
and allow the analysis of the attractor up to longer resolution scales. Some attempts
for generalizing Je2rey’s representation by taking advantage of this singular measure
have been recently proposed. For instance, Guti)errez et al. [21] introduce a multifractal
analysis of measures corresponding to chaos-game representations of DNA sequences
and describe its application for the analysis of long DNA sequence correlation. On
the other hand, Tino [23] generalizes Je2rey’s representation to deal with n-symbol
alphabets and uses R)enyi entropy to establish a correspondence between the statisti-
cal properties of a symbolic sequence and some information related properties of the
corresponding measure.

In this paper, we present a new multifractal method which can be easily interpreted
in terms of statistical dependence using the concept of redundancy from information
theory. To this aim, a novel chaos-game representation is introduced by assigning
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scaling factors to the transformations according to the frequencies of the associated
symbols within the sequence under study. Therefore, a di2erent IFS representation
is associated with each symbolic sequence, including statistical information about the
symbols in the representation. To our knowledge, other chaos-game representations
previously reported in the literature consider a Gxed scaling factor for all the transfor-
mations and, therefore, the following analysis is not possible in those cases. We show
how our representation provides a connection between the multifractal spectrum of the
resulting measures and the mutual information, or redundancy, of nucleotides separated
by a prescribed distance within the DNA sequence, thus characterizing the statisti-
cal dependence structure of subsequences within the symbolic sequence. Moreover, the
spectrum of singularities displays the contribution to the averaged redundancy of di2er-
ent combinations of symbols forming precise subsequences within the DNA sequence,
thus allowing a more detailed analysis of the statistical structure of these sequences.
As illustrated by several examples, the resulting multifractal analysis allows us to study
some important properties of DNA, such as the existence of long-range correlations in
coding and non-coding DNA sequences previously analyzed with other methods.

In Section 2, the chaos-game representation model is presented, and several advan-
tages over other representations are discussed. In Section 3, we brie7y describe the
multifractal analysis used in this paper and analyze the connection with the concepts
of mutual information and redundancy. Finally, some results of the methodology, when
applied to some DNA coding and non-coding sequences, are presented in Section 4,
establishing special emphasis on those results which have been obscured by other stan-
dard procedures.

2. An alternative IFS representation for symbolic sequences

The chaos-game representation introduced by Je2rey uses IFS models to represent
symbolic sequences. An IFS is a Gnite collection, t1; : : : ; tm, of linear contractive maps
with contraction factors k1; : : : ; km on Rn [24,25]. The contractivity property deter-
mines the existence of a subset A⊂Rn, called the attractor of the IFS, which exhibits
self-similar structure, as it is the union of m aNne copies ti(A); i= 1; : : : ; m of itself, as
given by A=

⋃m
i=1 ti(A). This property provides a convenient framework for symbolic

analysis of sequences from an alphabet {a1; : : : ; am}, since any subsequence ai1ai2 : : : aiL
of length L corresponds to a succession of applications of the maps which determine
a region of the attractor tiL(: : : ti2 (ti1 (A))) of size ki1ki2 : : : kiL called an order-L iterator
of the attractor (where each of the letters ai has been associated with the correspond-
ing transformation ti). Therefore, the attractor can be partitioned at di2erent resolution
scales by the mL order-L iterators.

Je2rey’s 2D representation has the advantage of visual appeal but, as we shall show
later, it hinders an analytical treatment of the obtained measure. For this reason, for a
Gnite alphabet consisting of m symbols we consider an alternative 1D representation
consisting of m non-overlapping similitudes of factor ki = 1=m, which maps the unit
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Fig. 1. Standard k1 = k2 = 1
2 (a) and detrended k1 = 1

3 ; k2 = 2
3 (b) IFS representation models (below) and

multifractal measures (above) corresponding to a binary sequence with 1
3 zeroes content and 2

3 ones content.

interval onto itself [23]

ti(x) =
1
m
x +

i − 1
m

; i= 1; : : : ; m ; (1)

with contractivity factors ki = 1=m. Therefore, the image of a sequence ai1ai2 : : : aiL lies
in one of the mL order-L iterators of size 1=mL in which the unit segment is divided.
In other words, the analysis of the attractor up to resolution 1=mL is equivalent to
the analysis of the subsequences of length L contained in the sequence. Fig. 1(a)
illustrates the case m= 2 with di2erent iterators associated with sequences up to L= 3,
at three resolution levels; the multifractal measure, generated by a 500 000 random
binary symbolic sequence with 1

3 zeroes content and 2
3 ones content is also shown.

