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Atrial fibrillation (AF) is a cardiac arrhythmia characterized by rapid and irregular atrial

electrical activity with a high clinical impact on stroke incidence. Best available therapeutic

strategies combine pharmacological and surgical means. But when successful, they do

not always prevent long-term relapses. Initial success becomes all the more tricky to

achieve as the arrhythmia maintains itself and the pathology evolves into sustained or

chronic AF. This raises the open crucial issue of deciphering the mechanisms that govern

the onset of AF as well as its perpetuation. In this study, we develop a wavelet-based

multi-scale strategy to analyze the electrical activity of human hearts recorded by

catheter electrodes, positioned in the coronary sinus (CS), during episodes of AF. We

compute the so-called multifractal spectra using two variants of the wavelet transform

modulus maxima method, the moment (partition function) method and the magnitude

cumulant method. Application of these methods to long time series recorded in a patient

with chronic AF provides quantitative evidence of the multifractal intermittent nature

of the electric energy of passing cardiac impulses at low frequencies, i.e., for times

(&0.5 s) longer than the mean interbeat (≃ 10−1 s). We also report the results of a

two-point magnitude correlation analysis which infers the absence of a multiplicative

time-scale structure underlying multifractal scaling. The electric energy dynamics looks

like a “multifractal white noise” with quadratic (log-normal) multifractal spectra. These

observations challenge concepts of functional reentrant circuits in mechanistic theories

of AF, still leaving open the role of the autonomic nervous system (ANS). A transition

is indeed observed in the computed multifractal spectra which group according to two

distinct areas, consistently with the anatomical substrate binding to the CS, namely the

left atrial posterior wall, and the ligament of Marshall which is innervated by the ANS. In a

companion paper (II. Modeling), we propose a mathematical model of a denervated heart

where the kinetics of gap junction conductance alone induces a desynchronization of the

myocardial excitable cells, accounting for the multifractal spectra found experimentally in

the left atrial posterior wall area.

Keywords: mechanisms of atrial fibrillation, heart electrical activity, multifractal analysis, wavelet transform

modulus maxima method, two-point magnitude correlation analysis, multifractal noise
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1. INTRODUCTION

AF is an arrhythmia originating in the rapid and irregular
electrical activity of the atria (the heart’s two upper chambers)
that causes their pump function to fail, increasing up to fivefold
the risk of embolic stroke (Wolf et al., 1978, 1991; Attuel
et al., 1986; Lip and Lane, 2015). Isolated short episodes of
tachy-arrhythmias may be normal, but if they become more
frequent and last longer than 1 min then paroxysmal AF is
declared. This condition alone requires treatment of the atrial
electrophysiological substrate, all themore so as AF often coexists
with and predisposes to heart failure, with increased morbidity
andmortality (Middlekauff et al., 1991; Stevenson and Stevenson,
1999; Wang et al., 2003). Management of AF by drug therapy
aims at controlling either the ventricular rate, for instance by use
of negative chronotropes such as beta-adrenergic blockers, or the
rhythm, by use of anti-arrhythmic drugs interfering with ionic
membrane currents of the excitable cells to prolong the action
potential duration (APD), in combination with anticoagulants,
but it does not lead to a cure (Roy et al., 2008; Al-Khatib
et al., 2014). Since the work of Haïssaguerre et al. (1998),
radio-frequency ablation of the pulmonary veins in the left
atria has been developed for patients with paroxysmal AF as
drug efficacy was found to be poor or even to become pro-
arrhythmic (Echt et al., 1991; The CAST II investigators, 1992).
This type of intervention seeks to punctually destroy sources
of abnormal focal electrical activity susceptible to trigger the
arrhythmia. Alternative strategies that have been developed lately
include compartmenting the atrium in order to block possible
reentrant circuits, or even directly targeting areas of abnormally
fractionated activity (Nademanee et al., 2004; Camm et al., 2010).
Despite the association of various strategies, clinical efficiency
remains disappointing (Ganesan et al., 2013; Takigawa et al.,
2014). The rate of AF recurrences after an initial ablation
procedure treating paroxysmal AF increases with time (Bertaglia
et al., 2010), necessitating multiple redos, and most patients
suffering persistent AF are resistant to treatment (Camm et al.,
2010; Verma et al., 2015; Wynn et al., 2016).

The prevailing electrophysiological concepts describing tachy-
arrhythmias are more than a century old. They involve abnormal
automaticity and conduction (Janse, 1997). Initiation and
maintenance are thought to arise from a vulnerable substrate
prone to the emergence of multiple self-perpetuating reentry
circuits, also called “multiple wavelets” (Moe and Abildskov,
1959; Moe et al., 1964). Reentries may be driven structurally,
for instance because of locally high fibrous tissue content which
badly conducts, or functionally because of high spatial dispersion
of decreased refractoriness and APD (Misier et al., 1992). The
latter is coined the leading circle concept with the clinically
more relevant notion of a critical “wavelength” (in fact the
length) of the cardiac impulse (Allessie et al., 1977; Smeets
et al., 1986; Rensma et al., 1988; Attuel et al., 1989). The related
concept of vulnerability was originally introduced to uncover a
physiological substrate evolving from normality to pathology.
It was found in vulnerable patients that high rate frequency
would invariably lead to functional disorder as cardiac cells
would no longer properly adapt their refractoriness (Attuel et al.,

1982). Mathematical models have managed to exhibit likewise
phenomena, with the generation of breaking spiral waves in
various conditions (Ito and Glass, 1991; Karma, 1993). The
triggering role of abnormal ectopic activity of the pulmonary
veins has been demonstrated on patients with paroxysmal AF
resistant to drug therapy (Haïssaguerre et al., 1998), but its
origin still remains poorly understood. This region is highly
innervated with sympathetic and parasympathetic stimulation
from the ANS (Tan et al., 2007; Ulphani et al., 2007; Arora,
2012). In particular, Coumel et al. (Coumel et al., 1978; Coumel,
1994) have revealed the pathophysiological role of the vagal
tone on a vulnerable substrate. It is frequently observed that
rapid tachycardia of ectopic origin transits to AF. This is known
to result from electrical remodeling. As described for the first
time by Allessie et al. (Allessie, 1998), remodeling is a transient
and reversible process by which the impulse properties such
as its refractory period are altered during the course of the
arrhythmia, promoting its perpetuation: “AF begets AF” (Wijffels
et al., 1995). Under substantial beating rate increase, cells may
undergo remodeling to overcome the toxicity of their excessive
intercellular calcium loading, by a rapid down regulation (a few
minutes) of their L-type calcium membrane current (Yue et al.,
1997; Nattel et al., 2008). Moreover, other ionic channel functions
are also modified such as the potassium channel function,
inducing a change in the conduction properties including the
conduction velocity (Iwasaki et al., 2011; Nattel and Harada,
2014). The intercellular coupling at the gap junction level shows
also alterations of their connexin expression and dispersion
(Severs et al., 2008). For more details, one may consult van
Marion et al. (2015) and Zipes et al. (2017).

