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Abstract. The multifractal formalism for functions relates some functional norms of a signal to
its “Hölder spectrum” (which is the dimension of the set of points where the signal has a given Hölder
regularity). This formalism was initially introduced by Frisch and Parisi in order to numerically
determine the spectrum of fully turbulent fluids; it was later extended by Arneodo, Bacry, and
Muzy using wavelet techniques and has since been used by many physicists. Until now, it has only
been supported by heuristic arguments and verified for a few specific examples. Our purpose is to
investigate the mathematical validity of these formulas; in particular, we obtain the following results:
• The multifractal formalism yields for any function an upper bound of its spectrum.
• We introduce a “case study,” the self-similar functions; we prove that these functions have

a concave spectrum (increasing and then decreasing) and that the different formulas allow us to
determine either the whole increasing part of their spectrum or a part of it.
• One of these methods (the wavelet-maxima method) yields the complete spectrum of the self-

similar functions.
We also discuss the implications of these results for fully developed turbulence.
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1. Introduction and statement of results. One-dimensional multifractal mea-
sures have been the object of many investigations by mathematicians and theoretical
physicists (see, for instance, [5], [7], [12], [23], and the references therein). Basically,
such measures have very different “scalings” from point to point, i.e., for such a mea-
sure µ, if I is an interval, the quantity µ(I) scales like |I|α, where the exponent α
differs very much following the position of the center of the interval I. Such measures
are important because they are natural measures carried by some strange attrac-
tors and thus appear in the modeling of many natural phenomena (diffusion-limited
aggregates, invariant measures of dynamical systems, voltage drop across a random
transistor network, etc.; see [2] and the references therein).

It may happen that the natural, fractal-like object that one wants to understand
is not a set or a measure but a function. The study of multifractal functions has
proved important in several domains of physics. Examples include plots of random
walks, interfaces developing in reaction-limited growth processes, and turbulent ve-
locity signals at inertial range (see [3]). The relevant mathematical tool studied in
this context is the Hölder spectrum, also frequently called spectrum of singularities;
this function associates with each positive α the Hausdorff dimension of the set where
F is approximately Hölder of order α (in a sense to be made precise). The most
important example where one would like to determine the spectrum of singularities
of a function is the velocity of fully developed turbulence. The reason is that tur-
bulent flows are not spatially homogeneous: the irregularity of the velocity seems to
differ widely from point to point. This phenomenon, called “intermittency,” suggests
that the determination of the Hölder spectrum of the velocity of the fluid might be
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 945

a nontrivial function and thus would yield important information on the nature of
turbulence.

The first problem in this ambitious program is the numerical determination of
the spectrum. Obviously, it is almost impossible to deduce it from the mathemati-
cal definition since it involves the successive determination of several intricate limits.
The only method is to find some “reasonable” assumptions under which the spec-
trum could be derived using only “averaged quantities” (which should be numerically
stable) extracted from the signal. Such formulas for the spectrum can be guessed
heuristically using similarities with statistical physics. Frisch and Parisi [14] pro-
posed, in one dimension, a formula using the Lp modulus of continuity of the velocity
along one axis. Arneodo, Bacry, and Muzy (in [2], [3], and [26]) proposed, also in
one dimension, other formulas based on the wavelet transform of the signal, and they
proved their formulas’ validity when the function considered is the indefinite integral
of a multinomial measure or a C∞ perturbation of such a measure. The origin of this
method may be traced to the seminal work of Mandelbrot [23], and it has been used
a great deal by physicists (see for instance [4], [12], [24], and the references therein),
so the scope of its mathematical validity has become an important issue.

Our purpose in this paper is twofold:

• In Part I, we give some general results concerning the multifractal formalism.
We show that for any function, it yields an upper bound of its Hölder spectrum, but
we also show via some explicit counterexamples that, in general, it does not yield the
exact spectrum.

• In Part II, we introduce and study a model case, “self-similar functions,” and
prove that the multifractal formalism holds for these functions. Examples of such
functions include the indefinite integrals of self-similar measures, but they also in-
clude widely oscillating, several-dimensional functions—two requirements which are
obviously needed, for instance, in any realistic model of turbulence.

Before describing the multifractal formalism, we need to recall some definitions
and notation concerning the Hölder regularity of functions.

Suppose that α is a positive real number; a function F : Rm → R is Cα(x0) if
there exists a polynomial P of degree less than α such that

|F (x)− P (x− x0)| ≤ C|x− x0|α(1.1)

and F belongs to Γα(x0) if (see [18])

∀β > α, F /∈ Cβ(x0),

∀β < α, F ∈ Cβ(x0).

A function F is Cα (or Cα(Rm)) if (1.1) holds for any x in Rm, the constant
C being uniform. (Using this definition C1 means Lipschitz.) We also need the two
following definitions which assert (in two slightly different ways) that the singularity
of F at x0 can be measured on a “large” set near x0. We denote by mesA the Lebesgue
measure of a set A.

Definition 1.1. Let α > −m; a point x0 is a strong α-singularity of F if there

D
ow

nl
oa

de
d 

10
/0

3/
14

 to
 1

57
.9

2.
4.

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



946 S. JAFFARD

exist C,C ′ > 0 such that ∀P polynomial of degree at most α, ∀j, ∃Aj , Bj,
mesAj ≥ C2−mj , mesBj ≥ C2−mj ,

∀x ∈ Aj ∪Bj , |x− x0| ≤ 2−j ,

∀x ∈ Aj , ∀y ∈ Bj , (F (x)− P (x− x0))− (F (y)− P (y − x0)) ≥ C ′2−αj .

(1.2)

Note that if α < 1, the last condition reduces to F (x) − F (y) ≥ C ′2−αj . The
wavelet transform of a function F is defined as follows:

C(a, b) =
1

am

∫
F (t)ψ

(
t− b
a

)
dt,

where ψ is a radial function with moments of order less than K vanishing and with
derivatives of order less than K having fast decay (with a K “large enough” depending
on the properties of F that we want to analyze).

Definition 1.2. A point x0 is a wavelet α-singularity of F if there exist wavelet
coefficients C(an, bn) in a cone pointing towards x0 (i.e., | bn − x0 |≤ Can) such that
an → 0, an/an+1 ≤ C, and

|C(an, bn)| ≥ Caαn.(1.3)

We will prove in section 2 that the two previous definitions are related and that
if F is Cα(x0) and x0 is a wavelet α-singularity of F , then x0 is a strong α-singularity
of F .

We can now define the object of our study.
Definition 1.3. The Hölder spectrum of a function F is the function d(α)

defined for each α ≥ 0 as follows:
d(α) is the Hausdorff dimension of the set of points x0 where F belongs to Γα(x0).
Remark. We will sometimes also call the function D(α), which is the packing

dimension of the strong α-singularities, the packing dimension spectrum.
The two definitions of dimension that we use will be recalled when needed. Note

that d(α) and D(α) are defined point by point. We will consider mainly d(α) except
in section 4 of Part I and section 6 of Part II.

We are now in a position to describe the methods used by Frisch and Parisi on one
side and Arneodo, Bacry, and Muzy on the other in order to determine the spectrum
of singularities of functions.
• The structure function method first requires the computation of

Sq(l) =

∫
Rm
|F (x+ l)− F (x)|qdx.

Assuming that the order of magnitude of Sq(l) is |l|ζ(q) when l → 0, the Hölder
spectrum is computed using the formula

d(α) = inf
q

(qα− ζ(q) +m).(1.4)

(We will define ζ(q) precisely below.)
• In the wavelet-transform integral method, one computes

Z̃(a, q) =

∫
Rm
|C(a, b)|qdb,
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 947

and then if the order of magnitude of Z̃(a, q) is aη(q),

d(α) = inf
q

(qα− η(q) +m).(1.5)

• In order to describe the wavelet-transform maxima method, we first have to
introduce the notion of a line of maxima; consider for a given a′ > 0 the local maxima
of the function b → C(a′, b); generically, they belong to a line of maxima b = l(a)
defined in a small left-neighborhood [a′′, a′] of a′ by the condition that b→ C(a, b) has
a local maximum for b = l(a). Usually, one cannot choose a′′ = 0 because the lines
of maxima have ramifications called “fingerprints.” The wavelet-transform maxima
method first requires the computation of

Z(a, q) =
∑
l

sup
(b=l(a))

|C(a, b)|q,(1.6)

where l is a line of maxima of the wavelet transform defined on [a′′, a′] and where the
sum is taken on all lines of local maxima defined in left-neighborhoods [a′′, a′] of a′.
If the order of magnitude of Z(a, q) is aθ(q), then

d(α) = inf
q

(qh− θ(q)).(1.7)

Numerically, according to [3], the most reliable method seems to be the last one,
probably because the restriction of the computation to the maxima insures that small
errors are less likely to be taken into account since at the maxima, they are relatively
less important. More generally, methods that involve the wavelet transform are nu-
merically more stable, probably because they involve only averaged quantities and
not the direct values of the function. The use of such quantities has been advocated
in [15]. The structure function method involves only order-one differences so that it
is clearly unfit for computing the spectrum d(α) when α is larger than 1.

