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Le marché, a son insu, obéit à une loi qui le domine: la loi de la probabilité.

Louis Bachelier, Théorie de la spéculation

Depuis plus d’un siècle, les financiers et les économistes se sont efforcés d’analyser le risque

dans les marchés financiers, de l’expliquer, de le quantifier et, en définitive, d’en tirer un bénéfice.

Ma conviction est que la route suivie par la plupart des théoriciens est mauvaise et qu’elle conduit

à une grave sous-estimation des risques de ruine financière dans une économie de marché libre et

globale.

Benoît Mandelbrot, 2005

Si vous pouvez mettre en évidence certaines propriétés du marché qui demeurent constantes

dans le temps ou l’espace, vous pourrez élaborer de meilleurs modèles, plus utilisables, et prendre

des décisions financières plus sensées. Mon modèle multifractal n’a besoin pour fonctionner que

d’un ensemble de paramètres cohérents.

Benoît Mandelbrot, 2005



Abstract

This thesis covers the application of multifractal processes in modeling financial time series. It

aims to demonstrate the capacity and the robustness of the multifractal processes to better model

return volatility and ultra high frequency financial data than both the generalized autoregres-

sive conditional heteroscedasticity (GARCH)-type and autoregressive conditional duration (ACD)

models currently used in research and practice. The thesis is comprised of four main parts that

particularize the different procedures and the main findings.

In the first part of the thesis we first delineate the genesis of multifractal (MF) measures and pro-

cesses and how one can construct a simple MF measure. We outline the generic properties of the

MF processes, mention how they motivate financial time series models, and present the different

tools developed for the estimation of the MF models and the forecasting of return volatilities and

some empirical results. Second, we give a short overview of both autoregressive conditional dura-

tion (ACD) models and Markov switching multifractal duration (MSMD) models. We start with

some theoretical microstructure literature that motivate both models. We present ACD and MSMD

models and their subsequent extensions. Finally, we cite the different diagnostic tests developed

in the literature for assessing their adequacy and provide some prominent empirical studies.

The second part deals with the application the Markov-switching multifractal (MSM) model

and generalized autoregressive conditional heteroscedasticity (GARCH) type models in forecast-

ing crude oil price volatility. Based on six different loss functions and by means of the superior

predictive ability (SPA) test of Hansen (2005) we evaluate and compare their forecasting perfor-

mance at short- and long-horizons. The results give evidence that none of our volatility models

can outperform other models across all six different loss functions. However, the long mem-

ory GARCH-type models and the MSM model seem to be more appropriate in terms of fitting

and forecasting oil price volatility. We also found that forecast combinations of long memory

GARCH-type models and the MSM lead to an improvement in forecasting crude oil price volatil-

ity.

The third and longest part of the thesis compares the predictive ability of the Markov switching

multifractal duration (MSMD) model recently introduced by Chen et al. (2013) to those of the

standard ACD (cf. Engle and Russell, 1998), Log-ACD (cf. Bauwens and Giot, 2000), and frac-

tionally integrated ACD (FIACD) (cf. Jasiak, 1998) models. We assume that innovations in the

ACD and Log-ACD models follow Weibull, Burr, generalized gamma and Lognormal distribu-

tions. For FIACD we only consider the case where the innovation is standard exponentially dis-

tributed. We assess the forecasting performance of the models using density forecasts evaluation

xix



methodologies proposed by Diebold et al. (1998) and the likelihood ratio test of Berkowitz (2001).

We complement these methodologies with Kolmogorov-Smirnov and Anderson-Darling distances

(cf. Rachev and Mittnik, 2000). Empirically, results are quite nice and speak for the MSMD model.

In fact, the MSMD model can better capture the long memory and the fat tails observed in trade

and price duration data, and therefore, outperforms both the FIACD, ACD and Log-ACD mod-

els. We also found that certain distributional assumptions for the innovations strongly enhance the

forecasting performance of the ACD and Log-ACD models.

In line with the last result, we want to know to what extent different distributional assumptions

for the innovation in the MSMD model may influence the model’s forecasting performance. So,

we assume that the innovation in the MSMD model follows generalized gamma or Burr distribu-

tion. To compare and select the model that provides better fit to the empirical data (trade, price and

volume durations) we make use of the Akaike information criterion (AIC), the Bayesian informa-

tion criterion (BIC) and the likelihood ratio test. Surprisingly, both distributional assumptions for

the innovation do not much affect the predictive ability of the model. It seems that the ability of

the MSMD model to fit financial duration data largely stems from the multifractal processes.

Third, we generalize the univariate MSMD model to a bivariate one. The bivariate MSMD

model is substantially an adaptation of the bivariate Markov switching multifractal (MSM) pro-

cess proposed by Calvet et al. (2006) to high frequency financial data. We apply the bivariate

MSMD model to analyze the co-movement between the bid-ask spreads of different stocks. The

results indicate that bid-ask spreads of sector-specific or cross-sector stocks may be simultaneously

affected by arrival of information in the market.

Fourth, we apply the standard MSMD and the generalized gamma ACD (GGACD) models

to forecast irregularly spaced intra-day value-at-risk (ISIVaR) in a semi-parametric framework.

We assess the performance of both models to produce accurate irregularly spaced intra-day VaR

via the generalized moments method (GMM) duration-based test developed by Candelon et al.

(2011). The results show that the MSMD model outperforms the GGACD model and can be used

in practice to manage market risk.

The last part summarizes the main findings of the thesis and presents some outlooks for future

research.



Preface

This thesis is a collection of essays on the application of multifractal processes for modeling fi-

nancial markets data, especially crude oil prices, financial intertrade durations and bid-ask spread

data. The essays have been assembled in book format with four parts. Part I: Review Of Mul-

tifractal And Autoregressive Conditional Duration Models contains chapter 2 and 3. Chapter 2:

Multifractal Models In Finance: Their Origin, Properties, and Applications (with Thomas Lux) is

prepared as a chapter for: Shu-Heng Chen and Mak Kaboudan. Forthcoming OUP Handbook on

Computational Economics and Finance, Oxford University Press. All other chapters are working

papers. As in the case of the chapter 1 that has been already accepted for publication, all other

chapters are in course of preparation to be published in refereed journals. Note that chapter 4:

Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data

is written with Thomas Lux and Rangan Gupta and submitted to Energy Economics.

The analysis of the thesis is carried out using two programming languages, namely Matlab

version 7.11 for adjusting raw data, drawing figures and for the estimation of the GARCH-type

models and Gauss version 11 for the estimation of the remaining models.
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1. Introduction

1.1. Motivation

The concern to understand the behavior of stock market prices and to propose a model that can

reproduce their time evolution started with Bachelier’s PhD thesis. Bachelier (1900) proposed a

mathematical model that is now called "standard Geometric Brownian motion" and unintentionally

anticipated the concept of market efficiency. In the years following his work there was a great

number of empirical work on stock market prices. Examples include Cowles (1933), Working

(1934), Cowles and Jones (1937), Kendall (1953), Roberts (1959), Fama (1965), among others.

These research confirmed Bachelier (1900)’s findings and supported the random walk model.

However, in the earlier sixties Mandelbrot (1963) demonstrates that fluctuations of cotton prices

exhibit fat tails and clustering, and thus, cannot be reproduced by Bachelier’s model. Mandel-

brot’s findings lead to the development of the efficient market hypothesis (EMH) by Fama (1970)

and triggered the discussion as to whether or not financial data exhibit such properties. Mandel-

brot’s work unleashed new research activities that consist in closely scrutinizing empirical finan-

cial data. These research activities have been intensified with the availability of high frequency

(daily or intra-day) data and a plethora of features of financial data has been discovered and well-

documented in the literature. These features, often called universal features or stylized facts in the

literature, became source of inspiration for the design of many econometric models proposed in

quantitative finance. Examples include among others the generalized autoregressive conditional

heteroscedasticity (GARCH)-type models, the stochastic volatility (SV) family models. All these

models find successful application in forecasting volatility and option pricing in empirical finance.

On the other side, the EMH has been questioned for a long time in the market microstructure

literature. For instance, Grossman and Stiglitz (1980) claimed that the markets cannot be infor-

mationally efficient due to the fact that information is costly. This clearly indicates that the market

is more complex than that we assumed up until now. So, it is clear that we need new models that

can explain the information flow in the market, the price formation processes, the behavior of the

market participants, their interactions and their decisions. These insights can help to better under-

stand the financial market and better manage market risk. The theoretical microstructure models

purport to explain the microstructure of financial markets. They are the starting point for the de-

velopment of empirical models. The most prominent is the ACD model that had been developed

in the literature in order to explain how information flows come in the markets, to test and confirm

microstructure assertions empirically.
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Structure of the Thesis M. Segnon

Although they found successful applications in empirical finance, it is well known that the ACD

models cannot adequately reproduce the higher persistence of financial trade duration data. Our

objective in writing this thesis is to bring to light the ability and the robustness of a new family of

models, namely the multifractal models (MF), to reproduce financial data. Multifractal processes

possess generic properties that are well-documented in the literature. These properties allow MF

models with a few and coherent parameters to properly describe voluminous financial data. Studies

by Calvet and Fisher (2001a, 2004a), Lux (2008), among others have already demonstrated and

confirmed their superiority and robustness over GARCH and FIGARCH models in forecasting

volatility.

The thesis extends the scope of the multifractal models to financial intertrade durations, bid-

ask spreads and oil price volatility. We show that multifractal processes are convenient tools for

modeling and forecasting oil price volatility, financial durations, and other trade-related variables.

So, they can help to better understand intra-day price formation processes and forecast market

risk.

1.2. Structure of the Thesis

This thesis is divided into four main parts. Part I comprises chapters 2 and 3, and is concerned

with the review of the multifractal models and the autoregressive conditional duration models. It

also serves as a general introduction and offers the readers a competent and an intimate knowledge

of both models.

In chapter 2 we briefly introduce the main stylized facts of financial data, outline the first and the

second generation of the multifractal models, their origin, properties and applications to finance.

This chapter also presents different tools developed in the literature for the estimation of the first

and second generation MF models and statistical inferences. Chapter 3 provides an overview of

financial duration models, namely the autoregressive conditional duration (ACD) models and the

Markov switching multifractal duration (MSMD) models introduced in the literature over the last

twenty years. It presents the properties of both models, their estimation approach and diagnostic

tests.

Part II is made of chapter 4. It evaluates and compares the forecasting performance of the

Markov switching multifractal (MSM) and eight linear and nonlinear GARCH-type models: The

generalized autoregressive conditional heteroscedasticity (GARCH), the integrated GARCH (IGARCH),

the asymmetric GARCH (GJR-GARCH), the exponential GARCH (EGARCH), the asymmetric

power ARCH (APARCH), the hyperbolic GARCH (HYGARCH) and the fractionally integrated

APARCH (FIAPARCH) via six different loss functions and the superior predictive ability (SPA)

test of Hansen (2005).

Part III includes chapters 5 through to 8. It covers the assessment of the predictive ability

of the Markov switching multifractal duration model, its extension to generalized univariate and

bivariate models, and its application to forecast irregularly spaced intraday value-at-risk (ISIVaR).
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Structure of the Thesis M. Segnon

Chapter 5 compares the forecast performance of the MSMD model to those of the ACD, the Log-

ACD and FIACD models with different distributions for the innovations via density forecasts and

the likelihood ratio test. In chapter 6 we propose a generalized version of the Markov switching

multifractal model in which the innovation is assumed to follow a generalized gamma or Burr

distribution and has Chen et al.’s model as a special case. Chapter 7 introduces a bivariate Markov

switching multifractal duration model that has been applied to analyze the covariation in the bid-

ask spreads of different stocks traded on New York Stock Exchange (NYSE). In chapter 8 we apply

the Chen et al.’s model to forecast irregularly spaced value-at-risk (ISIVaR) in a semi-parametric

framework.

Finally, Part IV or chapter 9 presents the main findings and some outlooks for future research.
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2. Multifractal Models In Finance: Their

Origin, Properties, and Applications

1

2.1. Introduction

One of the most important tasks in financial economics is the modeling and forecasting of price

fluctuations of risky assets. For analysts and policy makers volatility is a key variable for under-

standing market fluctuations. Analysts need accurate forecasts of volatility as an indispensable

input for tasks such as risk management, portfolio allocation, value-at-risk assessment, and op-

tion and futures pricing. Asset market volatility also plays an important role in monetary policy.

Repercussions from the recent financial crisis on the global economy show how important it is to

take into account financial market volatility in conducting effective monetary policy.

In financial markets, volatility is a measure for fluctuations of the price p of a financial instru-

ment over time. It cannot be directly observed, but has to be estimated via appropriate measures

or as a component of a stochastic asset pricing model. As an ingredient of such a model, volatility

may be a latent stochastic variable itself (as it is in so-called stochastic volatility models as well as

in most multifractal models) or it might be a deterministic variable at any time t (as it is the case

in so-called GARCH type models). For empirical data, volatility may simply be calculated as the

sample variance or sample standard deviation. Ding et al. (1993) propose using absolute returns

for estimating volatility. Davidian and Carroll (1987) demonstrate that this measure is more robust

against asymmetry and non-normality than others (cf. also Taylor, 1986; Ederington and Guan,

2005). Another way to measure daily volatility is to use squared returns or any other absolute

power of returns. Indeed, different powers show slightly different time-series characteristics, and

the multifractal model is designed to capture the complete range of behavior of absolute moments.