The main advantage of this 1D representation is that we can easily implement a
detrended measure replacing the equal contraction factors ki = 1=m by ki =pi, where
pi is the normalized frequency of the ith symbol on the sequence under study. This
process will cancel the bias of the representation due to di2erent symbols content in
the sequence under study and, then, a random uncorrelated sequence will generate a
uniform measure on the attractor of the detrended IFS. Therefore, we introduce the
following IFS representation for a given symbolic sequence:

ti(x) =pi x + li; where li =
i−1∑
j=0

pj; i= 1; : : : ; m; with p0 = 0 : (2)

For instance, Fig. 1(b) shows the detrended IFS representation for the symbolic se-
quence analyzed in Fig. 1(a) and the corresponding uniform multifractal measure; in
this case, the scaling factors k1 = 1

3 and k2 = 2
3 are considered for the transformations.



J.M. Guti�errez et al. / Physica A 300 (2001) 271–284 275

Thus, we can easily detect non-random structure within the symbolic sequence through
the deviation of the actual measure from a uniform one. A quantitative measure of this
deviation can be obtained from a multifractal analysis of the measure. Since, the 1D
detrended IFS is still formed by similitudes, a simple analytical treatment is possible
for obtaining the multifractal spectrum [26,27] (note that this is not always possible
when dealing with 2D representations, like those used in Ref. [21]).

3. Multifractal analysis

Multifractals are self-similar measures that can be regarded as densities on some
domain. In most of the cases, these measures cannot be characterized by a unique
scaling exponent (such as a fractal dimension), but an entire spectrum of local scaling
exponents, or singularities, is needed. We treat the measure �(x) deGned by a DNA
sequence on the support A of the IFS model (1) or (2) as a multifractal. Multifractal
formalism analyzes fractal properties of those subsets E(�), where the measure has a
given local scaling exponent, or singularity, i.e., subsets formed by points x, where
�(B(x; r)) ≈ r� for small r (where B(x; r) is the r-ball centered at x). In the case of
measures generated by the chaos-game algorithm on the support of an IFS model (IFS
measures), the singularities can be expressed in terms of the order-L iterators of the
support.

� ≈ log �(In(x))
log(rn)

; (3)

where In(x) is the set of order-L iterators of size rn containing x.
The main objective of the multifractal analysis of a measure � deGned on a fractal

support is characterizing the dimensions, f(�), and the structure associated with the
sets E(�) as a function of the singularities �. This information is gathered in the
multifractal spectrum �− f(�).

In general, the calculation of the multifractal spectrum is not an easy task [28–30];
however, in the special case of IFS measures, there exists a simple and eNcient com-
putational procedure for obtaining the spectrum of singularities [26,27]. This method
relies on the use of a coarse grained representation of the attractor given by the mL

order-L iterators of the attractor associated with sequences of length L; we start from
the generating function

�n(q) =
mL∑
i=1

�qi ; (4)

deGned for each value q∈R. For a multifractal measure, this function scales as

�n(q) ≈ (k−L)�(q) ⇒ �(q) ≈ − log(
∑

i �
q
i )

L log(k)
; (5)
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Fig. 2. Multifractal spectra for the two measures shown in Fig. 1; values for parameter q are taken in the
range (−30; 30).

in a representative range L∈ (l1; l2), which determines a scaling regime characterized
by the exponent �(q) (where k is the contractivity factor of the IFS model). This func-
tion provides a simple way to introduce the singularities by considering the following
parametric form

�(q) =
@�(q)
@q

≈ − log(
∑

i �
q
i )

L(
∑

i �
q
i ) log(k)

: (6)

In this case, the f-value associated with �(q) is given by f(�(q)) = q �(q) − �(q).
This gives a parametrization (�(q); f(�(q)) of the multifractal spectrum that can be
computationally obtained in a simple way.

