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INTRODUCTION
Neurodegenerative disease is an umbrella term for a range of
conditions which primarily affect the neurons in the human
brain and the spinal cord. Neurons are the building blocks of
the nervous system which includes the brain and the spinal
cord. Neurons normally do not reproduce or replace them-
selves, so when they become damaged or die out, they cannot be
replaced by the body. Many neurodegenerative diseases includ-
ing Parkinson’s disease (PD), Huntington’s disease (HD), amy-
otrophic lateral sclerosis (ALS), or Alzheimer’s disease (AD) occur
as a result of neuro-degeneration, which is a term for progressive
loss of structure or function of neurons, including the death of
neurons.

Degenerative nerve diseases cause worsening of many of body
activities, balance, movement, talking, breathing, heart function
and even mental functioning (dementia). Many of the diseases
are genetic while certain medical conditions such as alcoholism,
a tremor or a stroke can cause other types. These diseases can be
serious or even life threatening. It depends on their type. Most of
these diseases are incurable. The goal of the treatment is usually
to improve symptoms, relieve pain and increase mobility.

PD is a degenerative disorder of the central nervous system.
In PD the dopamine generating cells in the substantia nigra, a
region of the midbrain die out. Dopamine sends signals to that
part of the brain that controls movement. Early in the course of
the disease, the most obvious symptoms are movement related.
These include shaking, rigidity, slowness of movement and diffi-
culty walking and gait. In time, PD affects muscles all through the
body and leads to problems like trouble speaking, trouble swal-
lowing, or constipation. Later cognitive and behavioral problems
may arise, with dementia commonly occurring in the advanced
stages of the disease. PD usually begins around the age of 60, but
it even starts earlier. It is more common in men than in women.
There is no cure for PD. A variety of medicines sometimes help
symptoms dramatically.

HD is a neurodegenerative genetic disorder that affects mus-
cle coordination and leads to cognitive decline and psychiatric
problems. It typically becomes noticeable in mid-adult life. It is
an inherited disease that causes certain nerve cells in the brain to
waste away.

The disease is caused by an autosomal dominant mutation in
either of an individual’s two copies of a gene called Huntington,
which means any child of an affected person typically has a 50%
chance of inheriting the disease. People are born with the defec-
tive gene, but symptoms usually don’t appear until middle-age.
The earliest symptoms are often subtle problems with mood
or cognition. Early symptoms of HD may include uncontrolled
movement, clumsiness or balance problems. A lack of coordina-
tion and an unsteady gait often follows. As the disease advances,
uncoordinated, jerky body movements become more apparent
along with a decline in mental abilities and behavioral and psychi-
atric problems. Later this disease can take away the ability to walk,
talk or swallow. Mental abilities generally decline into dementia;
some people even stop recognizing family members. There is no
cure for HD and full-time care is required in the later stages of the
disease. Medicines can help manage some symptoms, but cannot
slow down or stop the disease.

In this paper a multifractal detrended fluctuation analysis
(MFDFA) of human gait time series for diseased and controlled
set is performed. Now it may arise in the mind of the reader that
what is a fractal and what is its relation with human gait?

The term “fractal” was first coined by Mathematician Benoît
Mandelbrot (1982) in 1975. Mandelbrot based it on the Latin
adjective “fractus” meaning “broken” or “fractured.” Fractal
geometry mathematically characterizes systems that are basically
irregular at all scales. A fractal structure has the property that
if a small portion of the system is magnified, it shows the same
complexity as the entire system. Fractals can be classified into
two categories: monofractals and multifractals. Monofractals are
those, whose scaling properties are the same in different regions
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of the systems and Multifractals are complicated self-similar
objects consisting of differently weighted fractals with different
non-integer dimensions. As a result a multifractal system is a
generalization of a fractal system in which a single scaling expo-
nent is not enough to describe its dynamics; instead a continuous
spectrum of exponents (the so called singularity spectrum) is
needed.

Hausdorff et al. (2001) have demonstrated strong connec-
tion between human walking and random walk. Though walk-
ing appears to be a periodic regular process the gait pattern
reveals small fluctuations even under stationary conditions. They
employed detrended fluctuation analysis (DFA) to show that the
fluctuations in stride interval exhibit long range correlations.