Recently, the concept of realized volatility (RV) has been developed by Andersen et al. (2001) as

an alternative measure of the variability of asset prices (cf. also Barndorff-Nielsen and Shephard,

2002). The notion of RV means that daily volatility is estimated by summing up intra-day squared

returns. This approach is based on the theory of quadratic variation which suggests that RV should

provide a consistent and highly efficient non-parametric estimator of asset return volatility over a

1 Prepared as a chapter for: Shu-Heng Chen and Mak Kaboudan. Forthcoming. OUP Handbook on Computational
Economics and Finance. Oxford University Press.
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given discrete interval under relatively parsimonious assumptions on the underlying data generat-

ing process. Other methods used for measuring volatility are: the maximum likelihood method

developed by Ball and Torous (1984), or the high-low method proposed by Parkinson (1980). All

these measures of financial market volatility show salient features which are well documented as

stylized facts: Volatility clustering, asymmetry and mean reversion, comovements of volatilities

across assets and financial markets, stronger correlation of volatility compared to that of raw re-

turns, (semi-) heavy-tails of the distribution of returns, anomalous scaling behavior, changes in

shape of the return distribution over time horizons, leverage effects, asymmetric lead-lag corre-

lation of volatilities, strong seasonality, and some dependence of scaling exponents on market

structure, cf. 2.2.

During the last decades, an immense body of theoretical and empirical studies has been de-

voted to formulate appropriate volatility models (cf. Andersen et al. (2006) for a recent review

on volatility modeling and Poon and Granger (2003) for a review on volatility forecasting). With

Mandelbrot’s famous work on the fluctuations of cotton prices in the early sixties (cf. Mandelbrot,

1963), economists had already learned that the standard Geometric Brownian motion proposed

by Bachelier (1900) is unable to reproduce these stylized facts. In particular, the fat tails and the

strong correlation observed in volatility are in sharp contrast to the "mild", uncorrelated fluctua-

tions implied by models with Brownian random terms. A first step toward covering time-variation

of volatility had been taken with models using mixtures of distributions as proposed by Clark

(1973) and Kon (1984). Econometric modeling of asset price dynamics with time-varying volatil-

ity got started with the generalized autoregressive conditional heteroscedasticity (GARCH) family

and it numerous extensions (cf. Engle, 1982). The closely related class of stochastic volatility (SV)

models adds randomness to the dynamic law governing the time variation of second moments (cf.

Ghysels et al., 1996; Shephard, 1996, for a review on SV models and their applications).

In this chapter, the focus is on a new, alternative avenue for modeling and forecasting volatility

developed in the literature over the last fifteen years or so. In contrast to the existing models the

source of heterogeneity of volatility in these new models stems from the time-variation of local

regularity in the price path (cf. Fisher et al., 1997). The background of these models is the the-

ory of multifractal measures that has originally been developed by Mandelbrot (1974) in order

to model turbulent flows. These multifractal processes have initiated a broad current of literature

in statistical physics refining and expanding the underlying concepts and models (cf. Kahane and

Peyrière, 1976; Holley and Waymire, 1992; Falconer, 1994; Arbeiter and Patzschke, 1996; Barral,

1999). The formal analysis of such measures and processes, the so-called multifractal formal-

ism, has been developed by Frisch and Parisi (1985), Mandelbrot (1989, 1990), and Evertsz and

Mandelbrot (1992), among others.

A number of early contributions have indeed pointed out certain similarities of volatility to

fluid turbulence (cf. Vassilicos et al., 1994; Ghasghaie et al., 1996; Galluccio et al., 1997; Schmitt

et al., 1999), while theoretical modeling in finance using the concept of multifractality started with

the adaptation to an asset-pricing framework of Mandelbrot’s (1974) model by Mandelbrot et al.
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(1997).

Subsequent literature has moved from the more combinatorial style of the Multifractal Model

of Assets Returns (MMAR) of Mandelbrot, Fisher, and Calvet (developed in the sequence of

Cowles Foundation working papers authored by Calvet et al. (1997), Fisher et al. (1997), and

Mandelbrot et al. (1997)) to iterative, causal models of similar design principles: The Markov-

Switching Multifractal (MSM) model proposed by Calvet and Fisher (2004a) and the Multifractal

Random Walk (MRW) by Bacry et al. (2001) constitute the second-generation of multifractal

models that have more or less replaced the somewhat cumbersome (see below) first generation

MMAR in empirical applications.

The rest of the chapter is organized as follows. Section 2.2 presents an overview over the salient

stylized facts of financial data and discusses the potential of the classes of GARCH and stochastic

volatility models to capture these stylized facts. In Section 2.3, we introduce the baseline concept

of multifractal measures and processes and provide an overview over different specifications of

multifractal volatility models. Shortcomings of the multifractal models are presented in Section

2.4. Section 2.5 introduces the different approaches to estimate MF models and to forecast future

volatility. Section 2.6 reviews empirical results on the application and performance of MF models

and Section 2.7 concludes.

2.2. Stylized Facts of Financial Data

With the availability of high-frequency time series for many financial markets from about the

sixties, their statistical properties became a topic explored in a large strand of literature to which

economists, statisticians and physicists have contributed. The two main universal features or "styl-

ized facts" characterizing practically every series of interest at the high-end of the frequency spec-

trum (daily or intra-daily) are known under the catchwords "fat tails" and "volatility clustering".

The use of multifractal models is motivated to some extent by both of these properties, but multi-

fractality (or, as it is sometime also called, multi-scaling or multi-affinity) proper is a more subtle

feature that gradually started to emerge as an additional stylized fact since the nineties. In the

following we will provide a short review of the historical development of our knowledge and the

quantification of all these features capturing in passing also some lesser known statistical proper-

ties typically found in financial returns. The data format of interest is thereby typically returns, i.e.

relative price changes, r̃t =
pt−pt−1

pt−1
which for high-frequency data are almost identical to log-price

changes rt = ln(pt) − ln(pt−1) with pt the price at time t (e.g., at daily or higher frequency).

2.2.1. Fat Tails

This property relates to the shape of the unconditional distribution of a time series of returns.

Historically, the first "hypothesis" on the distribution of price changes has been formulated by

Bachelier (1900) who in his PhD thesis titled "Théorie de la Spéculation" assumed them to follow

a Normal distribution. As is well known, many applied areas of financial economics such as option
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pricing theory (Black and Scholes, 1973) and portfolio theory (Markowitz, 1959) have followed

this assumption, at least in their initial stages. The justification for this assumption is provided

by the law of large numbers: If price changes at the smallest unit of time are independently and

identically distributed random numbers (maybe driven by the stochastic flow of new information)

returns over longer intervals can be seen as the sum of a large number of such i.i.d. observations,

and irrespective of the distribution of their summands should under some weak additional assump-

tions converge to the Normal distribution. While this seemed plausible and the resulting Gaussian

distribution would also come very handy for many applied purposes, Mandelbrot (1963) was the

first to demonstrate that empirical data are distinctly non-Gaussian exhibiting excess kurtosis and

higher probability mass in the center and in their tails than the Normal distribution. As can be

confirmed with any sufficiently long record of stock market, foreign exchange or other financial

data, the Gaussian distribution can always be rejected with statistical significance beyond all usual

boundaries, and the observed largest historical price changes would be so unlikely under the Nor-

mal law that one would have to wait for horizons beyond at least the history of stock markets to

observe them occur with non-negligible probability.

Mandelbrot (1963) and Fama (1963), as a consequence, proposed the so-called Lévy stable laws

as an alternative for capturing these fat tails. This was motivated by the fact that in a generalized

version of the central limit law dispensing with the assumption of a finite second moment, sums

of i.i.d. random variables converge to these more general distributions (with the Normal being a

special case of the Lévy stable obtained in the borderline case of a finite second moment). The

desirable stability property, therefore, indicates the choice of the Lévy stable which also has a

shape that -in the standard case of infinite variance- is characterized by fat tails. In a sense, the

Lévy stable model remained undisputed for about three decades (although many areas of financial

economics would rather continue to use the Normal as their working model), and economists

indeed contributed to the advancement of statistical techniques for estimating the parameters of the

Lévy distributions (Fama and Roll, 1971; McCulloch, 1986). When physicists started to explore

financial time series, the Lévy stable law was discovered again (Mantegna, 1991) although new

developments in empirical finance had already allowed to reject this meanwhile time-honored

hypothesis.

These new insights were basically due to a different perspective: Rather than attempting to

model the entire distribution, one let "speak the tails for themselves". The mathematical foun-

dations for such an approach are provided by statistical extreme value theory (e.g., Reiss and

Thomas, 1997). Its basic tenet is that the extremes and the tail regions of a sample of i.i.d. random

variables converge in distribution to one of only three types of limiting laws. For tails, these are:

Exponential decay, power-law decay and the behavior of distributions with finite endpoint of their

support. Fat tails are often used as a synonym for power-law tails, so that the highest realizations

of returns would obey a law like Pr(xt < x) ∼ 1 − x−α after appropriate normalization (i.e. after

some transformation xt = art + b). The universe of fat-tailed distributions can, then, be indexed

by their tail index α with α ∈ (0,∞). Lévy stable distributions are characterized by tail indices
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α below 2 (2 characterizing the case of the Normal distribution). All other distributions with a

tail index smaller than 2 would converge under summation to the Lévy stable with the same index

while all distributions with an asymptotic tail behavior with α > 2 would converge under aggrega-

tion to the Gaussian. This demarcates the range of relevance of the standard central limit law and

its generalized version.

Jansen and de Vries (1991), Koedijk et al. (1990) and Lux (1996) are examples of a literature

that emerged over the nineties using semi-parametric methods of inference to estimate the tail in-

dex without assuming a particular shape of the entire distribution. The outcome of these and other

studies is a tail index α in the range of 3 to 4 that now counts as a stylized fact (cf. Guillaume et al.,

1997; Gopikrishnan et al., 1998). Intra-daily data nicely confirm results obtained for daily records

in that they provide estimates for the tail index that are in line with the former (cf. Dacorogna

et al., 2001; Lux, 2001a), and, therefore, confirm the expected stability of the tail behavior under

time aggregation as predicted by extreme-value theory. The Lévy stable hypothesis, thus, can be

rejected (confidence intervals of α typically exclude the possibility of α < 2). This agrees with the

evidence that the variance stabilizes with increasing sample size and does not explode. Falling into

the domain of attraction of the Normal distributions, the overall shape of the return distribution

would have to change, i.e. get closer to the Normal under time aggregation.2 This is indeed the

case, as has been demonstrated by Teichmoeller (1971) and many later authors. Hence, the basic

finding on the unconditional distribution is that it converges toward the Gaussian, but is distinctly

different from it at the daily (and higher) frequencies. Fig. 2.1 illustrates the very homogeneous

and distinctly both non-Gaussian and non-Levy nature of stock price fluctuations. The four major

South-African stocks displayed in the figure could be replaced by almost any other time series of

stock markets, foreign exchange markets and a variety of other financial markets. Estimating the

tail index α by a linear regression in this log-log plot would lead to numbers very close to the

celebrated "cubic law".

The particular non-Normal shape then also motivates the quest for the best non-stable charac-

terization at intermediate levels of aggregation. From a huge literature that has tried mixtures of

Normals (Kon, 1984) as well as a broad range of generalized distributions (cf. Eberlein and Keller,

1995; Behr and Pötter, 2009; Fergussen and Platen, 2006) it appears that the distribution of daily

returns is quite close to a Student−t with three degrees of freedom. However, while a tail index

between 3 and 4 is typically found for stock and foreign exchange markets, some other markets are

sometimes found to have fatter tails, e.g., Koedijk et al. (1992) for black market exchange rates,

and Matia et al. (2002) for commodities.

Figure 2.1 about here

2 While, in fact, the tail behavior would remain qualitatively the same under time aggregation, the asymptotic power
law would apply in a more and more remote tail region only, and would, therefore, become less and less visible for
finite data samples under aggregation. There is, thus, both convergence towards the Normal distribution and stability
of power-law behavior in the tail under aggregation. While the former governs the complete shape of the distribution,
the latter applies further and further out in the tail only and would only be observed with a sufficiently large number of
observations.
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2.2.2. Volatility Clustering

The slow convergence to the Normal might be explained by dependency in the time series of

returns. Indeed, while the limiting laws of extreme value theory would still apply for certain de-

viations from i.i.d. behavior, dependency could slow down convergence dramatically leading to

a long regime of pre-asymptotic behavior. That returns are characterized by a particular type of

dependency has also been well known for long time, and is mentioned, for instance, by Mandel-

brot (1969). This dependency is most pronounced and in fact, plainly visible in absolute returns,

squared returns, or any other measure of the extent of fluctuations (volatility), cf. Fig. 2.2. In

all these measure there is long lasting, highly significant autocorrelation (cf. Ding et al., 1993).

With sufficiently long time series, significant autocorrelation can be found for time lags (of daily

data) up to a few years. This positive feedback is described as volatility clustering or "turbulent

(tranquil) periods being more likely to be followed by still turbulent (tranquil) periods than vice

versa". Whether there is (additional) dependency in the raw returns is subject to debate. Most

studies do not find sufficient evidence for giving up the martingale hypothesis although a long-

lasting but small effect might be hard to capture statistically. Ausloos et al. (1999) is an example

of a study claiming to have identified such effects. Lo (1991) has proposed a rigorous statistical

test for long term dependence that mostly does not indicate deviations from the null hypothesis of

short memory for raw asset returns, but strongly significant evidence of long memory in squared or

absolute returns. Similarly as for the classification of types of tail behavior, short memory comes

along with exponential decay of the autocorrelation function while one speaks of long memory

if the decay follows a power-law. Evidence for the later type of behavior has also accumulated

over time. Documentation of hyperbolic decline in the autocorrelations of squared returns can

be found in Dacorogna et al. (1993), Crato and de Lima (1994), Lux (1996) and Mills (1997).