In this study, we delve into the complexity of voltage signals
recovered with bipolar electrodes in the CS during chronic AF.
Attempts to assess visually the spatio-temporal complexity of
voltage signals usingmaps of unipolar electrodes revealed various
complex patterns of activity not all compatible with reentries
(Konings et al., 1994, 1997). We use here two declinations
of a wavelet-based multi-scale method, the moment (partition
function) method and the magnitude cumulant method (Muzy
et al., 1994; Arneodo et al., 2008), as originally introduced in
the field of fully developed turbulence (Muzy et al., 1991). This
methodology has been extensively applied in different domains
of fundamental and applied sciences, including geophysics
(Venugopal et al., 2006), econophysics (Muzy et al., 2001),
biology (Arneodo et al., 2011) and medicine (Gerasimova et al.,
2014; Gerasimova-Chechkina et al., 2016). In the context of
cardiac physiology, this methodology was shown to be valuable
in assessing congestive heart failure from the monitoring of sinus
heart rate variability (Ivanov et al., 1999, 2001; Goldberger et al.,
2002). The wavelet-based multifractal analysis of the electric
energy of passing cardiac impulses during AF reported in the
paper provides unprecedented experimental estimates of the
multifractal spectra in different heart areas. The reported results
show that the electric energy dynamics looks like a log-normal
“multifractal white noise” with no underlying multiplicative
time-scale structure. Long time series recordings, at various
locations throughout the whole atria of many patients, are
mandatory to obtain and analyze with the aim at identifying
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how many multifractal scalings exist. For instance, what is the
effect on multifractal scaling of altered cell network topologies,
especially when fibrosis is present? Or how is such scaling
correlated to the disease temporal evolution, with or without
drug therapy or surgical intervention, when the substrate is
remodeled? In a companion paper (Attuel et al., submitted),
we start tackling the problem at source, in the simplest (1D)
cell network topology, by exploring the possibility that the
substrate function is modulated by the kinetics of conduction.
A simple reversible mechanism of short term remodeling under
rapid pacing is demonstrated, by which ionic overload acts
locally (dynamical feedback) on the kinetics of gap junction
conductance. The whole process may propagate and pervade
the myocardium via electronic currents. No influence of the
ANS is included and no structural inhomogeneities are taken
into account. Then the complete network of excitable cells
becomes desynchronized, with induced dispersion of remodeled
refractoriness and APD, and abnormal automaticity. Contrary to
existing mathematical models based on circuit reentries, a spatio-
temporal multifractal intermittent dynamics emerges similar to
the one found in the CS next to the left atrial posterior wall
area, opening a new avenue toward the understanding of AF
mechanisms of perpetuation.

2. METHODS OF ANALYSIS

The wavelet transform (WT) is a mathematical microscope
(Arneodo et al., 1988, 1995b, 2008; Muzy et al., 1991, 1994) that is
well suited for the analysis of complex non-stationary time-series
such as those found in genomics (Nicolay et al., 2007; Arneodo
et al., 2011; Audit et al., 2013) and physiological systems (Ivanov
et al., 1999, 2001; Goldberger et al., 2002; Ciuciu et al., 2012;
Chudácek et al., 2014; Gerasimova et al., 2014; Richard et al.,
2015). Thanks to its ability to be blind to non-stationary low-
frequency (polynomial) trends in the analyzed signal E(t) (or
E(x)), it has been early recognized as well adapted to reveal the
hierarchy that governs the temporal (or spatial) distribution of
singularities of multifractal signals including singular measures
and functions (Arneodo et al., 1988; Holschneider, 1988; Jaffard,
1989; Muzy et al., 1991, 1994; Mallat and Hwang, 1992). It is
therefore implemented in robust methods capturing the self-
similar intricate fractal structures hidden in signals that exhibit
a typical “1/f noise” scaling as seen in the Fourier spectral density
(Mandelbrot, 1982, 1998; West and Shlesinger, 1988).

2.1. The Wavelet Transform Microscope: A
Singularity Scanner
The WT is a time-scale decomposition method which consists in
expanding signals in terms of wavelets constructed from a single
function, the “analyzing wavelet” ψ , by means of translations
and dilations (Grossmann and Morlet, 1984; Daubechies, 1992;
Meyer, 1992; Mallat, 1998). The WT of a real-valued function E
is defined as:

Tψ [E](t0, a) =
1

a

∫ +∞

−∞

E(t)ψ(
t − t0

a
)dt, (1)

where t0 is a time parameter and a (> 0) a scale parameter
(inverse of frequency). By choosing a wavelet ψ which has its
first nψ moments null [

∫
tmψ(t)dt = 0, 0 ≤ m < nψ ], it can be

proven that the behavior of Tψ [E](t0, a) as a function of the scale
a, as a → 0+, characterizes the local behavior of E(t) (Arneodo
et al., 1988, 1995b, 2008; Jaffard, 1989; Muzy et al., 1991, 1994;
Mallat and Hwang, 1992):

Tψ [E](t0, a) ∼ ah(t0), a → 0+, (2)

provided nψ > h(t0), where h(t0) is the point-wise Hölder
exponent that characterizes the maximum regularity of the signal
E at point t0. If n < h(t0) ≤ n + 1, the (n − 1)th derivative
of E(t) is regular and its nth derivative is singular at t0. Thus
the larger h(t0), the smoother the function, the faster the power-
law decrease of Tψ [E] when a → 0+. For h(t0) = 0, E(t) is
discontinuous and bounded at t0 and the wavelet transform no
longer depends on a. For discontinuous “noise” signals, h(t0) < 0
and Tψ [E](t0, a) increases when a → 0+. For instance, h(t0) =
−1 corresponds to a delta distribution at t = t0, while if
almost everywhere h(t) = − 1

2 , the single exponent H = 1
2 is

characteristic of a “white” noise (Muzy et al., 1994). To resolve all
the cusp singularities present in a function, the analyzing wavelet
must be chosen to have enough vanishing moments to resolve
the singularities with Hölder exponent hmax, namely nψ ≥ hmax.
Since hmax is not known a priori, the most appropriate way to
correctly estimate all singularities is to analyze the given function
with analyzing wavelets of increasing order nψ until a robust
estimate of the so-called spectrum of singularities is obtained
(Bacry et al., 1993; Muzy et al., 1994; Arneodo et al., 1995b)
(see section 2.2). In the present study, we use the successive

derivatives of a Gaussian function g(N)(t) = dN

dtN

(
e−t2/2

)
as

analyzing wavelets with nψ = N (Muzy et al., 1994; Arneodo
et al., 1995b) (Figure S1).

