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1. INTRODUCTION

The interest in modelling of climate temporal and
spatial variability has increased over the last few de -
cades, mainly due to the observed symptoms of
global warming. This climate evolution at the global
scale has an impact on various aspects of human
lives, including the necessity of adaptation, mitiga-
tion and reasonable planning of food supplies (Rötter

2014, Trnka et al. 2014). Therefore, modelling of cli-
mate change through the analysis of empirical mete -
o rological data is of great importance. Historical and
contemporary meteorological data are the main
sources of input to climate change models. The stan-
dard approach to detecting climatic changes consists
of measuring trends and oscillations of the relevant
meteorological quantities (Balling et al. 1998). This
allows researchers to confirm the projected continua-
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ABSTRACT: Agro-meteorological quantities are often in the form of time series, and knowledge
about their temporal scaling properties is fundamental for transferring locally measured fluctua-
tions to larger scales and vice versa. However, the scaling analysis of these quantities is compli-
cated due to the presence of localized trends and nonstationarities. The objective of this study was
to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological
quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA
was performed with 11 322 measured time series (31 yr) of daily air temperature, wind velocity, rel-
ative air humidity, global radiation and precipitation from stations located in Finland, Germany,
Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The
richness of the studied multifractals was evaluated by the width of their spectrum, indicating con-
siderable differences in dynamics and development. In log-log plots of the cumulative distribu-
tions of all meteorological parameters the linear functions prevailed for high values of the
response, indicating that these distributions were consistent with power-law asymptotic behav-
iour. Additionally, we investigated the type of multifractality that underlies the q-dependence of
the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time
series. For most of the studied meteorological parameters, the multifractality is due to different
long-range correlations for small and large fluctuations. Only for precipitation does the multifrac-
tality result mainly from broad probability function. This feature may be especially valuable for
assessing the effect of change in climate dynamics.

KEY WORDS:  Multifractal analysis · Time series · Agro-meteorological parameters

Resale or republication not permitted without written consent of the publisher

Contribution to CR Special 31 'Modelling climate change impacts for food security'
FREEREE
 ACCESSCCESS



Clim Res 65: 39–52, 201540

tion of the change in the meteorological parameters
(e.g. increase in the measured air temperature both
at regional and global scales; Lana et al. 2009, Mar-
tinez et al. 2010, Ludecke et al. 2011, IPCC 2013).
However, this classical approach gives satisfactory
results only in climatic zones with ex treme climate
change dynamics. Therefore, more subtle methods
are being developed and applied in order to project
changes in meteorological para meters in climatic
zones with less extreme climate change dynamics.
These include fractal analysis and chaotic evolution
analysis of the atmospheric system (Kantelhardt et al.
2002, Higuchi 1988, Kalauzi et al. 2005).

Several previous reports have indicated the multi-
fractal nature of many atmospheric and terrestrial
physical and meteorological records, such as cloud
distribution (Schertzer & Lovejoy 1988), wind speed
(Kavasseri & Nagarajan 2005, Feng et al. 2009), air
temperature (Koscielny-Bunde et al. 1998, Király &
Jánosi 2005, Bartos & Jánosi 2006, Lin & Fu 2008,
Yuan et al. 2013), ocean temperature (Fraedrich &
Blender 2003), ground surface and soil temperature
(Jiang et al. 2013), precipitation (Deidda 2000, Gar-
cía-Marín et al. 2008, de Lima & de Lima 2009, Gem-
mer et al. 2011, Lovejoy et al. 2012), and ozone con-
centration (Jimenez-Hornero et al. 2010). Although
long-range correlations in air temperature time
series have been discussed by a number of authors,
there is no consistency in the final conclusions
(Maraun et al. 2004). Therefore, further studies are
needed.

The temporal fluctuations of a time series can be
expressed through the power spectral density, which
describes the frequency distribution of the signal
power, defined in terms of the Fourier functions. The
presence of long-range correlated structures in a pro-
cess is expressed by a power-law shape of the power
spectrum, which is linear if plotted on a log-log scale.
Such behaviour, called scaling, allows quantification
of the strength of the temporal fluctuations in any pro-
cess by estimating the scaling exponents (Koscielny-
Bunde et al. 1998). Multifractal analysis is a powerful
method of characterising long-range correlations
within the time series through calculation of different
scaling exponents for different parts of the series
(Kantelhardt et al. 2006). In recent years, the multi-
fractal detrended fluctuation analysis (MFDFA)
method has become a widely used technique for the
determination of multifractal scaling properties and
the detection of long-range correlations in noisy,
non-stationary time series. The original version of
this method (Kantelhardt et al. 2002) has been ap -
plied to the daily rainfall time series in the Pearl River

basin and was compared with a universal multifractal
model to show a relationship between topography
and rainfall variability (Yu et al. 2014). Applying
MFDFA on daily ground surface temperature records
from 4 representative weather stations over China
revealed considerable differences of the generalized
Hurst exponents among sites (Jiang et al. 2011).
These results indicate that the strength of the multi-
fractal behaviour of ground surface temperature is
non-universal and depends on the geographical loca-
tion of the station. Furthermore, it was possible to
establish the multifractal properties of rainfall in
space and time (Valencia et al. 2010), to develop suit-
able models (Veneziano et al. 2006), and to use the
models to predict rainfall extremes (Venugopal et al.
2006, Yonghe et al. 2013).