Lobato and Savin (1998) first claimed that such long-range memory in volatility measures is a

universal stylized fact of financial markets while Lobato and Velasco (2000) document similar

long-range dependence in trading volume. Again, particular market designs might lead to excep-

tions from the typical power-law behavior. Gençay (2001) as well as Ausloos and Ivanova (2000)

report untypical behavior in the managed floating of European currencies during the times of the

European Monetary System. Presumably due to leverage effects, stock markets also exhibit corre-

lation between volatility and raw (i.e., signed) returns (cf. LeBaron, 1992), that is absent in foreign

exchange dates.

Figure 2.2 about here

2.2.3. Benchmark Models: GARCH and Stochastic Volatility

In financial econometrics, volatility clustering has since the eighties spawned a voluminous lit-

erature on a new class of stochastic processes capturing the dependency of second moments in

a phenomenological way. Engle (1982) first introduced the ARCH (autoregressive conditional

heteroscedasticity model) which has been generalized to GARCH by Bollerslev (1986). It models
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returns as a mixture of Normals with the current variance being driven by a deterministic difference

equation:

rt = htεt with εt ∼ N(0, 1) (2.1)

and

ht = α0 +

p∑

i=1

αir
2
t−i +

q∑

j=1

β jht− j, α0 > 0, αi, β j > 0. (2.2)

Empirical applications usually find a parsimonious GARCH(1,1) model (i.e., p = q = 1) suffi-

cient, and when estimated, the sum of the parameters α1 + β1 turns out to be close to the non-

stationary case (or, expressed differently, mostly only a constraint on the parameters prevents

them for exceeding 1 in their sum which would lead to non-stationary behavior). Different exten-

sions of GARCH were developed in the literature with the objective to better capture the stylized

facts. Among them there are: The Exponential GARCH (EGARCH) model proposed by Nel-

son (1991) that accounts for asymmetric behavior of returns, the Threshold GARCH (TGARCH)

model of Rabemananjara and Zakoian (1993) which takes into account the leverage effects, the

regime switching GARCH (RS-GARCH) developed by Cai (1994), and the Integrated GARCH

(IGARCH) introduced by Engle and Bollerslev (1986a) that allows for capturing high persistence

observed in returns time series. Itô diffusion or jump-diffusion processes can be obtained as a

continuous time limit of discrete GARCH sequences (cf. Nelson, 1990; Drost and Werker, 1996).

To capture stochastic shocks to the variance process, Taylor (1986) introduced the class of

stochastic volatility models whose instantaneous variance is driven by:

ln(ht) = k + ϕ ln(ht−1) + τξt, ξt ∼ N(0, 1). (2.3)

This approach as well has been refined and extended in many ways. The SV process is more

flexible than the GARCH model and provides more mixing because of the co-existence of shocks

to volatility and return innovations (cf. Gavrishchaka and Ganguli, 2003). In terms of statistical

properties, one important drawback of at least the baseline formalizations (2.1) to (2.3) is their

implied exponential decay of the autocorrelations of measures of volatility which is in contrast to

the very long autocorrelations mentioned before. Both the elementary GARCH and the baseline

SV model are characterized by only short-term rather than long-term dependence.

To capture long memory, GARCH and SV models have been expanded by allowing for an in-

finite number of lagged volatility terms instead of the limited number of lags appearing in (2.2)

and (2.3). To obtain a compact characterization of the long memory feature a fractional differ-

encing operator has been used in both extensions leading to the fractionally integrated GARCH

(FIGARCH) model of Baillie et al. (1996) and the long-memory stochastic volatility model of

Breidt et al. (1998).3 An interesting intermediate approach is the so-called heterogenous ARCH

(HARCH) model of Dacorogna et al. (1998) that considers returns at different time aggregation

3 The "self-excited multifractal model" proposed by Filimonov and Sornette (2011) appears closer to this model rather
than to models from the class of multifractal processes discussed below.
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levels as determinants of the dynamic law governing current volatility. Under this model, eq. (2.2)

would have to be replaced by

ht = c0 +

n∑

j=1

c jr
2
t,t−∆t j

, (2.4)

where rt,t−∆t j
= ln(pt) − ln(pt−∆t j

) are returns computed over different frequencies. The develop-

ment of this model was motivated by the finding that volatility on fine time scales can be explained

to a larger extend by coarse-grained volatility than vice versa (cf. Müller et al., 1997). Hence, the

right-hand side covers local volatility at various lower frequencies than the time step of the under-

lying data (∆t j = 2, 3, . . . ). As we will see in the following, multifractal models have a closely

related structure but model the hierarchy of volatility components in a multiplicative rather than

additive format.

2.2.4. A New Stylized Fact: Multifractality

Both the hyperbolic decay of the unconditional pdf as well as the similarly hyperbolic decay of

the autocorrelations of many measures of volatility (squared, absolute returns) would fall into the

category of scaling laws in the natural sciences. The identification of such universal scaling laws

in an area like finance has spawned the interest of natural scientists to further explore the behavior

of financial data and to develop models to explain these characteristics (cf. Mantegna and Stanley,

1996). From this line of research, multifractality, multi-scaling or anomalous scaling emerged

gradually over the nineties as a more subtle characteristic of financial data that motivated the

adaptation of known generating mechanisms for multifractal processes from the natural sciences

in empirical finance.

To define multifractality or multiscaling, we start with the more basic concepts of fractality or

scaling. The defining property of fractality is the invariance of some characteristic under appro-

priate self-affine transformations. The power-law functions characterizing the pdf of returns and

autocorrelations of volatility measures are scale-invariant properties, i.e., this behavior is preserved

over different scales under appropriate transformations.4 In a most general way, some property of

an object or a process needs to fulfill a law like

x(ct) = cH x(t) (2.5)

in order to be classified as scale-invariant, where t is an appropriate measurement of a scale (e.g.,

time or distance). Strict validity of (2.5) holds for many of the objects that have been investigated

in fractal geometry (Mandelbrot, 1982). In the framework of stochastic processes, such laws could

only hold in distribution. In this case, Mandelbrot et al. (1997) speak of self-affine processes. An

example of a well-known class of processes obeying such a scale invariance principle is fractional

Brownian motion for which x(t) is a series of realizations and 0 < H < 1 is the Hurst index

4 e.g., from the limiting power law the cdf of a process with hyperbolically decaying tails obeys Pr(xi < x) ≈ x−α and
obviously for any multiple of x the same law applies: Pr(xi < cx) ≈ (cx)−α = c−αx−α.
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that determines the degree of persistence (H > 0.5) or anti-persistence (H < 0.5) of the process,

H = 0.5 corresponding to Wiener Brownian motion with uncorrelated Gaussian increments. Fig.

2.2 shows the scaling behavior of different powers of returns (raw, absolute and squared returns)

of a financial index as determined by a popular method for the estimation of the Hurst coefficient,

H. The law (2.5) also determines the dependency structure of the increments of a process obeying

such scaling behavior as well as their higher moments which show hyperbolic decline of their

autocorrelations with an exponent depending linearly on H. Such linear dependence is called

uni-scaling or uni-fractality. It also carries over asymptotically to processes that use a fractional

process as generator for the variance dynamics, e.g. the long memory stochastic volatility model

of Breidt et al. (1998).5

Multifractality or anomalous scaling allows for a richer variation of the behavior of a process

across different scales by only imposing the more general relationship:

x(ct)
d
=M(c)x(t) ≡ cH(c)x(t), (2.6)

where the scaling factor M(c) is a random function with possibly different shape for different

scales and d denotes equality in distribution. The last equality of eq. (2.6) illustrates that this

variability of scaling laws could be translated into variability of the index H which now is not

constant anymore. One might also note the multiplicative nature of transitions between different

scales: One moves from one scale to another via multiplication with a random factor M(c). We

will see below that multifractal measures or processes are constructed exactly in this way which

implies a combinatorial, noncausal nature of these processes.

Multi-scaling in empirical data is typically identified by differences in the scaling behavior of

different (absolute) moments:

E
[|x(t,∆t)|q] = c(q)∆tqH(q)+1 = c(q)∆tτ(q)+1, (2.7)

with x(t,∆t) = x(t) − x(t − ∆t), and c(q) and τ(q) being deterministic functions of the order of

the moment q. A similar equation could be established for uni-scaling processes, e.g. fractional

Brownian motion, yielding

E
[|x(t,∆t)|q] = cH∆tqH+1. (2.8)

Hence, in terms of the behavior of moments, multifractality (anomalous scaling) is distinguished

by a non-linear (typically concave) shape from the linear scaling of uni-fractal, self-affine pro-

cesses. The standard tool to diagnose multifractality is, then, inspection of the empirical scaling

behavior of an ensemble of moments. Such non-linear scaling is illustrated in Fig. 2.3 for three

selected stock indices and a stochastic process with multifractal properties (the Markov-switching

multifractal model introduced below). The traditional approach in the physics literature consists

in extracting τ(q) from a chain of linear log-log fits of the behavior of various moments q for a

5 For the somewhat degenerate FIGARCH model, the complete asymptotics have not yet been established, cf. Jach and
Kokoszka (2010).
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certain selection of time aggregation steps ∆t. One, therefore, uses regressions to the temporal

scaling of moments of powers q:

lnE
[|x(t,∆t)|q] = a0 + a1 ln(∆t) (2.9)

and constructs the empirical τ(q) curve (for a selection of discrete q) from the ensemble of es-

timated regression coefficients for all q. An alternative and perhaps even more widespread ap-

proach for identification of multifractality looks at the varying scaling coefficients H(q) in eq.

(2.7). While the unique coefficient H of eq. (2.8) is usually denoted the Hurst coefficient, the

multiplicity of such coefficients in multifractal processes is denoted as Hölder exponents. While

the unique H quantifies a global scaling property of the underlying process, the Hölder exponents

can be viewed as local scaling rates that govern various patches of a time series leading to a char-

acteristically heterogeneous (or intermittent) appearance of such series. An example is displayed

in Fig. 2.5 (principles of construction being explained below). Focusing on the concept of Hölder

exponents, multifractality then amounts to identification of the range of such exponents rather than

a degenerate single H as for uni-fractal processes. The so-called spectrum of Hölder exponents

(or multifractal spectrum) can be obtained by the Legendre transformation6 of the scaling function

τ(q). Define α = dτ
dq

, the Legendre transform f (α) of the function τ(q) is given by

f (α) = arg min
q

[qα − τ(q)], (2.10)

where α is the Hölder exponent (the established notation for the counterpart of the constant Hurst

exponent, H) and f (α) the multifractal spectrum that describes the distribution of the Hölder expo-

nents. The local Hölder exponent quantifies the local scaling properties (local divergence) of the

process at a given point in time, in other words, it measures the local regularity of the price process.

In traditional time series models, the distribution of Hölder exponents is degenerate converging to

a single such exponent (unique Hurst exponent) while multifractal measures are characterized by a

continuum of Hölder exponents whose distribution is given by the Legendre transform, eq. (2.10),

for its particular scaling function τ(q). The characterization of a multifractal process or measure

by a distribution of local Hölder exponents underlines its heterogeneous nature with alternating

calm and turbulent phases.

Empirical studies allowing for such a heterogeneity of scaling relations typically identify "anoma-

lous scaling" (curvature of the empirical scaling functions or non-singularity of the Hölder spec-

trum) for financial data as illustrated in Fig. 2.3. Historically, the first example of such an analysis

is Müller et al. (1990) followed by more and more similar findings reported mostly in the emerging

econophysics literature (due to the fact that the underlying concepts were well-known in physics

from research on turbulent flows, but were completely alien to financial economists). Examples

include Vassilicos et al. (1994), Mantegna and Stanley (1995), Ghasghaie et al. (1996), Fisher

6 The Legendre transformation is a mathematical operation that transforms a function of a coordinate, g(x), into a new
function h(y) whose argument is the derivative of g(x) with respect to x, i.e., y =

dg

dx
.

14



A New Stylized Fact: Multifractality M. Segnon

et al. (1997), Schmitt et al. (1999), Fillol (2003), among others. Ureche-Rangau and de Morthays

(2009) show that both volatility and volume of Chinese stocks appear to have multifractal proper-

ties, a finding one should probably be able to confirm for other markets as well given the estab-

lished long-term dependence and high cross-correlation between both measures (cf. Lobato and

Velasco, 2000), who among others, also report long-term dependence of volume data). While

econometricians have not been looking at scaling functions and Hölder spectrums, the indication

of multifractality in the mentioned studies has nevertheless some counterpart in the economics

literature: The well-known finding of Ding et al. (1993) that (i) different powers of returns have

different degrees of long-term dependence and that (ii) the intensity of long-term dependence

varies non-monotonically with q (with a maximum obtained around q ≈ 1) is consistent with

concavity of scaling functions and provides evidence for "anomalous" behavior form a slightly

different perspective.