2.2. A Wavelet-Based Canonical
Multifractal Formalism: The Wavelet
Transform Modulus Maxima Method
The wavelet transform modulus maxima (WTMM) method
(Muzy et al., 1991, 1994; Bacry et al., 1993; Arneodo et al.,
1995b, 2008) was originally developed to generalize box-counting
techniques (Arneodo et al., 1987) and to remedy the limitations
of structure functions method (Muzy et al., 1993) in performing
multifractal analysis of one-dimensional (1D) velocity signals
in fully-developed turbulence. It has proved very efficient to
estimate scaling exponents and multifractal spectra (Muzy et al.,
1994; Audit et al., 2002; Arneodo et al., 2008). From the deep
analogy that links the multifractal formalism to thermodynamics
(Bohr and Tél, 1988; Arneodo et al., 1995b), the WTMMmethod
provides a canonical description (Arneodo et al., 1995b) of the
distribution of point-wise Hölder exponents for finite a. The
WTMM method allows therefore some control and mastering
of finite-size effects and statistical convergence issues. As a →

0+, the thermodynamic limit is reached formally guaranteeing
an equivalence with micro-canonical approaches such as found
in Turiel et al. (2008). To account for the possible presence of
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oscillating (chirps) (Arneodo et al., 1995a), a grand-canonical
multifractal formalism has also been developed for signals
involving cusp and oscillating singularities (Arneodo et al.,
1997b). The canonical 1D WTMMmethod has been generalized
in 2D for the multifractal analysis of rough surfaces (Arneodo
et al., 2000, 2003; Decoster et al., 2000; Roux et al., 2000) and for
the analysis of 3D scalar and vector fields (Kestener and Arneodo,
2003, 2004; Arneodo et al., 2008) with successful applications in
astrophysics (Khalil et al., 2006; Kestener et al., 2010; McAteer
et al., 2010), geophysics (Venugopal et al., 2006; Roux et al.,
2009), surface science (Roland et al., 2009), image processing
(Mallat, 1998; Arneodo et al., 2003, 2008; Antoine et al., 2008),
cellular biology (Khalil et al., 2007; Snow et al., 2008; Goody
et al., 2010; Grant et al., 2010; Martinez-Torres et al., 2014, 2015)
and medicine (Kestener et al., 2001; Arneodo et al., 2003; Khalil
et al., 2009; Batchelder et al., 2014; Gerasimova-Chechkina et al.,
2016; Marin et al., 2017). Note that alternative approaches to
the WTMM method have been developed using discrete wavelet
bases, including the recent use of wavelet leaders (Jaffard et al.,
2007; Wendt et al., 2007).

2.2.1. The Method of Moments
In 1D, the WTMM method (Muzy et al., 1991, 1993, 1994;
Bacry et al., 1993; Arneodo et al., 1995b) consists in computing
the WT skeleton defined, at each fixed scale a, by the local
maxima L(a) of the WT modulus |Tψ [E](t, a)|. These WTMM
are disposed on curves connected across scales called maxima
lines (see Figure 2C). Along these maxima lines l, Mallat and
Hwang (1992) have shown that Equation (2) also applies for
the WTMM that behave as |Tψ [E](t, a)| ∼ ah(t), where h(t)
is the Hölder exponent characterizing the singularity of the
signal E at time t. The canonical multifractal formalism (Muzy
et al., 1994; Arneodo et al., 1995b) characterizes the relative
contributions of each Hölder exponent value via the estimate of
the singularity spectrum D(h) defined as the fractal (Hausdorff)
dimension of the set of points t where h(t) = h. This spectrum
can be obtained by investigating the scaling behavior of partition
functions defined in terms of WTMM (and which correspond to
the moments of the WTMM probability distribution function):

Z(q, a) =
∑

l∈L(a)

|Tψ [E](t, a)|
q

∼ aτ (q), a → 0+, (3)

where q ∈ R, and L(a) is the set of all maxima lines l that
satisfy: l ∈ L(a), if ∀a′ ≤ a, ∃(t, a′) ∈ l. In the framework of
the analogy with thermodynamics (Bohr and Tél, 1988; Arneodo
et al., 1995b), q and τ (q) play respectively the role of an inverse
temperature and a free energy. The main result of the canonical
wavelet-based multifractal formalism is that in place of energy
and entropy (i.e., the variables conjugated to q and τ ), we have
h, the Hölder exponent, and D(h), the singularity spectrum.
This means that the singularity spectrum of E(t) is a convex
function that can be calculated from the Legendre transform of
the partition function scaling exponents τ (q) (Bacry et al., 1993;
Muzy et al., 1993, 1994; Arneodo et al., 1995b):

D(h) = min
q

[qh− τ (q)]. (4)

In practice, to avoid instabilities in performing the Legendre
transform, we instead compute the following expectation values
(Muzy et al., 1994; Arneodo et al., 1995b), analogous to
the fundamental thermodynamic relations, by inversion of
Equation (4):

h(q, a) =
∂

∂q
ln(Z(q, a)) =

∑

l∈L(a)

ln
(
|Tψ [E](t, a)|

)
·Wψ [E](q, l, a),

(5)
and

D(q, a) = q
∂

∂q
ln(Z(q, a))− ln(Z(q, a))

=
∑

l∈L(a)

Wψ [E](q, l, a) · ln
(
Wψ [E](q, l, a)

)
, (6)

whereWψ [E](q, l, a) = |Tψ [E](t, a)|
q/Z(q, a) corresponds to the

Bolzmann weight in the analogy that connects the multifractal
formalism to thermodynamics (Arneodo et al., 1995b). Then,
from the slopes of h(q, a) and D(q, a) vs. ln a, we get h(q) and
D(q), and therefore the D(h) singularity spectrum as a curve
parametrized by q. For further mathematical developments on
the 1DWTMMmethod, we refer the reader to Bacry et al. (1993)
and Jaffard (1997a,b).