Recently, the combined fractal and chaos methods
have been incorporated for processing of geophysi-
cal, climatic and meteorological time series (Sivaku-
mar 2000, Kalauzi et al. 2005, Gutiérrez et al. 2006,
Chaudhuri 2006). This new approach delivered infor-
mation about the impact of climate variability on eco-
logical systems. It was confirmed that understanding
of meteorological dynamics is possible by analysing
time series with a huge number of records collected at
short time intervals (e.g. on a daily basis). Kalauzi et al.
(2005) elaborated the consecutive differences method,
which was used to analyse monthly meteo ro logical
recordsofrainfall,evaporation,relativehumid ity,min-
imum temperature, sunshine duration and evapora-
tion/precipitation ratio from the Amazonian area in
Ecuador and Verano, Italy (Kalauzi et al. 2009). Apply-
ing fast Fourier transform (FFT) to fractal dimension
courses showed that fractal rhythms followed almost
the same oscillation patterns as those corresponding
to meteorological dynamics. It was also noticed that
the fractal dimensions of all the meteorological time
series ranged from 1.5 to 2, indicating a complex
chaotic structure.

Previousstudiesofmultifractalpropertiesofmeteor-
ological time series solely focused on analysing data
from individual sites, small areas (region) or a specific
meteorological quantity over a short time period (Bar-
tos & Jánosi 2006, García-Marín et al. 2008, de Lima &
de Lima 2009, Feng et al. 2009, Jiang et al. 2013, Rodrí -
guez et al. 2013). Therefore, there is a need to compare
multifractal properties of various long-term meteoro-
logical time series over large areas with varying cli-
mate conditions in order to generalise the differences
in the dynamics of meteorological processes. Thus,
the aim of the present work is to analyse spatial and
time variation of multifractal properties of daily mete-
orological time series.
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2.  MATERIALS AND METHODS

In this paper, we employ the MFDFA method to
investigate multifractal behaviour of chosen meteor-
ological time series in 4 regions of Europe. To deter-
mine whether climate change has any impact on
multifractal spectra, we divided all meteorological
time series into the subsets 1980−1995 and 1996−
2010 to compare respective spectra.

The question arose whether the analysed time se-
ries length (11 322 samples for each series) was suffi-
cient to perform MFDFA. On the basis of the existing
theoretical studies we found that the MFDFA method
is less sensitive to the size of the series than other
multifractal methods, e.g. wavelet transform modulus
maxima (Oświęcimka et al. 2006). Detailed analysis
of the influence of time series length on the precision
of the MFDFA method for several mono- and multi-
fractal models has been delivered by López & Contr-
eras (2013). They concluded that series as short as 210

could be analyzed using MFDFA with a precision of
some 5% at the largest values of |q | < 5 (where q is
the order of the fluctuation function), and even better
precision was found for −3 ≤ q ≤ 3. Cristescu et al.
(2007) found that multifractal analysis gives reliable
results for time series longer than 4000 samples. The
same authors suggested that if the available time se-
ries is much shorter, considerably improved results
are expected via a lengthening procedure consisting
of repeating the available time series. Benbachir & El
Alaoui (2011) used a series of 4486 samples to analyse
dynamics of the financial markets with the MFDFA
method. There were also trials to apply multifractal
detrended analysis to even smaller time series (e.g.
Stan et al. 2013 used ~2000 samples, Pavón-
 Domín  guez et al. 2013 used ~650 samples). In our
study we decided that our time series should not be
shorter than 4000 samples; therefore, the only ratio -
nal way of analysing a possible change in multispec-
tral properties of the studied meteorological quan ti -
ties in time was to use to 2 equal subsets, 1980− 1995
and 1996−2010 (each containing ~5000 samples). We
realize that such division of the series would not take
into account some observed global climate shifts, e.g.
around 1980 (Huntingford et al. 2013) or 2001/2002
(Swanson & Tsonis 2010).