Multifractality, thus, provides a generalization of the well established finding of long-term de-

pendence of volatility: Different measures of volatility are characterized by different degrees of

long-term dependence in a way that reflects the typical anomalous behavior of multifractal pro-

cesses. Accepting such behavior as a new stylized fact, the natural next step would be to design

processes that could capture this universal finding together with other well-established stylized

facts of financial data. New models would be required because none of the existing ones would

be consistent with this type of behavior: Baseline GARCH and SV models have only exponential

decay of the autocorrelations of absolute powers of returns (short-range dependence), while their

long memory counterparts (LMSV, FIGARCH) are characterized by uni-fractal scaling.7

One caveat is, however, in order here: Whether the scaling function and Hölder spectrum anal-

ysis provide sufficient evidence for multifractal behavior, is to some extent subject to dispute. A

number of papers show that scaling in higher moments can be easily obtained in a spurious way

without any underlying anomalous diffusion behavior. Lux (2004) pointed out that a non-linear

shape of the empirical τ(q) function is still obtained for financial data after randomization of their

temporal structure, so that the τ(q) and f (α) estimators are rather unreliable diagnostic instruments

for the presence of multifractal structure in volatility. Apparent scaling has also been illustrated

by Barndorff-Nielsen and Prause (2001) as a consequence of fat tails in the absence of true scal-

ing. It is very likely that standard volatility models would also lead to apparent multi-scaling that

could be hard to distinguish from "true" multifractality via the diagnostic tools mentioned above.8

Formally, it will always be possible to design processes without a certain type of (multi-)

scaling behavior that are locally so close to "true" (multi-)scaling that these deviations will never

be detected with pertinent diagnostic tools and restricted availability of data (cf. LeBaron, 2001;

Lux, 2001b).

On the other hand, one might follow Mandelbrot’s frequently voiced methodological premise

7 For FIGARCH this is so far only indicated by simulations, but given that- as for LMSV- FIGARCH consists of a uni-
fractal ARFIMA process plugged into the variance equation, it seems plausible that it also has uni-fractal asymptotics.

8 There is also a sizeable literature on spurious generation of fat tails and long-term dependence, cf. Granger and
Teräsvirta (1999) or Kearns and Pagan (1997).
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to model apparently generic features of data by similarly generic models rather than using "fixes"

(Mandelbrot, 1997a). Introducing amendments to existing models (e.g., GARCH, SV) to adapt

those to new stylized facts might lead to highly parameterized setups that lack robustness when ap-

plied to data from different markets, while simple generating mechanisms for multifractal behavior

are available that could, in principle, capture the whole spectrum of time series properties high-

lighted above in a more parsimonious way. In addition, if one wants to account for multi-scaling

proper (rather than as a spurious property) no avenue is known so far for equipping GARCH- or

SV-type models with this property in a generic way. Hence, adapting in an appropriate way some

known generating mechanism for multifractal behavior appears the only avenue available so far

to come up with models that generically possess such features, and jointly reproduce all stylized

facts of asset returns. The next section recollects the major steps in the development of multifractal

models for asset-pricing applications.

Figure 2.3 about here

2.3. Multifractal Measures and Processes

In the following, we first explain the construction of a simple multifractal measure and show

how one can generalize it along various dimensions. We, then, move on to multifractal processes

designed as models for financial returns.

2.3.1. Multifractal Measures

Multifractal measures have a long history in physics dating back to the early seventies when

Mandelbrot proposed a probabilistic approach for the distribution of energy in turbulent dissipa-

tion (e.g., Mandelbrot, 1974). Building upon earlier models of energy dissipation by Kolmogorov

(1941, 1962) and Obukhov (1962), Mandelbrot proposed that energy should dissipate in a cascad-

ing process on a multifractal set from long to short scales. In this original setting, the multifractal

set results from operations performed on probability measures. The construction of a multifrac-

tal "cascade" starts by assigning uniform probability to a bounded interval (e.g., the unit interval

[0, 1]). In a first step, this interval is split up into two subintervals receiving fractions m0 and

1 −m0, respectively, of the total probability mass of unity of their mother interval. In the simplest

case, both subintervals have the same length (i.e., 0.5), but other choices are possible as well. In

the next step, the two subintervals of the first stage of the cascade are split up again into similar

subintervals (of length 0.25 each in the simplest case) receiving again fractions m0 and 1 − m0

of the probability mass of their "mother" intervals (cf. Fig. 2.4). In principle, this procedure is

repeated ad infinitum. With this recipe, a heterogeneous, fractal distribution of the overall proba-

bility mass results which even for the most elementary cases has a perplexing visual resemblance

to time series of volatility in financial markets. This construction clearly reflects the underlying

idea of dissipation of energy from the long scales (the mother intervals) to the finer scales that

preserve the joint influence of all the previous hierarchical levels in the built-up of the "cascade".
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Many variations of the above generating mechanism of a simple Binomial multifractal could be

thought of: Instead of always assigning probability m0 to the left-hand descendent, this assign-

ment could as well be randomized. Furthermore, one could think of more than two subintervals

to be generated in each step (leading to multinomial cascades) or of using random numbers for

m0 instead of the same constant value. A popular example of the later generalization is the Log-

normal multifractal model which draws the mass assigned to new branches of the cascade from

a Lognormal distribution (cf. Mandelbrot, 1974, 1990). Note that for the Binomial cascade the

overall mass over the unit interval is exactly conserved at any preasymptotic stage as well as in the

limit k → ∞, while mass is preserved only in expectation under appropriately normalized Lognor-

mal multipliers, or multipliers following any other continuous function. Another straightforward

generalization consists in splitting each interval on level j into an integer number b of pieces of

equal length at level j + 1. The grid-free Poisson multifractal measure developed by Calvet and

Fisher (2001a) is obtained by allowing for randomness in the construction of intervals. In this set-

ting, a bounded interval is split into separate pieces with different mass by determining a random

sequence Tn of change points. Overall mass is then distributed via random multipliers across the

elements of the partition defined by the Tn. A multifractal sequence of measures is generated by a

geometric increase of the frequency of arrivals of change points at different levels j ( j = 1, . . . , k)

of the cascade. As in the grid-based multifractal measures, the mass within any interval after the

completion of the cascade is given by the product of all k random multipliers within that segment.

Note that all the above recipes can be interpreted as implementations (or examples) of the gen-

eral form (2.6) that defines multifractality from the scaling behavior across scales. The recursive

construction principles are, themselves, directly responsible for the multifractal properties of the

pertinent limiting measures. The resulting measures, thus, obey multifractal scaling analogous

to eq. (2.7). Denoting by µ a measure defined on [0, 1], this amounts to9 E[µ(t, t + ∆t)q] ∼
c(q)(∆t)τ(q)+1. Exact proofs for the convergence properties of such grid bound cascades have been

provided by Kahane and Peyrière (1976). The "multifractal formalism" that had been developed

after Mandelbrot’s pioneering contribution consisted in the generalization and analytical penetra-

tion of various multifractal measures following the above principles of construction (cf. Tél, 1988;

Evertsz and Mandelbrot, 1992; Riedi, 2002). Typical questions of interest are the determination

of the scaling function τ(α) and the Hölder spectrum f (α), as well as the existence of moments in

the limit of a cascade with infinite progression.

Figure 2.4 about here

2.3.2. Multifractal Models

2.3.2.1. Univariate Continuous-Time Multifractal Models

9 For example, for the simplest case of the Binomial cascade one gets τ(q) = − lnE[Mq] − 1 with M ∈ {m0, 1 −m0} with
probability 0.5.
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2.3.2.1.1. The Multifractal Model of Asset Returns

Multifractal measures have been adapted to asset-price modeling by using them as a "stochastic

clock" for transformation of chronological time into business (or intrinsic) time. Formally, such

a time transformation can be represented by stochastic subordination, with the time change rep-

resented by a stochastic process, say θ(t) denoted the "subordinating process", and the asset price

change, r(t), being given by a subordinated process (e.g. Brownian motion) measured in trans-

formed time, θ(t). In this way, the homogenous subordinated process might be modulated in a way

to give rise to realistic time series characteristics such as volatility clustering. The idea of stochas-

tic subordination has been introduced in financial economics by Mandelbrot and Taylor (1967). A

well-known later application of this principle is Clark (1973) who had used trading volume as a

subordinator (cf. Ané and Geman (2000), for recent extensions of this approach).

Mandelbrot et al. (1997) seems to be the first paper that went beyond establishing phenomeno-

logical proximity of financial data to multifractal scaling. They proposed a model, termed the

Multifractal Model of Asset Returns (MMAR), in which a multifractal measure as introduced in

sec. 2.3.1 serves as a time transformation from chronological time to business time. While the

original paper has not been published in a journal, a synopsis of this entry and two companion

papers (Calvet et al., 1997; Fisher et al., 1997) has appeared as Calvet and Fisher (2002). Several

other contributions by Mandelbrot (1997b, 1999, 2001a,b,c) contain graphical discussions of the

construction of the time-transformed returns of the MMAR process and simulations of examples

of the MMAR as a data generating process. Formally, the MMAR assumes that returns r(t) follow

a compound process:

r(t) = BH[θ(t)], (2.11)

in which an incremental fractional Brownian motion with Hurst index H, BH[·], is subordinate

to the cumulative distribution function θ(t) of a multifractal measure constructed along the above

lines. When investigating the properties of this process, the (unifractal) scaling of the fractional

Brownian motion has to be distinguished from the scaling behavior of the multifractal measure.

The behavior of the compound process is determined by both, but its multi-scaling in absolute

moments remains in place even for H = 0.5, i.e. Wiener Brownian motion. Under the restric-

tion H = 0.5, the Brownian motion part becomes uncorrelated Wiener Brownian motion and the

MMAR shows the martingale property of most standard asset pricing models. This model shares

essential regularities observed in financial time series including long tails and long memory in

volatility which both originate from the multifractal measure θ(t) applied for the transition from

chronological time to "business time". The heterogenous sequence of the multifractal measure,

then, serves to contract or expand time and, therefore, also contracts or expands locally the homo-

geneous second moment of the subordinate Brownian motion.

As pointed out above, different powers of such a measure have different decay rates of their au-

tocovariances. Mandelbrot et al. (1997) demonstrate that the scaling behavior of the multifractal

time transformation carries over to returns from the compound process (2.11) which would obey

a scaling function τr(q) = τθ(qH). Similarly, the shape of the spectrum carries over from the time
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transformation to returns in the compound process via a simple relationship: fr(α) = fθ(α/H). By

writing θ(t) =
∫ t

0
dθ(t), it becomes clear that the incremental multifractal random measure dθ(t)

(which is the limit of µ[t, t + ∆t] for ∆t → 0 and k (the number of hierarchical levels)→ ∞) can

been considered as the instantaneous stochastic volatility. As a result, MMAR essentially applies

the multifractal measure to capture the time-dependency and non-homogeneity of volatility. Man-

delbrot et al. (1997) and Calvet and Fisher (2002) discuss estimation of the underlying parameters

of the MMAR model via matching of the f (α) and τ(α) functions, and show that the temporal

behavior of various absolute moments of typical financial data squares well with the theoretical

results for the multifractal model.

Any possible implementation of the underlying multifractal measure could be used for the time-

transformation θ(t). All examples considered in their papers built upon a binary cascade in which

the time interval of interest (in place of the unit interval in the abstract operations on a measure

described in sec. 2.3.1) is split repeatedly into subintervals of equal length. The so obtained

subintervals are assigned fractions of the probability mass of their mother interval drawn from

different types of random distributions: Binomial, Lognormal, Poisson and Gamma distributions

are discussed in Calvet and Fisher (2002) each of those leading to a particular τ(α) and f (α) func-

tion (known from previous literature) and similar behavior of the compound process according to

the relations detailed above. Lux (2001c) applies an alternative estimation procedure minimizing

a Chi-square criterion for the fit of the implied unconditional distribution of the MMAR to the

empirical one, and reports that one can obtain surprisingly good approximations to the empirical

shape in this way. However, Lux (2004) documents that τ(α) and f (α) functions are not very

reliable as criteria for determination of the parameters of the MMAR as even after randomization

of the underlying data, one still gets indication of temporal scaling structure via non-linear τ(α)

and f (α) shapes. Poor performance of such estimators is also expected on the ground of the slow

convergence of their variance as demonstrated by Ossiander and Waymire (2000). One might also

point out in this respect, that both functions are capturing various moments of the data, so using

them for determination of parameters amounts to some sort of moment matching. It is, however,

not obvious that the choice of weight of different moments implied by these functions would be

statistically efficient.

While MMAR has not been pursued further in subsequent literature, estimation of alternative

multifractal models has made use of efficient moment estimators as well as other more standard

statistical techniques. The main drawback of the MMAR is, that despite the attractiveness of its

stochastic properties, its practical applicability suffers from the combinatorial nature of the sub-

ordinator θ(t) and its non-stationarity due to the restriction of this measure to a bounded interval.

These limitations have been overcome by the analogous iterative time series models introduced

by Calvet and Fisher (2001a, 2004a). Leövey and Lux (2012) have also recently proposed a re-

interpretation of the MMAR in which an infinite succession of multifractal cascades overcomes the

limitation to a bounded interval, and the resulting overall process could be viewed as a stationary

one.
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It is interesting to relate the grid-bound construction of the MMAR to the "classical" formaliza-

tion of stochastic processes for turbulence. Building upon previous work by Kolmogorov (1962)

and Obukhov (1962) on the phenomenology of turbulence, Castaing et al. (1990) has introduced

the following approach to replicate the scaling characteristics of turbulent flows:

xi = exp(εi)ξi, (2.12)

with ξi and εi both following a Normal distribution ξi ∼ N(0, σ2) and εi ∼ N(ln(σ0), λ2), and ξi and

εi mutually independent. This approach has been applied to various fluctuating phenomena in the

natural sciences such as hadron collision (cf. Carius and Ingelman, 1990), solar wind (cf. Sorriso-

Valvo et al., 1999), and human heartbeat (cf. Kiyono et al., 2004, 2005). Replacing the uniform εi

by the sum of hierarchically organized components, the resulting structure would closely resemble

that of the MMAR model. Models in this vein have been investigated in physics by Kiyono et al.

(2007) and Kiyono (2009). Based on the approach exemplified in eq. (2.12), Ghasghaie et al.

(1996) elaborate on the similarities between turbulence in physics and financial fluctuations, but

do not take into account the possibility of multifractality of the data generating process.

