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ABSTRACT

We analyze high-resolution, digital, photoelectric images of solar photospheric magnetic fields. The line-of-
sight fields are found to scale in a self-similar way with resolution and thus can be expressed in the form of a
signed multifractal measure. The scaling properties of the measure are used to extrapolate field integrals, such
as moments of the magnetic field, below resolvable limits. The scaling of the field moments is characteristic of
highly intermittent fields. We suggest that the quiet-Sun photospheric fields are generated by local dynamo
action based on random convective motions at high magnetic Reynolds number. The properties of active
region images are determined by the presence of fields generated by the global, mean field dynamo.

Subject headings: Sun: magnetic fields

1. INTRODUCTION

Magnetic flux in the solar photosphere is concentrated in
intense (1000-2000 G), discrete flux tubes separated by essen-
tially field-free plasma (Howard & Stenflo 1972; Stenflo 1989).
The diameter of the basic photospheric flux tube is thought to
be less than ~072, beyond the resolution of any Earth-based
instrument (but see Keller 1992). Efforts have been made to
model flux tube structures on the basis of observed spectral line
profiles (Stenflo 1989). Solar physicists, however, still largely
describe solar magnetic structures in qualitative, morphologi-
cal terms, such as “network” or “intranetwork” fields,
“magnetic knots” and the like (Zwaan 1987). A more directly
physical approach is needed.

Photospheric magnetism is controlled by the uniquely large
magnetic Reynolds number (R,, & 10%) characterizing the
plasma flow. Because R,, is so large, the field is highly inter-
mittent, even at small scales (Zel’dovich et al. 1987). The
distribution density of observed flux values is strongly non-
Gaussian. Although this intermittence can be qualitatively
modeled (Meneguzzi, Frisch, & Pouquet 1981), quantitative
understanding of the intermittence in terms of the MHD equa-
tions is unworkable. The necessary computer simulations are
beyond present day technology.

One avenue of progress lies in the study, not of the smallest
magpetic structures, but rather in the way in which the field
distribution changes when observed at varying levels of
coarseness. This range includes resolvable scales. In our case,
the data will be digital, photometric images of line-of-sight
magpetic field in the solar photosphere. The primary data,
obtained at the San Fernando Observatory (SFO), are made at
spatial resolution >1" over active region (AR) sized areas.
These data will be supplemented by two higher resolution
(~0"5) Lockheed/La Palma magnetograms.

In recent years, a number of modern procedures have been
developed in other fields of physics for handling scaling
properties in disordered media (Frisch & Parisi 1985; Bunde &
Havlin 1991; Zel’dovich, Ruzmaikin, & Sokoloff 1990). These
techniques include fractal and multifractal geometries
(Mandelbrot 1982; Meneveau & Sreenivasan 1991; Evertsz &
Mandelbrot 1992). Use is now being made of some of these
methods in astrophysics (Heck & Perdang 1991). Some
attempts have been made to apply fractal geometry to solar
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photospheric field motions (Lawrence 1991; Schrijver et al.
1992; Lawrence & Schrijver 1993). A number of studies have
examined the fractal dimensions of sets of magnetogram image
pixels which contain line-of-sight magnetic flux (Greimel et al.
1990; Tarbell et al. 1990; Ruzmaikin, Sokoloff, & Tarbell 1991;
Balke et al. 1993). The existence of a fractal dimension for a set
signifies a self-similar geometry of its elements over a range of
scales. Thus, the arrangement of magnetic pixels in an image is
statistically unchanged when we zoom in and out. We empha-
size the connection between fractal geometry, self-similarity
and power-law scaling relations.

We shall seek to characterize photospheric magnetic fields in
multiscale terms. One benefit of doing so is that the field dis-
tribution and its measure scale with varying resolution. If the
photospheric fields are multifractal in nature, then we obtain a
scaling property which can extrapolate physical conditions
below observed resolution limits.

In § 2 we describe the observational data to be analyzed. In
§ 3 we introduce the concept of a multifractal measure and
apply this to observed line-of-sight fields. In § 4 we consider
the scaling properties of Gaussian random variables and show
where these appear in the data. Section 5 is concerned with
properties of signed measures. In § 6 we use the scaling proper-
ties of the measure to examine field moments and connect them
to the intermittent nature of the field. Section 7 makes connec-
tion with the work of others using moments of positive mea-
sures. Results are discussed and conclusions drawn in § 8.

