
 Open access  Journal Article  DOI:10.1103/PHYSREVE.47.875

Multifractal formalism for fractal signals: The structure-function approach versus
the wavelet-transform modulus-maxima method — Source link 

Jean-François Muzy, Emmanuel Bacry, Alain Arneodo

Institutions: École Normale Supérieure

Published on: 01 Feb 1993 - Physical Review E (American Physical Society)

Topics: Multifractal system, Wavelet transform modulus maxima method and Fractal

Related papers:

 Wavelets and multifractal formalism for singular signals: Application to turbulence data.

 The Multifractal Formalism Revisited with Wavelets

 Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series

 Singularity spectrum of fractal signals from wavelet analysis: Exact results

 Multifractality in human heartbeat dynamics

Share this paper:    

View more about this paper here: https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-
32pww3ek05

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVE.47.875
https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-32pww3ek05
https://typeset.io/authors/jean-francois-muzy-49ocav5wg5
https://typeset.io/authors/emmanuel-bacry-4mfoxj00hf
https://typeset.io/authors/alain-arneodo-48wzlcu0nt
https://typeset.io/institutions/ecole-normale-superieure-2rhqzl2i
https://typeset.io/journals/physical-review-e-9qlkqn9m
https://typeset.io/topics/multifractal-system-cajgqdge
https://typeset.io/topics/wavelet-transform-modulus-maxima-method-2gcmah5x
https://typeset.io/topics/fractal-34r4ui3m
https://typeset.io/papers/wavelets-and-multifractal-formalism-for-singular-signals-3iy9mziqy8
https://typeset.io/papers/the-multifractal-formalism-revisited-with-wavelets-4fw6wpm4yx
https://typeset.io/papers/multifractal-detrended-fluctuation-analysis-of-nonstationary-11r4541ni3
https://typeset.io/papers/singularity-spectrum-of-fractal-signals-from-wavelet-3q5avtwvo7
https://typeset.io/papers/multifractality-in-human-heartbeat-dynamics-1717fip67l
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-32pww3ek05
https://twitter.com/intent/tweet?text=Multifractal%20formalism%20for%20fractal%20signals:%20The%20structure-function%20approach%20versus%20the%20wavelet-transform%20modulus-maxima%20method&url=https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-32pww3ek05
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-32pww3ek05
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-32pww3ek05
https://typeset.io/papers/multifractal-formalism-for-fractal-signals-the-structure-32pww3ek05


HAL Id: hal-01557138
https://hal.archives-ouvertes.fr/hal-01557138

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Multifractal formalism for fractal signals: The
structure-function approach versus the

wavelet-transform modulus-maxima method
Jean-François Muzy, Emmanuel Bacry, Alain Arnéodo

To cite this version:
Jean-François Muzy, Emmanuel Bacry, Alain Arnéodo. Multifractal formalism for fractal signals:
The structure-function approach versus the wavelet-transform modulus-maxima method. Physical
Review E , American Physical Society (APS), 1993, 47 (2), pp.875-884. 10.1103/PhysRevE.47.875.
hal-01557138

https://hal.archives-ouvertes.fr/hal-01557138
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Multifractal formalism for fractal signals: The structure-function approach 

versus the wavelet-transform modulus-maxima method 

J. F. Muzy 

Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France 

E. Bacry 

Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France 

and DMI, Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris CEDEX, France 

A. Arneodo 

Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France 

Several attempts have been made recently to generalize the multifractal formalism, originally intro

duced for singular measures, to fractal signals. We report on a systematic comparison between the 

structure-function approach, pioneered by Parisi and Frisch [in Proceedings of the International School 

on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. 

Ghil, R. Benzi, and G. Parisi (North-Holland, Amsterdam, 1985), p. 84] to account for the multifractal 

nature of fully developed turbulent signals, and an alternative method we have developed within the 

framework of the wavelet-transform analysis. We comment on the intrinsic limitations of the structure

function approach; this technique has fundamental drawbacks and does not provide a full characteriza

tion of the singularities of a signal in many cases. We demonstrate that our method, based on the 

wavelet-transform modulus-maxima representation, works in most situations and is likely to be the 

ground of a unified multifractal description of self-affine distributions. Our theoretical considerations 

are both illustrated on pedagogical examples and supported by numerical simulations. 

I. INTRODUCTION 

The multifractal formalism [1-9] has been established 

to account for the statistical scaling properties of singular 

measures arising in various physical situations [10-18]. 

Notable examples include the invariant probability distri

bution on a strange attractor, the distribution of voltage 

drop across a random resistor network, the distribution 

of growth probabilities on the interface of a diffusion

limited aggregate, and the dissipation field in fully 

developed turbulent flows. This formalism lies upon the 

determination of the f (a) singularity spectrum [1] which 

associates the Hausdorff dimension f (a) to the subset of 

the support of the measure JL where the singularity 

strength is a: 

j(a)=dimH{xiJL<Bx(E))-Ea, for E~OJ , (1) 

where dimH denotes the Hausdorff dimension and Bx(E) 

is an E-box centered at x. The so-called thermodynamical 

analogy provides a natural connection between the j(a) 

spectrum and an observable spectrum T(q) defined from 

the power-law behavior of a partition function [1-9] (in 
the limit E~O): 

Zq(E)= ~JL(B;(E))9-ET(q)' 
i 

(2) 

where the sum is taken over a partition of the support of 

the singular measure JL into boxes of size E. This T(q) 

spectrum is directly related to the so-called "generalized" 

fractal dimensions [19-22] Dq =r(q)/(q -1). Using a 

standard steepest-descent argument to estimate the sum 

in Eq. (2), in the limit E~O, one gets 

r(q)=mina[qa- /(a)] . (3) 

r(q) and j(a) are thus related by a Legendre transform. 