2.3.2.1.2. The MMAR with Poisson Multifractal Time Transformation

Already in Calvet and Fisher (2001a), a new type of multifractal model has been introduced that

overcomes some of the limitations of the MMAR as proposed by Mandelbrot et al. (1997) while

-initially- preserving the formal structure of a subordinated process. Instead of the grid-based

binary splitting of the underlying interval (or, more generally, the splitting of each mother interval

into the same number of subintervals), they assume that θ(t) is obtained in a grid-free way by

determining a Poisson sequence of change points for the multipliers at each hierarchical level

of the cascade. Multipliers themselves might again be drawn from a Binomial, Lognormal (the

standard cases), or any other distribution with positive support. Change points are determined by

renewal times with exponential densities. At each change point ti
n a new draw Mi

tn
of cascade level

i occurs from the distribution of the multipliers that is standardized in a way to ensure conservation

of overall mass E[Mi
tn

] = 1. In order to achieve the hierarchical nature of the cascade, the different

levels i are characterized by a geometric progression of the frequencies of arrival biλ. Hence,

the change points ti
n follow level-specific densities f (t(i)

n ; λ, b) = biλ exp(−biλti
n), for i = 1, ..., k.

Similar grid-free constructions for multifractal measures are considered in Cioczek-Georges and

Mandelbrot (1995) and Barral and Mandelbrot (2002). In the limit k → ∞ the Poisson multifractal

exhibits typical anomalous scaling, which again carries over from the time transformation θ(t) to

the subordinate process for asset returns, BH[θ(t)] in the way demonstrated by Mandelbrot et al.

(1997).

The importance of this variation of the original grid-bound MMAR is that it provides an avenue

towards constructing multifractal models (or models arbitrarily close to "true" multifractals) in a

way that allows better statistical tractability. In particular, in contrast to the grid-bound MMAR,

the Poisson multifractal possesses a Markov structure. Since the t
(i)
n follow an exponential distribu-
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tion, the probability of arrivals at any instant t is independent from past history. As an immediate

consequence, the initial restriction upon its construction to a bounded interval in time [0,T ] is not

really necessary, as the process can be continued when reaching the border t = T in the very same

way by which realizations have been generated within the interval [0,T ] without any disruption of

its stochastic structure. This is not the case for the grid-based approach where one could, in prin-

ciple, append a new cascade after t = T which, however, would be completely uncorrelated with

the previous one. The continuous-time Poisson multifractal has not been used itself in empirical

applications, but it has motivated the development of the discrete Markov-switching multifrac-

tal model (MSM) that has become the most frequently applied version of multifractal models in

empirical finance, cf. sec. 2.3.3.

2.3.2.1.3. Further Generalizations of Continuous-Time MMAR

In a foreword to the working paper version (2001) of their paper, Barral and Mandelbrot (2002)

motivate the introduction of what they call "multifractal products of cylindrical pulses" by its

greater flexibility compared to standard multifractals. They argue that this generalization should

be useful in order to capture particularly the power-law behavior of financial returns. Again,

in the construction of the cylindrical pulses the renewal times at different hierarchical levels are

determined by Poisson processes whose intensities are not, however, connected via the geometric

progression biλ (reminiscent of the grid size distribution in the original MMAR), but are scattered

randomly according to Poisson processes with frequencies of arrival depending inversely on the

scale s, i.e. assuming ri = s−1
i

(instead of ri = 2i−k at scales si = 2k−i over an interval [0, 2k]

in the basic grid-bound approach for multifractal measures). Associating independent weights to

the different scales one obtains a multifractal measure for this construction by taking a product of

these weights over a conical10 domain in (t, s) space. The theory of such cylindrical pulses (i.e.,

the pertinent multipliers Mi
tn

that rule one hierarchical level between adjacent change points tn

and tn+1) only needs the requirement of existence of E[Mi
tn

]. Barral and Mandelbrot (2002) work

out the "multifractal apparatus" for such more general families of hierarchical cascades pointing

out that many examples of pertinent processes would be characterized by non-existing higher

moments. Muzy and Bacry (2002) and Bacry and Muzy (2003) go one step further and construct

a "fully continuous" class of multifractal measures in which the discreteness of the scales i is

replaced by a continuum of scales.

Multiplication over the random weights is then replaced by integration over a similar conical

domain in (t, s) space whose extension is given by the maximum correlation scale T (see below).

Muzy and Bacry (2002) show that for this set-up, nontrivial multifractal behavior is obtained if

the conical subset Cs(t) of the (t, s)-half plane (note that t ≥ 0) obeys:

Cs(t) = {(t′, s′), s′ ≥ s, − f (s′)/2 ≤ t′ − t ≤ f (s′)/2} (2.13)

10 The conical widening of the influence of scales being the continuous limit of the dependencies across levels in the
discrete case that proceeds with, e.g., a factor 2 in the case of binary cascades.
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with

f (s) =






s for s ≤ T

T for s > T,

(2.14)

i.e. a symmetrical cone around current time t with linear expansion of the included scales s up

to some maximum T . The multifractal measure obtained along these lines involves a stochastic

integral over the domain C(t):

dθ(t) = e

∫

(t′ ,s)∈C(t) dω(t′,s)
. (2.15)

If dω(t′, s) is a Gaussian variable, one can use this approach as an alternative way to generate a

Lognormal multifractal time transformation. As demonstrated by Bacry and Muzy (2003) subor-

dinating a Brownian motion to this process leads to a compound process that has a distribution

identical to the limiting distribution of the grid-bound MMAR with Lognormal multipliers for

k → ∞. Discretization of the continuous-time multifractal random walk will be considered below.

2.3.3. Multifractal Models in Discrete Time11

2.3.3.1. Markov-Switching Multifractal Model

Together with the continuous-time Poisson multifractal, Calvet and Fisher (2001a) have also intro-

duced a discretized version of this model, that has become the most frequently applied version of

the multifractal family in the empirical financial literature. In this discretized version, the volatility

dynamics can be interpreted as a discrete-time Markov-switching process with a large number of

states. In their approach, returns are modeled like in eq. (2.1) with innovations εt drawn from a

standard Normal distribution N(0, 1) and instantaneous volatility being determined by the product

of k volatility components or multipliers M
(1)
t ,M

(2)
t , . . . ,M

(k)
t and a constant scale factor σ:

rt = σtεt (2.16)

with

σ2
t = σ

2
k∏

i=1

Mi
t . (2.17)

The volatility components Mi
t are persistent, non-negative and satisfy E[Mi

t] = 1. Furthermore,

it is assumed that the volatility components M
(1)
t ,M

(2)
t , . . . ,M

(k)
t at a given time t are statistically

independent. Each volatility component is renewed at time t with probability γi depending on

its rank within the hierarchy of multipliers and remains unchanged with probability 1 − γi. They

show that with the following specification of transition probabilities between integer time steps,

11 We note in passing that for standard discrete volatility models, the determination of the continuous-time limit is not
always straightforward. For instance, for GARCH(1,1) model Nelson (1990) found a limiting "GARCH diffusion" un-
der some assumptions while Corradi (2000) found a limiting deterministic process under a different set of assumptions.
Also, while there exists a well-known class of continuous-time stochastic volatility models, these do not necessarily
constitute the limit processes of their also well-known discrete counterparts.
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a discretized Poisson multifractal converges to the continuous-time limit as defined above for

∆t → 0:

γi = 1 − (1 − γ1)(bi−1), (2.18)

with γ1 the component at the lowest frequency that subsumes the Poisson intensity parameter λ,

γ1 ∈ [0, 1], and b ∈ (1,∞). Calvet and Fisher (2004a) assume a Binomial distribution for Mi
t with

parameters m0 and 2 − m0 (thus, guaranteeing an expectation of unity for all Mi
t). If convergence

to the limit of the Poisson multifractal is not a concern, one could also use a less parameterized

form such as

γi = b−i. (2.19)

Here, volatility components in a lower frequency state will be renewed b times as often as

those of its predecessor. An iterative discrete multifractal with such a progression of transition

probabilities and otherwise identical to the model of Calvet and Fisher (2001a, 2004a) has already

been proposed by Breymann et al. (2000).

For the distribution of the multipliers Mi
t , extant literature has also used the Lognormal distri-

bution (cf. Liu et al., 2008; Lux, 2008) with parameters λ and s, i.e.

M
(i)
t ∼ LN(−λ, s2). (2.20)

Setting s2 = 2λ guarantees E[Mi
t] = 1. Comparison of the performance and statistical properties

of MF models with Binomial and Lognormal multipliers shows typically almost identical results

(Liu, di Matteo, and Lux, 2007). It, thus, appears that the Binomial choice (with 2k different

volatility regimes) has sufficient flexibility and cannot easily be outperformed via a continuous

distribution of the multipliers.

In Fig. 2.5 the first three panels show the development of the switching behavior of Lognormal

MSM process at different levels. The average duration of the second highest component is equal

to 2048. As a result one expects this component to switch on average two times during the 4096

time-steps of the simulation. Similarly, for the sixth highest component displayed in the second

panel renewal occurs about once within 25 = 32 periods. The last panel shows the product of

multipliers (displayed in the second from bottom) that plays the role of local stochastic volatility

as described by eq. (2.17). The resulting artificial time series displays volatility clustering and

outliers which stem from intermittent bursts of extreme volatility.

Due to its restriction to a finite number of cascade steps, the MSM is not characterized by

asymptotic (multi-) scaling. However, its pre-asymptotic scaling regime can be arbitrarily ex-

tended by increasing the number of hierarchical components k. It is, thus, a process whose mul-

tifractal properties are spurious. However, at the same time it can be arbitrarily close to "true"

multi-scaling over any finite length scale. This feature is shared by a second discretization, the

multifractal random walk, whose power-law scaling over a finite correlation horizon is already

manifest in its generating process.
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Figure 2.5 about here

2.3.3.2. Multifractal Random Walk

In the econophysics literature, a different type of causal, iterative process has been developed more

or less simultaneously, denoted the Multifractal Random Walk (MRW). Essentially, the MRW is a

Gaussian process with built-in multifractal scaling via an appropriately defined correlation func-

tion. While one could use various distributions for the multipliers as the guideline for construction

of different versions of MRW replicating their particular autocorrelation structures, the literature

has exclusively focused on the Lognormal distribution.

Bacry et al. (2001) define the MRW as a Gaussian process with a stochastic variance as follows:

r∆t(τ) = eω∆t(τ)ε∆t(τ), (2.21)

with ∆t a small discretization step, ε∆t(·) a Gaussian variable with mean zero and variance σ2∆t

and ω∆t(·) the logarithm of the stochastic variance and τ a multiple of ∆t along the time axis.

Assuming that ω∆t(·) also follows a Gaussian distribution, one obtains Lognormal volatility draws.

For longer discretization steps (e.g. daily unit time intervals), one obtains their returns as:

r∆t(t) =
t/∆t∑

i=1

ε∆t(i) ∗ eω∆t(i). (2.22)

To mimic the dependency structure of a Lognormal cascade, these are assumed to have covari-

ances:

Cov(ω∆t(t)ω∆t(t + h)) = λ2 ln ρ∆t(h), (2.23)

with

ρ∆t(h) =






T
(|h|+1)∆t

, for |h| ≤ T
∆t
− 1

0, otherwise

(2.24)

Hence, T is the assumed finite correlation length (a parameter to be estimated) and λ2 is called the

intermittency coefficient characterizing the strength of the correlation.

In order for the variance of r∆t(t) to converge, ω∆t(·) is assumed to obey:

E(ω∆t(i)) = −λ2 ln(T/∆t) = −Var(ω∆t(i)). (2.25)

Assuming a finite decorrelation scale (rather than a monotonic hyperbolic decay of the autocor-

relation) serves to guarantee stationary of the multifractal random walk. Similar as the MSM

introduced by Calvet and Fisher (2001a), the MRW model does, therefore, not obey an exact scal-

ing function like eq. (2.7) in the limit t → ∞ or divergence of its spectral density at zero, but is

characterized by only "apparent" long-term dependence over a bounded interval. The advantage

of both models is that they possess "nice" asymptotic properties that facilitate application of many
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standard tools of statistical inference.

As shown by Muzy and Bacry (2002) and Bacry et al. (2008) the continuous-time limit of MRW

(mentioned above in 2.3.2.1.3) can also be interpreted as a time transformation of a Brownian

motion subordinate to a log-normal multifractal random measure. For this purpose, the MRW can

be reformulated in a similar way like the MMAR model.

r(t) = B [θ(t)] , for all t ≥ 0, (2.26)

where θ(t) is a random measure for the transformation of chronological to "business time" and

B(t) is a Brownian motion independent of θt. "Business time" θt is obtained along the lines of the

above exposition of the MRW model as

θ(t) = lim
∆→ 0

∫ t

0
e2ω∆(u)du. (2.27)

Here ω∆(u) is the stochastic integral of Gaussian white noise dW(s, t) over a continuum of scales

s truncated at the smallest and largest scales ∆ and T which leads to a cone-like structure defining

ω∆(u) as the area delimited in time (over the correlation length) and a continuum of scales s in the

(t, s) plane:

ω∆(u) =
∫ T

∆

∫ u+s

u−s

dW(v, s). (2.28)

To replicate the weight structure of the multipliers in discrete multifractal models, a particular cor-

relation structure of the Gaussian elements dW(v, s) needs to be imposed. Namely, the multifractal

properties are obtained for the following choices of the expectation and covariances of dW(v, s):

Cov
(

dW(v, s), dW(v′, s′)
)

= λ2δ(v − v′)δ(s − s′)
dvds

s2
(2.29)

and

E (dW(v, s)) = −λ2 dvds

s2
. (2.30)

Muzy and Bacry (2002) and Bacry and Muzy (2003) show that the limiting continuous-time pro-

cess exists and possesses multifractal properties. Interestingly, Muzy et al. (2006) and Bacry et al.