For instance, Fig. 2 shows the multifractal spectrum obtained using the above method
for the two measures shown in Fig. 1. The uniform measure generated by the case
k1 = 1

3 is, as expected, delta-shaped.
Therefore, the multifractal formalism provides appropriate techniques for analyzing

DNA IFS-based measures, by obtaining the spectrum of singularities with a simple
computational procedure. In this case, the probability of appearance of a certain sub-
sequence is characterized, in the multifractal analysis, by the singularities �i associated
to each point xi (whose address is a given subsequence). So, by analyzing the attrac-
tor up to a certain length scale 2L, we can probe the distribution of subsequences of
length L, where k is the contractivity factor of the IFS model (for instance, for the
IFS representation (1) with m= 2; k = 1

2).
It is important to remark here that, in practice, it is not always the case that an

observed measure has a unique scaling regime, but several di2erent scaling regimes
could be found associated with changes produced in the system at di2erent critical
scales. As we shall see later, this is the case of DNA sequences where correlations in
the sequence induce changes in the scaling, leading to di2erent multifractal regimes at
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di2erent lengths, while symbol correlations persist. In fact, this lack of scaling can be
used to detect dependence structures within the sequence. Furthermore, we can quantify
the decay of correlations in the DNA sequence by Gxing a scale k = 1=2L, that corre-
sponds to subsequences of length L, and by computing directly the spectrum fL(�) at
that scale using (6). The way in which the spectrum varies provides a quantiGcation of
the non-random structures existing within the DNA sequences. Note that, as opposite to
other dimension-like and entropy-like measures, inspired by the information-theoretical
measures that are widely used in linguistics [31,32], the analysis of local singularities
does not focus on a single exponent, but considers all the scaling behaviors within
the sequence. Moreover, some of these measures, such as the entropy, can be obtained
from a single point in the spectrum.

To compute the variation of the spectrum more eNciently we introduce a skipping pa-
rameter s by reading the sequence for every sk nucleotides. From a sequence a1a2 : : : an
of length n, we extract s− 1 sequences of length n=s a1as : : : ; a2as+1 : : : ; as−1a2s−1 : : : :
These are used to feed the chaos-game algorithm. We have observed that, as the
skipping length s is increased, the spectrum becomes narrower, mainly from the con-
tributions of positive q’s. Since the growth of s produces a loss of correlations, it is
clear that the narrowing spectra approach the delta-shaped spectrum of a uniform mea-
sure, associated with an uncorrelated random sequence (remember that we are using
the detrended representation introduced in the previous section). This narrowing can be
observed in plots of P�= �(qc)−�(−qc) (see below), for some value of qc (normally
the extreme values). This function decays as s grows until it is almost indistinguishable
from that corresponding to a random reference sequence.

Moreover, the resulting multifractal spectrum can be interpreted in terms of statistical
dependence by using the concepts of mutual information and redundancy [33]. The
mutual information can be considered a non-linear analog of the correlation between
two random variables X1 and X2 with a joint probability function p(x1; x2) and marginal
probabilities p(x1) and p(x2). The mutual information of the variables is deGned as

I(X1; X2) =
∑
x1

∑
x2

p(x1; x2) log
p(x1; x2)
p(x1)p(x2)

: (7)

I(X1; X2) is symmetric, non-negative and equal to zero if and only if X1 and X2 are
independent. Therefore, this deGnition provides a convenient framework for analyzing
statistical independence (which is more general than simple correlation) in symbolic
DNA sequences. The generalization of this concept to more than two variables leads
to the following deGnition of redundancy, which has similar properties:

Re(X1; : : : ; Xn) =
∑
x1

· · ·
∑
xn

p(x1; : : : ; x2) log
p(x1; : : : ; x2)
p(x1) : : : p(xn)

: (8)

Now, note that from (3) we have

�i1 ;:::;iL =
log �(I)
log(r)

=
logp(ai1 ; : : : ; aiL)
log(ki1ki2 : : : kiL)

=
logp(ai1 ; : : : ; aiL)

log(p(ai1 ) : : : p(aiL))
: (9)
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for an arbitrary iterator I(x) = tiL(: : : ti2 (ti1 (A))) of size ki1ki2 : : : kiL , where �(I) =
p(ai1 ; : : : ; aiL) denotes the probability of Gnding a subsequence ai1 : : : aiL within the
sequence, and p(ai) denotes the probability of Gnding a symbol ai in the sequence.
Then,

logp(ai1 ; : : : ; aiL) = �i1 ;:::;iL log(p(ai1 ) : : : p(aiL)) ⇒
p(ai1 ) : : : p(aiL) =p(ai1 ; : : : ; aiL)

1=�i1 ; :::; iL : (10)