Actually, the variables q and r(q) play the same role as 

the inverse of temperature and the free energy in the 

thermodynamics [1-9] while the (inverse) Legendre 

transform 

j(a) =minq [qa -r(q)] (4) 

indicates that instead of the energy and the entropy, we 

have a and f (a) as the thermodynamical variables conju
gate to q and r(q). 

In the context of the study of fully developed tur

bulence [2,10,23-25], Parisi and Frisch [26] (PF) have 

proposed a similar description of the singular aspect of 

the longitudinal velocity signal v (x). They have called 

local singularity h (x 0 ) the exponent which characterizes 

the local scaling behavior of the velocity increment 

Bv (x 0 , /) around x 0 , in the limit of inertial separation 

I~o: 

(5) 

The singularity spectrum D (h) of the signal is then 
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defined as the function that gives, for a fixed h, the Haus
dorff dimension of the set of points x where the exponent 
h (x) is equal to h. In their original work, PP have actu
ally pioneered the multifractal approach which consists 
in estimating the D(h) spectrum from the scaling ex
ponents Sp of the p-order structure function [23,24,26], in 

the limit 1----+0: 

(6) 

Thus, by suitably inserting Eq. (5) into the above 
definition, one can bridge D (h) and Sp by a Legendre 

transform: 

(7) 

which is, a priori, the counterpart of the relationship (4) 
between the f(a) and r(q) spectra of singular measures. 
Hereafter, we will refer to this method, which consists in 
computing the D (h) singularity spectrum of a fractal sig
nal by first estimating the exponents Sp [Eq. (6)] and then 
by Legendre transforming [Eq. (7)], as the structure
function (SF) method. 

The SF approach has raised a rebirth of experimental 
interest in the study of turbulent flows [27-31]. The 
main feature of the data gathered in the last decade is 
that they all exhibit a nonlinear dependence of the ex
ponents Sp versus p, the hall mark of multifractality, cor
roborating the results of earlier experimental investiga
tions [32,33] of turbulent signals. But the elaboration of a 
multifractal formalism to characterize the singular nature 
of fractal signals is an important goal that is not restrict
ed, in any case, to the context of fully developed tur
bulence. Fractal signals are commonly encountered in 
physics or other applied sciences. Well-known examples 
include all kinds of random walks (e.g., Brownian signals) 
used to mimic the noisy dynamical behavior observed in 
various experimental situations [10,34-42], financial time 
series [36-38], geologic shapes [10,39], interfaces devel
oping in far from equilibrium growth processes 
[16-18,40], turbulent signals recorded in fractal growth 
phenomena (41], and DNA "walk" coding of nucleotide 
sequences [42]. There have been some attempts [40,43] to 
extend the SF method to other fields than fully developed 
turbulence. But, as we will demonstrate in the following, 
even though the SF method can give some conspicuous 
information on the multifractality of self-affine signals, 
generally it does not allow a complete characterization of 
the distribution of singularities; moreover it has funda
mental drawbacks which may introduce drastic bias in 
the estimate of the D (h) singularity spectrum. 

In a previous work, we have elaborated on a method 
which turns out to be a very efficient tool to analyze frac
tal signals [44-46]. This method, based on the wavelet
transform modulus-maxima representation of the signal, 
provides a practical way to determine the entire D (h) 
spectrum directly from any experimental signal. More
over, it is likely to be a good candidate to achieve a 
unified statistical thermodynamic description of singular 
distributions (including measures and signals). Beyond 
the academic examples and the applications of our 
wavelet-based method given in our original work in Refs. 

[44,45], there was a need to compare its performance 
with that of the SF method. The aim of this paper is to 
point out using concrete examples the failures of the SF 
approach and to demonstrate that the wavelet-transform 
modulus-maxima (WTMM) method supplies to these 
drawbacks. 

The paper is organized as follows. In Sec. 11 we intro
duce the WTMM method within the mathematical 
framework of the wavelet transform and its modulus
maxima representation. In Sec. Ill we address the 
difficult issue of the estimate of the scaling exponents 
which are related to negative order moments in both the 
SF and the WTMM methods. In Sec. IV we show to 
what extent and we explain why the accessible range of 
singularities is intrinsically restricted when one uses the 
SF method. We argue theoretically and we demonstrate 
on specific examples that the WTMM method does not 
suffer from such limitations. In Sec. V we discuss the 
effects of the presence of highly regular parts in the signal 
on the estimate of the D (h) singularity spectrum. We 
conclude in Sec. VI with some perspectives for future 
research. 

11. THE WAVELET-TRANSFORM 

MODULUS-MAXIMA METHOD 

In this section, we briefly describe the WTMM 
method. This method has been introduced and tested nu
merically in Refs. (44,45]. We refer the reader to Ref. 
[46] for a more rigorous and complete description. The 
wavelet transform (WT) of a function f consists in 
decomposing it into elementary space-scale contributions, 
associated to the so-called wavelets which are constructed 
from one single function, the analyzing wavelet 1/J, by 
means of translations and dilations [47-51]. The WT of 
the function f is defined as 

T.p[J](b,a)=.!. J +oo if [ x -b ]f(x)dx , (8) 
a -oo a 

where a ER+" is a scale parameter and b ER is a space 
parameter. The analyzing wavelet 1/J is generally chosen 
to be well localized in both space and frequency. Usually, 
1/J is only required to be of zero mean but, for the particu
lar purpose of singularity tracking that is of interest here, 
we will further require 1/J to be orthogonal to some low
order polynomials [52-54]: 

J+oo m - < 
X 1/J(x)dx-0, Vm, o_m <N. 