2.2.2. The Method of Magnitude Cumulants
With the previous method of moments, to compute the entire
τ (q) curve, we need to perform linear regression fits of lnZ(q, a)
vs. ln a (Equation 3) for a wide range of q values and then to
proceed to a polynomial fit of the τ (q) data prior to the Legendre
transform (Equation 4) to get the D(h) singularity spectrum.
An alternative method based on magnitude cumulants has been
introduced by Delour et al. (2001) to minimize the number of
linear regression fits (as few as 3) while still adequately inferring
and accurately estimating the nonlinear behavior of the τ (q)
spectrum. This method is based on the following reasoning.
The computation of the partition function Z(q, a) amounts to
computing the following arithmetic mean of the WTMM to the
power q:

〈|Ta|
q〉 =

1

Na
Z(q, a), (7)

where we simplified notations Ta ≡ Tψ [E](·, a), and where Na is

the number of maxima lines at scale a, which scales as ∼ a−Df ,
where Df = −τ (0) is the fractal dimension of the support set of
the singularities in the signal E(t). From Equations (3) and (7),
we get the expansion

[τ (q)+ Df ] ln a ∼ ln{〈eq ln |Ta|〉},

∼

∞∑

n=1

Cn(a)
qn

n!
,

(8)
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where Cn(a) are the cumulants of the magnitude ln |Ta|. Then
from the behavior of these cumulants:

C1(a) ≡ 〈ln |Ta|〉 ∼ c1 ln(a),

C2(a) ≡ 〈ln2 |Ta|〉 − 〈ln |Ta|〉
2

∼ −c2 ln a,

C3(a) ≡ 〈ln3 |Ta|〉 − 3〈ln2 |Ta|〉 + 2〈ln |Ta|〉
3

∼ c3 ln a,

· · ·

(9)

we get the following expansion formula for τ (q):

τ (q) = −Df
q0

0!
+

∞∑

n=1

[
Cn(a)

ln a

]
qn

n!
,

= −c0 + c1q− c2q
2/2!+ c3q

3/3! · · ·

(10)

where the coefficients cn > 0 are estimated as the slope of Cn(a)
vs. ln(n = 1, 2, 3, , · · · ), and c0 = Df .

The implication of the above developments is that we can
estimate τ (q) from the polynomial expansion of Equation (10),
where the coefficients are obtained from the log-log linear
regressions of the cumulants of the magnitude Cn(a) vs. ln(a)
(Equation 9) (Delour et al., 2001). A quadratic log-normal τ (q)
approximation would need only three such linear regressions,
cn = 0, ∀n > 2.

2.3. Monofractal vs. Multifractal Functions
Homogeneous monofractal signals (distributions) are signals
with singularities of unique Hölder exponent H. Their τ (q)
spectrum is a linear function of q with slope c1 = H
(Equation 9). Monofractal scaling indeed means that the shape
of the probability distribution function (pdf) of rescaled wavelet
coefficients does not change across scales as expressed by the
following relationship between the WTMM pdfs Pa(T) and
Pa′ (T) at scale a and a′ > a respectively (Arneodo et al., 2002,
2011):

Pa(T) =

(
a′

a

)−H

Pa′

((
a′

a

)−H

T

)
. (11)

A nonlinear τ (q) is the signature of multifractal signals with
Hölder exponent h(t) fluctuating over time t (Muzy et al., 1991,
1994; Bacry et al., 1993; Arneodo et al., 1995b, 2002, 2008). In this
study, we fit the τ (q) data by the so-called log-normal quadratic
approximation τ (q) = −c0 + c1q − c2q

2/2. The corresponding
singularity spectrum has a quadratic single humped shape:

D(h) = c0 − (h− c1)
2/2c2, (12)

where c0 = −τ (0) = Df is the fractal dimension of the
support of singularities of E(t), c1 is the value of h that maximizes
D(h), and the intermittency coefficient c2 (Delour et al., 2001)
characterizes the width of the D(h) spectrum as an indication
of a change in WTMM coefficient statistics across scales. If h(t)
fluctuates according to a pdf ρ(h), then (Castaing et al., 1990,
1993; Arneodo et al., 1997a, 1998c, 1999):

Pa (T) =

∫
ρ(h)

(
a′

a

)−h

Pa′

((
a′

a

)−h

T

)
dh, (13)

meaning that the pdf at scale a can be expressed as a weighted
sum of dilated pdfs at larger scales a′ > a. Let us point out that the
monofractal situation (Equation 11) is recovered when assuming
that ρ(h) = δ(h−H) in Equation (13).

Note that τ (2) = c0 + 2c1 − 2c2, also called the correlation
dimension, is related to the “1/f” scaling exponent of the Fourier
spectral density (Muzy et al., 1994; Mandelbrot, 1998):

|̂E(f )|2 ∼ f−β , with τ (2) = β − 2. (14)

2.4. In Quest of an Underlying Time-Scale
Multiplicative Structure: The Two-Points
Magnitude Correlation Method
Multiplicative cascade processes (Arneodo et al., 1998b) are
paradigmatic mechanisms generating multifractal distributions,
with as historical examples the Kolmogorov–Obukhov log-
normal energy cascade model of fully developed turbulence
(Kolmogorov, 1962; Oboukhov, 1962; Mandelbrot, 1974),
and the Multifractal Random Walk (MRW) model recently
introduced to account for the intermittency observed in financial
time series (Muzy et al., 2000; Bacry et al., 2001). But, if
multifractal scaling implies some evolution of the WTMM
statistics across scales, it does however not require any correlation
of the wavelet coefficients across scales. In addition to the above
one-point WTMM statistics, it is thus useful to study the two-
point correlation function of the logs of the WTMM coefficients
ln |Ta(t)|, which determines the way the correlation structure
of the Hölder exponents h (or singularities) changes with scale
(Arneodo et al., 1998a,b). Defining the two-point magnitude
correlation function C(a,1t) as:

C(a,1t) = 〈
(
ln |Ta(t)| − 〈ln |Ta(t)|〉

)
·
(
ln |Ta(t +1t)|

−〈ln |Ta(t)|〉
)
〉, (15)

and seeing how this correlation changes as a function of 1t
at scale a, provides information about the time-scale structure
that underlies the multifractal properties of the considered
signal. As demonstrated by Arneodo et al. (1998a,b) for
random multiplicative cascades on wavelet dyadic trees (see
also Meneveau and Sreenivasan, 1991):

C(a,1t) ∼ −c2 ln1t, 1t > a, (16)

where the proportionality coefficient c2 is the intermittency
coefficient defined in Equation(9) (Note that C(a,1t = 0) ≡

C2(a) ∼ −c2 ln a). Thus, by computing C(a,1t) from Equation
(15) and plotting it as a function of ln1t, inferences can
be made about long-range dependence and consistency with
a multiplicative cascading process (Arneodo et al., 1998a,b).
Applications of the two-point magnitude correlation method
have already provided insight into a wide variety of problems,
e.g., the validation of the log-normal cascade phenomenology of
fully developed turbulence (Arneodo et al., 1998a,c, 1999) and of
high resolution temporal rainfall (Venugopal et al., 2006; Roux
et al., 2009), and the demonstration of the existence of a causal
cascade of information from large to small scales in financial time
series (Arneodo et al., 1998d; Muzy et al., 2001).