Since the scalings assumed above do not necessarily hold, we use the following
definitions. Let

ζ(q) = lim inf
l→0

logSq(l)

log |l| ;(1.8)

η(q) = lim inf
a→0

log Z̃(a, q)

log a
;(1.9)

θ(q) = lim inf
a→0

logZ(a, q)

log a
,(1.10)

The multifractal formalism may seem surprising at first glance because it relates
pointwise behaviors to global estimates. Before giving some mathematical explana-
tions for it, it may be enlightening to give the heuristic classical argument from which
it is derived. Although this argument cannot be transformed into a correct mathe-
matical proof, it at least shows why these formulas can be expected to hold, and a
careful study of its defects shows under which type of additional conditions it should
be mathematically correct.

We calculate the contribution of singularities of order α to the integral∫
Rm
|F (x+ l)− F (x)|qdx.
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948 S. JAFFARD

Near a singularity of order α, we have, in a small box of size |l|,

|F (x+ l)− F (x)|q ∼ |l|αq.

If the dimension of these singularities is d(α), it means that there are about |l|−d(α)

such boxes, each of volume |l|m, so that the total contribution to the integral is
|l|αq+m−d(α). The real order of magnitude of the integral is given by the largest
contribution, which, since l→ 0 is given by the smallest exponent, is such that

ζ(q) = inf
α

(αq +m− d(α)).(1.11)

This formula is not the one that we are looking for since we know ζ(q) and are looking
for d(α), but if it holds and if d is concave (we will see that in general this assumption
need not be verified; however in many cases it is), d(α) is recovered by an inverse
Legendre transform formula which yields (1.4). Of course, if d(α) is not concave, one
expects the right-hand side of (1.4) to yield only the convex hull of the spectrum.

In all cases, (1.11) is more likely to hold because the concavity problem does not
appear there. (A straightforward application of Young’s formula shows that ζ(q) is
always concave.)

In the first part of this paper, the following results will be proved.
Theorem 1.4. If q > 1 and ζ(q) < q, then ζ(q) = η(q) for any function F . In

general, these functions need not be related to θ(q).
If F is a function of one real variable, and 0 < η(1) < 1, the box dimension of

the graph of F is 2− η(1).
The following upper bound holds for any function F such that η(p) > m ∀p:

d(α) ≤ inf
p

(m− η(p) + αp).(1.12)

Also, without any assumption on η,

D(α) ≤ inf
p

(m− η(p) + αp).

In general, (1.12) cannot be an equality ; more precisely, let d(α) be a Riemann-
integrable positive function on R+. There exists F1 and F2 which share the same
function η, but the spectrum of F1 is d(α) and F2 is C∞ except at the origin (so that
its spectrum is equal to −∞ everywhere except at one point).

Some counterexamples will show that a smooth function (with a large η(p)) may
nonetheless be such that θ(p) can be arbitrarily small. (The case θ(p) = −∞ ∀p > 0
can even happen.) The wavelet-transform maxima method need not be correct, even
in the more precise framework of self-similar functions, where the other methods will
work. However, after a slight modification, it yields the correct spectrum for self-
similar functions. The mathematical problem with using (1.6) is that the lines of
maxima can be too close to each other. In that case, we should instead keep for each
interval of width a only one line passing through this interval that yields the largest
contribution. However, the reader will see that the mathematical counterexamples
where η(q) 6= θ(q) are very contrived, and the author’s belief is that for practical
applications, (1.5) and (1.7) have the same range of validity.

The last assertion in the theorem is stronger than the mere failure of the Legendre
transform formulas. It asserts that there is not enough information in the function η
to determine the spectrum. In particular, contrary to a common belief, the fact that
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 949

η is not linear does not imply that the signal has a multifractal structure. It also
shows that, mathematically, “any” function d(α) can be a spectrum. It is surpris-
ing to notice that in several different fields of application, this does not seem to be
the case. The spectra computed numerically have always the same shape—roughly
speaking, the upper part of an ellipse. This is actually the shape we will find for
self-similar functions. There can be several explanations to this analogy. Either (a)
these physical signals satisfy some “scaling-invariance” properties which makes them
fit in the framework (perhaps generalized in some ways) of self-similar functions or
(b) a pessimistic explanation could be that, these spectra being (perhaps wrongly)
calculated using a Legendre transform, the convex hull of the true spectrum is actually
calculated and not the spectrum itself—hence this “generic” concave shape. We will
also see that these examples answer the following problem raised by Daubechies and
Lagarias in [9], which is somehow converse to the multifractal formalism: Is η the Le-
gendre transform of m−d(α)? Positive answers to this problem find fewer applications
than the multifractal formalism since in practice one wants to obtain d(α) knowing
η(p) or ζ(p) and not the converse; nonetheless, it might hold more generally (see [9]).
The problem raised by Daubechies and Lagarias is to find explicit counterexamples.
We will see that in most cases, F1 and F2 are such counterexamples.

One of the referees of this paper raised the problem of a relationship between θ(q)
and η(q) such as

θ(q) ≤ η(q)−m.

This is true for self-similar functions satisfying the closed-set condition because then
the regions where the wavelet transform is large (and these are the regions taken into
account to estimate η(q)) are isolated so that there must exist a local maximum of
the wavelet transform in the neighborhood. In general, however, we have no answer
to this problem.

We now define self-similar functions by analogy with self-similar sets.
Recall that a set K is strictly self-similar if it is a finite union of disjoint subsets

K1, . . . ,Kd which can be deduced from K by similitudes. For instance, the triadic
Cantor set and the Van Koch curve are self-similar. These sets have been widely
studied, as have the measures supported on them. They play an important role in
the modeling of several physical phenomena (see, for instance, [5], [16], [12], and [3]).

Suppose that F is continuous and compactly supported and let Ω be the bounded
open subset of Rn such that Ω̄ = supp(F ). The intuitive idea of a self-similar function
is that there should exist disjoint subsets Ω1, . . . ,Ωd of Ω such that the graph of F
restricted to each Ωi is a “contraction” of the graph of F , modulo a certain error,
which is supposed to be smooth. First, suppose that “smooth” means Lipschitz, and
let us formalize this definition.

There should exist similitudes (Si)i=1,...,d such that if Si(Ω) = Ωi,

∀i, Ωi ⊂ Ω,(1.13)

Ωi ∩ Ωj = φ if i 6= j,

∀x ∈ Ωj , F (x) = λjF (S−1
j (x)) + gj(x) with gj Lipschitz on Ω̄j .

We suppose that Si are contractions, i.e., the product of an isometry by the
mapping x→ µix, where µi < 1.

Equation (1.13) does not tell how F behaves outside Ωi. We make the assumption
that it is smooth, i.e., Lipschitz, outside

⋃
Ωi.
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950 S. JAFFARD

Since F (S−1
j (x)) = 0 if x /∈ Ωj ,

F (x) =
d∑
i=1

λjF (S−1
j (x)) + g(x),

where g = gj on Ωj , g = F outside
⋃

Ωj , and g is obviously continuous since F is
continuous; since it is Lipschitz on

⋃
Ω̄j and outside

⋃
Ωj , g is uniformly Lipschitz.

This equation holds for any Lipschitz function F (use it as a definition for g when
all λj = 0) so that it is interesting only if F is not uniformly Lipschitz, and in that
case, we will be interested in determining the points where F is Cα for α < 1.

We will generalize this model slightly by assuming that g is Ck(Rm) and not
necessarily compactly supported but also that the derivatives of g of order less than
k have fast decay. The same remark shows that in this case, we should suppose that
F is not Ck(Rm), and we will be interested in determining where F is Cα for α < k.
We will thus use the following definition.

Definition 1.5. A function F : Rm → R is self-similar (of order k ∈ R+) if the
three following conditions hold:
• There exists a bounded open set Ω and S1, . . . , Sd contractive similitudes such

that

Si(Ω) ⊂ Ω,(1.14)

Si(Ω) ∩ Sj(Ω) = ∅ if i 6= j.(1.15)

(The Si’s are the product of an isometry with the mapping x→ µix, where µi < 1.)
• There exists a Ck function g such that g and its derivatives of order less than

k have fast decay and F satisfies

F (x) =

d∑
i=1

λiF (S−1
i (x)) + g(x).(1.16)

• The function F is not uniformly Ck in a certain closed subset of Ω.
Recall that g has fast decay if

∀n ∈ N, |g(x)| ≤ Cn
(1 + |x|)n .

Let

αmin = inf
i=1,...,d

(
log λi
logµi

)
, αmax = sup

i=1,...,d

(
log λi
logµi

)
.