Substituting (10) into (8) leads to

Re=
∑
i1

· · ·
∑
iL

(
1 − 1

�i1 ;:::;iL

)
p(ai1 ; : : : ; aiL) logp(ai1 ; : : : ; aiL) : (11)

Therefore, values of �i1 ;:::;iL = 1 correspond to subsequences ai1 : : : aiL which do not con-
tribute to the increase of the redundancy, p(ai1 ; : : : ; aiL) =p(ai1 ) : : : p(aiL), whereas val-
ues lower or higher than 1 indicate a positive or negative contribution to the redun-
dancy of the variables, respectively. This result shows that Eq. (11) can be interpreted
in connection with the multifractal spectrum of the measure (which displays the dis-
tribution of singularities on the DNA measure) for providing a general picture about
the independence relationships among sequences of symbols within the DNA sequence.
Moreover, if we select only the set of subsequences corresponding to a certain interval
of singularities, then the new redundancy of the new restricted “language” can still be
obtained using (11).

Note that by using sequences with skipped symbols the above analysis can also
provide information about the existence of short and long-range dependencies within
coding and non-coding DNA sequences; this problem has been extensively analyzed in
the literature leading to some controversy [7–10].

4. Results and discussion

We are interested in analyzing the measure generated by DNA sequences on the
IFS representation (2); for the sake of comparison with other methods, in this paper,
we have considered both a four-letter A, C, G, T alphabet (m= 4) and a two letter
pyrimidines and purines alphabet (m= 2), obtaining similar results; therefore, for the
sake of simplicity, we shall use the pyrimidines and purines representation (two letter
alphabet) throughout the paper.

In order to assert the generality of the results, we have applied this analysis to
a large number of representative genomic sequences across the phylogenic spectrum,
with high and low coding content. No general results seem to hold for the long-range
correlation character of coding and non-coding sequences, in contrast with other results
reported in the literature that found long-range correlation in non-coding sequences and
short-range correlation in coding sequences. In the light of our results, we think that
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Fig. 3. fs(�) spectra for the human #-globin (low coding content) for several values of the skipping length s.
The sequence of spectra collapses for values of s larger than 200. The inset shows a magniGcation of the
area contained in the square, corresponding to the q-values closer to zero. The spectra are obtained with
q∈ (−30; 30).

this characteristic feature appears to be rather related to the positions in the phylogenic
tree of each particular chain.

With the aim of illustrating the lack of general results we present two examples of
previously analyzed DNA sequences with high and low coding contents, respectively.
We found long and short-range correlations, respectively, in contradiction with other
general results reported in the literature. We Grst consider the intron-containing hu-
man #-globin sequence (GenBank name HUMHBB, 73326 base pairs) which has low
coding content and has been previously analyzed using a random walk in Ref. [4],
reporting a mean 7uctuation exponent 0:71 from a scaling region of four orders of
magnitude; this suggests the presence of a long-range correlation. Fig. 3 shows a se-
quence of fs(�) spectra for some values of the skipping length s, ranging from s= 10
to 1500. The resulting sequences collapse for values of s larger than 200 and become
indistinguishable from those corresponding to a random reference sequence (obtained
by randomly rearranging the symbols in the sequence).

This fact is also shown in Fig. 4, where P� is plotted against the skipping length s
for the case qc = 30 (the extreme value), leading to a value P� equal to the width of
the spectrum of singularities. The log–log inset shows two di2erent regions. First, P�
decays following a power law up to s= 200. Afterwards, a plateau is reached, where
its value becomes indistinguishable from that corresponding to a random reference
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Fig. 4. P� versus s, from the spectra of Fig. 3; the error bars correspond to 20 realizations of an uncorrelated
reference sequence obtained by randomly rearranging the nucleotides in the original chain. The inset shows
a double logarithmic plot of the same Ggure, with a power law decay up to s ∼ 200 and a roughly constant
regime beyond.

sequence. We conclude that it makes no sense to ascribe a long-range correlation
character to this sequence beyond a few hundred nucleotides.

The lack of scaling in the distribution of subsequences can also be observed by
using the same skipping criteria with other standard representations. In Fig. 5, we
plot the scaling exponent of the mean square 7uctuation of a DNA walk for di2erent
skipping lengths. This Ggure looks very similar to the one obtained with the multifractal
method. Namely, after a few hundred nucleotides, the exponent reaches a plateau of
value 0.5, corresponding to an uncorrelated random walk. A similar result has been
recently obtained computing the fractal dimension associated with DNA random walks
[14].