(2013) also provide results for the unconditional distribution of returns obtained from this process.

They demonstrate that it is characterized by fat tails and that it becomes less heavy tailed under

time aggregation. They also show that standard estimators of tail indices are ill-behaved for data

from a MRW data-generating process due to the high dependency of adjacent observations. While

the implied theoretical tail indices with typical estimated parameters of the MRW would be lo-

cated at unrealistically large values (> 10), taking the dependency in finite samples into account

one obtains biased (pseudo-)empirical estimates indicating much smaller values of the tail index
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that are within the order of magnitude of empirical ones. A similar mismatch between implied and

empirical tail indices applies to other multifractal models as well (as far as we can see, this is not

explicitly reported in extant literature, but has been mentioned repeatedly by researchers) and can

be likely explained in the same way.

2.3.3.3. Asymmetric Univariate MF Models

All previous models are designed in a completely symmetric way for positive and negative

returns. However, it is well known that price fluctuations in asset markets exhibit a certain de-

gree of asymmetry due to leverage effects. The discrete-time skewed multifractal random walk

(DSMRW) model proposed by Pochart and Bouchaud (2002) is an extended version of the MRW,

that takes account of such asymmetries. The model is defined similarly as the MRW of eq. (2.21)

but incorporates a direct influence of past realizations on contemporaneous volatility

ω̃∆t(i) ≡ ω∆t(i) −
∑

k<i

K(k, i)ε∆t(k), (2.31)

where Pochart and Bouchaud propose to use K(k, i) = K0

(i−k)α∆tβ
is a positive definite kernel for

the influence of returns on subsequent volatility. Bacry et al. (2012) proposed a continuous-time

skewed multifractal model that also incorporates the leverage effect.

Eisler and Kertész (2004) expand the MSM model in a similar way. They consider a refined

version of the model in which asymmetry comes in via the renewal probabilities and, in addition,

use a term inspired by eq. (2.31) to account for leverage autocorrelations.

An asymmetric MSM model has also been introduced by Calvet et al. (2013). They embed a

multifractal cascade into a stochastic volatility model where the product of multipliers enters as a

time-varying long-run anchor for the volatility dynamics while at the same time governing a jump

component in returns that relates positive volatility shocks to negative return shocks.

2.3.3.4. Bivariate Multifractal Models

A bivariate MF model has first been introduced by Calvet et al. (2006). Consider a portfolio of

two assets α and β. Let now denote rt the vector of log-returns of the portfolio, and rαt and r
β
t the

individual log-returns of the two assets, respectively. Following Calvet, Fisher, and Thompson the

return of the portfolio is modeled as:

rt = [g(Mt)]
1/2 ∗ εt, (2.32)

where g(Mt) denotes a 2×1 vector M1,t∗M2,t∗· · ·∗Mk,t, ∗ denotes element by element multiplication

and the column vectors εt ∈ R2 are i.i.d. Gaussian N(0,Σ) with covariance matrix

Σ =





σ2
α ρεσασβ

ρεσασβ σ2
β




. (2.33)
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ρε represents the unconditional correlation between the residuals as the first source of correla-

tion between both returns. The period t volatility state is characterized by a 2 × k matrix Mt =
(

M1,t; M2,t; . . . ; Mk,t

)

and the vector of the components at the ith frequency is Mi,t = (Mα
i,t

M
β

i,t
).

The volatility vectors Mi,t are non-negative and satisfy E[Mi,t] = 1, where 1 = (1, 1)′. Eco-

nomic intuition behind the choice of the dynamics for each vector Mi,t is that volatility arrivals

are correlated but not necessarily simultaneous across markets. For this reason Calvet, Fisher, and

Thompson allow arrivals across series to be linked by a correlation coefficient λ. Consider two

random variables Iα
i,t

and I
β

i,t
which are equal to 1 if each series c ∈ {α, β} is hit by an information

arrival with probability γi, and equal to zero otherwise. Calvet, Fisher, and Thompson specified

the arrival vector to be i.i.d. and assumed its unconditional distribution to satisfy three conditions.

First, the arrival vector is symmetrically distributed: (Iα
i,t
, I
β

i,t
)

d
= (Iβ

i,t
, Iα

i,t
). Second, the switching

probabilities of both series are equal for each level i: Pr(Iα
i,t
= 1) = Pr(Iβ

i,t
= 1) = γi, with γi

following eq. (2.18) as for univariate MSM. Third, there exists λ ∈ [0, 1] such that

Pr(Iαi,t = 1|Iβ
i,t
= 1) = (1 − λ)γi + λ.

These three conditions define a unique distribution of (Iα
i,t
, I
β

i,t
) whose joint switching probabili-

ties can be easily determined. Note that the univariate dynamics of each series coincides with

a univariate MSM model. Idier (2011) proposed an extension of the bivariate MSM model by

considering a time dependent covariance for the vector of residuals ρε(t).

Liu (2008) considered a closely related bivariate multifractal model built upon the assumption

that two time series have a certain number of joint cascade levels in common, while the remaining

ones are chosen independently. The returns are, then, modeled as:

rq,t =









k∏

i=1

Mi,t









n∏

l=k+1

Ml,t









1/2

∗ εt, (2.34)

where q = 1, 2 refers to the two time series, both having an overall number of n levels of their

volatility cascades, and they share a number k of joint cascade levels which govern the strength of

their volatility correlation. Obviously, the larger k, the more correlation between the volatility dy-

namics of both series. After k joint multiplicators, each series has separate additional multifractal

components. εt is defined as in eq. (2.32) to follow a bivariate standard Normal distribution with

correlation parameter ρε. This model can be seen as a special case of a slightly generalized version

of Calvet et al. (2006) allowing for heterogeneity of the correlation of volatility innovations, λi,

across hierarchical levels and choosing an extreme specification in that part of the λi(1 ≤ i ≤ k)

are equal to 1 and the remaining ones are equal to 0. Liu and Lux (2014) show that the distinction

between different degrees of correlation between volatility innovations indeed improves the fit and

performance of the bivariate MSM, but the extreme specification of Liu (2008) with alternation

between full dependence and lack of correlation is dominated by a more flexible approach. Inter-

estingly, whether high or low frequency components are more correlated differs between markets.
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2.3.3.5. Higher Dimensional Multifractal Models

The bivariate models presented above can be generalized for more than two assets in various

ways. Liu (2008)’s approach can be generalized in a straightforward way to an N-dimensional

asset returns process. If one assumes that the N time series share a number of j joint cascades that

govern the strength of their volatility correlation, the correlation of volatility arrivals could be gen-

eralized to the case of an arbitrary number of assets without having to add new parameters in the

volatility part of the model. Additional parameters would, then, only come in via the correlation of

the Gaussian innovations. If such a specification appears insufficient to capture the heterogeneity

in return fluctuations across assets, one could consider a generalized framework with asset-specific

multifractal parameter, m0 or λ in the Binomial or Lognormal setting, respectively.

A generalization of the MRW in a similar vein had already been proposed by Bacry et al. (2000).

They suggest to extend the MRW model to a multivariate Multifractal Random Walk (MMRW) in

order to model portfolio behavior. Let Xt be a MMRW, then following Bacry, Delour, and Muzy

Xt is defined as:

X(t) = lim
t → 0

X∆t(t) = lim
t → 0

t/∆t∑

k=1

ǫ∆t[k] ∗ eω∆t[k], (2.35)

where ǫ∆t is now a vector of Gaussians with zero mean and variance-covariance function at lag τ

Cov(ǫi,∆t(t), ǫ j,∆t(t + τ)) = δ(τ)Σi j∆t. The magnitude process ω∆t(·) is also Gaussian with covari-

ance Cov(ωi,∆t(t), ω j,∆t(t + τ)) = Λi j ln(Ti j/(∆t + |τ|)) for (∆t + |τ| < Ti j) and 0 elsewhere. The

matrixΛ, labeled "multifractal matrix", controls the non-linearity of the multifractal spectrum, and

Ti j are different correlation lengths for the autocovariances and cross-covariances characterizing

the process.

2.4. Shortcomings of MF Models

As we mention above MF models are successful in capturing simultaneously most of the stylized

facts of financial data. Although this capability to properly reproduce the data, MF models suffer

from some limitations which we cite here. All the extant MF models in the literature are strictly

invariant under time reversal symmetry. This feature makes the MF models inapt to capture the

so-called leverage effect, and the asymmetric structure of the correlations between the past and

future volatilities at different time scales. Pochart and Bouchaud (2002) construct the skewed

MRW model that can reproduce the leverage effect, but cannot take into account the asymmetric

lead-lag correlation of volatilities. The latter stylized fact is observed to be present in all markets,

even when the leverage effect is almost nonexistent. Calvet and Fisher (2001a) suggest that by

relaxing the independence assumption of B(t) and θ(t) in their model, one would obtain a model

that can capture the leverage effects.

Although the MF models developed by Mandelbrot et al. (1997), Calvet and Fisher (2001a,

2004a) are able to display all the stylized facts observed in the financial markets (volatility cluster-
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ing, fat-tails, long memory, multi-scaling,..), it is important to notice that all these models cannot

properly capture leverage effects.12 One can design the models in a way to take into account lever-

age effects by removing the assumption that B(t) and θ(t) are independent. The relaxation of this

assumption would introduce asymmetric structure in the model.

Another shortcoming of the MRW models is that the theoretical values of tail index obtained

in the MRW models are higher than the empirical ones found in the range 3 to 5 for many stocks

in different markets. Bacry et al. (2013) tried to design the MRW models, so that the theoretical

values of the tail index approximate the empirical ones. Unfortunately, however, they find that

a change of the theoretical value for the tail index will change the way the ergodicity breaking

happens in the models.

In the MRW models it is assumed that the local volatility is Lognormal distributed. While a

couple of studies speak in the favor of Lognormal distribution, other studies suggest to use other

distributions, such as an inverse gamma distribution that fits data equally well, or even better (cf.

Miccichè et al., 2002; Bouchaud and Potters, 2004). Studies of various empirical log-volatility

correlation functions in the MRW models provide results that do not perfectly match with the fact

the intermittency coefficient estimated from the curvature of the scaling function and the slope

of the log-volatility covariance logarithmic decrease have to be equal as the models predict (cf.

Arneodo et al., 1998). Another result from these studies is that the integral parameter T , i.e. the

large cut-off time scale beyond which volatility correlation disappears, is on the scale of a few

years (cf. Muzy et al., 2000), for instance T is larger than one year for both intraday and daily

financial data (cf. Bacry and Muzy, 2010).

2.5. Estimation and Forecasting

Availability of efficient estimation procedures is essential for the application of theoretical asset-

pricing models for practical purposes. The non-standard format of multifractal models has initially

cast doubts on the applicability of many well-known statistical tools to this new family of volatil-

ity models. Fortunately, the members of the second generation multifractal models (MSM and

MRW) seemed to be much more well-behaved (and have partially be designed to be so) in terms

of asymptotic statistical behavior. Most effort has been spent so far to find stable and efficient

inference methods for the discrete time MSM model with discrete or continuous distributions for

multipliers or volatility components. In the following we present the estimation methods most of-

ten applied for MF models. We dispense with the traditional f (α) and τ(q) approach to inference

which has been covered in detail in sec. 2.2.4. As it soon turned out in the pertinent literature

when starting to adapt multifractal models to finance, the scaling-approach provides potentially

very biased and volatile estimates in applications to financial data, and due to their fat tails, would

even indicate existence of multifractal structure after randomization of such time series. The quest

12 The leverage effect corresponds to the fact that the variation of the log-return in the past is negatively correlated with
the volatility (the squared or absolute log-return) in the future
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for more appropriate statistical methods has been motivated to a large extent by these deficien-

cies. The development of the Markov-switching multifractal model and the multifractal random

walk have brought forward stochastic processes with more "convenient" asymptotic properties

than their predecessors. As a consequence, they allow application of many established tools of

inference. Nevertheless, their proximity to genuine long-memory might still be a concern and mo-

tivates to exert caution in empirical applications (e.g., while theoretical convergence of estimates

might be trivially guaranteed, the pre-asymptotic regime might be much more extended than with

other models).

2.5.1. Maximum Likelihood Estimation

Exact ML estimation has been primarily developed for the discrete-time MSM model with a

discrete distribution for the volatility components or multipliers. Calvet and Fisher (2004a) in-

troduced an ML estimation approach for the Binomial Markov-switching multifractal (BMSM)

model. To show how to perform ML estimation in this context, note that the log-likelihood (L)

function for a series of observations {rt}Tt=1 in its most general form may be expressed as:

L(r1, . . . , rT ;ϕ) =
T∑

t=1

lng(rt|r1, . . . , rt−1;ϕ), (2.36)

where g(rt|r1, . . . , rt−1;ϕ) is the likelihood function of the Markov-switching multifractal model,

and ϕ is the vector of parameters. For Markov-switching models, the likelihood function can

be decomposed in the following way: g(rt|r1, . . . , rt−1;ϕ) = ωt(rt|Mt = mi, ϕ)(πt−1A). The three

components are defined as follows: ωt(rt|Mt = mi, ϕ) is a vector of dimension 2k of conditional

densities of any observation rt for volatility regimes mi and A is the transition matrix which has

components Ai j = Pr(Mt+1 = m j|Mt = mi). The last component within the likelihood function

above is πt, which is the vector of conditional probabilities of the volatility states given obser-

vations πi
t = Pr(Mt = mi|r1, . . . , rt;ϕ). The conditional probabilities can be recursively obtained

through Bayesian updating

πt =
ωt(rt|Mt = mi, ϕ) ∗ (πt−1A)

∑

ωt(rt|Mt = mi, ϕ) ∗ (πt−1A)
. (2.37)

Different distributional assumptions for innovations could be embedded in this framework. The

parameter vector of the BMSM with Gaussian innovations would be given by ϕ = (m0, σ)′, while

the parameter vector of a BMSM with Student-t innovations would be ϕ = (m0, σ, ν)′ where

ν ∈ (2,∞) is the distributional parameter accounting for the degrees of freedom in the density

function of the Student-t distribution. The Student−t distribution for return innovations has been

used by Lux and Morales-Arias (2010) in order to enhance out-of-sample forecasts of the MSM

model because it may allow the MSM model to better distinguish between volatility dependence

and fat-tailed innovations.