We use this notation because αmin will turn out to be the smallest pointwise Hölder
regularity exponent of F and αmax the largest (lower than k). Let τ be the function
defined by

d∑
i=1

λai µ
−τ(a)
i = 1.

Some results concerning the multifractal formalism for self-similar functions are
summed up in the following theorem and will be proved in the second part of the
paper.
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 951

Theorem 1.6. Suppose that F is self-similar. If αmin > 0, the function d(α)
vanishes outside [αmin, αmax] ∪ [k,+∞) and is analytic and concave on [αmin, αmax].
Its maximal value dmax on this interval satisfies∑

µdmax
i = 1.

Let α0 be the value for which this maximum is attained. First, suppose that g is
C∞. If α ≤ α0, d(α) can be obtained by computing the Legendre transform of either
η(q)−m or ζ(q)−m.

If g is only Ck, let p0 be defined by η(p0) = kp0 and let α1 < α0 be the value of
the inverse Legendre transform of η(q)−m at p0; if α ≤ α1, d(α) can be obtained by
computing the Legendre transform of either η(q)−m or ζ(q)−m.

Without any assumption on αmin, if
∑
| λj | µmj < 1, the same results hold if

we replace d(α) by D′(α), the packing dimension of the wavelet α-singularities (or
by D(α) if g and λi are positive and if furthermore the separated open-set condition
holds).

We will also prove that in some cases, the wavelet-maxima method can be modified
so that it yields the whole spectrum of self-similar functions (see Theorem 2.2 in Part
II).

Corollary 8.5 in Part II of this paper will extend this result to a larger class of
functions than self-similar functions.

Before we begin to study the multifractal formalism for functions, we show its
relationship to the multifractal formalism for measures. We recall that if µ is a
probability measure on [0, 1], one defines

τ(q) = lim
j→+∞

1

j log 2
log
∑(

µ

([
k

2j
,
k + 1

2j

]))q
and

Eα =

{
t :

logµ(In(t))

log |In(t)| → α

}
,

where In(t) is the interval [k/2j , (k + 1)/2j ] which contains t. The multifractal for-
malism for measures asserts that the dimension of Eα is the Legendre transform of
τ (see, for instance, [5] and [12] for mathematical results concerning this assertion).
Let F be an indefinite integral of µ (F (x) = µ([0, x])). Clearly,

t ∈ Eα ⇔ |F (x+ h)− F (x)| ∼ hα

and∑(
µ

([
k

2j
,
k + 1

2j

]))q∑∣∣∣∣F( k

2j

)
− F

(
k + 1

2j

)∣∣∣∣q ∼ 2j
∫
|F (x+2−j)−F (x)|qdx.

Thus if F is the indefinite integral of a probability measure supported on [0, 1], the two
multifractal formalisms are identical. However, in dimensions larger than one or for
functions that are not of bounded variation, the multifractal formalism for functions
cannot be obtained as a consequence of the multifractal formalism for measures.

Our purpose in Part I of this paper is to prove Theorem 1.4. In section 2, we make
explicit the relation between the size of the wavelet transform and the local regularity
of the function. In section 3, we identify the quantities Sq(l) or Z(a, q) with some
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952 S. JAFFARD

functional norms, thus proving the first point of Theorem 1.4. In section 4, we prove
the upper estimate for the dimensions of singularities and the formula for the box
dimension of the graph of F . In section 5, we study the wavelet-maxima method. In
section 6, we construct counterexamples to the validity of the multifractal formalism
in all generality.

The two parts of this paper can be read independently. Some results of this paper
have been announced in [18], [19], and [20].

2. Regularity, singularities, and two-microlocalization. The results of The-
orems 1.4 and 1.6 relate the pointwise behavior of a function to estimates on its wavelet
transform. Our purpose in this section is to recall existing results on this topic and
prove new ones concerning either negative exponents α or strong α-singularities. We
first recall the basic properties of the wavelet transform.

Let ψ be in Ck+1(Rm), radial, with moments of order less than k + 1 vanishing,
and such that the derivatives of ψ of order less than k+1 have fast decay. The wavelet
transform of F is defined by

C(a, b)(F ) =
1

am

∫
Rm

F (t)ψ

(
t− b
a

)
dt,(2.1)

and if C(ψ) =
∫
|ψ̂(ξ)|2dξ/|ξ|, F is recovered from its wavelet transform by

F (t) = C(ψ)

∫
a>0

∫
C(a, b)(F )ψ

(
t− b
a

)
db

da

am+1
.

An intuitive idea is that a large wavelet coefficient means that the corresponding
function locally has an oscillation at the corresponding scale of a corresponding am-
plitude. Although there does not seem to be a straightforward relationship between
the two notions, Propositions 2.2 and 2.5 can be seen as a mathematical formulation
of this idea. The following results can be found in [25] and [17]. Suppose that s > 0.
• F ∈ Cs(Rm) if and only if

|C(a, b)(F )| ≤ Cas.(2.2)

(Recall that if s = 1, the space Cs(Rm) must be replaced by the Zygmund class, which
is composed of the continuous functions F such that |F (x+h) +F (x−h)− 2F (x)| ≤
Ch, or, more generally, if s is a positive integer, then it must be replaced by the
corresponding indefinite integrals of the Zygmund class.)
• If F ∈ Cs(x0), then

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
.(2.3)

• If (2.3) holds and if F ∈ Cε(Rm) for an ε > 0, there exists a polynomial P such
that if |x− x0| ≤ 1/2,

|F (x)− P (x− x0)| ≤ C|x− x0|s log

(
1

|x− x0|

)
.(2.4)

Due partly to physical motivations (the study of the velocity of turbulent fluids,
for instance), we do not want to consider only bounded functions, and thus we want
to be able to consider points where F has a singularity (i.e., in a neighborhood in
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 953

which it is unbounded). We first want to obtain results similar to (2.3) or (2.4) for
singularities. A first problem is the definition of singularities that we should adopt.

The following definition is a straightforward generalization of (1.1) to negative
exponents.

Definition 2.1. Suppose that −m < s ≤ 0. F is Cs(x0) if

|F (x)| ≤ C|x− x0|s.(2.5)

We have to make the assumption −m < s ≤ 0 because if s ≤ m, F might not be
locally integrable and thus might not be a distribution. In that case, no computation
on F (such as defining wavelet coefficients) would make sense. We will nonetheless
see later how to define singularities of order less than −m.

We now relate (2.5) to conditions on the wavelet transform of F . We first check
that if (2.5) holds, then

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
;(2.6)

First, suppose that ψ is supported in B(0, 1). Then

|C(a, b)| ≤ C

am

∫
B(b,a)

|x− x0|sdx,

where B(x, r) is the ball centered at x of radius r. If |b − x0| ≥ 2a and x ∈ B(b, a),
then |x−x0| ∼ |b−x0| and |C(a, b)| is bounded by (C/am)4mam|b−x0|s. Otherwise,
|x−x0| ∼ a and the integral is bounded by (C/am)4mamas, and hence we have (2.6).
The general case holds because condition (2.6) does not depend on the particular
wavelet chosen (see [21]).

Note that we will often use the notation a ∼ b for positive quantities, which
will always mean that the quotient a/b is bounded from below and above by positive
constants.

If (2.6) holds, one can easily check that it implies no regularity for F . In that
case, of course, we refuse to make a minimal smoothness assumption like F ∈ Cε(Rm),
which was needed in a similar situation in order to get (2.4). Let us show intuitively
how to obtain a converse estimate. Suppose that suppψ ⊂ B(0, 1), (2.5) holds, and
|∇F (x)| ≤ C|x− x0|s−1; we further have |C(a, b)| ≤ Ca|b− x0|s−1 for |b− x0| > a.

Conversely, one can easily check that this last estimate together with (2.6) implies
that |F (x)| ≤ C|x− x0|s. We actually prove a slightly more general result.

Proposition 2.2. Let −m < s ≤ 0. If |F (x)| ≤ C|x− x0|s, then

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
.

Conversely, suppose that ∃s′ < s such that

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s′
.(2.7)

Then |F (x)| ≤ C|x− x0|s.
Proof. We already proved the first part. Suppose that (2.7) holds. Using the

reconstruction formula for F ,

|F (t)| ≤ C
∫ [∫

B(t,a)

|C(a, b)|db
]

da

am+1
.
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954 S. JAFFARD

If |t− x0| ≥ 2a, |b− x0| ≥ a and the right-hand side is bounded by

C

∫
a≤ |t−x0|2

as−s
′ |t− x0|s

′ am

am+1
da ≤ C|t− x0|s.

If |t− x0| ≤ 2a, |b− x0| ≤ 4a and we get the bound

C

∫
a≥ |t−x0|2

aasam
da

am+1
≤ C|t− x0|s.