2. OBSERVATIONS

The primary data used are two-dimensional, high-
resolution, digital, photometric images of line-of-sight mag-
netic field. The data are obtained with the SFO 28 cm, /20
vacuum telescope and vacuum spectroheliograph (SHG) oper-
ated in the video spectra-spectroheliograph (VS2HG) mode.
The VS2HG is described by Chapman & Walton (1989) and
Lawrence, Chapman, & Walton (1991). Other major instru-
ments are described in Mayfield et al. (1969).

The images are derived from effective data “cubes” rep-
resenting two spatial dimensions on the Sun and one spectral
dimension. The observed spectral range includes the profile of
the solar Fe 1 line at 6302.5 A (g = 2.5), a Telluric O, line at
63020 A, and a blended telluric O, line at 6302.8 A. The
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spectral scale of the image “ cubes ” is 8.8 mA pixel ~!. The E-W
spatial scale is 0746 pixel ~!. The N-S spatial scale is similar but
depends on the SHG scanning rate.

The cubes are reduced to spatial maps by carrying out oper-
ations on the data along the spectral dimension. The cubes are
obtained in both left- and right-handed circular polarizations,
which can be converted to Stokes I and V line profiles. Then, a
map of line-of-sight magnetic field (equivalent to net flux inte-
grated over the pixel area) is generated from the first moment
of the Stokes V profile about the line center, divided by the
equivalent width of the I profile. The estimated noise is +15G.
The spatial resolution is seeing limited at more than 1”7, and the
field of view is about 200" for the 28 c¢m telescope. A magnetic
image made with the 28 cm telescope under good seeing condi-
tions is shown in Figure 1 (Plate 28).

Other data used are two very high-resolution images made
with the SOUP tunable filter instrument at the Swedish Solar
Observatory, La Palma (Title et al. 1989). Under the best
seeing conditions, these can produce magnetograms with
spatial resolution finer than 075. The images are composed of
512 x 512 pixels of scale 0714 pixel ™! and field of view
85" x 85”. The chief advantage of these data is their unparal-
leled spatial resolution.

3. MULTIFRACTAL MEASURES

The procedure used for determining a fractal dimension of
the solar field is the “box counting” method (Mandelbrot
1982). Let a Euclidean plane (our magnetic image, which rep-
resents some projection of the solar surface) contain a geo-
metrical object (the set of pixels in the image containing
magnetic field). We cover the image with small, square boxes or
cells of side e. Then we count the number of boxes N(€) cover-
ing the set, that is, containing some field. As the size € of the
boxes is varied, the number will obey a power law

N(e) oce™® 1)
InN(e) = DIn(l/e) + C . )

If the geometric object is a line, then we find D = 1; if it fills the
plane with uniform density, then we find D = 2. For solar mag-
netic fields, we find a “fractal ” dimension 1 < D < 2. The vari-
able D does not refer to a particular scale, but rather governs
the self-similarity as the scale changes.

The membership of a pixel in the fractal set is determined
only by the presence or absence of flux meeting some criterion
(like | H| > H threshold) and not by its amount. The measured
fractal dimensions of the fields, however, were found to be
dependent on the value of the threshold criterion (Ruzmaikin
et al. 1991). This indicates the presence of a geometrical struc-
ture more complicated than a simple fractal.

We now generalize the fractal concept by adding a
“measure” defined by the values of the net magnetic flux
through each pixel. When, along with its supporting set, a
measure also displays self-similarity, the measure is said to be
multifractal (Frisch & Parisi 1985; Evertsz & Mandelbrot
1992). Fields in line-of-sight magnetic images made at the San
Fernando Observatory, and in Lockheed-La Palma magneto-
grams, have this property.

Associating a measure with a supporting set is analogous to
taking into account the values of coins in our pockets rather
than only their number. Measure is additive; the measure of
the union of disjoint subsets is the sum of the measures of the
subsets. This means that the value of a collection of coins is the
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sum of the total value of the pennies plus the total value of the
dimes, and so on. Another example would be associating with
the set of outcomes of throwing two dice (the integers 2...12) a
measure giving the probability for each outcome (e.g., u, =
1/36 or p;, = 1/6). The measure of the outcome subset “2 or 7”
is the sum yu, + u, = 7/36. A probability measure has the pro-
perty Zy; = 1.

