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Multifractal Method for the Instantaneous Evaluation of the Stream Function
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Multifractal or multiaffine analysis is a promising new branch of methods in nonlinear physics for the
study of turbulent flows and turbulentlike systems. In this Letter we present a new method based on the
multifractal singularity extraction technique, the maximum singular stream-function method (MSSM),
which provides a first order approximation to the stream function from experimental data in 2D turbulent
systems. The essence of MSSM relies in relating statistical properties associated with the energy cascade
in flows with geometrical properties. MSSM is a valuable tool to process sparse collections of data and to
obtain instant estimates of the velocity field. We show an application of MSSM to oceanography as a way
to obtain the current field from sea surface temperature satellite images; we validate the result with
independent dynamical information obtained from sea level measurements.
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The description of turbulent flows as multifractal objects
is a powerful approach which has given promising results
during the past two decades [1,2]. The roots of such a
multiple-scaling formalism can be tracked back from the
early works by Kolmogorov [3]; it was then evident that,
although scale invariance was well established, a descrip-
tion of structure functions in terms of a single scaling
exponent is impossible. Parisi and Frisch’s seminal work
[4] revealed the connection between the statistical proper-
ties of the flow (structure functions) and its geometrical
arrangement (multifractal components). In fact, the rele-
vant patterns and structures in the different stages of the
cascade of energy in high Reynolds turbulence have been
regarded as fractal components characterized by scaling
exponents (singularity exponents) within a multifractal
hierarchy [5]. More recently, on different physical systems
where similar underlying structures exist, the use of wave-
let techniques has allowed the explicit calculation of the
singularity exponents at each point on experimental data of
scalar and vectorial variables [6–8]. Those wavelet-based
singularity detection techniques provide a very fine, accu-
rate decomposition of the signal in the relevant patterns
and structures, each one associated to a type of singularity
whose main advantage is its close connection with the
theory of energy cascades commonly used to describe
turbulent flows [9].

Many of the past and recent work has focused on the
application of such decomposition to characterize global
and local statistical properties of the flows [1,10,11].
However, our approach is just the opposite: to retrieve
the dynamics of flows from an incomplete and coarse
signal that it is a priori known to have multifractal struc-
ture. Suitable signals include measurements of different
variables in geophysical signals [6], in laboratory experi-
ments on turbulent flows [10], and even in many other
different contexts [12,13]. In this Letter, we will present
a method based on the multifractal decomposition to re-
trieve a good approximation of the stream function from
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data on a scalar variable. In a first stage we will obtain the
main stream lines from the data image which correspond to
the vertex manifold in the multifractal hierarchy. Then, we
will use some simple geometrical and statistical reasoning
to derive from them a simple stream function, the maxi-
mum singular stream function (MSS).

Let s� ~x� be a multifractal signal in a planar flow. We will
assume that s� ~x� is mainly advected by the flow, but not
necessarily conserved (even more, difussive and/or reac-
tive effects may be important). Our goal is to recover the
advecting flow, as defined by its stream function. The first
step is to assess some physically significant structures by
multifractal classification. We calculate the local singular-
ities of the signal by wavelet projecting [14] the standard
multifractal measure � defined by the gradient of s� ~x�,
d�� ~x� � dxjrsj� ~x�, as in [15]. What is characteristic to
multifractal signals is local power-law scaling. Such scal-
ing is assessed using wavelet projections over an appro-
priate wavelet function �, at each location ~x and variable
scales r [that will be denoted by T�s� ~x; r�]. The signal s
will be multifractal if and only if T�s� ~x; r� / r