-00 

(9) 

A class of commonly used real-valued analyzing wavelets 
[55-58] which satisfies the above condition is given by 
the successive derivatives of the Gaussian function: 

(10) 

Let us recall the notion of local Holder exponent 
[52,54,59] which is more general than the one defined by 
Eq. (5). The Holder exponent h (x 0 ) of a function fat x 0 

is defined as the largest exponent such that there exists a 
polynomial P n ( x) of order n that satisfies 

(11) 
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for x in a neighborhood of x 0 • This definition provides a 
generalization of Eq. (5) to any exponent h characterizing 
a singularity in a higher derivative of f. For example, 
h (x 0 ) = 1. 5 implies that the function f is differentiable at 
x 0 , but its derivative is not: the singularity actually lies in 
the second derivative of f. This extension leads naturally 
to a generalization of the D (h) spectrum [Eq. (7)] intro
duced by PF. Henceforth we will denote D(h) the Haus
dorff dimension of the set where the Holder exponent is 
equal to h: 

D (h)=dimH[xlh (x)=h l , (12) 

where h is no longer restricted to [0, 1) but a priori can 
take on positive as well as negative real values [46]. 

If one uses an analyzing wavelet 1/J that satisfies the 
condition (9), the local behavior of f in Eq. (11) is mir
rored by the wavelet transform which locally behaves like 
[52-60) 

(13) 

in the limit a --+0, provided N satisfies N > h (x 0 ) in Eq. 
(9). The above equation mainly says that, when investi
gating the local scaling behavior of the wavelet 
coefficients computed with an analyzing wavelet whose N 
first moments vanish, one can generally detect (and esti
mate) all the Holder exponents off that are smaller than 
N. 

The originality of the WTMM method consists in 
building a partition function from the modulus maxima 
of the wavelet transform. These maxima are defined 
[59,61), at each scale a, as the local maxima of 
IT,1;[f)(x,a)l considered as a function of x. In Fig. l(b), 
we show the space-scale arrangement, in the (x,a) plane, 
of the modulus maxima of the wavelet transform of the 
fractional Brownian signal illustrated in Fig. l(a). The 
analyzing wavelet is the second derivative of the Gauss
ian function [Eq. (10)]. These wavelet-transform 
modulus maxima are disposed on connected curves called 
maxima lines. Let us define [46) L(a 0 ) the set of all the 
maxima lines I that satisfy 

(x,a)El=a :Sa 0 , 

(14) 
\;fa :Sa 0 , 3(x,a)E/ 

An important feature of these maxima lines is that, each 
time the analyzed signal has a local Holder exponent 
h (x 0 ) < N at the point x 0 , there is at least one maxima 
line pointing towards x 0 , along which Eq. (13) holds 
[46,59). In the case of fractal signals, which are typically 
characterized by a hierarchical distribution of singulari
ties [52-59], we expect that the number of maxima lines 
will diverge in the limit a --+0. In fact, as emphasized in 
Refs. [44,45] the branching structure of the WT skeleton 
defined by the maxima line arrangement in the (x,a) half 
plane enlightens the hierarchical organization of the 
singularities. The WTMM method consists in taking ad
vantage of the space-scale partitioning given by this 
skeleton to define the following partition function 
[44-46): 

E 
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FIG. l. WTMM and SF analysis of fractional Brownian 
motion. (a) Graph B 113 ( x) of a realization of a fractional 
Brownian process indexed by H = {. (b) Wavelet-transform 

maxima lines of B 113 (x). (c) r(q) vs q as computed with the 
WTMM method (e) and the SF method (6 ). (d) D(h) vs h 
from the Legend re transform [Eq. (17)] of the r( q) spectrum 
computed with the WTMM method. The analyzing wavelet is 
the second derivative 1(!< 2 l of the Gaussian function. 

Z(a,q)= ~ 
/E.L(a) 

[ sup IT.p(f](x,a')ljq, 
(x,a')El 

(15) 

where q EIR. Z(a,q) plays a role similar to the partition 
function defined in Eq. (2) for singular measures. Indeed, 
a deep analogy [44-46,62] does exist between the classi
cal partitions defined for measures and the ones provided 
by the wavelet-transform modulus-maxima representa
tion. The analyzing wavelet 1/J can be seen as a box of a 
particular shape, the scale a being its size [ E in Eq. (2)], 
while the modulus maxima indicate how to position our 
special "boxes" to obtain a partition at the considered 
scale. [Let us note that the sup in Eq. (15) can be seen as 
a way to define a scale-adaptive partition which will 
prevent divergencies from showing up in the calculation 
of Z(a,q) for negative q values.] In the limit a--+0, one 
can again define the exponent r( q) from the power-law 
behavior of the partition function: 

Z(a,q)-anq) . (16) 

Then, by using both the behavior of the wavelet 
coefficients along the maxima lines [Eq. (13)] and the ex
tended definition of D (h) in Eq. (12), one can compute 
the D (h) singularity spectrum from the Legendre trans
form of r(q): 
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D(h)=minq[qh --r(q)]. (17) 

Let us point out that Eqs. (16) and (17) were rigorously 

derived in Ref. [46] for a class of signals whose singular 

part is related to the invariant measure of some affine 

dynamical systems (expanding Markov maps of the inter

val). 

It is tempting to relate the exponents -r(q), defined from 

the wavelet-based partition function, to the exponents ~P 

of the structure functions [Eq. (6)]. A simple comparison 
of Eqs. (7) and ( 17) gives immediately 

(18) 

As we will discuss in Secs. Ill and IV, this relationship 

does not hold for every value of q. In fact, -r(q) turns out 

to be a more general spectrum than the ~q's, in the sense 

that .,-( q) is the exact Legendre transform of the D (h) 

singularity spectrum in most situations. 