The concept of a measure is closely related to the process of
integration. The two-dimensional Lebesgue measure dy; of any
subset of the Euclidean plane is just its area. The ordinary
Riemann integral of a function f(x, y) is

Zf(x;, y)dp; = Jf(x, y)dxdy .

The meaningfulness of this integral depends on f(x, y) being
smooth on the scale of du. In this paper we will find that the
solar photospheric magnetic field is singular on observable
scales, and perhaps on much smaller scales as well, so that
using Riemannian integrals to calculate such quantities as field
energy may be inappropriate. We will suggest an alternate
measure for use in magnetic integrals. The self-similarity of this
measure will allow us to extrapolate their properties below
observable levels.

First, we select an L x L pixel image array whose elements
are the values of the line-of-sight field strength H; in the ith
pixel. This constitutes a “signed measure” (Halmos 1962,
chap. 6). This is converted to a positive definite measure similar
to a probability measure by calculating the normalized absol-
ute value of the field: u; = | H;|/Z | H;|. Because magnetic flux
is an extensive quantity while magnetic field is a flux density, it
is more appropriate to consider the measure y; to represent
absolute values of the fraction of the net flux through the ith
pixel. In the limit of infinite spatial resolution the values of field
strength and flux divided by area of the resolution element
coincide. At coarse-grained levels they do not. The measure we
have defined is closely related to the concept of the magnetic
“filling factor” which represents the portion of a pixel or
resolution element occupied by flux tubes.

Usually L = 256 pixels (sometimes 240 pixels). The smallest
possible box, of course, is a single square pixel; we define its
size to be €, = 1/L < 1. The “coarse-grained ” measure p€) in
boxes of side €, = S,/L =2""8 n=0,1,2...is calculated by a
renormalization procedure in which the oppositely directed
line-of-sight components are allowed to cancel within the box
before the absolute value is used to compute a normalized,
positive definite measure y,(€), similar to a probability measure.
The coarse-graining imitates degraded observational
resolution. For consistency with observational data we set to
zero the measure in any box equivalent to a flux density less
than 1 gauss.

We hypothesize that the measure is self-similar and thus
multifractal. Then the measure, and its distribution, must scale
with a power-law dependence on e. The scaling “Holder
exponent” o gives the presumed self-similar scaling of the
measure in the ith box when observed at different resolutions €:

He) = €. &)

It is easy to compute a value for «; in each box for a given
scale e:

o; = In pfe)/lne . 4

If the measure y, representing magnetic flux, scales like €% then
the line-of-sight magnetic field, which is the flux density, must

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...417..805L

PLATE 28

FiG. 1—SFO false color line-of-sight magnetic image of QS at heliocentric angle ~23° on 21 September 1992 at UT 18:16:00. The field of view is 375
pixels = 173" E-W and 263 pixels = 121" N-S. The magnetic field varies from + 135G (white)to —279 G (black). Noise is ~15G.

LAWRENCE, RUZMAIKEN, & CADAVID (see 417, 806)
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' scale like € 2. Thus if « < 2, the ficld strength is singular. For
' this reason o is also referred to as the “singularity strength” in
the ith box.

To characterize the distribution of the measure for each
coarse-graining scale €, we count the number dN(a, €) =
n(a, €)do of boxes with singularity strength o in bins of width
do. For a multifractal measure we expect the density n(a, €) to
scale according to a power law

n(a, €) = ¢(e)e /@ (5
and

Sl@) = —In[n(, €)/¢(€)]/In € . (©)

The slowly varying function ¢(e) is required by the normal-
ization condition j nla, €) p(o)doe = 1. Tt reduces to a power
series in 1/In(1/e):

ole) = [In(1/€)]~2[1 + C,/In(1/e) + ... ] 7)

(Meneveau & Sreenivasan 1989). The quantity C, is a constant
independent of €; it depends on the curve f(«) and its deriv-
atives. We will treat C, as a free parameter and drop higher
order corrections.