An advantage of the ML procedure is that, as a by-product, it allows one to obtain optimal
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forecasts via Bayesian updating of the conditional probabilities πt = Pr(Mt = mi|r1, . . . , rt;ϕ) for

the unobserved volatility states mi, i = 1, . . . , 2k. ML estimation provides good precision in finite

samples (cf. Calvet and Fisher, 2004a).

Although the applicability of the ML algorithm greatly facilitates estimation of MSM models,

it is restrictive in the sense that it is practically feasible only for discrete distributions of the mul-

tipliers and, therefore, is not applicable for e.g., the case of a Lognormal distribution. Due to the

potentially large state space (we have to take into account transitions between 2k distinct states),

ML estimation also encounters practical bounds of its computational demands for specifications

with more than about k = 10 volatility components in the Binomial case. For multivariate MF

models, the applicability of the ML approach is even more constrained from the computational

side: In the bivariate case the evaluation of its transition matrix with size 4k × 4k becomes un-

feasible for choices of about k > 5. There has also been a recent attempt to estimate the MRW

model via a likelihood approach. Løvsletten and Rypdal (2012) develop an approximate maximum

likelihood method for MRW using a Laplace approximation of the likelihood function.

2.5.2. Simulated Maximum Likelihood

This approach is more broadly applicable to both discrete and continuous distributions for multi-

pliers. To overcome the computational and conceptional limitation of exact ML estimation, Calvet

et al. (2006) developed a simulated ML approach. They propose a particle filter to numerically

approximate the likelihood function. The particle filter is a recursive algorithm that generates

independent draws M
(1)
t , . . . ,M

(N)
t from the conditional distribution of πt. At time t = 0, the al-

gorithm is initiated by draws M
(1)
0 , . . . ,M

(N)
0 from the ergodic distribution π̄. For any t > 0, the

particles {M(n)
t }Nn=1 are sampled from the new belief πt. To this end, the formula (2.37) within the

ML estimation algorithm is replaced by a Monte Carlo approximation in SML. This means that

the analytical updating via the transition matrix, πt−1A, is approximated via the simulated transi-

tions of the particles. Disregarding the normalization of probabilities (i.e., the denominator), the

formula (2.37) can be rewritten as

πi
t ∝ ωt(rt|Mt = mi;ϕ)

4k
∑

j=1

Pr
(

Mt = mi|Mt−1 = m j
)

π
j

t−1, (2.38)

and due to the fact that M
(1)
t , . . . ,M

(N)
t are independent draws from πt−1, the Monte Carlo approx-

imation has the following format:

πi
t ∝ ωt(rt|Mt = mi;ϕ)

1
N

N∑

n=1

Pr
(

Mt = mi|Mt−1 = M
(n)
t−1

)

. (2.39)

The approximation, thus, proceeds by simulating each M
(n)
t−1 one step forward to obtain M̂

(n)
t given

M
(n)
t−1. This step only uses information available at date t − 1, and must therefore be adjusted at

time step t to account for the information contained in the new return. This is achieved by drawing
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N random numbers q from 1 to N with probability

Pr(q = n) ≡ ωt(rt|Mt = M̂
(n)
t ;ϕ)

∑N
n′=1 ωt(rt|Mt = M̂

(n′)
t ;ϕ)

. (2.40)

The distribution of particles is, thus, shifted according to their importance at time t. With simulated

draws M
(n)
t the Monte Carlo (MC) estimate of the conditional density is

ĝ(rt|r1, . . . , rt−1;ϕ) ≡ 1
N

N∑

n=1

g(rt|Mt = M̂
(n)
t ;ϕ), (2.41)

and the log-likelihood is approximated by
∑T

t=1 ln ĝ(rt|r1, . . . , rt−1;ϕ). The simulated ML approach

makes it feasible to estimate MSM models with continuous distribution of multipliers as well

as univariate and multivariate Binomial models with too high a number of states for exact ML.

Despite this gain in terms of different specifications of MSM models that can be estimated, the

computational demands of SML are still considerable, particularly for high numbers of particles

N.

2.5.3. GMM Estimation

Again, this is an approach that is, in principle, applicable for both discrete and continuous dis-

tributions for multipliers. To overcome the lack of practicability of ML estimation, Lux (2008)

introduced a Generalized Method of Moments (GMM) estimator that is also universally applicable

to all specifications of MSM processes (discrete or continuous distribution for multipliers, Gaus-

sian, Student−t or various other distributions for innovations). In particular, it can be used in all

those cases where ML is not applicable or computationally unfeasible. Its computational demands

are also lower than those of SML and independent of the specification of the model. In the GMM

framework for MSM models, the vector of parameters ϕ is obtained by minimizing the distance of

empirical moments from their theoretical counterparts, i.e.

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′AT fT (ϕ), (2.42)

with Φ the parameter space, fT (ϕ) the vector of differences between sample moments and analyt-

ical moments, and AT a positive definite and possibly random weighting matrix. Moreover, ϕ̂T

is consistent and asymptotically Normal if suitable "regularity conditions" are fulfilled (cf. Harris

and Mátyás, 1999) which are satisfied routinely for Markov processes.

In order to account for the proximity to long memory characterizing MSM models, Lux (2008)

proposed to use log differences of absolute returns together with the pertinent analytical moment

conditions, i.e.

ξt,T = ln|rt| − ln|rt−T |. (2.43)

The above variable only has nonzero auto-covariances over a limited number of lags. To exploit
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the temporal scaling properties of the MSM model, covariances of various moments over different

time horizons are chosen as moment conditions, i.e.

Mom(T, q) = E

[

ξ
q

t+T,T
· ξq

t,T

]

, (2.44)

for q = 1, 2 and different horizons T together with E[r2
t ] = σ2 for identification of σ in the MSM

model with Normal innovations. In the case of the MSM-t model, Lux and Morales-Arias (2010)

consider additional moment conditions in addition to (2.44), namely, E[|rt|], E[|r2
t |], E[|r3

t |] , in

order to extract information on the Student−t’s shape parameter.

Bacry et al. (2008) and Bacry et al. (2013) also apply the GMM method for estimating the

MRW parameters (λ, σ, and T ) using similar moments as in Lux (2008). Sattarhoff (2010) refines

the GMM estimator for the MRW using a more efficient algorithm for the covariance matrix es-

timation. Liu (2008) adopts the GMM approach to bivariate and trivariate specifications of the

MSM model. Leövey (2013) develops a simulated method of moments (SMM) estimator for the

continuous-time Poisson multifractal model of Calvet and Fisher (2001a).

Related work in statistical physics has recently also considered simple moment estimators for

extraction of the multifractal intermittency parameters from data of turbulent flows (cf. Kiyono

et al., 2007). Leövey and Lux (2012) compare the performance of a GMM estimator for multi-

fractal models of turbulence with various heuristic estimators proposed in the pertinent literature,

and show that the GMM approach typically provides more accurate estimates due to its more

systematic exploitation of information contained in various moments.

2.5.4. Forecasting

With ML and SML estimates, forecasting is straightforward: With ML estimation, conditional

state probabilities can be iterated forward via the transition matrix to deliver forecasts over arbi-

trarily long time horizons. The conditional probabilities of future multipliers given the information

set ℑt, π̂t,n = P(Mn|ℑt), are given by

π̂t,n = πtA
n−t, ∀n ∈ {t, . . . ,T }. (2.45)

In the case of SML, iteration of the particles provides an approximation to the predictive density.

Since GMM does not provide information on conditional state probabilities, Bayesian updating is

not possible and one has to supplement GMM estimation with a different forecasting algorithm.

To this end, Lux (2008) proposes best linear forecasts (cf. Brockwell and Davis, 1991, chap. 5)

together with the generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus

(2004). Assuming that the data of interest (e.g., squared or absolute returns) follow a stationary

process {Yt} with mean zero, the best linear h-step forecasts are obtained as

Ŷn+h =

n∑

i=1

φ
(h)
ni

Yn+1−i = φ
(h)
n Yn, (2.46)
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where the vectors of weights φh
n = (φh

n1, φ
h
n2, . . . , φ

h
nn)′ can be obtained from the analytical auto-

covariances of Yt at lags h and beyond. More precisely, φ(h)
n are any solution of Ψnφ

(h)
n = κ

(h)
n

where κ(h)
n = (κ(h)

n1 , κ
(h)
n2 , . . . , κ

(h)
nn )′ denote the auto-covariances of Yt andΨn = [κ(i− j)]i, j=1,...,n is the

variance-covariance matrix. In empirical applications, eq. (2.46) has been applied for forecasting

squared returns as a proxy for volatility using analytical covariances to obtain the weights φh
n.

Linear forecasts have also been used by Bacry et al. (2008) and Bacry et al. (2013) in connection

with their GMM estimates of the parameters of the MRW model. Duchon et al. (2012) develop an

alternative forecasting scheme for the MRW model in the presence of parameter uncertainty as a

perturbation of the limiting case of an infinite correlation length T → ∞.

2.6. Empirical Applications

Calvet and Fisher (2004a) compare the forecast performance of the MSM model to those of

GARCH, MS-GARCH, and FIGARCH models across a range of in-sample and out-of-sample

measures of fit. Using four long series of daily exchange rates they find that at short horizons MSM

shows about the same and sometimes a better performance than its competitors. At long horizons

MSM more clearly outperforms all alternative models. Lux (2008) combines the GMM approach

with best linear forecasts and compares different MSM models (Binomial MSM and Lognormal

MSM with various numbers of multipliers) to GARCH and FIGARCH. Although GMM is less ef-

ficient than ML, Lux (2008) confirms the tendency of superior performance of MSM models over

GARCH and FIGARCH in forecasting volatility of foreign exchange rates. Similarly promising

performance in forecasting volatility and value-at-risk is reported for the MRW model by Bacry

et al. (2008) and Bacry et al. (2013). Bacry et al. (2008) find that linear volatility forecasts pro-

vided by the MRW model outperform GARCH(1, 1) models. Furthermore, they show that MRW

forecasts of the VaR at any time-scale and time-horizon are much more reliable than GARCH(1, 1)

(Normal or Student−t) forecasts for both foreign exchange rates and stock indices.

Lux and Kaizoji (2007) investigate the predictability of both volatility and volume for a large

sample of Japanese stocks. Using daily data of stock prices and trading volume available over 27

years (from 01/01/1975 to 12/31/2001), they examine the potential of time series models with

long memory (FIGARCH, ARFIMA, multifractal) to improve upon the forecasts derived from

short-memory models (GARCH for volatlity, ARMA for volume). For both volatility and volume,

they find that the MSM model provides much safer forecasts than FIGARCH and ARFIMA and

does not suffer from occasional dramatic failures as is the case with the FIGARCH model. This

higher degree of robustness of MSM forecasts compared to alternative models is also confirmed

by Lux and Morales-Arias (2013). They estimate the typical parameters of GARCH, FIGARCH,

SV, LMSV and MSM models from a large sample of stock indices and compare the empirical per-

formance of each model when applied to simulated data of any other model with typical empirical

parameters. As it turns out, the MSM almost always comes in second best (behind the true model)

when forecasting future volatility and even dominates combined forecasts from many models. It,
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thus, appears to be relatively safe for practitioners to use the MSM even if it were misspecified

and another standard model were the "true" data-generating process.

Lux and Morales-Arias (2010) introduce the MSM model with Student-t innovations and com-

pare its forecast performance to those of MSM models with Gaussian innovations, and (FI)GARCH.

Using country data on all-share equity indices, government bonds and real estate security indices,

they find that the MSM model with Normal innovations produces forecasts that improve upon his-

torical volatility, but are in some cases inferior to FIGARCH with Normal innovations. By adding

fat tails to both MSM and FIGARCH, they obtain improvements by MSM models for forecasting

volatility while the forecast performance by FIGARCH deteriorates. They find also that one can

obtain more accurate volatility forecasts by combining FIGARCH and MSM.

Lux et al. (2014) apply an adapted version of the MSM model to measurements of realized

volatility. Using five different stock market indices (CAC 40, DAX, FTSE 100, NYSE Composite

and S&P 500), they find that the realized volatility-Lognormal MSM model (RV-LMSM) model

performs better than non-RV models (FIGARCH, TGARCH, SV and MSM) in terms of mean-

squared errors for most stock indices and at most forecasting horizons. They also point out that

similar results are obtained in a certain number of instances when the RV-LMSM model is com-

pared to the popular RV-ARFIMA model and forecast combinations of alternative models (non-RV

and RV) could hardly improve upon forecasts of various single models.