Hence Proposition 2.2 follows.
Let us now recall the following definition of the two-microlocal spaces Cs,s

′
(x0)

(see [17]):

F ∈ Cs,s′(x0)⇐⇒ |C(a, b)| ≤ Cas
(

1 +
|b− x0|

a

)−s′
.(2.8)

Proposition 2.2 generalizes to negative exponents the continuous embeddings

Cs(x0) ↪→ Cs,−s
′
(x0) if s′ < s,(2.9)

proved in [21], so that it also yields a justification of Definition 2.1 (and thus to the
definition of strong α-singularities when α ≤ 0).

The problem of defining Hölder exponents for s ≤ −m is not straightforward. As
mentioned before, we cannot consider only conditions such as |F (x)| ≤ C|x−x0|s since
this does not imply that F is a distribution. The following definition has sometimes
been proposed:

F ∈ Cs(x0)⇐⇒ (−∆)−
[s]
2 F ∈ Cs−[s](x0).(2.10)

There are two problems with this definition. The first is that it is not consis-
tent with the definition for s > 0. Let us present an example. Consider F (x) =
x1/2 cos(1/x); the integral of F is O(x5/2) at the origin. Nonetheless, we would not
consider F to be a C3/2 function at the origin. Furthermore, this definition is also
not consistent with the “natural” definition (2.5) when −n < α ≤ 0 for essentially the
same reasons (we leave this verification to the reader). In order to go further, we in-

terpret (2.10) as a two-microlocal condition. It implies (−∆)−
[s]
2 F ∈ Cs−[s],−s+[s](x0)

so that F ∈ Cs,−s+[s](x0). This condition is very far from f ∈ Cs,−s which because
of Proposition 2.2 should be “close” to the condition F ∈ Cs(x0). We show how to
obtain a definition which is consistent with the definition for s > −m and with the
imbeddings in (2.9).

First, note that if s′ is positive, Cs,s
′
(x0) ↪→ Cs(Rm), where by extension we

define for a negative s

Cs(Rm) = Ḃs,∞∞ = {F : |C(a, b)| ≤ Cas}.

Thus the condition F ∈ Cs(x0), where s is negative, implies a global (negative)
regularity for F . For s ≤ −m, we will suppose that this regularity holds, which
will guarantee that F is a distribution. In [11], Eyink proposed the definition f ∈
Cs,−s(x0). The advantage is that Proposition 4.1 can immediately be extended, which
one uses with this definition of a pointwise Hölder exponent. The drawback is that
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 955

this condition implies no pointwise regularity, even for positive s. Thus we adopt the
following definition.

Definition 2.3. Suppose that s ≤ −m. F belongs to Cs(x0) if F ∈ Ḃs,∞∞ and if
F restricted to Rm − {x0} is a function that satisfies

|F (x)| ≤ C|x− x0|s.

Note that this definition is slightly redundant since any function defined on Rm−
{x0} is the restriction of a distribution (defined on Rm) which belongs to Ḃs,∞∞ .

If we define Ċs(Rm) = Ḃs,∞∞ (Rm), we have the surprising continuous embedding

Ċs(x0) ↪→ Ċs(Rm),

which goes in the opposite direction than it would for positive s.
This definition coincides with Definition 2.1 when −m < s ≤ 0 since in that case

the function F itself is the corresponding distribution, so

|F (x)| ≤ C|x− x0|s =⇒ F ∈ Ḃs,∞∞ .

Suppose that F ∈ Cs(x0). If |b − x0| ≥ 2a, as in the case where s > −m, we
get |C(a, b)| ≤ C|b − x0|s. Since |C(a, b)| ≤ as by hypothesis, we see that Cs(x0) ↪→
Cs,−s(x0).

Proposition 2.4. Using the previous definition of negative Hölder regularity, if
s ≤ −m, the following embeddings hold:

F ∈ Cs(x0)⇒ F ∈ Cs,−s(x0),

F ∈ Cs,−s′(x0) for an s′ < s⇒ F ∈ Cs(x0).
(2.11)

The proof of the second implication is similar to the case where s > −m. It is
interesting to check that some distributions which “should” belong to these generalized
Hölder spaces satisfy these conditions. For instance, the distribution p.p.(1/x) defined
by 〈

p.p.

(
1

x

)
| φ
〉

= lim
ε→0

∫
R−[−ε,ε]

φ(x)

x
dx

is C−1 at 0 and f.p.(1/x2) defined by〈
f.p.

(
1

x2

)
| φ
〉

= lim
ε→0

(∫
R−[−ε,ε]

φ(x)

x2
dx− 2φ(0)

ε

)

is C−2 at the origin. We leave these verifications as an exercise.
We now prove the following proposition, which relates the size of the wavelet

transform to the existence of strong α-singularities when the wavelet used is compactly
supported.

Proposition 2.5. Suppose that F is Cα(x0) and that x0 is a wavelet α-singularity
of F . Then x0 is a strong α-singularity of F .

For the sake of simplicity, we restrict our focus to the case where 0 < α < 1.
Suppose that F is Cα(x0) and that x0 is not a strong α-singularity of F . Let ε > 0
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956 S. JAFFARD

be fixed and a > 0 be such that (1.3) does not hold for any (a, b) in the cone over x0.
For any x in the ball B(x0, Ca) (except on an exceptional set Ea of measure at most
εam), we have

|F (x)− F̄ | ≤ εaα,

where F̄ is the mean value of F in the ball B(x0, Ca). Also, if x ∈ Ea,

|F (x)− F̄ | ≤ |x− x0|α.

If the support of the wavelet ψ((x− b)/a) is included in B(x0, Ca),

|C(a, b)| = 1

am

∣∣∣∣∫ F (x)ψ

(
x− b
a

)
dx

∣∣∣∣ ≤ 1

am

∫
B(x0,Ca)

|F − F̄ |,

the integral on Ea is bounded by aαεam and outside Ea by εaαam, so |C(a, b)| ≤
2Cεaα and (1.3) does not hold. Hence we have a contradiction, and thus Proposition
2.5 holds.

The condition that F is Cα(x0) is necessary in Proposition 2.5, as shown by the
following counterexample. Suppose that ψ (perhaps after a translation) is compactly
supported in an interval of the form [2l, 2l+1], and suppose that the 2j/2ψ(2jx− k)’s
form an orthonormal wavelet basis of L2(R) (see [8] for such functions). Let I be an
interval such that ψ(x) ≥ C > 0 on I. Define F (x) =

∑
j 2−(α−1)j1Aj (x), where Aj =

2−jIj and Ij is a subinterval of I of length 2−j . Then clearly 2−j
∫
F (x)ψ(2jx)dx ≥

C2−αlj but F has no strong singularity at 0 (but is only Cα−1(0)).

3. Some functional norm estimates. We first show the link between quan-
tities such as Sp(l) or Z̃(a, q) and Sobolev or Besov-type norms. We recall a few
definitions and characterizations.

Suppose that s ∈ R and p, q > 0. A function F belongs to the homogeneous
Besov space Bs,qp if ∫

a>0

[∫
|C(a, b)|pdb

]q/p
da

asq+1
< +∞(3.1)

(which follows directly from [25]).
Since η(p) is the infimum of all numbers τ verifying, for a small enough,

Z̃(a, p)

(
=

∫
|C(a, b)|pdb

)
≤ Caτ ,

we see that if p > 0,

η(p) = sup{τ : F ∈ Bτ/p,∞p }.(3.2)

A similar characterization exists for the function ζ(p). The spaces Hs,p introduced
by Nikol’skii (see [1] or [27]) are defined as follows.

Let s ≥ 0. If s is not an integer, s = m + σ with m integer and 0 < σ < 1. Let
p ≥ 1, F ∈ Hs,p if F ∈ Lp and for any multiindex α such that |α| = m,∫ |∂αF (x+ h)− ∂αF (x)|p

|h|σp dx ≤ C.(3.3)
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 957

Recall that ζ(p) is the lim sup of the numbers ξ such that

Sp(h)

(
=

∫
|F (x+ h)− F (x)|pdx

)
≤ Chξ(p)

for h small enough. Thus if p ≥ 1, ζ(p) = sup{s : F ∈ Hs/p,p}.
Of course, we see here that the formula in the structure function method must

be modified as follows in order to be consistent with (3.3): If ζ(p) is less than 1, the
formula is all right; if it is equal to 1, one should use the same formula but with
the gradient of F ; and so on until ζ(p) falls between two integers. (Note that this
procedure is obviously difficult to handle numerically if ζ(p) is large.)