In recent past, the DFA has become a very useful tech-
nique to determine the fractal scaling properties and long-
range correlations in noisy, non-stationary time-series. It has
been widely applied to diverse fields such as DNA sequences,
heart rate dynamics, neuron spiking, human gait, and eco-
nomic time-series and also to weather related and earthquake
signals (Ossadnik et al., 1994; Peng et al., 1994; Buldyrev et al.,
1995, 1998; Blesic et al., 1999; Liu et al., 1999; Bunde et al.,
2000; Talkner and Weber, 2000; Ashkenazy et al., 2001). But
DFA has its own limitations. Many geophysical signals as well
as medical patterns do not exhibit monofractal scaling behav-
ior, which can be accounted for by a single scaling exponent
(Hu et al., 2001; Kantelhardt et al., 2001), therefore different
scaling exponents are required for different parts of the series
(Chen et al., 2002). Consequently a multifractal analysis should
be applied. The MFDFA was first conceived by Kantelhardt et al.
(2002) as a generalization of the standard DFA. MFDFA has
been applied successfully to study multifractal scaling behavior
of various non-stationary time series (Kantelhardt et al., 2003;
Telesca et al., 2004, 2005; Sadegh Movahed et al., 2006; Lan
et al., 2008; Niu et al., 2008; Shang et al., 2008; Yuan et al.,
2009).

Fractal properties of the human neuromuscular system has
been observed in ECG, electroencephalogram (EEG) recordings
of brain waves as well as in recordings of human movement,
such as walking gait, running gait, standing posture, and eye
movements (Goldberger et al., 2002a; Scafetta et al., 2003, 2007,
2009; West and Scafetta, 2003; Zhou et al., 2007; Van Orden
et al., 2009; Dutta, 2010a,b; Coey et al., 2012). Fractal prop-
erties are an emergent property of the system dynamics and
that certain pathology can disrupt its dynamics resulting in the
alternation of its fractal properties. There are several methods
that have been used to study human gait for normal and dis-
eased set (Hausdorff et al., 1996, 1997, 2000, 2001; Goldberger
et al., 2002a,b; Scafetta et al., 2003, 2007, 2009; West and
Scafetta, 2003; Van Orden et al., 2009). DFA, a scaling tech-
nique, introduced by Hausdorff et al., to study the dynamics of
human gait under different walking rates, has been proved to
be effective (Hausdorff et al., 1996). It was observed that scal-
ing was degraded in certain diseased states such as PD and HD
in their later work (Hausdorff et al., 1996, 1997, 2000, 2001;
Goldberger et al., 2002b). Scafetta et al. (2009) have observed that
human stride interval is complex time series that is character-
ized by particular symmetries including fractal and multifractal

properties using the SCPG technique. The randomness of the
fluctuations is found to be higher in elderly or cases with neu-
rodegenerative diseases. In this respect it would be interesting
to extend the detrending technique used by Hausdorff et al.
(2001) designed for monofractal series to multifractal formalism
MFDFA. Long range correlation properties of the gait series have
been given a lot of emphasis in all the previous studies. Here
we have also tried to find a quantitative estimation of degree of
multifractality and study its variation among the diseased and
control set.

DESCRIPTION OF DATA
Neurodegenerative diseases often affect gait and mobility. The
stride-interval is a measure of the gait rhythm and is typically
defined as the time from heel strike to next heel strike of the same
foot. The stride interval, the time between consecutive heel strikes
of the same foot has been seen to fluctuate from one strike to the
next in a complex fashion (Yamasaki et al., 1984; Pailhous and
Bonnard, 1992; Hausdorff et al., 1995).

In order to investigate the fractal properties of the human gait
in case of normal persons (Control Group) and patients with PD
and HDs, we studied the databases of human gait from website
www.physionet.org. The records in the neuro-degenerative dis-
ease are from patients with PD, HD and records from healthy
subjects (Control Group) has been included as the comparison
group.