h� ~x�

[8,14,16]. At each point, the local power law is completely
defined by the so-called singularity exponent h� ~x� [8,16],
which, in fact, is a measure of the degree of regularity or
singularity of the signal at that particular point [14]. Once
every point ~x is assigned a singularity exponent h� ~x�, it is
possible to decompose the signal into different patterns
(the fractal components), classified from the most singular
(usually associated to transitions) to the less singular (as-
sociated to smooth, continuous areas) [8,16]. This is one of
the main advantages of multifractal formalism, because no
continuity requirement is imposed and, in fact, some of the
fractal components are associated to discontinuities and
sharp transitions [6,8]. We are mainly interested in the
most singular points in the multifractal hierarchy. From
the statistical point of view, the most singular manifold
(MSM) has been related with the vertex of the energy
cascade [5]. In the context of signal processing, a retrieval
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FIG. 1 (color online). Left: SST image from composite of
AVHRR [19] images acquired 31st December, 2003. The cov-
ered area goes from 270� to 320� E, and from 20� to 50� N.
Right: SSH map for the same region and time combining data
from the Jason and ENVISAT satellite altimeters, [19,31].

PRL 95, 104502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005
algorithm based on statistical assumptions (determinism,
linearity, translational invariance, isotropy, and scale-
invariant power spectrum) and taking information con-
veyed by the MSM only, has been proposed [17]. Then,
if we denote the gradient of s� ~x� restricted to the MSM by
r1s (that is,r1s � 0 outside the MSM), the signal can be
recovered as s � ~g � r1s, where the symbol � must be
understood as a convolution dot product, and the vectorial
kernel ~g has a simple expression in Fourier space: ~̂g� ~k� �
i ~k=k2 [17]. This algorithm has been experimentally vali-
dated in different instances as image processing [17] and
analysis of meteorological images [15], exhibiting a high
performance.

The objective here is to create a stream function and not
to recover data so we will not make a direct application of
the formula above, but substitute r1s by the gradient of
the stream function over the MSM. In the absence of
additional dynamical information, we will define the sim-
plest gradient field which is consistent with our require-
ments. First of all, as the MSM represents stream lines, the
gradient of the stream function must be perpendicular to
these lines (so that the stream function is a conserved
quantity). We will impose this perpendicularity condition,
orienting our proxy gradient in the same sense as the
original gradient. We would need to add some dynamical
information on the speed (the modulus of the velocity), but
in the absence of any model for it we will just fix it as a
constant (as speed changes smoothly along a stream line,
this is a good approximation). So, we fix the modulus of the
gradient of our proxy stream function over the MSM to a
constant value (by convention, 1, without unities, as we
will not include in this derivation complementary physical
information to calibrate it). The result of the application of
the retrieval formula,  MSS, is what we call the MSS.

To test and validate the performance of the MSS to
recover the original stream function we need independent
measurements of both s� ~x� and the stream function.
Geophysical flows are thus a natural test ground. For
instance, ocean flows are almost bidimensional due to the
constraint of the rapid rotation of Earth and strong strati-
fication; in addition, their regime is that of high Reynolds
regime [18]. This quasibidimensional behavior allows the
definition of a stream function, the geostrophic stream
function  . The value of is proportional to the sea surface
height (SSH), a variable which can be directly measured by
satellites [19]. In addition, numerical simulations of strati-
fied quasigeostrophic flows, more representative of geo-
physical fluids, show that passive tracers behave in a
similar way as planar homogeneous flows [20]. Remote
sensing data do not provide access to purely passive trac-
ers, however; but there is a remotely sensed variable which
can be useful—sea surface temperature (SST). In oceans
and over short periods of time, temperature is rather pas-
sively advected by the strongest currents and should work
as a good proxy of the stream function, at least locally.
When SST and SSH maps are compared, important coin-
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cidences are usually found over areas dominated by the
strongest currents. In Fig. 1 we show an example SST
image and corresponding SSH map: Those images clearly
show the strong signal associated to the Gulf Stream flow-
ing close to the coast from Florida through to Cape
Hatteras and then offshore, and several mesoscale eddies
evidencing the characteristic spatial variability of the re-
gion [21].