Our hypothesis that the measure u is self-similar, and thus
multifractal, is justified if the derived f(a) collapse to a single
curve in the limit of small €. Figure 2 shows plots of f(«) versus
o for five values of €, = §,/L for S, =1, 2, 4, 8, 16. These are
derived from a single L = 256 sample of the SFO magnetic
image in Fig. 1 of the quiet sun (QS) photosphere far from any
active regions. We note that seeing limits the actual resolution
to §, = 2 and that poor counting statistics limit the accuracy of
the curves for S, > 16. In all figures the counting statistics for
the larger box sizes can be improved by applying a Monte
Carlo method that will be used in future work. The counting
statistics are better in Figure 3, which shows f(x) versus o
curves for five values of S, = 2, 4, 8, 16, 32 representing aver-

2.5

2.0 T
1.5 .
=
¥
1.0 -
AA A
0.5 F o B
(o]
SFO Quiet Sun
0.0 1 1 1 1 1

1.0 15 20 25 30 35 40

X

FIG. 2—f(®) vs. « for a 256 x 256 pixel? sample of the 1992 September 21
image in Fig. 1. The straight line is the bisector f(#) = a. The coarse-graining
scales S, are (open circles) 1 pixel; (filled circles) 2 pixels; (open triangles) 4
pixels; (filled triangles) 8 pixels; (open diamonds) 16 pixels.
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2.5 T T T 1 T
SFO Quiet Sun

Average

3.5 4.0

1.0 15 20 25 3.0

F1G. 3.—f () vs. « averaged over 60 256 x 256 pixel? samples of 30 SFO QS
line-of-sight magnetic images like that of Fig. 1 made on 1992 September 19
and 21. Heliocentric angles range over 0° < 0 < 60°. The coarse-graining
scales S, are (open circles) 2 pixels; ( filled circles) 4 pixels; (open triangles) 16
pixels; (open diamonds) 32 pixels. The solid line is the analytical curve for
Gaussian random variables for S, = 2, p = 0.9,and m = 0.7.

ages over 60 L = 256 samples from 30 QS images. In Figures 2
and 3 the choice C; = —1 brings the f(x) curves into close
agreement over more than a decade of coarse-graining scales.

Figure 4 shows f(«) curves for S, =1, 2, 4, 8, 16 for two
samples of an image containing a magnetic active region. A
choice of C; = —1.5 brings the left-hand portion of these
curves into good correspondence. We will argue below that the
nonmatching secondary maxima on the right-hand sides of
these curves represent the presence of a Gaussian random vari-
able component, such as noise, in the data. Figure 5 is an
enlargement of Figure 4 curves for S, = 1, 2, 4, 8. In the SFO
images the individual pixel scale is 0746, but resolution is
limited by seeing at >1". We find that the solar field distribu-
tion is self-similar to the limit of this resolution. This limit can
be extended somewhat by analysis of magnetograms made at
the Swedish Solar Observatory at La Palma with the Lock-
heed SOUP instrument. Two of the finest resolution images of
active regions, with individual pixel size 0714 and resolution
~ 0”5, have been kindly provided to us for analysis. Figure 6
shows average f(«) curves for four samples of one of the ARs.
For clarity we show only the cases S, =1, 2, 4, 8. For C, =
— 1.5 the f{o) curves match closely on the left-hand side while
the right hand sides indicate a Gaussian random variable com-
ponent like that in the SFO image of Figures 4 and 5. The
self-similarity of the solar field distribution thus appears to
extend to the limit of resolution at ~075. Given the very large
magnetic Reynolds number of the photospheric plasma, the
self-similar intermittence of the fields may extend to much
smaller scales. No cutoff scale is indicated by observational
data. Its possible value may range from ~070014 to ~0714
based on theoretical considerations.

Although f(o) itself is regular, it is sometimes called the
“singularity spectrum” of the measure because its form sum-
marizes the singularity structure of the flux density. If
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FiG. 4—f(x) vs. a averaged over two 256 x 256 pixel® samples of a 1989
August 17, UT 22:59, SFO line-of-sight magnetic image including active
region NOAA 5643 at heliocentric angle ~5°. The coarse-graining scales S,
are (open circles) 1 pixel; (filled circles) 2 pixels; (open triangles) 4 pixels; ( filled
triangles) 8 pixels; (open diamonds) 16 pixels. Pixel scales are 0”83 pixel ~! N-S
and 0746 pixel ~! E-W.