METHOD OF ANALYSIS
We have performed a multifractal analysis of the stride-time fluc-
tuations of human gait in three cases, (i) healthy persons (Control
Group), (ii) persons with PD, and (iii) persons with HD follow-
ing the prescription of Kantelhardt et al. (2002). The important
steps involved in this method of analysis are mentioned here:

Step1: Computing the average
Let us suppose x(i) for i = 1 . . . N, be a non-stationary time

series of length N. The mean of the above series is given by

xave = 1

N

N∑
i = 1

x(i) (1)

Step 2: Computing the integrated time series

Y(i) ≡
i∑

k = 1

[x(k) − xave] for i = 1 . . . N (2)

Step 3: Dividing the integrated time series to Ns non-overlapping
bins (where Ns = int(N/s) and s is the length of the bin) and
computing the fluctuation function. Since N is not a multiple
of s, so in order to include this part of the series the entire pro-
cess is repeated starting from the opposite end. Thus, 2Ns bins are
obtained and for each bin we perform least square fit of the series
and then determine the variance

F2(s, ν) = 1

s

s∑
i = 1

{Y[(ν − 1)s + i] − yν(i)}2
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for each bin ν, ν = 1, . . . Ns and

F2(s, ν) = 1

s

s∑
i = 1

{Y[N − (ν − Ns)s + i] − yν(i)}2

for ν = Ns + 1, . . . , 2Ns where yν(i) is the least square fitted value
in the bin ν. We have adopted MFDFA 1 which uses a least square
linear fit.

Step4: Computing fluctuation function
The qth order fluctuation function Fq(s) is obtained after

averaging over 2Ns bins.

Fq(s) =
{

1

2Ns

2Ns∑
ν = 1

[
F2(s, ν)

] q
2

} 1
q

(3)

where q is an index which can take all possible values except
zero because in that case the factor 1/q blows up. Fq cannot be
obtained by the normal averaging procedure; instead a logarith-
mic averaging procedure is applied

F0(s) ≡ exp

{
1

4Ns

2Ns∑
ν = 1

ln[F2(s, ν)]
}

∼ sh(0) (4)

Step 5: The procedure is repeated by varying the value of s.Fq(s)
increases with increase in value of s. If the series is long range
power correlated, then Fq(s) will show power law behavior

Fq(s) ∝ sh(q)

If such a scaling exists ln Fq(s) will depend linearly on ln s, with
h(q) as the slope. In general the exponent h(q) depends on q. For
stationary time series h(2) is identical with the Hurst exponent H.
h(q) is said to be the generalized Hurst exponent. A monofractal
time series is characterized by unique h(q) for all values of q.

The generalized Hurst exponent h(q) of MF-DFA is related to
the classical scaling exponent τ(q) by the relation

τ(q) = qh(q) − 1 (5)

A monofractal series with long range correlation is characterized
by linearly dependent q order exponent τ(q) with a single Hurst
exponent H. Multifractal signal have multiple Hurst exponent and
τ(q) depends non-linearly on q (Ashkenazy et al., 2003a).

The singularity spectrum f (α) is related to h(q) by

α = h(q) + qh′(q) (6)

f (α) = q[α − h(q)] + 1 (7)

where α is the singularity strength and f (α) specifies the dimen-
sion of subset series that is characterized by α. The multifrac-
tal spectrum is capable of providing information about relative
importance of various fractal exponents in the series e.g., the
width of the spectrum denotes range of exponents. A quantitative
characterization of the spectra may be obtained by least square

fitting it to a quadratic function (Shimizu et al., 2002) around the
position of maximum α0,

f (α) = A(α − α0)
2 + B(α − α0) + C (8)

where C is an additive constant C = f (α0) = 1. B indicates the
asymmetry of the spectrum. It is zero for a symmetric spectrum.
The width of the spectrum can be obtained by extrapolating the
fitted curve to zero. Width W is defined as

W = α1 − α2 (9)

with f (α1) = f (α2) = 0. It has been proposed by some groups
(Ashkenazy et al., 2003b) that the width of the multifractal spec-
tra is a measure of degree of multifractality. For a monofractal
series, h(q) is independent of q. Hence from relation (6) and
(7) it follows that the width of the spectrum will be zero for a
monofractal series. The more the width, the more multifractal is
the spectrum.

The origin of multifractality in a time-series can be deter-
mined. Two basic sources of multifractality in the time-series
are:

(i) Multifractality due to broad probability density function for
the values of the time-series.

(ii) Multifractality due to different long-range correlations of the
small and large fluctuations.