2.1.  Study site and meteorological data

The study sites were located in 4 European coun-
tries of various climatic conditions: Finland, Germany,
Poland and Spain. The data used in the analysis came

from 6 different stations: Jokioinen, Finland
(60° 48’ N, 23° 30’ E, 104 m a.s.l.); Dikopshof (50° 48’
29” N, 6° 57’ 7” E, 60 m a.s.l.) and Nossen (51° 3’
36” N, 13° 16’ 12” E, 255 m a.s.l.), both Germany; Lle -
ida, Spain (41° 42’ N, 1° 6’ E, 337 m a.s.l.); and Gra -
bow (51° 24’ 59” N, 21° 58’ 09” E, 152 m a.s.l.) and
Lublin (51 15’ N, 22° 34’ E, 170 m a.s.l.), both Poland.
The site in Jokioinen has a subarctic climate with a
strong seasonality of severe winters and cold, short
summers without a dry season (Köppen-Geiger cli-
mate classification: Dfc). The climate in Lleida is semi-
arid with Mediterranean-like precipitation patterns
(annual average of 369 mm), with foggy and mild win-
ters and hot and dry summers (Köppen− Geiger cli-
mate classification: BSk). Nossen and Dikops hof rep-
resent maritime temperate climates (Köppen-Geiger
climate classification: Cfb); there is significant precip-
itation throughout the year in both German sites. The
Grabow and Lublin sites have warm summer conti-
nental climates (Köppen-Geiger climate classifica-
tion: Dfb); however, the site in Lublin is within the city
area. We are aware that the limited number of sites
from 4 different climate zones is not representative of
Europe as a whole, and therefore we are unable to
generalize the results for the whole range of possible
climatic conditions on the continent. To indicate the
differences in multifractal properties of the meteoro-
logical quantities for such a limited number of sites,
our assumption is that the assumed methodology
would be suitable to reveal the differences in the
dynamics of meteorological processes for varied cli-
mate zones. A positive result would be a basis for a
more detailed study (more sites and the whole range
of climate conditions).

The weather time series of all 6 sites were measured
daily from 1 January 1980 to 31 December 2010, using
comparable standard equipment for all stations. Six
variables were considered in the present study: air
temperature (°C), relative air humidity (%), precipita-
tion (mm), wind speed (m s−1) and global radiation
(W m−2) (not available for the Lublin site). For Joki o -
inen, wind speed was measured at 10 m height. For
comparison with measurements from other stations, it
was converted to a height of 2 m assuming the loga-
rithmic wind profile of Allen et al. (1998; their Eq. 47).
For Lleida, the wind speed time series had gaps of
82 d in autumn 1986, and global radiation data had
gaps of 48 d (11 d in September 1988 and 37 d in
spring 1990). These gaps were filled by taking the
absolute values of the associated grid cell in the ERA-
interim dataset (Dee et al. 2011).

The descriptive statistics of the meteorological time
series are presented in Table 1. The highest mean and
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median values of air temperature and global radiation
in the 31 yr period were observed at the Lleida station
and the lowest at the Jokioinen station. The highest
mean and median values of relative air humidity were
observed at Jokioinen, and the lowest at Lleida. The
skewness and kurtosis parameters of the analysed
time series give information about differences in their
statistical distributions. Air temperature and relative
air humidity are characterized by negative skewness
and small kurtosis, which inform us that these distribu-
tions are left-tailed and have a more rounded peak and
thinner tails compared with wind speed distribution,
which is characterised by positive skewness and larger
kurtosis. In contrast, precipitation showed higher posi-
tive skewness and very large kurtosis for all stations,
indicating strongly right-tailed distributions with sharp
peaks and fat tails.

2.2.  Data analyses

The MFDFA of the nonstationary time series xk of
length N consists of 5 steps (Kantelhardt et al. 2002).

(1) The noises are converted into random walks by
subtracting the mean value and integrating the time
series. Thus the ‘profile’ is created as:

(1)

(2) Each ‘profile’ is divided into Ns = int(N/s) non-
overlapping segments of equal length s. Since the
length N of the series is often not a multiple of the
considered time scale s, a short part at the end of the
profile may remain. Therefore, the same procedure
should be repeated starting from the opposite end to
obtain 2 Ns segments altogether.