Ill. THE PROBLEM OF DIVERGENCIES 

IN THE COMPUTATION 

OF NEGATIVE q-ORDER MOMENTS 

Let us first remark that in the original PF definition 
[Eq. (6)], the structure functions are only defined for posi

tive integer values of p. Even though one can extend this 
definition to real positive p values by replacing Bv (x, I) by 

I Bv (x, I) I in Eq. (6), the structure functions do not exist 

for negative p values. Indeed, there is no reason, a priori, 

that the probability density of Bv vanishes around Bv =0. 
Consequently, the Legendre transform (7) is not valid for 

p < 0 and only the part of the D (h) spectrum correspond

ing to the strongest singularities is amenable to the SF 
approach. 

Recently, in the context of the study of growth pro

cesses resulting in self-affine interfaces, a slightly different 

"structure-function" method has been introduced in or

der to get rid of the divergencies problem encountered in 

the computation of negative-order moments [43]. Ac

cording to Barabasi and Vicsek, the multifractal proper

ties of a self-affine signal f (x) can be investigated by cal

culating the q-order "height-height correlation function" 
defined as 

@q(l)= ( 1/(x)-f(x +[)lq) -lq , (19) 

where the spatial average is performed by considering 
only the terms such that f(x)- f(x +l):¥=0. This re

striction artificially cures the divergencies problems for 

q < 0 and the exponents ~q can be computed for any q. 

Practically, this method consists in removing all the local 

increments that are below a fixed threshold (which could 
actually correspond to the numerical accuracy). The in

crement probability density functions are thus modified 
and set to zero over an interval whose length corresponds 

to the introduced threshold. However, if one chooses, as 
in Ref. [43], this artificial cutoff to be scale independent, 

one can expect to observe some self-similarity breaking 

when considering small increments [which are the ones 
that are dominating in Eq. (19) for negative values of q ]. 
This phenomenon is likely to develop into a misleading 

phase transition [7,22,63-65] in the ~q spectrum for some 

critical negative q value. This is the explanation of the 

very puzzling results obtained by Barabasi and Vicsek 

[43] when using their method to study fractional Browni

an processes. These processes [34,66,67], generally in

dexed by a parameter H, are characterized by an incre

ment probability density which is a Gaussian function 

whose variance behaves like z2H when considering incre

ments over a distance l. If B H is a fractional Brownian 

process corresponding to the parameter H, since its incre

ments BB H are Gaussian and stationary, one can compute 

spatial averages from ergodic formulas [68]. In particu
lar, the scaling behavior of the average in Eq. (19) can be 

derived analytically in the limit z_.. + oo (This limit is ac

tually the one taken in Ref. [43]; it corresponds to the 

limit of infinite range of scales when a lower cutoff is im

posed. Similar results can be derived in the limit l-+0): 

@ ([)= z-H I +oo e -b2/4t2Hbqdb ' 
q 2v'21r c 

where the constant c is the cutoff introduced above. 
Then, using a straightforward change of variables, one 

gets 

@ (l)-[qHJ +oo e -x\qdx 
q cl-H 

-zqH(Cte+ z-(q +l)H) 

-FH+z-H. 

One thus obtains the following exact formula for ~q: 

{
qH for q > -1 

~q = - H for q < - 1 . (20) 

There is, thus, a singularity in the derivative of ~q for 

q = -1 which can be understood as a phase transition in 

the scaling properties of the signal. But one must em

phasize again that this feature is only an artifact of the 

method. Even though one could try to extract from 

equations like Eq. (20) some relevant information about 

the singularity spectrum of the studied signals, this could 

be achieved only for particularly simple cases but not in 

more general (multifractal) situations [69]. 
This example clearly illustrates some intrinsic limita

tions in the SF method; this method cannot deal with the 

divergencies problems inherent to the computation of 

negative-order exponents without losing the natural 

Legendre transform bridge with the D (h) spectrum. The 

situation is much more transparent when one uses the 
WTMM method. According to the definition (15), the 

self-similarity properties of the signal are directly incor

porated into the calculation of the partition function 

which never diverges whatever the value of q is. In Fig. 1 

are reported the results of a statistical analysis of a frac
tional Brownian process ( H = +) using the WTMM 

method. The numerical signal was generated by filtering 
uniformly distributed pseudorandom noise in Fourier 

space in order to have the required k - 513 spectral density 

[34]. A BH=t/3 fractional Brownian signal is shown in 

Fig. l(a). The corresponding wavelet-transform mod
ulus-maxima skeleton computed with the "Mexican hat" 
t/J< 2l(x) [Eq. (10)] is illustrated in Fig. l(b). When plotted 

versus q, the exponent -r(q) extracted from the power-law 

behavior of Z(a,q) consistently fall on a line of slope 
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h =0.33±0.01. Moreover, Fig. l(c) shows that the 

theoretical prediction 

7(q) =q /3-1 (21) 

provides a remarkable fit of the data. No spurious phase 

transition is observed. By Legendre transforming 7(q) 

[Eq. (17)], we obtain 

h =H=f, D(h =t)=1. (22) 

As expected theoretically, we find that the Brownian sig

nal B 113 (x) is almost everywhere singular with a unique 

Holder exponent h =f. Throughout this simple exam

ple, we have illustrated the first crucial advantage of the 

WTMM method: this method is based on a discrete sum

mation over well chosen points (scale-adaptive partition) 

rather than making a blind average over the whole sam
pling interval. Therefore divergencies are naturally re

moved without introducing any arbitrary artifice which 

might induce some meaningless phase transition phenom

ena in the observed spectra. 