The origin of the multifractality can be ascertained by analyz-
ing the corresponding randomly shuffled series. In the shuffling
procedure, the values are put into random order and hence all
correlations are destroyed. Hence, if the multifractality is due to
long-range correlations, then the shuffled series exhibits a non-
fractal scaling. On the other hand, if the original h(q) dependence
does not change, i.e., h(q) = hshuffled(q), then the multifractality
is due to the broad probability density, which is not affected in the
shuffling procedure. If both kinds of multifractality are present in
a given series, the shuffled series will show weaker multifractality
than the original series.

The autocorrelation exponent γ can be estimated from the
relation given below: (Kantelhardt et al., 2002; Sadegh Movahed
and Hermanis, 2008)

γ = 2 − 2h(q = 2) (10)

For uncorrelated or short-range correlated data, h(2) is expected
to have a value 0.5 while a value greater than 0.5 is expected for
long-range correlations. Therefore, for uncorrelated data, γ has a
value 1 and the lower the value the more correlated is the data.

RESULTS AND DISCUSSION
The normal gait time-series is highly inhomogeneous and non-
stationary and fluctuates about the mean value in an irregular and
complex manner. Gait rhythm of the (i) healthy persons (Control
Group), (ii) persons with PD, and (iii) persons with HD have been
studied using the MFDFA method of analysis of a non-stationary
time series.
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The data for each case was transformed to obtain the inte-
grated signal. The integrated time-series was then divided into Ns

non-overlapping bins. The value of s was chosen in the range 5 to
N/5 in steps of 1 (N = 1200). The qth order fluctuation function
Fq(s) for q = −10 to +10 in steps of 1 was obtained. The linear
dependence of ln Fq(s) on ln s for different orders of q for the three
groups, namely (i) healthy persons (Control Group), (ii) persons
with PD, and (iii) persons with HD, was observed which indicates
a scaling behavior. The slope of the linear fit to ln Fq(s) vs. ln s plot
gives the values of h(q). One representative figure for variation of
h(q) with q for each of the three cases is provided in Figure 1A.
The variation of h(q) with q indicates a multifractal behavior It
is evident from Figure 1A that the values of h(q) decreases with
increasing q.

The values of the classical scaling exponents τ(q) were also
calculated using relation (5) for each q for all the three cases.
From Figure 1B depicting the variation of τ(q) with q, it is evi-
dent that τ(q) has a non-linear dependence on q suggesting a

multifractal nature of the series, while for monofractal series τ(q)
would depend linearly on q. The variation of h(q) with q and
the non-linear dependence of τ(q) on q reflects the existence of
multifractality in human gait in all the three cases.

Table 1 | Mean values, Variance of multifractal width W (Equation 9),

and ANOVA parameters F and p values for all three groups.

Values of W F p

Average Variance

Control left-foot 3.7 2.1 8.79 0.002
Parkinson’s left-foot 2.2 0.1
Huntington’s left-foot 2.15 0.03

Control right-foot 3.8 1.2 6.25 0.008
Parkinson’s right-foot 2.8 1.1
Huntington’s right-foot 2.3 0.3
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FIGURE 1 | Plot of (A) Generalized Hurst exponent h(q) vs. order q (B) Classical Scaling exponent (Equation 5) τ(q) vs. order q and (C) Dimension of

subset series (Equation 6) f (α) vs. Singularity strength (Equation 7) α for one set each of three different cases for left-foot and for right-foot.
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The degree of multifractality in each case can be determined
quantitatively. We have calculated α and f (α) using relation (6)
and (7). The multifractal spectrum, the singularity spectrum
[f (α) vs. α] is shown in Figure 1C. The multifractal spectra were
fitted to the quadratic equation (8).
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Classical Scaling exponent (Equation 5) τ(q) vs. order q and (C)

Dimension of subset series (Equation 6) f (α) vs. Singularity strength

(Equation 7) α for original and shuffled series for one set each of three

different cases for left-foot.

The width W of the spectrum is a measure of the degree
of multifractality. The mean values of width W of the mul-
tifractal spectra listed in Table 1 shows that the width of
multifractal spectrum is greater in case of the healthy sub-
ject (Control Group) than those for patients with PD and
HD which suggests that the degree of multifractality is more
in case healthy subjects than those with neurodegenerative
diseases.