Frontiers in Physiology | www.frontiersin.org 5 March 2018 | Volume 8 | Article 1139

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Attuel et al. Multiracial Desynchronisation of the Atria

3. DESCRIPTION OF DATA

3.1. Study Design and Population
The experimental data are hospital-based. We have analyzed
data recorded in the atria of 8 patients with persistent or
chronic AF, chosen without any prior explicit exclusion criteria.
These patients were enrolled to undergo radio frequency
ablation between 2010 and 2012, in the international cardiac
electrophysiology service of public hospital CHU Haut-Lévêque
in Pessac, France. All patients gave written informed consent
to the investigation of data from the intervention. A protocol
for clinic research was approved by the institutional Clinical
Research and Ethics Committee. For this specific investigation of
the data, the authors accessed fully anonymized and de-identified

data. As representative of the results obtained with our set
of patients, we report in this manuscript the results of a
detailed wavelet-based multifractal analysis of five long time
series specially recorded in one of the 8 patients with chronic AF.

3.2. Electric Potential Recording
A steerable decapolar catheter, equipped with five 1 mm distant
pairs of electrodes, each pair separated by 5mm (Xtrem, Sorin
Medical ©), was positioned in the CS as recommended in
(Figures 1A,B). The distal leads of the catheter tip are positioned
in a region near the left pulmonary veins, while the proximal
leads lie closer to the right atrium orifice of the CS. This
catheter was immobile and probed the electrical activity of those

FIGURE 1 | Electric potential recording. (A) Sketch of the positioning of the pairs of electrodes (Pt1–Pt5) along the catheter in the coronary sinus (CS); left posterior

view (LPV) of the heart left ventricle (LV), left inferior pulmonary vein (LIPV), left atrium (LA), and inferior vena cava (IVC). (B) A Left anterior fluoroscopy view (LAV) of the

atria showing the pairs of electrodes in the CS and one other catheter. (C) 6 s portions of 1φ(t) recorded at the points Pt1, Pt2, Pt3, Pt4, and Pt5, from top to bottom.

(D) Corresponding Fourier power spectra computed over the whole 422 s time series.
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areas in the left atrium. Monitoring typically lasted the whole
intervention which could take hours. Our file consists of 5
simultaneous recordings at points Pt1 to Pt5, from distal to
proximal positioning along the vein (Figure 1A), each lasting
422 s with sampling time 10−3 s, a few minutes before the
first ablation procedure started. The potential difference 1φ(t)
between each of the two electrodes in each pair was recorded,
with the convention of distal minus proximal (Figure 1C). The
normal to rapid frequency in sinus rhythm varies in the range
1Hz . f . 3 Hz, whereas during AF it is typically in the
range 3Hz . f . 10Hz (Figure 1D). But the most obvious
observation is that on-site recordings during AF contrast with
the ones during sinus rhythm as the former seem to fluctuate
randomly at even higher frequencies. Physiologically, a natural
high frequency cut-off is somewhere in between 100Hz . fc .

1, 000Hz, which corresponds to the shortest characteristic time
scale in a cardiac cell cycle, that is depolarization. Furthermore,
AF is considered as the most irregular cardiac arrhythmia
(Konings et al., 1994, 1997).

3.3. Local Impulse Energy
Each electrode averages the electric potential over its surface.
During depolarization, ions flow through the cell membrane
channels and the gap junction channels, inducing a rapid change
of the electric potential (∼ 10−2s). Then, repolarization is a
much smoother event. Bipolar electrodes are separated by a few
millimeters which is typically the length scale of a depolarizing
front in the atria with a conduction velocity c ∼ 10−1 m/s
and a refractory period RP ∼ 10−1 s (Figures S2A,B), thus
defining the so-called “wavelength” scale c × RP (Smeets et al.,
1986; Rensma et al., 1988). Any spatio-temporal variation of the
vulnerable substrate function happens over larger time scales.
Thus the conduction velocity can be considered constant over
such small scales and the bipolar electric potential difference is
therefore “frozen.” It follows that the bipolar electric potential
difference is locally advected with velocity c:

∂1φ(t)

∂t
= −c

−→
∇1φ(t). (17)

Under this assumption, the evaluation of the local electric energy
of a cardiac impulse is straight-forward:

ε

2
E
2(t) =

ε

2c2

(
∂

∂t
1φ(t)

)2

, (18)

where E is the electric field magnitude and ε is the dielectric
bulk permitivity of the (inter-) cellular medium. Energy will thus
peak when the impulse travels between the two electrodes. It
fully incorporates ionic flux through membrane channels and
electrotonic currents, specifically those taking place at the gap
junctions. Because we have no means to assess the conduction
velocity c, we will use in this study the following definition of the
energy:

E(t) =

(
∂1φ(t)

∂t

)2

, (19)

after dropping the term in front of the r.h.s. of Equation (18),
i.e., ε/2c2 which remains constant at first order as long as the
conduction velocity c does not fluctuate too much. To practically
derive E(t) from the recorded 1φ(t), we used an order 4 finite
difference scheme on a oversampled (1t0 = 10−4s) cubic-spline
fitting of the data (Figures S2C,D). This is needed to estimate
peaks in the energy within temporal windows as narrow as
∼ 10−3 s (Figures S2E,F). We have checked that the scaling
properties displayed by E(t) in the low frequency range of interest
here (0.08Hz . f . 2Hz) are not affected by this discretization
scheme.

Let us note that Equation (19) is not without reminding the 1D
surrogate dissipation approximation Edis(t) ∼ (∂υ/∂t)2, where
υ is the longitudial velocity, in fully developed (homogeneous
and isotropic) turbulence under the Taylor hypothesis of “frozen”
turbulence (Meneveau and Sreenivasan, 1991; Frisch, 1995).

3.4. Software and Documentation
The numerical procedure to perform the WTMM analysis of 1D
signals can be downloaded at

http://perso.ens-lyon.fr/benjamin.audit/LastWave

LastWave is open source software written in C. We recommend
interested users to read the LastWave C-Application
Programming Interface documentation and to contact the
corresponding author to be directed to the part of the code of
most relevance to them.

4. RESULTS

4.1. One-Point Multifractal Analysis of
Local Impulse Energy Data
We first present an exhaustive step-by-step analysis of one of the
impulse energy time-series recorded at the electrode Pt2 as an
illustration of the intricacies involved in the methodology and
as a demonstration that without a priori knowledge about the
signal, a reliable multifractal analysis requires an iterative process
between diagnosis and estimation until robustness is achieved. In
Figure S3 is illustrated how theWTmicroscope is able to filter out
the nonstationarities (polynomial trends) in E(t) (Figure S3A)
when using analyzing wavelets g(N) (Figure S1) of increasing
order (Figures S3B–D).