Y i x x i Nk

k

i

( ) = 1, ,
1
∑ [ ]− = …

=
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Variable                                           Mean             Min.              Max.               SD             Median       Skewness       Kurtosis
Site

Precipitation (mm d−1)
Dikopshof, DE                                   1.7                 0.0               75.4                 3.8                 0.0                 4.5               38.1
Nossen, DE                                         2.0                 0.0               73.5                 4.6                 0.0                 4.9               41.5
Jokioinen, FI                                       1.7                 0.0               79.1                 3.9                 0.1                 5.0               49.3
Lleida, ES                                           0.9                 0.0               83.6                 3.8                 0.0                 7.2               75.7
Lublin, PL                                           1.5                 0.0               61.6                 4.0                 0.0                 5.7               49.6
Grabow, PL                                         1.7                 0.0             105.9                 4.6                 0.0                 6.0               63.4

Global radiation (MJ m−2 d−1)
Dikopshof, DE                                 10.6                 0.0               31.7                 7.7                 9.0                 0.6                 2.4
Nossen, DE                                       10.3                 0.0               31.1                 7.5                 8.6                 0.7                 2.4
Jokioinen, FI                                       9.1                 0.0               31.7                 8.4                 6.4                 0.7                 2.3
Lleida, ES                                         15.7                 2.9               30.8                 8.2               15.3                 0.1                 1.7
Grabow, PL                                       10.4                 0.0               31.6                 7.8                 8.6                 0.5                 2.1

Wind speed (m s−1)
Dikopshof, DE                                   2.6                 0.2                 9.4                 1.3                 2.4                 1.1                 4.8
Nossen, DE                                         2.3                 0.0                 9.6                 1.4                 2.0                 1.1                 4.4
Jokioinen, FI                                       2.3                 0.0                 7.7                 1.0                 2.6                 0.5                 3.5
Lleida, ES                                           2.6                 0.3               17.8                 1.7                 2.2                 2.0                 9.2
Lublin, PL                                           2.6                 0.0               10.3                 1.2                 2.3                 0.8                 3.8
Grabow, PL                                         3.8                 0.0               21.0                 1.8                 3.3                 1.4                 7.2

Relative air humidity (%)
Dikopshof, DE                                 79.2               33.0               99.8               11.4               80.7               −0.7                 3.1
Nossen, DE                                       76.4               34.2               99.7               11.7               77.6               −0.4                 2.6
Jokioinen, FI                                     79.4               37.5             100.0               11.9               80.0               −0.3                 2.2
Lleida, ES                                         69.5               31.9               98.6               10.7               68.8                 0.2                 2.7
Lublin, PL                                         76.6               31.6             100.0               12.2               77.8               −0.4                 2.7
Grabow, PL                                       79.0               32.0             100.0               12.1               81.0               −0.6                 2.8

Air temperature (°C)
Dikopshof, DE                                 10.2             −16.8               28.9                 6.8               10.5               −0.2                 2.5
Nossen, DE                                         9.3             −20.6               30.2                 7.9                 9.6               −0.2                 2.5
Jokioinen, FI                                       4.6             −33.4               25.0                 9.3                 4.7               −0.4                 2.8
Lleida, ES                                         15.0               −8.3               33.1                 7.6               14.7                 0.0                 2.1
Lublin, PL                                           8.7             −22.8               28.3                 8.8                 9.1               −0.2                 2.4
Grabow, PL                                         8.1             −26.6               27.6                 8.7                 8.6               −0.3                 2.5

Table 1. Descriptive statistics of the whole daily 31 yr meteorological time series from 6 stations in Germany (DE), Finland (FI),
Poland (PL) and Spain (ES). Mean, min., max., standard deviation (SD) and median have units corresponding to the units of the 

meteorological variable; skewness and kurtosis are non-dimensional
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(3) The linear local trend for each of 2 Ns segments
is calculated by a least square fit of the series, and
then the variance F 2(s, ν) is determined using:

(2)

(3)

where yν(i) is the fitting line in segment ν.
(4) All segments are averaged to obtain the qth-

order fluctuation function Fq(s):

(4)

(5) The scaling behaviour of the fluctuation func-
tions is determined by analysing log-log plots Fq(s)

versus s for each value of q. For multifractal time
series, Fq(s) increases (for large values of s), as a
power law:

(5)

with the generalized Hurst exponent h(q) depending
on q.

The multifractal spectrum is obtained using the
relationship:

(6)

and then the Legendre transform:

(7)

The schematic representation of a multifractal
spectrum with its most important parameters αmax,
αmin, α0, as and w is shown in Fig. 1. The parameter
αmin indicates the most extreme and αmax the
smoothest events in the studied process. A low value
of α0 indicates that the underlying process becomes
correlated and loses fine structure, becoming more
regular in appearance. The asymmetry parameter as

achieves negative or positive values for a left- or
right-skewed shape, respectively. The as is zero for
symmetric shapes. A left-skewed spectrum means
low fractal exponents of small weights, which corre-
spond to dominance of extreme events (Telesca &
Lovallo 2011). A right-skewed spectrum denotes rel-
atively strongly weighted high fractal exponents,
which correspond to fine structures. The width of the
spectrum w is the difference between αmax and αmin.
The width w measures the length of the range of
fractal exponents in the signal, indicating the ‘rich-

ness’ of the signal structure (more developed multi-
fractality).