IV. LIMITATIONS IN THE RANGE 

OF ACCESSIBLE HOLDER EXPONENTS 

In this section, we will focus our comparative analysis 

between the SF and the WTMM methods on the compu

tation of both the partition and the structure functions 

for positive q values exclusively. Moreover, we will as

sume that the function f(x) under study is almost every

where singular; this implies that the maximum value of 

the D (h) spectrum (which is the Hausdorff dimension of 

the support of the singularities) is 1. The case of signals 

which may be nonsingular on some set of finite Lebesgue 

measure will be discussed in Sec. V. 

Singularities of Holder exponents h > 1. If one com

pares Eqs. (5) and (11), one can easily check that the ex

ponent defined by the local behavior of the increments is 

equal to the Holder exponent if and only if the singularity 

lies in the first derivative of the function f. Indeed, in the 

definition (11), Pn(x0 ) can be seen as the first n + 1 terms 

of the Taylor series off at x 0 ; it coincides with the con

stant term f (x 0 ) solely when f (x) is not differentiable in 

x 0 • When the function f is differentiable at least once, 

the behavior of the increment 8f(x0 ,l) is generically 

dominated by the linear term j'(x0 )/. Thus, whenever 

the function f has a local Holder exponent greater than 

l, the exponent identified by the increments will be h = 1. 

This is the demonstration that the SF method fails to 

detect the part of the D (h) spectrum [Eq. (12)] which lies 

beyond the value h 2:: l [even if this part corresponds to 

positive q values in Eq. (19)] and which corresponds to 

the weakest singularities. Furthermore, if the maximum 
value of D (h) is reached for some h 2:: l, the accessible 
range of singularities is truncated; the Legendre trans

form (7) becomes 

(23) 

Therefore only the Holder exponents in the range [O,h * ], 
where h* satisfies h*=l-[1-D(h*)]/D'(h*)<l, can 

be captured by the SF method. This limitation is also 

seen on the {;q spectrum which exhibits an unexpected 

abrupt change- of behavior for q smaller than some q *. 
From Eq. (23), one can easily check that for q >q*, one 

recovers the true "singular" spectrum (i.e., 
{;q=l+minh[qh -D(h)]). But for q<q*, one observes 

the trivial behavior {;q =q, which actually corresponds to 

a singularity spectrum D (h)= h = 1. To overcome this 

difficulty, one is tempted to analyze the signal using a 

"higher-order" SF method based on the increments of the 
increments of the signal. This point of view will be dis

cussed at the end of this section. 

This problem in detecting singularities of Holder ex

ponents h 2:: I does not show up when one uses the 

wavelet-transform analysis. According to Eq. (13), pro

vided the analyzing wavelet t/J has enough vanishing mo

ments, the Holder exponent can be correctly estimated 

from the local scaling behavior of the WT coefficients. 

From the orthogonality condition (9), one can see that 

any polynomial Pn(x -x0 ) which may mask locally the 

singular behavior of the signal [Eq. (11)], is canceled by 

the oscillations of the analyzing wavelet. Thus, within 

the WTMM framework, if the analyzing wavelet is well 

chosen, the estimate of the 7(q) spectrum [and in turn the 

D ( h ) spectrum] is not biased by the presence of regular 

behaviors {44-46]. 

In Fig. 2, we illustrate these considerations on a 

specific example. The considered signal is a recursive sig

nal whose singularity spectrum can be computed analyti

cally. Its construction rule involves mainly two steps. In 

a first step, we generate a singular measure that spreads 

over the whole sampling interval according to the follow
ing standard iterative rule: an interval is divided into 

four segments of equal length; to each of them we assign 
the "algebraic" weights p 1 =0.49, p 2 =0.21, p 3 = -0.21, 

and p 4 =0.09, respectively. In a second step, the so

constructed measure is integrated to obtain a singular sig

nal. However, in order to obtain some Holder exponents 

greater than one, instead of simply integrating the mea

sure, we perform a fractional integration of degree 

{J= 1. 7. The effect of a generalized integration of degree 

(3 (negative {J values actually correspond to generalized 

derivation) is to shift the D (h) singularity spectrum [70]: 
D(h)--+D(h -(3). The signal is plotted in Fig. 2(a). 

Some smooth parts are actually visible by a simple in

spection of the signal; they correspond to Holder ex

ponents that are greater than 1. The theoretical D (h) 

spectrum is represented by the continuous curve in Fig. 

2(d); it extends over the interval [0.83,2.04]. The results 
of the WTMM analysis are shown in Figs. 2(b), 2(c), and 

2(d). The computations were performed using the fourth 

derivative t/J< 4> of the Gaussian function as analyzing 

wavelet. This wavelet, which has its four first moments 

equal to zero, is well adapted to explore the full range of 
Holder exponents present in the signal. In Fig. 2(b), the 

behavior of the partition function Z(a,q) [Eq. (15)] is 

displayed versus a in a "log-log" representation, for three 
values of q =-5, 0, and 5, respectively. From Eq. (16), 

the slope of these plots versus q defines the 7( q) spectrum. 
The overall results of our 7( q) measurements are reported 
in Fig. 2(c). The numerical data remarkably fall on the 

analytical 7( q) curve. This excellent agreement is 
confirmed when comparing, in Fig. 2(d), the numerical 
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D (h) spectrum obtained by Legendre transforming the 

7( q) data, with the theoretical prediction. The 7( q) spec

trum obtained for q > 0 with the SF method [using Eq. 
(18)] is shown in Fig. 2(e) for comparison. Along the line 

of the above theoretical discussion [Eq. (23)], the WTMM 
method provides a remarkable estimate of the 7(q) spec

trum over the whole investigated range of q values, while 

below some critical value q = q *, the data corresponding 

to the SF method systematically deviate from the analyti

cal 7(q) curve (solid line) and follow the trivial behavior 

7( q) = q - 1. In the range q < q *, the scaling beha vi or of 

the partition and the structure functions is dominated by 

the singularities of Holder exponents h ~ 1; the SF 

method is blind to these singularities which are mislead

ingly identified to h = 1. For q > q *, the contributions of 

the strongest singularities with h < 1 are dominating 

and the SF method gives the correct values 
7(q)=minh[qh -D(h)]; in Fig. 2(e), the data from the 