The following embeddings hold if p ≥ 1:

∀ε > 0, Hs+ε,p ↪→ Bs,∞p ↪→ Hs−ε,p(3.4)

(because (3.4) holds between Hs,p and W s,p spaces (see [1]), between W s,p and Lp,s

spaces (see [1]), and between Lp,s and Bs,∞ spaces (see [21] or [25])). Thus, if p > 1,
ζ(p) = η(p) and the function η can be defined by

η(p) = sup{s : F ∈ Bs/p,pp } = sup{s : F ∈ Lp,s/p}(3.5)

(where Lp,s is defined for s > 0 by f ∈ Lp,s ⇔ f ∈ Lp and (−∆)s/2f ∈ Lp), and if
0 < p ≤ 1, it can be defined by the first equality only, so the last characterization of
η(p) in (3.5) is again a straightforward consequence of Sobolev-type embeddings.

Proposition 3.1. The following characterizations hold:

∀p > 0, η(p) = sup{s : F ∈ Bs/p,∞p },
∀p > 1, η(p) = ζ(p) = sup{s : F ∈ Hs/p,p} = sup{s : F ∈ Ls/p,p}.

Remark. The number η(2) can be interpreted as follows:

η(2) = sup

{
s :

∫
|F̂ (ξ)|2(1 + |ξ|2)s/2dξ ≤ C

}
.

This holds because Bs,22 = L2,s, and ∀q, q′, q′′, Bs+ε,qp ⊂ Bs,q′p ⊂ Bs−ε,q′′p , so

η(2) = sup{s : F ∈ Bs,∞2 } = sup{s : F ∈ Bs,22 }

= sup{s : F ∈ L2,s/2} = sup

{
s :

∫
|F̂ (ξ)|2(1 + |ξ|2)s/2dξ ≤ C

}
.

Note that this result differs from [3], where the interpretation given for η(2) is
|F̂ (ξ)|2 ∼ |ξ|−η(2)−2. Nonetheless, the interpretation given in [3] is correct provided
that such a scaling holds. An interpretation of η(1) of very different nature will be
given in section 4.

We will show in section 6 that “any” function d(α) can be a Hölder spectrum. It
is interesting to notice that this is not the case with the function η(p), which because
of the Sobolev imbeddings between Lp,s spaces cannot be arbitrary. Since Lp,s ⊂ Lt,q
if t ≤ s and q = mp/(m− (s− t)p) (see [1]), if q ≥ p,

η(q)− η(p)

q − p ≥ η(p)−m
p

.(3.6)

In particular, we see that η′(p) ≥ η(p)−m/p. Conversely, it is easy to check that any
function η(p) that satisfies (3.6) can be associated with a function F so that (3.6)
characterizes all possible functions η(p).
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958 S. JAFFARD

4. Upper bounds for dimensions of spectrums. A first problem that we
meet is that of which mathematical definition of “dimension” we should use. The
physical literature is often unclear about this point, sometimes using the term Haus-
dorff dimension but computing it using coverings by boxes of the same size. Of
course, a given set of points (a potential “set of Hölder singularities” of our function)
can have very different dimensions depending on the definition considered. We will
see that the “good definition” depends on the kind of singularities that we look for.
For Hölder singularities, we will get bounds on Hausdorff dimensions, and for strong
α-singularities, we will get bounds on packing dimensions. An important difference
between the two settings is that in the first we necessarily have to suppose some min-
imal uniform regularity for F , which is not required in the second. We first recall the
definition of the Hausdorff dimension and Hausdorff measure.

Let A ⊂ Rn and Rε be the set of all coverings of A by sets of diameter at most ε.
Let

M(ε, d) = inf
r∈Rε

∑
Ai∈r

(diamAi)
d.

Then by definition,

d−Mes(A) = lim sup
ε→0

M(ε, d)

is the d-dimensional Hausdorff measure. The Hausdorff dimension of A is

D = inf{d : d−Mes(A) = 0} = sup {d : d−Mes(A) = +∞}.

If the coverings are done using only balls or only dyadic cubes, we obtain an
equivalent quantity for the d-measure, and thus D is not changed.

Proposition 4.1. Let s−m/p > 0 and p > 0. If F ∈ Bs,∞p , d(α) ≤ m−(s−α)p.
Thus if η(p) satisfies η(p) > m ∀p, d(α) ≤ infp(m− η(p) + αp).

This proposition is reminiscent of [5], where Brown, Michon, and Peyrière proved
similar results for measures (in dimension 1). If s ≤ m/p, a function in Lp,s or Bs,∞p
can be infinite on a dense set and thus smooth at no point (see [21]), so that no such
result can hold if we do not make the assumption s−m/p > 0.

Proof of Proposition 4.1. we use a slight modification of the two-microlocal space,
for convenience. We thus define

F ∈ Cs,s′p (x0) if and only if |Cj,k| ≤ C2−(m2 +s)jj2/p(1 + |2jx−k|)−s′ .(4.1)

We will prove that if F ∈ Bs,∞p , then d > 0. Outside a set of d-measure 0, F ∈
C
s−m−d/p,−d/p
p (x). Thus if 0 < s − m/p < α < s, the set {x : F /∈ Cα(x)} has

Hausdorff dimension at most m− (s− α)p, and Proposition 4.1 follows.
Let F ∈ Bs,∞p . Then

∀j,
∑
k

|Cj,k|p 2(ps+mp
2 −m)j ≤ C.(4.2)

Let d be such that 0 < d ≤ n and Bj,k be the ball centered on k2−j and of size

diam(Bj,k) = |Cj,k|p/d2αjj−2/d,
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 959

where α is such that

−dα+ ps+
mp

2
−m = 0.

Then (4.2) can be rewritten as

∀j,
∑
k

(diamBj,k)d ≤ c

j2
.(4.3)

Let Aj =
⋃
k Bj,k. Equation (4.3) implies that the d-measure of A = lim supAj is 0.

If x /∈ lim supAj , ∃ j0, ∀j ≥ 0, ∀k, x /∈ Bj,k so that

|x− k2−j | ≥ C|Cj,k|p/d 2αjj−2/d.

Hence

∀j ≥ j0, |Cj,k| ≤ C2−(m/2+s−m/p)j |x− k2−j |d/pj2/p

and thus F ∈ Cs−m−d/p ,−d/pp (x) (because (4.1) automatically holds for j ≤ j0). Hence
Proposition 4.1 follows.

One can wonder if similar bounds (or equalities) hold for dimensions of strong
α-singularities. This problem is important for the following reasons. Recall that the
multifractal formalism was introduced for the study of turbulence. In [6], Caffarelli,
Kohn, and Nirenberg obtained a bound on the dimension of (possible) singularities in
Navier–Stokes equations that is actually a bound on the packing dimension of “strong
α-singularities” following the definition that we gave (with α = 0).

Another reason to obtain bounds for dimensions of strong singularities is that
when global regularity conditions (which imply that F is continuous) no longer hold,
no result such as Proposition 4.1 can be proved. Even in the strict framework of
self-similar functions, we will see in Part II that no such bounds exist. Since for
applications we clearly want to be able to consider unbounded functions (for instance,
the velocity of a turbulent fluid may be unbounded), it is important to obtain some
positive results in that case.

Our purpose is to prove that if F belongs to W s,p, given α < s, the set of points
x where F has a strong α-singularity has a small packing dimension. We first recall
the definition of the packing dimension of a subset of Rm (see [12]).

Let J > 0 and ΛJ be the set of dyadic cubes of size 2−J which contain a point of
E. Define

md(E) = lim
J→+∞

∑
λ∈ΛJ

2−dJ = Λ]j 2−dJ

(where Λ]j denotes the cardinality of Λj) and

mesd(E) = inf
E⊂∪En

∑
n

md (En).

The box dimension of E is the value of d for which md (E) falls from +∞ to 0.
This dimension is also called the potential dimension by some physicists. It is the only
one that is numerically easy to compute because it does not involve optimal coverings.
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960 S. JAFFARD

The packing dimension of E is the value of d for which mesd(E) falls from +∞
to 0. It is clearly no larger than the box dimension.

Proposition 4.2. Let F ∈ W s,p(Rm) and α be such that −m < α ≤ 1. The
packing dimension of the strong α-singularities of F is bounded by m − (s − α)p so
that if D(α) is the packing dimension of strong α-singularities and −m < α ≤ 1, then

D(α) ≤ inf
p

(m− η(p) + αp).(4.4)

Such a result is in many cases more satisfactory than Proposition 4.1 since we do
not have to make the assumption of a minimal Hölder regularity of F . Actually, the
numerical estimation of the upper bound for D(α) when α = 0 using (4.4) could be
a way to check whether a stronger result than the one obtained by Caffarelli, Kohn,
and Nirenberg in [6] holds.

Of course, a way to avoid the problem of unbounded functions could be to consider
indefinite integrals or perhaps iterated indefinite integrals of the velocity, but such
quantities would have no direct physical interpretation.