On the other hand, we can see that P� corresponding to the sequences with high
coding content decays by oscillating with a characteristic period three, that arises from
the codon structure. In Fig. 6, we illustrate this fact by considering a complete genome
containing mostly coding regions (complete genome of E. coli, approx. 4 Mbp). This
oscillation has been previously observed in other contexts [14,34]. The oscillation has
the e2ect such that the decaying function presents two branches, one above the other.
The upper branch corresponds to the values of s that are a multiple of 3, and keep
the skipping sequence roughly in the same “frame” (in the genetic sense). So, the
enhancement of the correlation in this branch can be associated with an e2ect due
to the coding part of the sequence (as previously reported in [35,36]). In agreement
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Fig. 5. Scaling exponent # of the mean square 7uctuation function F(l) (F(l) ∼ l#) as a function of the
skipping length s, for a DNA walk corresponding to the same sequence as Figs. 3 and 4 (see [4] for a
description of the DNA walk); the error bars correspond to 20 realizations of an uncorrelated reference
sequence obtained by randomly rearranging the nucleotides in the original chain. The inset gives a double
logarithmic plot, showing how an uncorrelated regime is attained at skipping length s ∼ 400.

with this interpretation we can observe in the log–log representation (right inset in
Fig. 6) an initial plateau which extends to amount hundred bases (the order of proteins’
length). Beyond this plateau, correlations decay slightly faster than in the lower branch,
where coding e2ects are not enhanced by skipping. In both branches, a long-range loss
of memory can be observed. These results are in contrast with those obtained from a
standard detrended DNA walk analysis which gives the exponent 0:51 from a scaling
region up to L= 1000 [5], suggesting that no long-range correlation is associated with
this sequence with a high coding content. In this case, the method proposed in this
paper allows us to analyze in more detail the decay of correlations, discovering that the
power law holds up to a kilo-base where it is indistinguishable from a reference random
sequence. Fig. 7 compares the standard redundancy and the singularities width of the
sequence, as a function of the skipping parameter s. From this Ggure, we can see how
the standard “averaged” redundancy quickly decays to zero, while the spectrum width
P� still detects a dependent combination of symbols within the sequence, associated
with extreme singularity values, as explained above.

There are two points to be stressed here, under the light of these results. First, the
fact that there is not a single well-deGned spectrum at all scales shows that a simple
scaling in the distribution of subsequences within a DNA sequence does not exist. To
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Fig. 6. P� versus s for the complete E. coli genome (high coding content); the error bars correspond to 20
realizations of an uncorrelated reference sequence obtained by randomly rearranging the nucleotides in the
original chain. The two insets show the power-law decay of the branches.

Fig. 7. P� and redundancy (Re) versus s for the complete E. coli genome.
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put it more dramatically, we can say that any dimension of the multifractal, say D1,
decays with the scale at which we probe. If D1, that is an exponent and should be
of the same characterization of the scaling, decays, then all we can say is that the
only meaningful exponent is that of the random sequence. Second, we observe that the
attractor—the distribution of subsequences—is nevertheless not trivial, since it presents
the same characteristic feature just described.

We need to emphasize that these results have been obtained with a method that
directly probes into the distribution of subsequences of the DNA. This raises the ques-
tion of how to interpret previous results by other authors, where long range correlations
have been reported, in particular in the non-coding sequences. We are not sure as to
what the answer could be, but we do envisage several possibilities. When a sequence
is mapped onto a random walk or interface, some kind of uncontrolled e2ect is likely
to be added to the simple repetition of sequences. For instance, in the mapping to
interfaces, sequences of di2erent singularities can produce segments with equal width,
and contrarily, segments with di2erent widths can be constructed from sequences with
similar singularities. No connection between singularities of sequences and widths of
interfaces seems to exist. Moreover, random walks or interfaces are processes that result
from the integration of a numerical series directly mapped from the coding sequence.
This integration could originate from an inertia of the method to extrapolate a valid
exponent at some short scale, to other scales where it is no longer valid. This e2ect
has been well described in the analysis of superrough interfaces [37]. On the other
hand, this e2ect could be maintained for long scales since, in these processes, longer
sequences need better statistics, contrarily to the IFS mapping, where longer sequences
produce more minute details.
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