WTMM and the SF methods converge to a unique nu

merical 7(q) spectrum, in good agreement with the 
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FIG. 2. WTMM and SF analysis of a signal that possesses 
some singularities of HOlder exponents h ~ 1. (a) Graph of the 
signal s (x) constructed following an iterative deterministic rule 
(see text). (b) log2[Z(a,q)] vs log2(a) for different values of q 

[Eq. (15)]. (c) r(q) spectrum obtained with the WTMM method 
when using the fourth derivative lfJ14l of the Gaussian function 
as analyzing wavelet (e). (d) D(h) spectrum from the Legendre 
transform of the numerical r(q) data in (c). (e) Comparison of 
the r(q) spectra obtained, respectively, with the WTMM (e) 

and the SF ( A. ) methods. The dashed curve corresponds to the 
straight line r(q)=q -1. In (c), (d), and (e), the solid curves 
represent the theoretical predictions. 

analytical curve. 
Singularities of negative Holder exponent. A direct 

comparison can be performed between the wavelet 

analysis and the structure-function approach if one 

rewrites the definition of the increments in the following 

integral form: 

1 J+oo [X -xo ] f>j(xo,l)=l -oo a<!) -~- j(x)dx , (24) 

where a< 0 (x)=f>(x -1 )-f>(x). In this formulation, the 

local increment appears as a "wavelet coefficient" com
puted in x 0 at scale 1 with the analyzing wavelet a(!). 
The above discussed inefficiencies of the increments to re

veal Holder exponents greater than 1 come from the fact 
that only the first moment of a< 1 l is equal to zero. This 

special analyzing wavelet has been coined the "poor man 

wavelet" [66]. This nickname is all the more appropriate 
as a0 l suffers from another important drawback which 

appears when analyzing very strong singularities. To ac

count for the strongest singularities which may exist in a 

signal, one needs to extend the definition (11) to tempered 

distributions. Roughly speaking, we will say that a distri

bution f has, at x 0 , a Holder exponent h (x 0 ), if its primi

tive (in the sense of distributions) has, at the same point, 

a local Holder exponent h (x 0 ) + 1 (we refer the reader to 

Ref. [59] for a more rigorous definition). According to 

this definition, the Holder exponent can take on negative 

values also [e.g., the Dirac distribution f>(x) can be con

sidered as the derivative of the Heaviside function for 
which h (0)=0; thus, it has, at x =0, a Holder exponent 

h ( 0) = - 1]. The analyzing wavelet a 0 l is made of two 

Dirac distributions and therefore it cannot generally be 

integrated against a tempered distribution. Thus, when 

using Eq. (5) to study some distribution which has singu

larities of negative Holder exponent, one can expect to 

observe severe instabilities in the computation of the 
structure functions. The study of the scaling behavior of 

the increments of a signal that displays some discontinui
ties or other stronger singularities is a rather questionable 

procedure. 

In Fig. 3 we show the results of both the WTMM and 

the SF analysis of a signal that possesses some singulari
ties of negative Holder exponent. The signal is illustrated 

in Fig. 3(a). Its construction follows the same iterative 

rule as the one used to generate the multifractal recursive 

signal in Fig. 2(a). The model parameters are p 1 =0.36, 

Pz =0.24, p 3 = -0.24, p 4 =0.16; the generalized integra

tion parameter is {3=0.4. In Fig. 3(a), one can observe 

several "jumps" in the signal: they correspond to singu

larities with negative Holder exponents. The analytical 
D (h) spectrum, represented by the solid line in Fig. 3(d), 

actually extends below the value h =0, over the range 

[ -0.1, 1. 36]. The WTMM analysis is reported in Figs. 
3(b), 3(c), and 3(d). The analyzing wavelet 1/J(Zl is the 

second derivative of the Gaussian function. In Fig. 3(b) 

are shown some plots of log[ Z (a, q)] vs log( a), for 
different values of q; determining the exponents 7( q) just 

amounts to extracting the slope of these graphs from a 
least-squares linear regression fit. As illustrated in Fig. 
3(c), the numerical data fall on a convex nonlinear curve 
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which is particularly well fitted by the theoretical r(q) 

spectrum. Its Legendre transform D (h), in Fig. 3(d), is a 
single humped curve characteristic of the multifractality 
of the signal; it is also in remarkable agreement with the 
theoretical D (h) spectrum. The comparison of the SF 
and WTMM methods is reported in Fig. 3(e) where the 
data for r( q) obtained from both methods are compared 
to the analytical spectrum. As expected theoretically, the 
SF method gives correct values as long as q is smaller 

than some q value q * *, whereas for q > q * *, the SF nu
merical data systematically depart from the theoretical 
curve. The critical value q * * actually corresponds to the 
value of q where r(q) starts to decrease. This means that, 
for q > q **, negative Holder exponents are dominating 
the behavior of the partition function [from the proper
ties of the Legendre transform, h corresponds to the 
derivative of r(q) with respect to q ]. The analyzing func
tion A.< 1 l is not suited to account for these very strong 
singularities and the SF method becomes unstable. On 
the other hand, the WTMM method, which involves 
smooth analyzing wavelets, does not possess this draw-
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FIG. 3. WTMM and SF analysis of a signal that possesses 

singularities of negative Holder exponents. (a) Graph of the sig

nal (see text for more details on its construction rule). (b) 

log2[Z(a,q)] vs log2(a) for different values of q. (c) r(q) spec

trum obtained from the WTMM method using the second 

derivative ,p< 2 J of the Gaussian function as analyzing wavelet 

(e). (d) D(h) vs h from the Legendre transform of the numeri

cal r(q) data in (c). (e) Comparison of the r(q) spectra comput

ed, respectively, with the WTMM (e) and SF (.A.) methods. In 

(c), (d), and (e), the solid lines correspond to theoretical spectra. 

back and provides reliable estimates on the entire range 
of q values. 