4.1.1. Multifractal Analysis of the Impulse Energy

Data With the WTMM Method of Moments
When applying the WTMM method to the impulse energy
time-series recorded at Pt2 (Figure 2A), we revealed that the
partition functions Z(q, a) (Equation 3) obtained from the
WT computed with the analyzing wavelet g(3) (Figure 2B) and
its skeleton (Figure 2C), display nice scaling properties for
q = −1 to 5 over a range of time-scales larger than the
mean interbeat ∼0.5 s (Figure 1D). We strictly limited this
range to (0.6, 10 s) for linear regression fit estimates in a
logarithmic representation (Figure 3A). The τ (q) so-obtained
is well approximated by a quadratic spectrum with parameters
[c0, c1, c2] = [1.01,−0.34, 0.053] and cn = 0 for n > 2
(Equation 10) (Figure 4A). This signature of multifractality with
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FIGURE 2 | Wavelet transform of local impulse energy time-series. (A) A 100 s

portion of E(t) (Equation 19) recorded at the electrode Pt2. (B) Time-scale WT

representation of E(t) with the analyzing wavelet g(3) (Figure S1). The modulus

of the WT is coded, independently at each scale a, using 256 colors from

black (|T
g(3)

(t, a)| = 0) to red (maxt |Tg(3) (t, a)|). (C) WT skeleton defined by the

maxima lines. The scale a = 1t/1t0, where 1t0 = 10−4 s. In (B) the white

horizontal dotted lines delimit the range of time scales (29 ≤ a ≤ 213) used to

perform linear regression fit estimates of the τ (q) and D(h) multifractal spectra.

a support of singularities of fractal dimension Df ≈ 1, and
an intermittency coefficient c2 = 0.053 ± 0.010 (Table 1) is
confirmed when respectively plotting h(q, a)/ ln 2 (Equation 5)
and D(q, a)/ ln 2 (Equation 6) vs. log2 a Figures 3B,C. From the
estimate of the slopes h(q) and D(q), we get the single humped
D(h) spectrum shown in Figure 4B which is well approximated
by the quadratic spectrum defined in Equation (12) with the
above parameter values obtained from a polynomial fitting of
the τ (q) data. Interestingly, when comparing the results obtained
with the analyzing wavelet g(3) with those obtained with g(1)

and g(2) in Figures 3, 4, we notice that except some slight
differences observed when using the first-order analyzing wavelet
g(1), the multifractal spectra obtained with the second-order
wavelet g(2) and the third-order wavelet g(3) almost superimpose
(Figure 4, Table 1) with singularities of Hölder exponent h ≤ 0,
characteristic of a multifractal “noise” signal.

This multifractal diagnosis is confirmed in Figure 5 where the
WTMM pdfs obtained at different scales with g(3) (Figure 5A)
are shown to collapse on each other when using the propagative
equation of the statistics across scales (Equation 13) with

the quadratic τ (q) spectrum estimated just above (Figure 5B)
(Castaing et al., 1990, 1993; Arneodo et al., 1997a, 1998c, 1999;
Venugopal et al., 2006).

4.1.2. Multifractal Analysis of the Impulse Energy

Data With the Method of Magnitude Cumulants
After the WTMM partition function approach, we turn
our attention to the alternate magnitude cumulant analysis
methodology. The first-, second- and third-order cumulants were
computed using Equation (9) and are plotted vs. the logarithm
of the scale in Figure 6. As expected C1(a), C2(a) and C3(a)
display consistent scaling behavior over the same range of scales
29 ≤ a ≤ 213 (a = 1t/1t0, where the oversampling time
is 1t0 = 10−4 s) and this for the three analyzing wavelets
g(1), g(2) and g(3). The results obtained for C3(a) (Figure 6C)
confirm that with the limited statistical sample at our disposal
(422 s long time series), there is no way to conclude about the
possible departure from a log-normal quadratic τ (q) spectrum
(c3 ≡ 0). Nicely, the quadratic τ (q) spectrum obtained with g(3)

with parameters c∗1 = −0.33 ± 0.01 and c∗2 = 0.047 ± 0.028 is
found in good agreement with the one previously estimated with
the method of moments, confirming the multifractal diagnosis
of the local impulse energy at low frequencies. Let us point out
that, as reported in Table 1, the τ (q) spectrum obtained with g(1)

is again slightly different from the ones obtained with g(2) and
g(3) which turn out to be indistinguishable. This is the numerical
demonstration that a robust estimate of the multifractal
spectra is achieved when using the third-order analyzing
wavelet g(3).

4.1.3. Summary of One-Point Multifractal Analysis of

the Impulse Energy Data
Similar analysis was performed on the four other local impulse
energy time-series recorded at electrodes Pt1 (Figures S4,
S8, S11), Pt3 (Figures S5, S9, S12), Pt4 (Figures S6, S13), and
Pt5 (Figures S7, S10, S14). As already noticeable on the power
spectrum in Figure 1D, the electric potential 1φ(t) recorded at
electrode Pt4 presents some subharmonic oscillatory component
at frequency∼2.5 Hz that dramatically spoils the scaling behavior
previously obtained at Pt2 over the range of time-scales (0.6,
10 s) (Figures S6, S13). We can speculate on the signature of
the nearby mitral valve influence. This explains that Pt4 will be
singled out in the rest of our study. Figure 7 displays the τ (q)
(Figure 7A) and D(h) (Figure 7B) spectra of the local impulse
energy E(t) obtained with the WTMM method of moments
when using the analyzing wavelet g(3) (the corresponding spectra
obtained with analyzing wavelets g(1) and g(2) are shown in
Figures S15, S16 respectively). The spectra obtained for the
time-series recorded at electrode Pt1 situated, as Pt2, in the
ligament of Marshall anatomic area innervated by the ANS
(Figure 1A), are very similar to the ones observed at Pt2.
Both τ (q) and D(h) spectra are well approximated by quadratic
spectra (Equations 9 and 10, respectively) with parameters
[c0, c1, c2] = [1.01,−0.28, 0.064] (Figure 7) with a definitely
positive finite intermittency coefficient c2 = 0.064 ± 0.014
(Table 1). Interestingly, time series recorded at electrodes Pt3
and Pt5 in a different anatomical area next to the left atrial

Frontiers in Physiology | www.frontiersin.org 8 March 2018 | Volume 8 | Article 1139

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Attuel et al. Multiracial Desynchronisation of the Atria

FIGURE 3 | Multifractal analysis of local impulse energy time-series recorded at the electrode Pt2 with the WTMM method. (A) log2 Z(q, a) vs. log2 a (Equation 3).