flo) > — oo for « < 2, then the field is singular as € » 0. Com-
parison of equations (1) and (3) shows that f(«) behaves as a
fractal dimension for the subset of boxes with Holder expo-
nent, or singularity strength, a. This is why the measure is
called “multifractal ” (Frisch & Parisi 1985). Because all values
of f(«) represent the fractal dimension of a subset of the Euclid-
ean plane, the maximum value f,, < 2. This condition is met in
Figures 2 to 6. For € < 1, the density n(a, €) of equation (3) has

2.0 T T T
o SFO Active Region
2 g
o [+]
A
1.9 |+ .
R
8
T o
B 1.8} .a .
Y
R a
(o]
1.7 + -
Gaussian
Fits
1.6 4
1.6 2.0

FiG. 5-—Enlargement of Fig. 4 for coarse-graining scales (open circles) 1
and (open triangles) = 4 pixels. The solid curves are analytical Gaussian
random variable fits for (a) S, = 1, p = 0.8, m = 0.11 and (b) for §, = 4, p = 0.9,
m = 0.10.
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o
FIiG. 6—f(x) vs. « averaged over four 256 x 256 pixel?> samples of a
512 x 512 pixel® 1990 June 6, UT 08:27:19, Lockheed/La Palma line-of-sight
magnetogram including NOAA AR No. 6085 at heliocentric angle ~ 6°. The
coarse-graining scales S, are (open circles) 1 pixel; ( filled circles) 2 pixels; (open
triangles) 4 pixels; (filled triangles) 8 pixels; (open diamonds) 16 pixels. Pixel
scale is 0714 pixel ~ .

a sharp peak at a = «,,, f = f,,. In the limit, the set of all cells
has the fractal dimension D = f,,; this is the fractal dimension
of the supporting set of the multifractal. This corresponds to
the fractal dimension in previous studies (Ruzmaikin et al.
1991) in the zero limit threshold.

Summation of the measure is equivalent to integration
over a:

+ w0
Eﬂi = J‘ n(ai 6)#(% E)da

+
J Dle)e ' Petda =1 . 8
— 0

Equation (8) shows how to integrate over the multifractal
measure. For € - 0, if the summed measure is to be unity (or
even finite) then we must have f(a) < o everywhere. For the
summed measure to be nonzero in the limit we must have
fla) = o at least one point. Thus the “bisector” f'= « must be
tangent to and above the curve f = f(«) for € — 0. This condi-
tion is roughly met for the curve of Figure 2. In practice,
however, it is not unusual for f(x) to overshoot the bisector
until very small values of € (€ < 1/256) are reached. The main
contribution to the measure integral comes for f(«) = a. In this
sense we say that the measure is contained in the set with
fractal dimension f(o) = o

4. SCALING OF A GAUSSIAN RANDOM VARIABLE

To interpret the above singularity spectra, it is instructive to
consider an artificial image whose pixel values are chosen at
random from a Gaussian distribution centered on zero. This
could represent either instrumental noise or a Gaussian
process in the small-scale solar magnetic field. The central limit
theorem tells us that the sum of many random variables with
finite moments approaches a Gaussian random variable. This
means that our coarse-graining process described above, when
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F1G. 7-—Cancellation exponent x vs. coarse graining scale S, for (a) an
artificial image composed of a Gaussian random variable centered on zero, (b)
The SFO QS image made 1992 September 21 and described in Figs. 1 and 2, ()
for an SFO image of NOAA AR No. 6850 1991 October 3, (d) for the SFO
image of NOAA AR No. 5643 made 1989 August 17 described in Figs. 4 and 5,
and (e) the Lockheed/La Palma magnetogram of NOAA AR No. 6085 made
1990 June 6 described in Fig,. 6.

applied to the Gaussian random image considered here, will
produce another Gaussian random image, and thus a kind of
self similarity.