Kantelhardt et al. (2002) indicated 2 possible
sources of multifractality of time series: (a) multifrac-
tality due to a broad probability density function for
the values of the time series, and (b) multifractality
due to different long-range correlations for small and
large fluctuations. To test the source of multi frac tality,
we randomly shuffle the series to remove any tempo-
ral correlations. If the spectra narrow significantly, it
means that long-term correlations play the main role
in the multifractality of the data. The shuffling proce-
dure consists of generating a random permutation of
the array elements of time series. The method used to
check whether the multifractality comes from broad
distributions is used to analyse surrogate data. In this
paper, amplitude adjusted Fourier transform (AAFT)
was applied to obtain surrogates (Theiler et al. 1992).
In previous studies, other surrogate methods in ad -
dition to AAFT were used for nonlinearity tests of the
time series, in clu ding FFT, iterated amplitude adjusted
Fourier transform (IAAFT), and statically transformed
autoregressive process (STAP) (Palus et al. 2004, Palus
2008, Halley & Kugiumtzis 2011). Palus (2008) showed
that in the range of q(−3, 6), scaling exponent values
are very similar for FFT and IAAFT surrogates. If the
multifractality source is the long-range correlation,
the shuffled series exhibits non-multifractal scaling,
since the shuffling of time series destroys the long-
range correlation. In contrast, if the multifractality in
the time series is due to a broad probability density
function, the spectra obtained for the AAFT surrogate
data indicate no multifractality (Min et al. 2013, Mali
2014).
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Fig. 1. Schematic representation of the main parameters of a
multifractal spectrum. D0: information carrier; D1: information
dimension; α: singularity strength; q: order of the fluctuation, 

as: asymmetry parameter
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To better compare the impact of a broad probabil-
ity density function on multifractality, we applied
the procedure (Clauset et al. 2009) based on the
maximum likelihood method and the Kolmogorov-
 Smir nov statistic. This procedure is basing on com-
parison of the log-log cumulative distribution plots
of particular time series at various sites and the
power-law exponent β.

3.  RESULTS AND DISCUSSION

In the calculations of Fq(s) fluctuations, we used the
scale s ranging from 50 to 3000 events. This scale was
chosen after several trials with various values. The
criterion for selection of the scale was the stability of

obtained spectra. The density distributions of all the
studied meteorological time series had heavy tails.
Therefore, the range of q had to be limited to q ∈ [−5,
5] to prevent a potential distortion of the results by
the so-called ‘freezing’ phenomenon (Kantelhardt et
al. 2006).

The multifractal spectra of studied meteorological
time series for particular sites are presented in Fig. 2
and the respective parameters of the spectra in
Table 2 (the original data columns). These results
show that multifractal analysis is a good method for
assessing the differences in the dynamics of meteoro-
logical processes for the areas within various climatic
zones. Firstly, the comparison of the parameters of the
multifractal spectra between 2 stations in one country
(in Germany or in Poland) indicates very high similar-

Fig. 2. Multifractal spectra of the original time series of meteorological variables from 6 stations in Germany (DE), Finland (FI), 
Poland (PL) and Spain (ES). ƒ(α): singularity spectrum; α: singularity strength
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ity of nearly all parameters of the studied quantities.
The highest difference in the width of spectra is ob-
served for wind speed (0.14) and relative air humidity
(0.09) between Polish sites. The parameter α0 is
almost indistinguishable between all stations, except
for wind speed in Lublin and Grabow, for which the
difference is also small and equals 0.07. Only the
asymmetry parameter as for wind speed differs
greatly between the 2 Polish sites. This can be ex-
plained by the fact that Lublin is situated within the
city area, whereas Grabow is a typical field. The latter
is located near the river Vistula, which influences the
air circulation in this area. This influence is especially
reflected in the difference in sign in the asymmetry

parameter of wind speed at the Gra -
bow site, indicating dominant extreme
events. The ob tained re sult is in
agree ment with that of Goła  sz ew ski
(2004), who showed that the vicinity of
the Vistula river influences the dy-
namics of the air circulation, which is
connected with the specific landform
of the area including heterogeneous
flat morai nic plateaus and parts of the
undulate plateau, as well as with spe-
cific air humidity and temperature
conditions. The course of the Vistula
valley from south to north is conducive
to the meridional ex change of air
masses, and the moraine plateaus ex -
tending on both sides of the valley in-
fluence not only the direction but also
the speed of winds from the western
and eastern sectors. Consistently, a
finer structure is observed for Lublin,
which is expected for urban areas.
Secondly, the as and w parameters for
the majority of meteorological time se-
ries differ vastly for the Jokioinen and
Lleida stations compared with the
other stations. Similar differences are
observed for the air temperature, for
which the width parameter is the
highest for Jokioinen (0.65), which
means that the signal structure is rich-
est for this site; in addition, as is
highest for Jokioinen and Lleida, with
the corresponding spectra being right-
skewed, which means that the signal
has the finest structure with high frac-
tal exponents for these sites. It is the
same with precipitation, for which the
spectrum width is the highest for