We first describe the functional setting that we use. We will give bounds on the
packing dimension of strong α-singularities in the Sobolev spaces W s,p. Recall that
(see [1])

(4.5)

if 0 < s < 1, f ∈W s,p ⇔ f ∈ Lp and

∫ ∫ |f(x+t)− f(x)|p
|t|m+sp

dx dt ≤ +∞.

For s ≥ 1, these spaces can be defined as follows. First, if 0 < s < 2, they can be
defined by replacing |f(x+t) − f(x)| by |f(x+t) + f(x−t) − 2f(x)| in (4.5), and if
α ≥ 2, f ∈W s,p ⇔ f ∈ Lp and ∀i = 1, . . . , n, ∂f/∂xi ∈ W s−1,p (see [1]).

The fact that these spaces are defined by a condition on the Lp-modulus of con-
tinuity ωp(t) = ‖f(· + t) − f(·)‖p will yield an easy direct estimate on the packing
dimension of the strong α-singularities. (The intuitive idea is that if x0 is such a
singularity, the contribution for x close to x0 to the integral

∫
x∈Rm |f(x+t)−f(x)|p dx

is large.) The spaces Lp,s and W s,p are closely related since (see [1]) W s,2 = L2,s and
Lp,s ⊂ W s,p′ if p > p′ and W s,p ⊂ Lp

′,s if p > p′. Thus the bound of D(α) given
by Theorem 1.4 is a consequence of Proposition 4.2 which we now prove. Define El,m
as the set of points x0 such that (1.2) holds with

2−l ≤ C < 2 · 2−l and 2−n ≤ C ′ < 2 · 2−n.

The set of strong α-singularities of F is
⋃
l,nEl,n. Let l and n be fixed. Let Λj

be the set of dyadic cubes of size 2−j such that Λj ∩ El,n 6= ∅. If λ ∈ Λj , there exist
Aj , Bj ⊂ 3λ such that (1.2) holds (where 3λ is the cube that has the same center as
λ and is three times larger). We restrict the integral (4.5) to x ∈ 3λ, x+ t ∈ 3λ. The
integral on this set is thus bounded from below by

2−2l2−2mj (2−n2−αj)p

(2−j)m+sp
.

If we sum up for all λ ∈ Λj , each integral is taken at most 4m times. Thus

Λ]j 2−2l 2−np 2−j[αp+m−sp] ≤ 4m‖f‖pW s,p
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 961

and thus if d > αp+m− sp, d−mes(El,m) = 0 so that d−mes(
⋃
l,nEl,n) = 0. Hence

Proposition 4.2 follows.
We now check that if F is a function of one real variable, the box dimension of

the graph of F is exactly 2−η(1) if η(1) is between 0 and 1. This is a straightforward
consequence of the following result (see [10] or [13]).

Proposition 4.3. Suppose 0 < γ < 1 and F : [0, 1] → R is continuous. Then
the box dimension of the graph of F is exactly 2− γ if and only if

F ∈
⋂
α<γ

Bα,∞1

∖ ⋃
β>γ

Bβ,∞1 .

Thus the result holds because η(p) = sup{s : F ∈ Bs/p,∞p }.

5. The wavelet-maxima method. Our purpose in this section is to show that
the wavelet-maxima method can yield a function θ(q) which is much smaller than
η(q)−m so that in general the multifractal formalism cannot hold using this method.
Via our counterexamples, we will show how to slightly modify its definition so that
θ(q) = η(q) − m. Our specific study of the wavelet-maxima method is justified by
its numerical importance. Arneodo, Bacry, and Muzy compared the three numerical
methods in cases where the Hölder spectrum is known analytically (self-similar func-
tions, Riemann’s function), and they clearly showed (in a personal communication)
that the wavelet-maxima method is the most accurate.

The reason why the wavelet-maxima method may fail is easy to understand in-
tuitively if we relate it to the wavelet-transform integral method. The two quantities∫

Rm |C(a, b)|qdb and a
∑
`∈L(a) sup(b,a′)∈` |C(a′, b)|q have the same order of magnitude

if the spacing between the maxima is approximately a since then the second term is
a Riemann sum of the first term. Thus the counterexamples that we will construct
will have maxima with spacing much smaller than a, and if we slightly modify the
wavelet-maxima method by imposing the restriction that we select only one maximum
(or, say, C maxima) in an interval of length a, then the multifractal formalism will
hold.

In order to give some insight into the pitfalls of the wavelet-maxima method, we
begin by describing an example where the maxima accumulate in certain regions. Not
surprisingly, this example involves chirps.

Lemma 5.1. Suppose that ψ is compactly supported on [0, l], has a vanishing
integral and m first vanishing moments, and satisfies

∃ε > 0 ψ(x) = xm ∀x ∈ [0, ε].

(This is the case, for instance, if ψ is a spline.) There exists a function F that is
compactly supported and arbitrarily smooth and a sequence an → 0 such that for all
values of n, the wavelet transform C(an, b) has infinite maxima.

We first construct F such that this property holds for a small interval of values
of the dilation parameter a. The general case will be obtained by a superposition
argument. Let

F (x) = xk sin

(
1

xl

)
φ(x),

where φ is C∞ except at the origin and supported on [0, 1], φ(x) = 1 ∀x ∈ [0, 1/2],
and φ is such that the integral and the first m moments of F vanish. After dilating
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962 S. JAFFARD

ψ, we can suppose that it is equal to xm on the interval [0, 1]. Then if x ≤ 1/4 and
a ∈ [1/2, 1],

1

a

∫
F (t)ψ

(
x− t
a

)
dt =

1

a

∫ 1

x

F (t)

(
x− t
a

)m
dt

= −1

a

∫ x

0

F (t)

(
x− t
a

)m
dt = −1

a

∫ x

0

tk
(
x− t
a

)m
sin(t−l)dt

Integrating m times by parts, we obtain either∫
F (t)ψ(x− t)dt = a−m−1xk+m(l+1) sin

1

xl
+ o(xk+m(l+1))

or ∫
F (t)ψ(x− t)dt = a−m−1xk+m(l+1) cos

1

xl
+ o(xk+m(l+1))

depending on the parity of m. In all cases, the wavelet transform of F has for a ∈
[1/2, 1] an infinity of lines of maxima. The general case is obtained by considering the
function

G(x) =

∞∑
j=0

2−mjF (2j(x− l)),

where l is larger than the size of the support of ψ.
This example also shows that one should be careful when using the wavelet-

maxima method since the superposition of a small smooth function can completely
perturbate the lines of maxima.

We now show that the two functions θ(q) and η(q) − 1 can differ dramatically
so that even in cases where the multifractal formalism holds when using the wavelet
integral method, it may prove wrong when using the wavelet-maxima method. To
this end, we will construct a smooth function F (so that η(p) will take the maximal
value that is compatible with the smoothness of the wavelet) such that θ(q) = −∞ ∀q.
This example will use a wavelet with one vanishing moment. However, we will show
how to modify it in order to deal with wavelets with a given number of vanishing
moments. We will also show in Part II that F can be a self-similar function (which
will provide a case where the multifractal formalism holds using the wavelet integral
method and does not hold using the wavelet-maxima method).

Proposition 5.2. Let ψ be even and compactly supported (say on [−1, 1]) and
satisfy ∫

ψ(x)dx = 0 and

∫
xψ(x)dx = 1.

There exists a C∞ compactly supported function F such that θ(q) = −∞ ∀q > 0.
Proof. The idea of the proof is to construct a function g whose wavelet transform

is equal to, say, 1 on an interval and to perturbate it by adding another function whose
wavelet transform is extremely small but oscillates extremely fast, thus creating a huge
number of new maxima which take values close to 1.

Let g be a C∞ odd function supported by [−3, 3] such that g(x) = 1 on [1, 2]. Let

hj(x) = 2−j
2

g(2j+4(x− 8)) + 2−j
4

sin(2j
3

πx)φ(2jx),
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 963

where φ is a C∞ function supported on [1/2, 1] that verifies φ(x+ 3/4) = φ(3/4− x)
and ∀x ∈ [9/16, 15/16], φ(x) = 1. Let F be the indefinite integral of

∑
j≥0 hj(x).

Since hj has a vanishing integral, F is C∞ and compactly supported. Let G be the

indefinite integral of g. F and the series
∑
j≥0 2−j

2

2−j−4G(2j+4(x− 8)) will have the
same function η. (Here the calculation will yield η(p) = p because this series is a C∞

function and the wavelet used will have only one vanishing moment.)
Note that

1

a

∫
sin(ωx)ψ

(
x− b
a

)
dx sin(ωb)ψ̂(ωa).

(Here ω = 2j
3

.) For a given value of j, we choose a in the interval [1/100.2−j , 1/10.2−j ]

such that ψ̂(ωa) does not vanish (which is possible since ψ̂(ωa) is an analytic function
of a).

Integrating by parts, one checks that on an interval of length at least 2−j−45/16,

the wavelet transform of 2−j
2

2−j−4G(2j+4(x−8)) takes a constant value equal to 2−j
2

.