To examine this more precisely, let the Gaussian random
image cells at coarse-graining scale € contain a measure
1 = |b|, where b is a random variable with the density

2 232

p pb
b, €) = — . 9
o(b, €) 7teww[ n2€4] ©

Here p(b, €)db is the number of cells of side € with measure in
the range db at b. This has the normalization

+ oo p
J dbp(b, €) = = . (10)
—w €
Since 1/€? is the total number of cells at each coarse-graining
level, p is an indicator of the fraction of cells containing b. The
total measure contained in the random variable b is given by

J db|b|pb,€)=m. (11)
To convert equation (9) to a singularity spectrum we first cal-
culate a Holder exponent by replacing u with b in equation (3).
Then p(b, €) is related to n(x, €) in equation (5) by p(b, €)db =
n(e, €)dot. '

For both p = 1 and m = 1, the measure is entirely composed
of the random variable, and the singularity spectrum f{(«) is
independent of €. As €—-0, fla}—> —o0 for a <2 and
fla) > 4 — o for a > 2. For finite ¢, f(«) extends to the left and
crosses the bisector. The slope remains near — 1 on the right-
hand side. For p # 1 and/or m # 1, the f(a) curves are dis-
placed relative to one another for increasing values of €. By
appropriate choice of p and m, which may vary with €, we can
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match the analytical singularity spectra for a Gaussian random
variable to our data.

Figure 3 shows a fit for p = 0.9 and m = 0.7 of the random
variable curve to the QS data for the case S, = 2 (e = 1/128). In
this case the random variable extends over most of the pixels in
the image and contains a large share of the measure. The right-
hand side of the observed f{«) singularity spectrum is governed
entirely by the Gaussian portion of the measure. The left-hand
side of f(«) is governed by the long tails of the intermittent field
distribution, represented by the stronger fields seen in Figure 1.

In Figure 5 we have fit Gaussian singularity spectra to the
curves at two scales. For the S, = 1 curve we find p = 0.8 and
m = 0.11. For S, = 4 we find p = 0.9 and m = 0.10. Thus, while
the Gaussian fluctuations appear widespread in this AR image,
they contain only a small fraction of the measure. Most of the
measure is contained in the self-similar active region fields
described by the left-hand portion of the singularity spectrum.
For the Lockheed AR image in Figure 6, the curves are fit for
p =1and m =0.20, 0.16, 0.12, and 0.09 for S, = 1, 2, 4 and 8§,
respectively.

5. SIGNED MEASURE AND THE CANCELLATION EXPONENT

Measures used in physics are generally non-negative, and we
have forced our magnetic measure to have this property by
using the absolute value of the field after each level of renorma-
lization. However, the actual line-of-sight magnetic field can
take both positive and negative values and thus would consti-
tute a signed measure (Halmos 1962). At the level of a single
resolution element, measured magnetic fields represent an
average over unresolved, small-scale fields, and this may
involve significant cancellation of oppositely directed fields.
Ott et al. (1992) have pointed out a kind of singularity, peculiar
to the theory of signed measures, in which oscillations in sign
occur on all scales. As a practical matter, if the oscillations
extend below the scale of observational resolution, then the
smaller scale oscillations will be averaged away and correct
values of the field absolute value or energy cannot be estab-
lished. Rabin (1992) has presented direct observations of mag-
netic cancellation in a solar active region.

These authors introduced a “cancellation exponent” to
characterize the scaling of the sign oscillations:

x =lim,_oIn X | g |/In(1/e) . 12)

Here we have used the line-of-sight flux itself as the signed
measure. As the cell size € decreases the numerator increases.
For a probability density Zy; = 1 and « trivially vanishes. If
below some scale H; acquires a smooth density with a single
sign, then the numerator will approach a constant, and x will
vanish in the limit. For k to remain positive it is necessary that
the sum in the numerator grow. This implies cancellation of the
signed measure on smaller and smaller scales. Such cancel-
lations are to be expected over the full range of cell sizes in
turbulent flow at high magnetic Reynolds number (Ott et al.
1992).

Figure 7 shows the scaling of the cancellation exponent with
cell size for a variety of images. For an artificially generated
image of pure Gaussian noise k — 1 for € — 0. For the SFO QS
image of Figures 1 and 2, k - ~0.4. For the SFO AR region of
Figures 4 and 5, k > ~0.05. For the Lockheed AR image of
Figure 6, x > ~0.02. This indicates the presence of cancel-
lation in rough proportion to the importance of the Gaussian
component of the observed fields.
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6. SCALING OF MAGNETIC FIELD MOMENTS AND
INTERMITTENCY

The self-similarity of photospheric fields offers the possibility
to extrapolate calculations of physical quantities below
resolved scales. We use as our example averaged (H?) of the
line-of-sight components of the fields, i.e., the field moments.