To ascertain the origin of multifractality, the corresponding
randomly shuffled series was analyzed for all the three cases. The
variation of the values of h(q) vs. q, τ(q) vs. q, and f (α) vs. α,
respectively, for the original series and the corresponding ran-
domly shuffled series are represented in Figure 2 where the plots
are shown for one subject for each group.

The values of Wshuffled and γshuffled, the width of the mul-
tifractal spectra and correlation coefficient for the shuffled and
original series for one subject in each group are shown in
Table 2. A comparison of the values and figures suggests the
fact that the origin of multifractality is due to both—broad
probability distribution and long-range correlation, however,
long-range correlation is dominant as suggested by the large
reduction in multifractal width. Values of γshuffled are quite close
to 1 when compared to lower values in the original series as
expected since the correlations are destroyed in the shuffling
process. This result demonstrates the fact that the multifrac-
tality in human gait is predominantly due to long-range cor-
relations. The values of the autocorrelation coefficient reveal
that the gait series is long range positive correlated series which
approaches toward an uncorrelated series with neurodegenerative
diseases.

CONCLUSIONS
MFDFA was applied to analyze the stride-interval time-series
obtained from the three groups (i) healthy persons (Control
Group), (ii) persons with PD, and (iii) persons with HD, and the
following facts have been revealed.

(i) The human gait rhythm exhibits multifractal properties,
in all three cases. However, the multifractal properties are more
pronounced in normal persons, i.e., degree of multifractality is

Table 2 | Values of multifractal width W (Equation 9) and

autocorrelation coefficient γ (Equation 10) for (i) healthy subjects

(Control Group), (ii) subjects with Parkinson’s disease, and (iii)

subjects persons with Huntington’s disease for both the original

series and the shuffled series.

W original W shuffled γoriginal γshuffled

Control
Group

left-foot 4.0 ± 0.1 0.93 ± 0.07 0.53 1.03

right-foot 4.0 ± 0.2 1.2 ± 0.2 0.43 1.06

Parkinson’s
disease

left-foot 2.3 ± 0.2 0.88 ± 0.07 0.67 0.99

right-foot 2.7 ± 0.1 0.93 ± 0.07 0.61 0.99

Huntington’s
disease

left-foot 2.20 ± 0.09 0.90 ± 0.08 0.82 1.03

right-foot 2.07 ± 0.09 0.72 ± 0.05 0.86 1.07
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greater in normal persons, than in persons with neurodegenera-
tive diseases.

(ii) The left foot and the right foot data produces identical
results in almost all the cases.
The MFDFA method is capable of distinguishing between normal
and diseased set. ANOVA was employed to test the statistical sig-
nificance of the data. The values of F and p are listed in Table 1.
The values of W are found to different in normal and diseased
set with a confidence level about 95%. However, when it comes
to distinguishing between two diseased set the MFDFA method
produces almost same results. Thus, it can be inferred that the
neurodegenerative diseases can bring about an alteration in the
fractal dynamics of human gait due to weakening and impair-
ment of neural control on locomotion. The results are consistent
with previous studies. Hausdorff et al. (1996, 1997, 2000, 2001,
Goldberger et al., 2002b) have observed loss of correlation in
inter-stride interval fluctuation with patients suffering from PD
and HD. Scafetta et al. (2007) have observed that due to neu-
ronal deterioration, a network of neurons controlling human gait
is expected to be less correlated in diseased set than a healthy

neuronal network. A leftward shift of the Hölder exponent dis-
tribution was observed and was estimated to increase with the
severity of the neurodegenerative disease.

However, there are shortcomings of the MFDFA method which
can lead to spurious results. Fractional Gaussian noise also mim-
ics typical shape expected from long range correlations and
hence can lead to erroneous results (Eke et al., 2012; Delignières
and Marmelat, 2013). Bashan et al. (2008) have observed that
MFDFA1 systematically overestimates the scale scaling exponents
for small scale s. In this respect Centered Moving Average (CMA)
(Alvarez-Ramirez et al., 2005) will be more fruitful in analyzing
the scaling properties in short data sets without trends. However,
for data with possible unknown trends application of standard
DFA with several different detrending polynomial orders will help
to distinguish between real crossovers and artificial crossovers due
to trends.
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