Lleida (1.17) followed by Jokioinen (0.74), both higher
than that of the other stations (~0.4 for German sta-
tions and ~0.6 for Polish stations). Furthermore, the as

for precipitation is the highest for Lleida and Joki o -
inen (0.81 and 0.66, respectively). The wind speed
multifractal spectrum for Jokioinen is the narrowest
(the lowest w = 0.11) and differs from other spectra for
other sites. This result can be attributed to the conver-
sion of wind speed data measured at 10 m height to
2 m using the Allen formulae (Allen et al. 1998). The
solar radiation dynamics for Jokio inen differs from
that of other sites (the highest α0, as and w), and in
Lleida the signal structure is less complex compared
with that of the other sites (the lowest width). Even if

45

Variable Original data      Shuffled data   Surrogate data
Site                           α0       as          w         α0        as         w         α0       as          w

Precipitation

Dikopshof, DE        0.57    0.06  0.39      0.52  −0.09  0.25      0.75    0.57  0.64
Nossen, DE             0.61    0.06  0.46      0.53    0.01  0.30      0.85    0.39  0.70
Jokioinen, FI           0.59    0.66  0.74      0.58    0.00  0.26      0.79    0.26  0.71
Lleida, ES                0.62    0.81  1.17      0.53    0.08  0.71      2.73    0.46  8.93
Lublin, PL                0.61    0.02  0.61      0.60    0.09  0.21      0.76    0.65  1.09
Grabow, PL             0.62  −0.08  0.62      0.53  −0.01  0.34      0.82    0.28  0.65

Global radiation

Dikopshof, DE        0.87    0.59  0.71      0.53    0.00  0.12      0.86    0.60  0.69
Nossen, DE             0.87    0.47  0.72      0.44  −0.05  0.08      0.89    0.55  0.80
Jokioinen, FI           0.92    0.66  0.99      0.54  −0.15  0.05      0.94    0.60  1.02
Lleida, ES                0.87    0.52  0.56      0.51  −0.13  0.09      0.86    0.44  0.51
Grabow, PL             0.88    0.49  0.74      0.48    0.02  0.10      0.86    0.56  0.74

Wind speed

Dikopshof, DE        0.72    0.16  0.42      0.54  −0.04  0.08      0.70  −0.03  0.24
Nossen, DE             0.70    0.20  0.52      0.46  −0.02  0.13      0.67    0.11  0.38
Jokioinen, FI           0.68    0.10  0.11      0.46    0.00  0.11      0.74  −0.08  0.05
Lleida, ES                0.70    0.13  0.31      0.53  −0.02  0.02      0.74  −0.29  0.45
Lublin, PL                0.72    0.09  0.33      0.48  −0.03  0.07      0.73  −0.19  0.32
Grabow, PL             0.65  −0.27  0.47      0.58    0.02  0.01      0.63    0.03  0.26

Relative air humidity

Dikopshof, DE        0.75    0.22  0.48      0.52  −0.12  0.14      0.75    0.20  0.41
Nossen, DE             0.78    0.10  0.44      0.53  −0.06  0.11      0.79    0.07  0.38
Jokioinen, FI           0.84    0.17  0.46      0.56    0.02  0.09      0.84    0.24  0.39
Lleida, ES                0.74    0.11  0.32      0.49  −0.09  0.11      0.74    0.05  0.29
Lublin, PL                0.72  −0.01  0.49      0.49  −0.10  0.15      0.72    0.09  0.34
Grabow, PL             0.76    0.10  0.58      0.54  −0.06  0.15      0.77    0.10  0.48

Air temperature

Dikopshof, DE        0.83    0.31  0.52      0.53  −0.07  0.06      0.84    0.38  0.57
Nossen, DE             0.84    0.29  0.50      0.53  −0.10  0.08      0.83    0.33  0.53
Jokioinen, FI           0.86    0.47  0.65      0.50  −0.05  0.07      0.86    0.35  0.64
Lleida, ES                0.86    0.45  0.57      0.52  −0.24  0.05      0.86    0.37  0.59
Lublin, PL                0.85    0.31  0.55      0.48  −0.07  0.15      0.86    0.27  0.55
Grabow, PL             0.86    0.36  0.58      0.45  −0.04  0.08      0.85    0.31  0.56