A model analytical calculation gives some understanding of
the problem. The general form of f(«) is cap convex. Let us
model f(o) by an inverted parabola:

J0) = fn — (0 = o,)*/207 . (13)

Here a,, is the value of « at which f takes its maximum value
fa,,) = f,, and ¢ measures the width of the curve. The number
of coarse-grained boxes with singularity strength in bins of
width do at ais

n(a, €)do = P(e)e " VUm~@-am/20% go (19

Equation (14) can be used to integrate functions of « over the
measure. Rather than sum cells by their Cartesian location x, y,
we sort them in order of their Holder exponent a, and then sum
by integrating over a.

The net flux through a cell is p = €*; the flux density, or
magnetic field, is €~ 2. The gth power of the field is €?®~ 2, The
field and its moments are singular if o < 2. We sum over a
square of unit area

(H? = ezrqu(e)efm“”m)lfzf’“w*l) da.  (15)

The factor €? is the area of each cell. For small € most of the
contribution to the integral comes when the exponent of € is
minimized. This occurs for « = «, — qo. Thus positive g
moments are governed by the « < «,, side of the spectrum and
the negative moments by the « > a,, side. The minimized expo-
nent is

1a) = —[fu + @*/2)0” + 29 — qa,, — 2] . (16)

In the limit of small ¢, the integral diverges if y < 0, vanishes if
% > 0, and is finite if y = 0. Since the total measure Zyu; must be
finite, (1) = O which leads tof,, = a,, — (1/2)o? < «,, and

W) = —(@ — DI2 —f,) + 29077 . (17)

In the limit that the geometry approaches a pure fractal,
with the same Holder exponent everywhere, 62 — 0, and f,, —
o, = D, the fractal dimension. Then x(q) > — (g — 1)(2 — D).
Thus, for a Euclidean geometry, all moments of the field are
finite if q is finite. For a fractal dimension D < 2, the moments
for ¢ > 1 will diverge, while moments for g < 1 will vanish. The
q = 0 case means that the fraction of cells containing any
amount of field approaches zero as the cell size gets smaller.
The moment for g = 1 is finite.

In the multifractal case, 6> > 0, and f,, < 2. Thus for ¢ > 1,
the moment {H?) diverges for small €. If ¢ = 1 the moment
is finite. If —2(2 —f,)/0%? < g <1 the moment vanishes in
the limit. If g = —2(2 — f,,)/o> the moment is finite. If ¢ <
—2(2 — f,)/0* the moment diverges again.

The “flatness” of the field distribution is F = (H*>/(H?*)2.
For a Gaussian distribution F = 3. For a Euclidean geometry
g =0, f,, = 2, the flatness remains finite. For the multifractal
measure F will diverge for small € as y(4) — 2x(2) = —[(2 — f,»
+ 4¢?]. This emphasis of larger moments of the field distribu-
tion is a defining characteristic of “intermittence ” of the field
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distribution. It corresponds to a non-Gaussian distribution
with significant large-field tails.

Consider also the ratio (H?"!)/{H?), which scales with
€ according to y(g+ 1) —x(@ = —[2 —f,)+ gc*]. This
diverges for all g > 0 iff,, < 2 (for a fractal) and/or ¢* > 0 (for a
multifractal). In the multifractal case, the rate of divergence
increases with increasing moment exponent g. This growth
also is characteristic of intermittence (Zel’dovich et al. 1990). It
is closely related to the multifractality of the field distribution.

7. POSITIVE MEASURES AND THE METHOD OF MOMENTS

Our use of a signed measure whose opposing fluxes are per-
mitted to cancel during the rescaling procedure differs from
most work on multifractals, which relies on strictly positive
measures. An alternative approach to multifractals lies
through the scaling properties of moments of the measure
(Halsey et al. 1986). Here multifractality means that the gth
moment of the measure has a power law scaling with coarse-
graining according to

Tpl ~ @ (18)

We can use equation (8) to express this sum as an integral over
Holder exponents:

pITEES J don(o, €)™ = f dogp(e)e®® /@ x @ . (19)

For small € the main contribution of the integrand comes at
the value of « which minimizes the exponent ag — f(«). This
occurs for g — f'(x) = 0 if and only if f"(«) < O. In this case we
find

ot
"= 3 Salg)) = qo — (q) - (20)
Thus the variables « and f(«) can be derived from the observed
q and t(q) by this Legendre transformation. This method has
been used by Brandenburg et al. (1992) to study the multi-
fractal properties of magnetic fieclds in computer simulated
magnetoturbulence.