In general, however, the weakest structures observed on
SSH images are only faintly apparent on SST images or
even completely absent. This lack of correspondence be-
tween SST and SSH can be due to many phenomena: heat
injection or depletion, convective instabilities at some
places, etc. What is important for us is that from all the
effects modifying temperature, only diffusion modifies
singularity exponents (tending to smoothen differences)
and it acts at a slow rate. Recent analyses of advected
reactive tracers applied to SST have shown that the multi-
fractal patterns compare well with the patterns seen in an
advected tracer [22]. So that, it is a reasonable assumption
that multifractal singularities are advected by the flow. Our
goal is to detect the multifractal singularities and from
them to construct an ‘‘advective temperature,’’ a proxy of
SST that represents what surface temperature should be in
the presence of pure horizontal advection.

We have applied our methodology to obtain the MSS
from the SST record shown in Fig. 1. As stated in the
introduction, we process the measure � instead of the
signal s itself because low-order wavelets provide better
control on the log-log regressions used to compute singu-
larities (see discussion in [7]); in addition, the spatial
localization is improved when the number of zero cross-
ings in the wavelet is reduced [23]. We used a wavelet
�� ~x� � 1

�1� ~x2�2
, which provides both a wide enough detec-

tion range [16,23] and good spatial localization. The ex-
perimental range of singularities was ��1:16; 0:90�, with
75% of points having log-log regressions with a regression
coefficient above 0.9. As we deal with a physical signal, it
is uniformly bounded [24] and so the minimum theoretical
possible value for the singularities is�1, which is in close
agreement with our results, accepting an experimental
uncertainty of �0:16 at least (which is in agreement with
what has been observed in other works). In addition, values
close to�1 are induced by the boundaries and almost all of
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them can be found at the limits of the image and the coast.
A typical value for most bulk (nonboundary) singular
points is around�0:5. In Fig. 2 we can see a determination
of the MSM at a given level of quantization. This set
consists of well-defined stream lines, which is quite rea-
sonable if we take into account that streams shear the flow
creating sharp local behavior, a singularity. Notice that
singularities are calculated locally, and for that reason the
appearing lines need not be evident when looking at the
whole image (large gradients), but when examining their
neigborhood (large gradients compared to those of the
surroundings). For that reason, we can detect stream lines
that normally will be masked by long-range effects and
with relatively small gradients. Then the stream function is
reconstructed as described before. The result (the MSS) is
shown in the same Fig. 2; in addition we present in Fig. 3 a
closer inspection of MSS compared to the level curves of
SSH. The improvement implied by MSS in the determi-
nation of the fine structure in altimetry is really
outstanding.

The visual assessment of the MSS provides good
correspondence with the data provided by SSH, but this
qualitative assessment is not enough to validate the meth-
odology. We thus need to define some quantitative, objec-
tive measures of the quality of the MSS, based on its
closeness to the SSH record. The level of closeness be-
tween both functions will be, however, quite limited by
some processing issues. On one hand, we are dealing with
images that have been generated after heavy preprocessing
techniques. In the case of SSH, only some satellite traces
are known and from them the whole field is interpolated,
with some post processing and low-pass filtering. In the
case of SST, the used data have been temporally and
spatially interpolated to eliminate voids (typically from
clouds). In addition, we need to compare data acquired at
different spatial resolutions; we solve this problem by zero
padding the higher frequencies of SSH until reaching the
greater resolution of SST, but this interpolation scheme
induces smoother gradients on the SSH. Anyway, the
relevant mesoscale phenomena are evident in both images,
as the visual inspection reveals, and any reasonable quan-
titative measure should put in evidence this coincidence.