Table 2. Dimensionless parameter values of multifractal detrenched fluctuation
analysis (MFDFA) spectra of meteorological variables from 6 stations in Ger-
many (DE), Finland (FI), Poland (PL) and Spain (ES). α0: α-value corresponding
to the maximum of the ƒ(α) function; as: asymmetry parameter; w: width of the 

multifractal spectrum
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α0 has almost the same values for all stations for a par-
ticular meteorological parameter, its value differs be-
tween meteorological parameters. The highest α0 can
be observed for solar radiation and air temperature
(≥0.83) and the lowest for precipitation (between 0.57
and 0.62), which means that solar radiation and air
temperature are characterised by finer structure than
precipitation.

To determine whether the source of multifractality
was the long-range correlations or the broad probabil-
ity density function, the shuffled and surrogated multi-
fractal spectra were analysed (Figs. 3 & 4, Table 2). It is
evident from the spectra of the shuffled data for all
meteorological parameters (except precipitation) that
they exhibit the features of monofractality (width w
close to 0.0 and α0 close to 0.5). This result suggests

that long-range correlations are the main source of
multi fractality for air temperature, relative air humid-
ity, wind speed and solar radiation for all stations,
and that a broad probability density function may be
dominant for precipitation multifractality. Almost the
same conclusion results from the analysis of surro-
gate time series. The procedure of obtaining surro-
gate data preserves long-range correlations and ran-
domizes phase correlations. Therefore, if surrogate
multifractal spectra are similar to the original spectra,
the multifractality of the time series does not depend
strongly on the broadness of the probability density
functions. Such a result can be observed in Fig. 4 and
Table 2, which show that surrogate spectra for air
temperature, relative air humidity and solar radiation
are very similar to the spectra for original data. The

46

Fig. 3. Multifractal spectra of the shuffled time series of meteorological variables from 6 stations in Germany (DE), Finland (FI), 
Poland (PL) and Spain (ES). ƒ(α): singularity spectrum; α: singularity strength
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precipitation spectra for surrogate data evidently
change in relation to the original data, which indi-
cates that the broadness of the probability density
function can be a main source of multifractality. Ad -
ditionally, we can conclude from the surrogate data
analysis that the multifractality of the wind speed
spectra may depend on the broadness of the proba-
bility density function, as the spectra of surrogate
data differ slightly from the spectra of the original
data. The use of AAFT and FFT surrogate data to dis-
tinguish the source of multifractality in the studied
time series is compared in Figs. S1 & S2 in the Supple-
ment at www. int-res. com/  articles/ suppl/ c065 p039 _
supp.   pdf. The results of this comparison confirm
the multifractality of the time series analysed in
Figs. 2 & 4.

To determine more precisely the source of multi-
fractality of the spectra, the cumulative distributions
of the meteorological time series of the original data
were analysed (Fig. 5). Together with the cumulative
distributions shown in Fig. 5, the method elaborated
by Clauset et al. (2009) was used to identify the range
over which the power law holds in distributions,
which refers to large fluctuations that occur in the
distribution’s tail. To compare the broadness of the
tails for these distributions, the power-law β expo-
nents were also calculated for the selected tail re -
gions for which power-law distribution was pre-
served. This analysis showed that precipitation
distributions possess the broadest tails (the smallest β
parameter values) for all sites (Fig. 5). The other
meteorological para meters have distributions with

Fig. 4. Multifractal spectra of the surrogate time series of meteorological variables from 6 stations in Germany (DE), Finland 
(FI), Poland (PL) and Spain (ES). ƒ(α): singularity spectrum; α: singularity strength

http://www.int-res.com/articles/suppl/c065p039_supp.pdf
http://www.int-res.com/articles/suppl/c065p039_supp.pdf
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significantly narrower tails (higher β parameter val-
ues), with the ex ception of wind speed distribution,
especially for Lublin and Lleida. The fractal power-
law exponents are related to the asymmetry parame-
ter as presented in Table 2. This reflects the occur-
rence of extreme events in the dynamics of the
spectra; therefore, para meters with the smallest β
should also have the lowest as. In general, this behav-
iour is maintained for the majority of analysed para -
meters (with the exception of precipitation for Joki -
oinen and Lleida). The above result indicates that the
effect of the broad probability density function on
multifractality is the highest for the precipitation and,
to a lesser extent, wind speed time series. This is con-
firmed by the analysis of the absolute differences of
Hurst exponents for original and shuffled data |h(q) −