Comments on the use of higher-order SF methods. As 
we have just seen, the interval on which the D (h) spec

trum can be determined from the SF method is not only 
limited in the weak singularities range (h < 1 ), but it does 
not extend below h =0 as well. The particular shape of 
A.< ll(x) restricts the investigation to the window 

hE [0, 1]. In the same spirit, one could generalize this 
technique to higher- or lower-order SF approaches. For 
example, it can be shown that the square (or "box") func
tion A. <Ol(x) is well appropriated to investigate the range 
of Holder exponents hE[ -1,0]. Let us point out that 
the singular measures that fall under the scope of the 
multifractal formalism described by Eqs. ( 1) and (2) are 
precisely characterized by this range of Holder ex
ponents. A "zero-order" SF method that uses A. <Ol as 

analyzing function corresponds exactly to the classical 
"box counting" algorithm [7,11] commonly used in the 
literature [22]. In the same way, one could perform a 
"-1-order" SF method by using A.<-n, the primitive of 
A. <Ol; this would allow us to study the range 
h E [ - 2, - 1]. Similarly, the "second-order" SF method 
would involve A.< 2 l(x)=B(x + 1)-2B(x +tHB(x) and 

would account for the range h E [ 1, 2], and so on. One 
could even imagine a method which would consist in 
analyzing an experimental signal successively with 
A.< - ll, A.< 0 l, A. (I), A.< 2'1, . . . ; the overall spectrum is then 

reconstructed from the matching of all the associated 
spectra in their respective domains of validity. Besides 
the fact that such a method would be numerically 
cumbersome, it is not practically workable because of 
spurious boundary effects. For example, for A. (I), Eq. (23) 
shows that in the weakest singularities' direction, the 
D (h) spectrum is recovered only below some value 
h * < 1, which can be significantly smaller than one. In 

the opposite direction, the presence of singularities of 
negative Holder exponents might seriously disturb the es
timate of D (h) for the strongest singularities of Holder 
exponent slightly larger than zero. These boundary 
mismatches of the successive spectra obtained using the 
A.<nl analyzing functions are rather difficult to control and 

they make the determination of the overall D (h) singu
larity spectrum rather uncertain. 

V. SIGNALS NOT SINGULAR EVERYWHERE: 

EFFECfS OF THE PRESENCE 

OF NONSINGULAR BEHAVIOR 

First, let us note that in the general context of the in
vestigation of the reliability of the SF approach, it is 
clear, from the discussion in Sec. IV, that this method 
does not make any distinction between all the Holder ex
ponents that are greater than 1. Therefore, when investi
gating signals that are not singular everywhere, the SF 
method will display the same deficiencies as before be
cause of its inability to deal with polynomial behavior 
(h > 1) or with any general C"' behavior (h = + oo ). In 

this section, we will thus mainly concentrate on the appli
cation of the WTMM method to signals that are not 
singular everywhere. 
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In the previous discussions and numerical applications, 

we have pointed out that the excellent results obtained 

with the WTMM method are mainly a consequence of a 

good choice of the analyzing wavelet t/J. Indeed, one has 

essentially to choose the number of vanishing low-order 

moments of t/J greater than the greatest Holder exponent 

hmax which characterizes the weakest singularities 

present in the signal. But one may wonder what happens 

with this method when hmax = + oo, e.g., when the signal 

is nonsingular ( C 00 
) on a set of finite Lebesgue measure. 

For the sake of simplicity, we will assume that the sig

nal j(x)=s(x)+r(x) is a superposition of a singular 

part s ( x) living on a Cantor set [ s ( x) is assumed to be 

constant on each interval on which it is not singular] and 

a coo function r(x). Let us denote 78 (q) and D 8 (h) the 

multifractal spectra which characterize the singular sig

nal s (x) alone. At each scale a 0 , the set of maxima lines 

.L 1 (a 0 ) off can be basically decomposed into two dis

joint sets of maxima lines, L 8 (a 0 ) and .L,(a0 ), corre

sponding to the lines created, respectively, by s (x) [and 

which are slightly perturbed by the presence of r (x)] and 

by the coo function r(x). It can be established [46] that 

along each line created by r(x) [E.L,(a 0 )] the wavelet 

coefficients behave like aN in the limit a -o, where N is 

the number of vanishing moments of the analyzing wave

let t/J [we suppose that N is chosen larger than the upper 

bound of the singularity range of s (x) ]. Moreover, if the 

regular function r ( x) does not oscillate too much [in such 

a way that the number of maxima lines in .L,(a0 ) be uni

formly bounded], then the partition function defined in 

Eq. (15) splits into two parts: 

Z f(a,q)=Z 8 (a,q)+Zr(a,q)-a r,(ql +aqN, (25) 

where Z s and Z r correspond to summing over the maxi

ma lines in .Ls and .L,, respectively. From Eqs. (16) and 

(25), one can show [46] that there exists a critical value 

q crit < 0 such that 

q > qcrit =7(q)=7s(q) ' 

q <qcrit=7(q)=qN · 
(26) 

One thus predicts the existence of a singularity in the 

7(q) spectrum. This nonanalyticity in the function 7(q) 

expresses the breaking of the self-similarity of the singu

lar signal s(x) by the coo perturbation r(x). In the con

text of the thermodynamical analogy, this phenomenon 

defines a phase transition [7,22,63-65]. Below the criti

cal value qcrit (which is the analog of the inverse of a 

transition temperature), one observes a regular phase 

whereas for q > qcrit• one switches to a multifractal phase. 