We have successfully used this approach with our data by
replacing the measure by its absolute value at the level of
individual pixels. This, however, destroys information about
the vector nature of the fields, and the coarse-graining
procedure no longer imitates the effect of actual observational
resolution.

In principle, the method of moments could be used with our
renormalization procedure too. However, the cancellation
emphasizes noise in the weakest field regions of an image.
These are exaggerated in the negative moments of equation
(18), and large uncertainties in the scaling appear for negative
values of g (which correspond to « > 2). The requirement

f"(®) < 0 is not universally met by our observed curves, so the

Legendre transformation is not always applicable; see Figures
4 and 6. We have thus preferred to evaluate the f(«) directly via
equations (6) and (7). A method also has been developed
(Chhabra et al. 1989) for direct computation of f(«) by means of
averages of the moments of the measure like those of equation
(18). This bypasses the ambiguous logarithmic correction
factors of equation (7), but it requires the condition f"(a) < 0
for its validity. It also produces very regular curves which may
conceal details of the singularity spectrum which aid in its
interpretation, such as the Gaussian components. For our pur-
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poses we have felt that the most direct histogram method is the
best.

8. DISCUSSION AND CONCLUSIONS

For quiet-Sun areas the maximum of the singularity spec-
trum comes very near the critical value « = 2. For the 1992
September 21 QS case (Fig. 2) and for the summarized QS
cases (Fig. 3) the maximum of the curve is f,, = 2, indicating
that the supporting set of the multifractal is the whole Euclid-
ean plane. This just means that essentially every pixel contains
at least some of the measure. In general, the QS field distribu-
tions, which are partly but not entirely Gaussian, conform to
multifractal scaling quite well.

We suggest that the magnetic field in the quiet Sun is gener-
ated by random convective motions at high magnetic Reynoids
number. This produces a structure which resembles in part a
Gaussian random variable (and is mixed with some Gaussian
observational noise), but with highly intermittent, strong-field
wings (Zel'dovich et al. 1987). Simple models of this type of
generation give fractal distributions (Finn & Ott 1988). We
believe that this mechanism is seen in both the QS images and
in those parts of AR images where small-scale convective
motions are not suppressed by strong fields.

The AR cases are more complicated. The f(x) curves are
broader, and one discerns two distinct structures. Our inter-
pretation is that two magnetic field generating processes are
seen in the AR images. Within the ARs themselves are strong,
larger-scale fields, including sunspot fields, with only small
fluctuations in amplitude. These are a product of the 22 year
cycle mechanism, presumably a mean field dynamo in which
the field is generated by the differential rotation and mean
helicity and smoothed by the turbulent diffusion (Parker 1979).

Equation (4) indicates that the Holder exponent «; is related
to the value of the measure y; in a box. The measure is the
normalized distribution of the magnitude of the line-of-sight
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field. The strong, sunspot-type fields will have large values of y;
and thus small values of «;. Because the measure is normalized,
the effect of the strong fields is to steal measure from the quiet-
Sun boxes, which leaves them with a larger Holder exponent.
Thus in Figures 4, 5, and 6, the left-hand, small «, peak rep-
resents the large-scale field structures. The right-hand, large «,
peaks contain both Gaussian random variables and the quiet
Sun, intermittent fields. The details of the interplay of the two
field distributions in AR images are not yet fully understood.
This will be the subject of future research.

The idea of measure, used in this paper, has both a direct
observational and a deep mathematical meaning. Modern
digital, photoelectric, polarimetric methods of magnetic field
measurement, with CCD detectors, are surprisingly well suited
to the requirements of the classical box counting approach to
mathematical geometry. From the physical point of view it is
necessary to cast models of magnetic field generation in the
same form, so that they can be confronted with observations.
We plan to find the measures predicted by some dynamo
models, such as the two-dimensional random cell dynamo
(Poezd, Ruzmaikin, & Sokoloff 1992; Ruzmaikin, Liewer, &
Feynman 1993), the ABC dynamo models of Galloway &
Proctor (1992) and dynamos with a mean magnetic field. The
fact that the observed measure is multifractal, with a specific
form of the distribution function f(«) for the scaling, may seri-
ously limit the range of possible models.
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