hshuf(q)| = |hcor(q)| and ori ginal and surrogate data
|h(q) − hsur(q)| = |hPDF(q)| as a function of q for the stud-
ied meteorological time series (Fig. 6). For all sites
and all meteorological time series, for almost all val-
ues of q, with the exception of precipitation, |hcor(q)| is
larger than |hPDF(q)|. This means that only for precip-
itation is the effect of the broad probability density
function on multifractality more important than that
of long-range correlations. However, non-zero val-
ues of |hcor(q)| and |hPDF(q)| indicate that both influ-
ence the mutifractality. In specific cases (Lublin for
high positive values of q and Jokioinen for high neg-
ative values of q), the long-range correlations have a
slightly greater effect on multifractality of the precip-
itation time series than the broad probability density
function, as |hcor(q)| > |hPDF(q)|. For the rest of the ana-
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Fig. 5. Cumulative distributions of the meteorological time series of original data of meteorological variables from 6 stations in 
Germany (DE), Finland (FI), Poland (PL) and Spain (ES). α: singularity strength; x: values of time series
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lysed meteorological time series, |hPDF(q)| has small,
almost zero values and |hcor(q)| is high, which indi-
cates that multifractality results mostly from long-
range correlations. We also observed that for the
wind speed time series for Grabow and Lleida, in lim-
ited ranges of q, |hPDF(q)| is slightly higher than
|hcor(q)|. This means that multifractality in these
ranges of q is influenced to a greater extent by the
broad probability density function than by the long-
range correlations.

To determine whether changes in the dynamics of
meteorological time series can be assessed with the
MFDFA method, the 31 yr of data were divided into
2 separate datasets, the first from 1980 to 1995 and
the second from 1996 to 2010. The comparison of α0,
as and w of multifractal spectra of all of the studied
meteorological parameters from these 2 periods is
presented in Fig. 7. No explicit direction of changes
for individual parameters for any of the studied sta-

tions was observed, although there were consider-
able differences between the analysed periods, es -
pecially for as and w, among various stations. The
 lowest differences, independent of the analysed
para  meter or station, were observed for α0, indicating
that the structure of all the studied signals was pre-
served in the 2 studied periods. The changes in as

are more evident, especially for precipitation in
Grabow (change from high positive to low negative
value, in dicating that extreme events dominate in
the dynamics during the second period, whereas in
first fine structure prevails) and Jokioinen (change
from higher positive to lower positive value, indica-
ting that fine structure of the signal was preserved,
but in the second period more extreme events hap-
pened) and air temperature in Grabow (change
from positive to higher positive). The width of the
spectra w, which corresponds to the richness of the
signal, also changed during the studied periods,

Fig. 6. Absolute difference of Hurst exponents for original and shuffled data |h(q) − hshuf(q)| = |hcor(q)| and original and surrogate
data |h(q) − hsur(q)| = |hPDF(q)| as a function of q (where q is the order of the fluctuation function) for the studied meteorological 

time series from 6 stations in Germany (DE), Finland (FI), Poland (PL) and Spain (ES)
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especially for precipitation for all stations and air
humidity for Grabow. Therefore, multifractal prop-
erties could be regarded as good indicators of
changes in the dy namics of meteorological signals.

In spite of the ob served differences in multifractal
spectra properties in the 2 studied periods, it is not
possible to identify similarities in the direction of
changes for all stations.
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4.  CONCLUSIONS

The dynamics of meteorological time series for 6
stations located in various European climate zones
were analysed via MFDFA. The results indicated that
the studied meteorological quantities possess spe-
cific time and space dynamics, which can be attrib-
uted to climatic conditions.

The main source of multifractality for precipitation
is the broad probability density function. Addition-
ally, the shape of the precipitation distribution varied
from that of other studied quantities, with higher pos-
itive skewness and very large kurtosis values for all
stations. The results indicate that the multifractal
spectrum of precipitation deviates significantly from
spectra of other climate variables. In contrast to pre-
cipitation, for global radiation, air humidity, wind
speed and air temperature, the long-range correla-
tions prevail, with the broadness of the probability
density function influencing wind speed multifractal-
ity to a greater degree.

Our findings indicate that among the meteorologi-
cal variables studied here, precipitation is the most
vulnerable to changes in climate dynamics due to
multifractality resulting mainly from the broad proba-
bility density function and not the long-range correla-
tions. This is reflected in the larger changes in asym-
metry and width parameters of multifractal spectra for
divided datasets. To improve our knowledge on the
dynamics of meteorological processes at the conti-
nent scale, these findings should be confirmed by
research employing further long-term records of sta-
tions located in an even wider variety of climate
zones. We hope that further studies will be able to
deal with meteorological data from so many sites,
that the numerical stability and mapping of multi-
fractal properties will be possible, and thus the con-
clusions will be more general.
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