Thus on the same interval, the wavelet transform of F is 2−j
2

+2−j
4

sin(2j
3

b)ψ̂(2j
3

a).

Thus it has about 2−j−42j
3

maxima, and∑
max

|C(a, b)|q ∼ 2−j−42j
3

2−j
2q.

Since j can be chosen arbitrarily large, the result is proved.
Note that we could have chosen a wavelet with a given number of vanishing

moments. In that case, we would have integrated g not once but the corresponding
number of times. The important fact is that the wavelet transform of G should locally
be constant. The reader will also easily check that we could have imposed a given
function η for F .

6. Counterexamples to the multifractal formalism. We define C as the
class of functions that can be written as the supremum of a countable set of functions
of the form c1[a,b](x) (where we can have a = b). Thus Riemann-integrable functions
belong to C, but so do, for instance, the indicatrix function of the rationals (but not
the indicatrix function of the irrationals).

Proposition 6.1. Let d(s) : ]0,+∞[→ [0,m] be a function in C. There exist two
continuous functions G1 and G2 : Rm → R that share the same function η(q) such
that d(s) is the Hölder spectrum of G1 while G2 is C∞ except at the origin, so its
spectrum vanishes everywhere.

We construct these functions when the space dimension is m = 1. The general-
ization to the multidimensional case is straightforward.

We first construct G1 when d(s) = cs1a,b(s), where 0 < a ≤ b <∞ and cb ≤ 1.
We will actually use three other parameters α, β, and γ, where a = γ, b = βγ, and
c = 1/(αβγ) so that γ > 0, β ≥ 1, and α ≥ 1. We thus define G1 = F (α,β,γ). The
general case will be obtained using a simple “superposition” procedure of the F (α,β,γ).

We will explicitly construct G1 by defining its coefficients on an orthonormal
wavelet basis. The function G2 will then be obtained by just moving at each scale
the location of the nonvanishing wavelet coefficients of G1. We use an orthonormal
wavelet basis in the Schwartz class (see [25]), and the functions

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,
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964 S. JAFFARD

are an orthonormal basis of L2(R). Sometimes we will index the wavelets ψj,k or the
wavelet coefficients Cj,k (=

∫
Fψj,k) by the dyadic intervals λ = [k2−j , (k + 1)k2−j ].

Let Λ be the collection of all dyadic intervals of length at most 1. We will construct
a subcollection Λ(α, β) ⊂ Λ and consider the following “lacunary” wavelet series:

F (x) =
∑

λ∈Λ(α,β)

2−(γ+1/2)jψλ(x).(6.1)

The construction of Λ(α, β) is performed as follows. Define Λ(α, β) =
⋃
m≥1 Λ

(α,β)
m ,

where Λ
(α,β)
m is the set of intervals λ or couples (j, k) such that j = [αβm] and

2−jk = ε1l1 + · · ·+ εmlm ∈ Fm, ε1, . . . , εm ∈ {0, 1}, ln = 2−[αn],

[x] is the entire part of x and thus k = 2[αβm](±l1 ± · · · ± lm) is an integer since
[αβm] ≥ [αn].

Proposition 6.2. The function F defined by (6.1) belongs to the global Hölder
space Cγ(R) so that if s < γ, the set E(s) of points x0 where f ∈ Γs(x0) is empty. If
γ ≤ s ≤ βγ, the Hausdorff dimension of E(s) is s/αβγ. If s > βγ, E(s) is empty.

The characterization of the space Cγ on the wavelet coefficients is

|Cj,k| ≤ C2−(γ+1/2)j

(a simple rewriting of (2.2) in the orthonormal basis setting). Thus F belongs to
Cγ(R) and the spectrum of F vanishes for s < γ.

Lemma 6.3. A point x0 belongs to E(s) if and only if

dist(x0, Fm) = ηm2−
αβγ
s m, (Fm = {±l1 ± l2 ± · · · ± lm})(6.2)

with

lim inf
m→∞

ηm2−mε = 0 for any ε > 0(6.3)

and

lim inf
m→∞

ηm2mε = +∞ for any ε > 0.(6.4)

Proof. If F is Cs(x0), the rewriting of (2.3) yields

|Cj,k| ≤ C2−(s+1/2)j(1 + |2jx0 − k|)s.(6.5)

Conversely, from (2.3), we deduce that if (6.5) holds and if F is Cε(R) for an ε > 0,
then there exists a polynomial P such that

|F (x)− P (x− x0)| ≤ C|x− x0|s log

(
1

|x− x0|

)
.

Thus we see that F is Cs−ε(x0) ∀ε > 0 if ∀ε > 0, ∀λ ∈ Λ(α, β),

2−(γ+1/2)j ≤ C2−(s−ε+1/2)j(1 + |2jx0 − k|)s−ε = C2−j/2(2−j + dist(x0, λ))s−ε.

Conversely, if ∃λ ∈ Λ(α, β) corresponding to arbitrary large values of j such that

2−(γ+1/2)j ≥ C2−j/2(2−j + dist(x0, λ))s+ε,
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MULTIFRACTAL FORMALISM: GENERAL RESULTS 965

F does not belong to Cs+ε(x0) ∀ε > 0. These two conditions can be written as

lim sup
λ∈Λ(α,β)

2−γj(2−j + dist(x0, λ))−s−ε = +∞ for any ε > 0(6.6)

and

lim sup
λ∈Λ(α,β)

2−γj(2−j + dist(x0, λ))−s+ε <∞ for any ε > 0.(6.7)

Condition (6.6) can also be written as

2−j + dist(x0, λ) = η(λ)2−
γ
s+ε j ,

where lim inf η(λ) = 0. Since s ≥ γ, 2−j = o(2−
γ
s+ε j) and the only condition to be

checked is

dist(x0, λ) = η(λ)2−
γ
s+ε j .

Since λ ∈ Λ
(λ,β)
m , this condition is equivalent to (6.3).

The same proof shows that (6.7) becomes (6.4). Hence we have Lemma 6.3.
We now define a compact Kα and sets Eα,δ, Kα will be composed of the limit

points of the Fm, and the Eα,δ’s will be subsets of Kα.
Let Kα be the compact set of the sums

∑∞
1 εj lj , where εj = ±1. Another

equivalent definition is

Kα =
∞⋂
1

(Fm + [−λm, λm]),

where

λm = lm+1 + lm+2 + · · · .

Note that the sets Gm = Fm+[−λm, λm] form a decreasing sequence of compact sets.

Let G
(β)
m be defined by G

(β)
m = Fm + [−λβm, λβm] and let Eα,β be the set of points

that belong to infinite G
(β)
m ’s. Since β ≥ 1, G

(β)
m ⊂ Gm so that Eα,β ⊂ Kα and, of

course, Eα,β = Kα if β = 1.
The idea of the construction that we made is as follows. We have placed “large”

wavelet coefficients on Fm so that on these sets the function F is exactly Γγ , but at
points which are at a certain distance on Fm (measured by their belonging to certain

G
(β)
m ’s), these “large” wavelet coefficients create “weaker” singularities (corresponding

to an exponent larger than γ).
Lemma 6.4. If γ ≤ s < βγ, then (6.3) is equivalent to x ∈

⋂
δ< βγ

s
Eα,δ, while if

s ≥ βγ, it is equivalent to x ∈ Kα. Condition (6.4) is equivalent to x /∈
⋃
δ> βγ

s
Eα,δ,

while if s > βγ, it is equivalent to x /∈ Kα.
Proof. If (6.3) holds and if δ < βγ/s, let us check that x ∈ Eα,δ. To this end, we

choose ε > 0 such that δ < βγ/s− ε. Then

dist(x0, Fm) = ηm2−
αβγ
s m = o(2−(αβγs −ε)m)

so that dist(x0, Fm) = o(lδm) ≤ λδm (because λm ∼ lm) for infinite values of m. Thus
x ∈ Eα,δ.
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966 S. JAFFARD

Conversely, if x ∈ Eα,δ, dist(x, Fm) ≤ λδm so that dist(x, Fm) ≤ C2−αδm for
infinite values of m. If δ > βγ/s − ε, we get (6.3). When s ≥ βγ, we observe that if
ηm > 0 is an arbitrary sequence such that lim inf ηm = 0 and if

x ∈
⋂
m≥1

Fm + [−ηm, ηm],

then x ∈ Kα. This is because Kα is a compact set, and if x /∈ Kα, then dist(x,Kα) =
η > 0 so that dist(x, Fm) ≥ η; hence we have a contradiction. Condition (6.3) is thus
equivalent to x ∈ Kα as soon as s ≥ βγ. The proof of the second part of the lemma
is similar.

Lemma 6.5. The Hausdorff dimension of Eα,β is 1/αβ. If γ ≤ s ≤ βγ, the
Hausdorff dimension of E(s) is s/αβγ. If s > βγ, the set E(s) is empty.