A first measure is given by the amount of advective
derivative induced by one velocity field over the other.
We will denote by  a the SSH and by  MSS the MSS.
Each stream function induces a velocity field, ~va � r? a
FIG. 2 (color online). Left: 33% most singular points.
Right: stream function (MSS) derived from the most singular
points.
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and ~vMSS � r? MSS. The total time derivative of  MSS

under the current field induced by  a is given by d MSS

dt �
@ MSS

@t � ~va 	 r MSS. The second summand represents the
advective derivative of one stream function with respect to
the other, and it is antisymmetric with respect to field
exchange: ~va 	 r MSS � r? a 	 r MSS � �r? MSS 	
r a � � ~vMSS 	 r a. We can compare the total amount
of advective derivative with the product of kinetic energies

to obtain the adimensional ratio �a;MSS defined as �a;MSS �R

d~xjr? a	r MSSj����������������������������������������R
d~xjr aj2

R
d~xjr MSSj

2

q .
By Minkowski’s inequality, � 
 1;

� � 1 only when the two fields are completely mutually
perpendicular and � � 0 when they are perfectly aligned,
that is, when both stream functions share the same stream
lines. For the case shown in this Letter, we obtain �a;MSS �
0:099, which can be considered as a sign of good coinci-
dence between their stream lines. However, the same mea-
sure directly comparing SST with SSH returns a value
which is even better, �a;SST � 0:019. This is because the
SST has wide regions with very small gradients which
almost do not contribute to �a;SST, and then its value is
dominated by the very good correspondence of the thermal
front of the Gulf Stream, disregarding the contribution of
all the other points. But the SST is a poor template for the
stream function precisely because of the abundance of faint
gradients, which lead to poorly defined stream lines. In
contrast, the MSS has a much more uniform distribution of
gradients, well-defined stream lines, and a reasonably good
alignment with the SSH velocity field.

A second test consisted in obtaining the level sets for the
assessed function (i.e., MSS and SST, respectively), and
measure the variability of the altimetric data along them. If
the level sets of the tested function coincide with the stream
lines of SSH, SSH should be constant along those level
sets. We measured the sum of variances of SSH along the
different level sets, each one weighted with its length. We
obtained the level sets by quantizing the dynamic range of
the tested function over 25 levels, then separating the
FIG. 3 (color online). Detail of the comparison: we show the
level sets from altimetry overimposed to a color representation
of the MSS.
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different connected components. The total variance of the
altimetric signal for the studied image was 164 cm2. The
sum of variances of SSH along the MSS level sets was
4:2 cm2 (2.6% of the total). The sum of variances of SSH
along the SST level sets was 15:5 cm2 (9.4% of the total).
We see that MSS level sets give a better estimation than
those of SST about the actual stream lines.

Our results indicate that the obtained MSS share to a
good extent the stream lines with those of SSH. We have
not exhaustively tested our methodology due to the lack of
good quality SSH records, although we have carried out a
few additional tests in different regions and dates with
comparable results (Additional examples are available
[25]).

In the context of geophysical flows, the example shown
here is a direct application to retrieve quasisynoptic veloc-
ity fields as an alternative to several existent techniques
[26–29]. All those methods rely on imposing strong con-
tinuity conditions in both space and time, having a steady
enough time sequence of well-defined patterns to be
tracked and, even more important, they are not based on
a standard notion of the physically relevant patterns. In
addition, those methods may fail for some configurations
of the flow regime. On the contrary, the method presented
here is based on intrinsic physical properties of the flow (its
multifractal structure) and, additionally, furnishes a good
detection technique.

MSSM can be generalized, at least partially, to higher
dimensional contexts. For instance, 3D multifractal sys-
tems are also organized in multifractal singularity compo-
nents, so the first steps of MSSM proceed in the same way:
detection and construction of the advective proxy. This
proxy cannot be interpreted as a stream function any
longer, but its level sets are union of stream lines. Some
additional information would then be required, for instance
extra field information on local speeds (density gradients,
in situ velocity measurements, etc.).

But the technique presented here goes beyond its appli-
cations’ turbulent flows. The methodological basis has its
roots in the existence of a multifractal/multiscaling hier-
archy, so potentially it is of application in any dynamical
system possessing such structure. Systems of this kind
range from econometric time series [12] to natural image
statistics [30] and heart-beat time series [13], among pos-
sibly many other.
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