(B) h(q, a)/ ln 2 vs. log2 a (Equation 5). (C) D(q, a)/ ln 2 vs. log2 a (Equation 6). The computation were performed for different values from q = −1 to 5 with the

analyzing wavelet g(1) (▽), g(2) (✷) and g(3) (◦) (Figure S1). The vertical dashed lines delimit the range of scales (29 ≤ a ≤ 213) used for the linear regression estimate of

τ (q), h(q) and D(q) in Figure 4.

FIGURE 4 | Multifractal spectra of local impulse energy time-series (Pt2) obtained with the WTMM method of moments. (A) τ (q) vs. q estimated by linear regression fit

of log2 Z(q, a) vs. log2 a (Figure 3A). (B) D(h) vs. h obtained from linear regression fits of h(q, a) (Figure 3B) and D(q, a) (Figure 3C) vs. log2 a. The symbols

correspond to the analyzing wavelets g(1) (▽), g(2) (✷) and g(3) (◦) (Figure S1). The curves correspond to quadratic spectra (Equations 10 and 12) with parameters

[c0, c1, c2] = [1.01,−0.33, 0.055] (· · · , g(1)), [1.00,−0.35, 0.049] (− − −, g(2)), [1.01,−0.34, 0.053] (—, g(3)) (see Table 1).

posterior wall (Figure 1A) both show rather similar τ (q) and
D(h) multifractal spectra but significantly different from the
ones obtained at electrodes Pt1 and Pt2 (Figure 7). Again these
spectra are found nearly quadratic with parameters [c0, c1, c2] =
[1.02,−0.48, 0.098] for Pt3, and [1.03,−0.38, 0.152] for Pt5
(Table 1). Local impulse Local impulse energy time series at
Pt3 and Pt5 show higher intermittency with larger c2 values
whereas they display weaker long-range correlations c1 =

〈
h
〉

∼

−0.45 (i.e., closer to c1 = −0.5 a value characteristic of
uncorrelated white noise), instead of the value c1 ∼ −0.3 for
Pt1 and Pt2 characteristic of positive long-range correlations.
As reported in Table 1, this regionalization of the multifractal

properties of the local impulse energy is quantitatively confirmed
when using the magnitude cumulant method. It is further
corroborated when reproducing this multifractal analysis for
other patients with paroxysmal, persistent or chronic AF
(Figure 8A) and for a patient at different periods of time
preceding ablation procedure (Figure 8B) as an indication of
stationarity.

4.2. Two-Point Magnitude Analysis of Local
Impulse Energy Data
The results of the two-point magnitude correlation analysis of
the local impulse energy time series recorded at the positions
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Pt1, Pt2, Pt3, and Pt5 along the CS vein are shown in Figure 9.
C(a,1t) (Equation 15) computed with the analyzing wavelet
g(3) is represented vs. 1t for two scales a = 29 and 210

TABLE 1 | Results of the WTMM multifractal analysis of the local impulse energy

time-series recorded along the CS vein at electrodes Pt1, Pt2, Pt3, and Pt5.

g(1) g(2) g(3)

Point1

c0 0.961 ± 0.001 0.995 ± 0.001 1.009 ± 0.002

c1 −0.351 ± 0.003 −0.298 ± 0.005 −0.281 ± 0.007

c∗1 −0.353 ± 0.017 −0.297 ± 0.011 −0.274 ± 0.011

c2 0.048 ± 0.006 0.063 ± 0.011 0.064 ± 0.014

c∗2 0.050 ± 0.032 0.082 ± 0.018 0.096 ± 0.020

Point2

c0 1.011 ± 0.002 0.998 ± 0.001 1.011 ± 0.001

c1 −0.333 ± 0.007 −0.348 ± 0.003 −0.337 ± 0.005

c∗1 −0.307 ± 0.012 −0.335 ± 0.011 −0.331 ± 0.011

c2 0.055 ± 0.013 0.049 ± 0.007 0.053 ± 0.010

c∗2 0.076 ± 0.030 0.031 ± 0.027 0.047 ± 0.028

Point3

c0 1.023 ± 0.003 1.005 ± 0.002 1.021 ± 0.003

c1 −0.472 ± 0.014 −0.496 ± 0.008 −0.481 ± 0.011

c∗1 −0.445 ± 0.011 −0.480 ± 0.008 −0.464 ± 0.007

c2 0.082 ± 0.028 0.091 ± 0.015 0.098 ± 0.022

c∗2 0.164 ± 0.031 0.103 ± 0.023 0.164 ± 0.020

Point5

c0 1.044 ± 0.003 1.017 ± 0.003 1.029 ± 0.002

c1 −0.320 ± 0.014 −0.365 ± 0.011 −0.383 ± 0.009

c∗1 −0.256 ± 0.015 −0.335 ± 0.018 −0.365 ± 0.025

c2 0.176 ± 0.028 0.167 ± 0.022 0.152 ± 0.018

c∗2 0.175 ± 0.043 0.106 ± 0.029 0.114 ± 0.031

c0, c1, c2 are the coefficients of the polynomial expansion of τ (q) (Equation 10) obtained

with the WTMMmethod of moments when using the analyzing wavelets g(1), g(2), and g(3)

respectively (Figure S1). c∗1 and c∗2 are the corresponding coefficients obtained with the

magnitude cumulant method.

in the scaling range. Strikingly for all four time series, for
1t & a, C(a,1t) drops to zero as a clear indication that
the magnitudes are uncorrelated. As a reference, we put in
each panel of Figure 9, a dashed straight line of slope −c2 as
predicted by Equation (16) for multifractal signals exhibiting
a cascading multiplicative structure along a time-scale tree
(Arneodo et al., 1998b). The slow decay predicted by the
“multiplicative” log-normal model with intermittency coefficient
c2 is definitely not observed. Thus, local impulse energy time-
series look much more like what has been called log-normal
“mutlifractal white noise” in pioneering works to distinguish
“uncorrelated” and “multiplicative” log-normalmodels (Arneodo
et al., 1998a). A similar absence of magnitude correlation
is observed when reproducing this two-point magnitude
analysis with the analyzing wavelets g(1) (Figure S17) and g(2)

(Figure S18).