The set Eα,β is defined by

Eα,β =
⋂
m≥1

E
(m)
α,β where E

(m)
α,β = G(β)

m ∪G(β)
m+1 ∪ · · · and G(β)

m = Fm + [−λβm, λβm].

For any ε > 0, we can cover Eα,β by the intervals Iq that appear in G
(β)
n , n ≥ m.

For a fixed n, there are 2n such intervals of length ∼ 2−αnβ so that if d > 1/αβ,∑
|Iq|d ≤ C, where C does not depend on ε. Thus the Hausdorff dimension of Eα,β

is bounded by 1/αβ.
Now suppose that γ ≤ s ≤ βγ. Then

E(s) =

 ⋂
δ< βγ

s

Eα,δ

∖ ⋃
δ> βγ

s

Eα,δ

 if γ ≤ s < βγ,

while if s = βγ,

E(s) = Kα

∖(⋃
δ>1

Eα,δ

)
.

Checking is done the same way in both cases, so we suppose that γ ≤ s < βγ. Thus
E(s) ⊂ Eα,δ for all δ < βγ/s so that dim(E(s)) ≤ s/αβγ. Hence we have the two
upper bounds for the Hausdorff dimensions in Lemma 6.5.

In order to obtain the lower bounds, we use a standard procedure. We construct
a probability measure µ that is supported on Eα,β and has certain “scalings.”

We now construct this measure.
Let m1 < m2 < · · · be an increasing sequence of integers that tends to∞ quickly

enough that for any n ≥ 1, mn+1 ≥ exp(mn), and now let

K(α,β) =
⋂
n≥1

G̃(β)
mn(6.8)

with

G̃(β)
m = Fm + [−2−[αβm], 2−[αβm]].(6.9)

This means that G̃
(β)
m is a finite union of dyadic intervals, and the dyadic intervals

that form G̃
(β)
m+1 will either be disjoint of those composing G̃

(β)
m or included in them
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(just because they are dyadic intervals of smaller length). We have [αβm] ≥ β[αm],

and the set G̃
(β)
m is included in G

(β)
m so that K(α,β) ∈ Eα,β .

Let Nn be the number of intervals of length 2.2−[αβmn] that can be found in

Hn = G̃
(β)
m1 ∩ · · · ∩ G̃

(β)
mn , and let µn be the probability measure which on each of these

Nn intervals takes the value 2[αβmn](2Nn)−1dx. We can easily check that µn ⇀ µ
when n→∞, where µ = µ(α,β) is supported by K(α,β).

Lemma 6.6. There exists C such that ∀I of length |I| ≤ 1/2,

µ(I) ≤ C|I|1/αβ log
1

|I| .(6.10)

Proof. We first estimate Nn. Hn is composed of Nn intervals of length 2−[αβmn].
When constructing Hn+1, we split each of these intervals into 2mn+1−βmn+εn intervals,
where |εn| ≤ 2. Thus Nn+1 = Nn2mn+1−βmn+εn .

Now let I be an interval and define n by 2−αβmn ≤ |I| < 2−αβmn−1 .
Consider the two cases 2−αβmn ≤ |I| < 2−αmn and 2−αmn ≤ |I| < 2−αβmn−1 . In

the first one, I intersects at most two of the intervals that compose Hn so that

µ(I) ≤ CN−1
n ≤ C ′2−mn+O(mn−1) ≤ C|I|1/αβ log(|I|)

since mn ≥ exp(mn−1). In the second case, suppose that |I| ∼ 2−αj . Thus βmn−1 ≤
j ≤ mn. I meets at most 2mn−j intervals so that µ(I) ≤ 2mn−j/Nn, but Nn =
Nn−12mn−βmn−1+εn . Thus

µ(I) ≤ 2−j2βmn−1−εn

Nn−1
≤ C|I|1/αβ2j/β2−j2βmn−12−mn−1+O(mn−2)

≤ C|I|1/αβ2
(β−1)
β (βmn−1−j)+O(mn−2)

so that µ(I) ≤ C|I|1/αβ log(|I|). Hence we have Lemma 6.6.
We now prove the lower bounds in Lemma 6.5. We use the following slight

modification of Hausdorff measure. Let A ⊂ Rm and Rε be the set of all coverings of
A by sets of diameter at most ε. Let

M(ε, d) = inf
r∈Rε

∑
Ai∈r

(diamAi)
d log

(
1

(diamAi)

)
and let

d−mes(A) = lim sup
ε→0

M(ε, d)

be this “modified” d-dimensional Hausdorff measure. Of course, this modification
does not change the Hausdorff dimension of A, which is

D = inf{d : d−mes(A) = 0} = sup {d : d−mes(A) = +∞}.

We conclude with the following classical proposition (cf. [12]).
Proposition 6.7. Let Hs be the modified Hausdorff measure of dimension s. Let

µ be a probability measure on Rm, F ∈ Rm. If lim supr→0 µ(B(x, r))/rs log(1/r) <
C ∀x ∈ F,

Hs(F ) ≥ µ(F )

C
.
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968 S. JAFFARD

The first lower bound in Lemma 6.5 is thus a consequence of Lemma 6.6 and
Proposition 6.7. The H1/αβ measure of Eα,β is strictly positive, and thus the Haus-
dorff dimension of Eα,β is at least 1/αβ.

We show that dim(E(s)) ≥ s/αβγ. Let µ be the probability measure µα,βγ/s. We
check that

E(s) ⊃ Eα,βγ/s
∖ ⋃

δ>βγ/s

Eα,δ

(6.11)

and

µ(Eα,δ) = 0 for any δ >
βγ

s
;

since the union of these sets can be written as a countable union, the measure of their
union vanishes so that the measure of E(s) is the same as the measure of Eα,βγ/s,
which is strictly positive. Hence we have the last point of Lemma 6.5.

We now prove the general case in Proposition 6.1.
Let E1, E2, . . . be disjoint subsets of R and suppose that Ek ⊂ [ak, bk], where the

[ak, bk]’s are disjoint. Let dk be the Hausdorff dimension of Ek. Then the Hausdorff
dimension of

⋃
k≥1Ek is sup(dk).

We return to the function F(α,β,γ). Clearly, F(α,β,γ) has fast decay and is C∞ out-
side of a compact set. After replacing F(α,β,γ)(x) by F(α,β,γ)(px+ q), we can, without
changing the spectrum of F(α,β,γ), suppose that it is C∞ outside any given interval
[a, b]. Let Fk(x) = f(αk,βk,γk)(x) be a sequence of functions as in Proposition 6.2 and
consider the corresponding spectra dk(s). We can suppose that the singular supports
of the Fk(x)’s are included in [2−k−1, 2−k]. (The singular support of a function is the
closure of the set where this function is not C∞.) We can also replace Fk by εkFk,
where εk > 0 tends to 0. Then let G1 =

∑∞
0 εkFk, and d(s) is the supremum of the

dk(s)’s. The function G1 thus constructed satisfies the requirements of Proposition
6.1, since we can easily check that a supremum of a countable set of functions of the
form ax1[b,c](x) is also a supremum of functions of the form a1[b,c](x).

The construction of G2 is now very easy. We remark that at each level j, the
number of nonvanishing wavelet coefficients of F(α,β,γ) is o(2j). Thus the same prop-
erty holds for G1 itself if we have chosen the contraction factors p (defined above) to
be large enough. We now consider a function G2 that has at each level j the same
nonvanishing wavelet coefficients as G1 but situated at different dyadic intervals. We
group them in the smallest possible interval Ij centered at the origin. Thus the quan-
tity (4.2) is the same for G1 and G2 so that these two functions share the same Bs,∞p
norm and hence the same function η. Nonetheless, if x 6= 0, there are a finite number
of nonvanishing wavelet coefficients in a certain interval centered at x because the
length of Ij tends to 0. Thus F2 is C∞ at x.

We now check that G1 and G2 are counterexamples to the following problem
raised in [9]: Is η or ζ the Legendre transform of m− d(α)?

Consider the function F defined by (6.1). At each level j = [αβm], it has 2m

wavelet coefficients equal to 2−(γ+1/2)j so that for this j,(∑
k

|Cj,k|p
)1/p

∼ 2(−(γ+1/2)+1/pαβ)j
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so that

‖F‖Bs,∞p ∼ 2js2j(
1
2−

1
p )

(∑
k

|Cj,k|p
)1/p

∼ 2j(s−γ+ cγ
p −

1
p )

and η(p) = ap+ 1− ca.
Thus η(p) is linear and does not depend on b so that it clearly can be the Legendre

transform of neither cs1[a,b](s) (when a 6= b) nor the function 0. Thus in general,
neither F1 nor F2 satisfies that η or ζ is the Legendre transform of its spectrum.
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