Let us point out that, in contrast to the spurious phase 

transition previously obtained with the modified SF 

method [Eq. (20)], the phenomenon observed here con

tains fundamental information on the signal considered. 

Equation (26) indicates that the 7( q) spectrum in the "Coo 

phase" is governed by the number N of vanishing mo

ments of the analyzing wavelet. Therefore the experi

mental observation of the variation of 7(q) according to 

Eq. (26) when N is changed, would be a decisive test of 

the presence of a highly regular part in the signal. 

In Fig. 4, we illustrate our purpose for the specific ex

ample of a signal f (x) which combines a Coo component 

r(x)=R sin(81Tx) and a singular component s(x) which 

is the distribution function of a singular measure 11= 

s(x)= J~d/1 (this kind offunction is usually called "devil 

staircase"). The measure 11 is actually a Bernoulli mea

sure lying on the triadic Cantor set. It is obtained by 

iteratively assigning the weights p 1 =0.6 and P2 =0.4 to 

the two intervals left at each step of the Cantor set con

struction process. The signal is shown in Fig. 4(a). The 

spectra 78 (q)=7(q) and D 8 (h)=j(a=h) of the singular 

part s(x) are given by the 7(q) and /(a) spectra of the 

measure 11• as conventionally defined by Eqs. (1) and (2) in 

the context of the multifractal formalism for singular 

measures. The results of the WTMM measurement of 

the 7( q) and D ( h ) spectra of the signal f ( x) are shown, 

respectively, in Figs. 4(b) and 4(c). Two different analyz

ing wavelets, namely, the first (t/J0 l) and the second (t/!( 2)) 

derivative of the Gaussian function [Eq. (10)] were used 

to compute the wavelet transform. For q > 0, both 

analyzing wavelets lead to numerically identical estimates 

for 7(q). On the contrary, for q <0, the numerical data 

obtained with t/J(I) and t/J( 2) separate from each other into 

two distinct straight lines of respective slope 1 and 2. We 

thus observe numerically the phase transition predicted 

by the above theoretical speculations. For positive q 

values, we recover the 7(q) spectrum of the underlying 

singular measure 11• while for q below some critical nega

tive value qcrit> the shape of 7(q) is governed by the num

ber N of vanishing moments of the analyzing wavelet: 
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FIG. 4. WTMM analysis of a signal which is nonsingular on 

some intervals. (a) Graph of the signal f(x)=s(x)+r(x), with 

r (x)= R sin( 81rx) and s (x) is the distribution function of a Ber

noulli measure supported by the triadic Cantor set (see text). (b) 

r( q) vs q as obtained with the first [ ( o ) and ( .._ ) ] , the second 

[( o) and (e)], and the fourth [( o) and <•)] derivatives of the 

Gaussian function as analyzing wavelet; the solid lines corre

spond to the theoretical predictions [Eq. (26)]; the dashed line is 

the part (q <qcrit) of the spectrum r,(q). (c) D(h) vs h from the 

Legendre transform of r(q); the symbols are the same as in (b). 
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r(q}=Nq (N = 1 for t/J(l) and N =2 for t/J( 2>). By Legen

dre transforming r(q) one gets the D (h) singularity spec
trum of j(x). As shown in Fig. 4(c), as long as 

q > qcrit(N), the numerical results obtained with both 

analyzing wavelets remarkably fall on the theoretical 

D(h) curve (solid line). For q ~qcrit(N), however, the 

Legendre transform of the self-similarity breaking linear 
behavior of r( q) produces a linear behavior fall off of the 
D (h) curve towards the limiting value h = 1 for t/J( 1 > and 
h =2 for t/J( 2l (actually h =N for t/J(Nl) where D (h) van

ishes. This linear part is tangent to the theoretical D (h) 
spectrum (dashed line) and has a slope equal to qcrit(N). 

This is the signature of the phase transition phenomenon 

described above. 

Remark. We have shown that a coo component super
imposed on a signal that is not singular everywhere mani
fests in a phase transition phenomenon that masks the 
weakest singularities. However, since the wavelet 
coefficients behave like aN along the maxima lines created 
by the Coo function, by choosing N large enough and/or 
choosing a numerical threshold below which any local 
maximum is not considered, one can remove all the Coo 

maxima lines in .L,(a0 ) [cf. the definition (14) of .L(a0 ) in 

Sec. 11] and thus "numerically restore" the self-similarity 
of s(x). The whole r 5 (q) and D 5 (h) spectra can then be 

estimated. 
To show that this procedure is actually operational, we 

have reproduced the WTMM analysis on the same signal 
but with the fourth derivative of the Gaussian function 
[ t/J( 4l(x)] as analyzing wavelet. The faster decrease of the 

wavelet coefficients along the maxima lines of .L, 
(T"'[f](.,a)l 1e.L -a 4 ) makes more efficient the thresh-

' old discrimination of the maxima lines emanating from 
the singular part s(x). The so-obtained r(q) spectrum is 
shown in Fig. 4(b). Now the theoretical spectrum of the 
singular measure is recovered and no phase transition 
phenomenon is observed. Let us point out that the 
choice of such a threshold (or analyzing wavelet) is some

what uncertain and strongly depends on various parame
ters such as the number of sampling points, the relative 
amplitudes of r (x) and s (x) in the signal, etc. Indeed, a 
more reliably way to proceed consists in choosing N large 
enough [as compared to the largest Holder exponent of 
s (x)] so that the maxima lines induced by the regular 
part of the signal become easily distinguishable by the 
anomalously stiff decrease of the wavelet coefficients on 
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