5. DISCUSSION

To summarize, we showed that the wavelet-based multifractal
analysis of long time series of the local impulse energy recorded
in the CS of a patient with chronic AF was able to reveal and
quantify the intermittent nature of these signals at low frequency
(f . 2 Hz). To our knowledge, our study is the first to
report on the observation and quantification of such multifractal
dynamics of the endocavitary electrical activity during chronic
AF which is found more complex than previously suspected.
On the basis of the analysis of the time-series recorded at 4
catheter electrodes out of 5 positioned in the CS, two main
observations can be made: (i) the local impulse energy displays
different multifractal properties in the left atrial wall area than
in the ligament of Marshall area consistently with different
anatomical substrate conditions, and (ii) while recorded along
the CS vein, the local impulse energy does not exhibit long-
range dependence associated with an underlying multiplicative
cascade, or in other words the multifractal distribution of the

FIGURE 5 | Demonstration of the WTMM pdf rescaling via the propagative equation across scales (Equation 13). (A) Original pdfs of the logs of WTMM coefficients

(magnitude coefficients) of the local impulse energy time series recorded at the electrode Pt2, computed with the analyzing wavelet g(3), at scales a (= 1t/1t0, where

1t0 = 10−4 s) = 29(*), 210(•), 211(N) and 212(�). (B) Rescaled pdfs using the multifractal quadratic estimate of the τ (q) spectrum (Equation 10) with parameters

[c0, c1, c2] = [1.01,−0.34, 0.053] (see Table 1).
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FIGURE 6 | Magnitude cumulant analysis of local impulse energy time-series (Pt2). (A) C1(a)/ ln 2 vs. log2 a. (B) C2(a)/ ln2 vs. log2 a. (C) C3(a)/ ln2 vs. log2 a. The

computation of the Cn(a) (Equation 9) was performed with the analyzing wavelets g(1) (▽), g(2) (✷) and g(3) (◦) (Figure S1). The vertical dashed lines delimit the range of

scales (29 ≤ a ≤ 213) used for the linear regression estimate of coefficients c∗1, c
∗
2 and c∗3 of τ (q) (Equation 10) reported in Table 1.

FIGURE 7 | Multifractal spectra of local impulse energy time-series recorded along the CS vein. (A) τ (q) vs. q estimated by linear regression fit of log2 Z(q, a) vs.

log2 a. (B) D(h) vs. h obtained from linear regression fits of h(q, a) and D(q, a) vs. ln2 a. The analyzing wavelets is g(3). The colored symbols correspond to the

electrodes Pt1 (black), Pt2 (red), Pt3 (blue) and Pt5 (green). The curves correspond to quadratic spectra (Equations 10 and 12) with parameters

[c0, c1, c2] = [1.01,−0.28, 0.064] (black, Pt1), [1.01,−0.34, 0.053] (red, Pt2), [1.02,−0.48, 0.098] (blue, Pt3), and [1.03,−0.38, 0.152] (green, Pt5) (see Table 1).

singularities inferred by the two-point magnitude analysis does
not display any correlation across scales just like a log-normal
“multifractal white noise” (Arneodo et al., 1998a). The nature
of this study was exploratory, with a data set limited to a few
patients, and with a few time series rather long for clinical
practice (422 s) but not so long regarding the range of time
scales [0.6, 10 s] where scaling was observed. This is the
reason for the different complementary analyses employed in this
paper including the WTMM method of moments, the WTMM
method of magnitude cumulants, and the two-points magnitude
cumulant method, using analyzing wavelets of different orders,
until reliable estimates were obtained. Of course our results
deserve to be confirmed over a large set of patients at different
stages of AF development and to be explored in different areas

of the atria. The goal would be to exhibit precise determinants
of the diseased substrate using multifractal scaling analysis. But
this preliminary analysis definitely challenges current knowledge
in physical, physiological and clinical fundamentals of AF
arrhythmia. Specifically, it challenges the mechanistic approach
of AF based on circuit reentries.

The absence of an underlying cascading process is not such a
surprise since underlying the multifractal properties displayed by
the local impulse energy at low frequencies (f . 2Hz), there is no
clear 3D “fragmentation” (Mandelbrot, 1982) process inducing
some cascading of energy from large to small time scales and
also no obvious 2D “aggregation, coalescence or growth” (Vicsek,
1989) process bringing energy from small to large time scales.
What are the physical and physiological mechanisms that drive
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FIGURE 8 | τ (q) spectra of local impulse energy time-series recorded along the CS vein at the electrodes Pt2 (red), Pt3 (blue) and Pt5 (green). The curves represent

quadratic polynomial fit of the data (Equation 10). (A) The symbols correspond to the reference Patient 1 (chronic AF, ▽) and to Patients 2 (chronic AF, ◦), 3

(paroxysmal AF, ✷) and 4 (persistent AF, △). (B) The symbols correspond to the reference Patient 1 (▽) and to three different time-series for Patient 4 (◦, ✷, △)

recorded at different periods of time preceding ablation procedure.

FIGURE 9 | Two-point magnitude analysis of local impulse energy time-series recorded along the CS vein. Two-point correlation function C(a,1t)/C(a, 0) vs. ln(1t)

(Equation 15) for local impulse energy E(t) computed with the analyzing wavelet g(3). The two curves correspond to scales a = 29 (black) and 210 (gray) within the

scaling range. (A) Pt1, (B) Pt2, (C) Pt3, and (D) Pt5.

the multifractal nature of local impulse energy and give rise to the
observed differences according to area is still an open question.
Nonetheless, these results already undermine the commonly

accepted concepts revolving around circuit reentries, and a
fortiori spiral waves, as being basic mechanisms for the onset
and perpetuation of AF. The mechanistic “wavelength” criterion
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indeed conveys the idea that random spatio-temporal dispersion
of refractoriness, or more generally of functional properties, leads
to random mixing of circuit reentries. The “wavelength” scale
adjusts naturally to the typical scale λ of dispersion when it exists
c × RP . λ, as would be the case for Gaussian statistics of
dispersion. In that case, the statistics of the local impulse energy
remains Gaussian throughout scales. On the contrary, to fit our
new observations we have seen that the statistics is not Gaussian
and evolves across scales through a log-normal propagation
law which accounts for the intermittency observed over the
range of a few beat cycles (∼0.6 s) to several tens (∼10 s) (and
possibly more), therefore spanning the whole atria. Although
the ligament of Marshall area is highly innervated (Tan et al.,
2007; Ulphani et al., 2007; Arora, 2012), it is quite unlikely that
modulations by the ANS, that affects heart rate, play a significant
role in the intermittent dynamics since the documented three
peak frequencies at ∼0.4, ∼0.15, and ∼0.04 Hz (Akselrod et al.,
1981) do not show up in our analysis. Furthermore, we have
found at least two areas with different multifractal regimes.
Thus, our findings raise new challenging questions calling for
ongoing efforts to develop physiological heart tissue models
that account for the low frequency intermittent nature of local
impulse energy. Recent studies in animal models suggest the
protective role of connexin gene transfer to prevent sustained
AF (Bikou et al., 2011; Igarashi et al., 2012). In this spirit, in a
companionmodeling paper (Attuel et al., submitted), we propose
a model of gap junction conduction remodeling in a denervated
heart that accounts for the observed intermittent dynamics over
large time scales, as resulting from incoherent random back
scatterings leading to the desynchronization of the network of
cardiac excitable cells.
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