Calvet et al. (2006) apply the bivariate model to the comovements of volatility of pairs of ex-

change rates. They find again that their model provides better volatility and value-at-risk (VaR)

forecasts compared to the constant correlation GARCH (CC-GARCH) of Bollerslev (1990). Ap-

plying the refined bivariate MSM to stock index data, Idier (2011) confirms the results of Calvet

et al. (2006). Additionally, he finds that his refined model shows significantly better performance

than the baseline MSM and DCC models for horizons longer than ten days. Liu and Lux (2014)

apply the bivariate model to daily data for a collection of bivariate portfolios of stock indices,

foreign currencies and U.S. 1 Year and 2 Year Treasury Bonds. They find that the bivariate multi-

fractal model generates better VaR forecasts than the CC-GARCH model, especially in the case of

exchange rates, and that an extension allowing for heterogeneous dependency of volatility arrivals

across levels improves upon the baseline specification both in in-sample and out-of-sample.

Chen et al. (2013) propose a Markov-switching multifractal duration (MSMD) model. In con-

trast to the traditional duration models inspired by GARCH-type dynamics, this new model uses

the MSM process developed by Calvet and Fisher (2004a), and thus can reproduce the long mem-

ory property of durations. By applying the MSMD model to duration data of twenty stocks ran-

domly selected from the S&P 100 index and comparing it with the autoregressive conditional

duration (ACD) model both in- and out-of-sample, they find that at short horizons both models

yield about the same results while at long horizons the MSMD model dominates over the ACD

model.

Baruník et al. (2012) independently develop a Markov-switching multifractal duration (MSMD)

model whose specification is slightly different from that proposed by Chen et al. (2013). They also
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use the MSM process introduced by Calvet and Fisher (2004a) as basic ingredient in the construc-

tion of the model. They apply the model to price durations of three major foreign exchange futures

contracts and compare the predictive ability of the new model with those of the ACD model and

long-memory stochastic duration (LMSD) model of Deo et al. (2006). They find that both LMSD

and MSMD forecasts generally outperform the ACD forecasts in terms of the mean square error

and mean absolute error. MSMD and LMSD models sometimes exhibit similar forecast perfor-

mances, sometimes the MSMD model slightly dominates the LMSD model.

Option price applications of multifractal models have started with Pochart and Bouchaud (2002)

who show that their skewed MRW model could generate smiles in option prices. Leövey (2013)

proposed a "risk-neutral" MSM process in order to extract the parameters of the MSM model

from option prices. As it turns out, MSM models backed out from option data add significant

information to those estimated from historical return data and enhance the forecast ability of future

volatility.

Calvet, Fearnley, Fisher, and Leippold (2013) propose an extension of the continuous-time

MSM process which in addition to the key properties of the basic MSM process also incorporates

the leverage effect and dependence between volatility states and price jumps. Their model can be

conceived as an extension of a standard stochastic volatility model in which long-run volatility is

driven by shocks of heterogenous frequency that also trigger jumps in the return dynamics, and, so

are responsible for negative correlation between return and volatility. They also develop a particle

filter that permits the estimation of the model. By applying the model to option data they find that

it can closely reproduce the volatility smiles and smirks. Furthermore, they also find that the model

outperforms affine jump-diffusions and asymmetric GARCH-type models in- and out-of-sample

by a sizeable margin.

Calvet, Fisher, and Wu (2013) develop a class of dynamic term structure models in which the

number of parameters to be estimated is independent of the number of factors selected. This

parsimonious design is obtained by a cascading sequence of factors of heterogenous durations that

is modeled in the spirit of multifractal models. The sequence of mean reversion rates of these

factors follows a geometric progression which is responsible for the hierarchical nature of the

cascade in the model. In their empirical application to a bandwidth of LIBOR and swap rates, a

cascade model with 15 factors provides a very close fit to the dynamics of the term structure and

outperforms random walk and autoregressive specifications in interest rate forecasting.

Taken as a whole, the empirical studies summarized above provide mounting empirical evi-

dence of the superiority of the MF over traditional GARCH models (MS-GARCH, FIGRACH) in

terms of forecasting of long-term volatility and related tasks such a VaR assessment. In addition,

the model appears quite robust, and has found successful applications in modeling of financial

durations, the term structure of interest rates and option pricing.
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2.7. Conclusion

The motivation for studying multifractal models for asset price dynamics derives from their

built-in properties: Since they generically lead to time series with fat tails, volatility clustering and

different degrees of long-term dependence of power transformations of returns, they are able to

capture all the universal "stylized facts" of financial markets. In the overview of extant applica-

tions above, MF-type models typically exhibit a tendency to perform somewhat better in volatility

forecasting and VaR-assessment than the more traditional toolbox of GARCH-type models. Fur-

thermore, multifractal processes appear to be relatively robust to misspecification, they seem appli-

cable to a whole variety of variables of interest from financial markets (returns, volume, durations,

interest rates) and are very directly motivated by the universal findings of fact tails, clustering of

volatility and anomalous scaling. In fact, multifractal processes constitute the only known class

of models in which anomalous scaling is generic while all traditional asset-pricing models have a

limiting uni-scaling behavior. Capturing this stylized fact may, therefore, well make a difference

- even if one can never be certain that multiscaling is not spuriously caused by an asymptotically

unifractal model and although those multifractal models that have become the workhorse in empir-

ical applications (MSM, MRW) are characterized themselves by only preasymptotic multiscaling.

Obviously, the introduction of multifractal models in finance did not unleash as much research

activity as that of the GARCH or SV families of volatility models in the decades before. The

overall number of contributions in this area is still relatively small and comes from a relatively

small group of active researchers only. The reason for this abstinence might be that the first gener-

ation of multifractal models might have appeared clumsy and unfamiliar to financial economists.

Their non-causal principles of construction along the dimension of different scales of a hierarchi-

cal structure of dependencies might have appeared too different from known iterative time series

models hitherto applied. In addition, the underlying multifractal formalism (including scaling

functions and distribution of Hölder exponents) had been unknown in economics and finance, and

application of standard statistical methods of inference to multifractal processes appeared cum-

bersome or impossible. However, all these obstacles have been overcome with the advent of the

second generation of multifractal models (MSM and MRW) that are statistically well-behaved

and of an iterative, causal nature. Besides their promising performance in various empirical ap-

plications they even provide the additional advantage of having clearly defined continuous-time

asymptotics so that applications in dicrete- and in continuous-time can be embedded in a consistent

framework.

While the relatively short history of multifractal models in finance has already brought about a

variety of specifications and different methodologies for statistical inference, some areas can be

identified in which additional work should be particularly welcome and useful. These include:

Multivariate MF models, applications of the MF approach beyond the realm of volatility models

such as the MF duration model, and its use in the area of derivative pricing.
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Figure 2.1.: Cumulative distribution for daily returns of four South African stocks (from 1973 until
2006). The solid lines correspond to the Gaussian and Levy distributions. The tail
behavior of all stocks is different from that of both the Gaussian and Levy distribution
(for the latter, a characteristic exponent α = 1.7 has been chosen that is a typical
outcome of estimating the parameters of this family of distributions for financial data).
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Figure 2.2.: Illustration of the long-term dependence observed in the absolute and squared returns
of the Standard & Poor’s 500 index (S&P 500) (left upper and central panel). In con-
trast, raw returns (lower left panel) are almost uncorrelated. The determination of
the corresponding Hurst exponent H via the so-called Detrended Fluctuation Analysis
(DFA, cf. Chen et al. (2002)) is displayed in the right-hand panels. Note that we obtain
the following scaling of the fluctuations (volatility): < F(t) >∼ tH . H = 0.5 corre-
sponds to absence of long-term dependency while H > 0.5 indicates a hyperbolical
decay of the ACF, i.e. long-lasting autoregressive dependency.
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Figure 2.3.: Scaling exponents of moments for three selected financial time series and an example
of simulated returns from an MSM process. The empirical samples run from 1998 to
2007, and the simulated series is the one depicted in the lower panel of Fig. 2.5. The
broken line gives the expected scaling H(q) = q/2 under Brownian motion. No fit has
been attempted of the simulated to one of the empirical series.
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Figure 2.5.: Simulation of a Markov-switching multifractal model (MS M) with Lognormal dis-
tribution of the multipliers and k = 13 hierarchical levels. The location parameter of
the Lognormal distribution has been chosen as λ = 1.05. The first panel illustrates
the development of the second multiplier (with average replacement probability of
2−11), the second panel shows the sixth level, while the third panel shows the product
of all 13 multipliers. Returns in the lowest panel are simply obtained by multiplying
multifractal local volatility by Normally distributed increments.
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3. Financial Duration Models: A Survey

3.1. Introduction

Modeling of high-frequency data attracts a lot of attention in empirical finance because it first

allows to understand market microstructure and all issues related to the price adjustment process.

Second, it permits researchers to test and corroborate theoretical models (cf. Garman, 1976; Ho

and Stoll, 1981; Glosten and Milgrom, 1985; Easley and O’Hara, 1992) developed in the mar-

ket microstructure literature. The rapid development of information technology (IT) in the early

nineties facilitates to store data of all market transactions (trades, quotes, etc...) for every security

and triggers the advent of an intensive empirical analysis of high-frequency data. The principal

issue related to this kind of data is that they are irregularly spaced. This peculiar feature renders

the analysis of the data with existing econometric models such as GARCH1 (cf. Engle, 1982)

unfeasible.

Research by Diamond and Verrecchia (1987), and Easley and O’Hara (1992) presage the infor-

mation content of the time between transaction events. Empirical investigations of the relationship

between security trades and bid-ask quote revisions for stocks traded on the New York Stock Ex-

change (NYSE) also pointed out that trade durations have information content (cf. Hasbrouck,

1988, 1991). In order to model the irregular spacing of the data and properly gauge their infor-

mation content Engle and Russell (1998) proposes in their seminal paper an econometric model,

termed autoregressive conditional duration (ACD). Engle and Russell (1998) combined the re-

sults of transition analysis and the autoregressive structure of GARCH models that achieve a lot

of success in modeling time-varying volatility of returns in empirical finance. The autoregres-

sive structure allows the ACD models to capture the information flow that arrives in cluster in the

market.

Recent empirical investigations of financial duration data brought new facts to light, e.g., that

financial durations exhibit long memory (cf. Jasiak, 1998; Bauwens et al., 2004), asymmetric

features (cf. Feng et al., 2004), and fat tailedness (cf. Engle and Russell, 1998; Bauwens and Giot,

2001; Bauwens et al., 2004) which all cannot be captured by the standard ACD model of Engle

and Russell (1998). Another feature of the data that has been observed and reported by Engle and

Russell (1998) is that high-frequency financial durations show a strong seasonality. This imposes

an adjustment of the data before2 any estimation in order to avoid spurious inferences. So, various

1 GARCH models are designed for regular spacing data and their use for modeling high frequency data will lead to a loss
of primary information.

2 Some authors execute adjustment and estimation simultaneously (cf. Veredas et al., 2001).
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extensions of the standard ACD model have been developed with the aim to better model the

above-mentioned features of high-frequency duration data: Fractionally integrated ACD (FIACD)

by Jasiak (1998), Log-ACD by Bauwens and Giot (2000), threshold ACD (TACD) by Zhang

et al. (2001), stochastic conditional duration (SCD) by Bauwens and Veredas (2004), stochastic

volatility duration (SVD) by Ghysels et al. (2004), augmented ACD (AACD) by Fernandes and

Grammig (2006) and mixture ACD (MACD) by Hujer and Vuletić (2007).

During the last decade a great number of empirical studies in econophysics has documented and

reported the presence of scaling3 in the intertrade duration distribution of different U.S. stocks (cf.

Ivanov et al., 2004; Politis and Scalas, 2008) and Chinese Stocks (cf. Jiang et al., 2008). Sun et al.

(2008) computed a Hurst index4 for 18 Dow Jones index component stocks and found evidence

of a fractal structure in intertrade duration data. A Paper by Chen et al. (2013) also provides

evidence that the clustering observed in the intertrade durations exhibits self-similarity properties,

i.e., it looks similar at different time scales. The presence of self-similarity in the data suggests

that the information flow arrives in the markets not only in clusters, but also in cascades. This is in

harmony with the conjecture of heterogeneous market participants who act at different time scales,

and have limited attention. The effects of a limited investor attention in the financial markets have

recently been investigated in detail in the literature (cf. Huberman, 2001; Peng and Xiong, 2006;

Barber and Odean, 2008; Corwin and Coughenour, 2008). All these authors find that limited

attention significantly influences market participants’ decisions, and therefore, trading processes.

Corwin and Coughenour (2008), for instance, find that due to limited attention specialists have

to allocate effort across securities in their portfolio during busy time periods, and this heavily

affects liquidity provision in securities markets. In sum, the trading activity of a stock is not only

influenced by information, but also by the attention that is paid to it.

In order to capture long memory observed in the data and to take all these new facts into ac-

count Chen et al. (2013) introduced the Markov switching multifractal duration (MSMD) model.

While Chen et al. (2013) proposed a mixture of exponential representation for intertrade dura-

tions, Baruník et al. (2012) independently introduced a multiplicative error form MSMD model

where durations are defined as product of the mean intensity and the innovation. Both models

are designed based on the Markov switching multifractal process developed by Calvet and Fisher

(2001a, 2004a) that found great acceptance in empirical finance due to its ability to reproduce the

scaling law, fat tails and long memory properties (cf. Calvet and Fisher, 2004a; Lux, 2008).

In this chapter we present both classes of models, namely the standard ACD and its subsequent

extensions and the MSMD models. We briefly give an overview of the theoretical models that

motivate the development of both models in the literature. We mention different diagnostic tests

used for testing the adequacy of both types of models and some relevant empirical results gained

from their application to financial durations. Until now the only one paper published on a review

for ACD models has been accomplished by Pacurar (2008). With these new competitive models, it

3 The presence of scaling in the intertrade duration distribution has been criticized by Eisler and Kertész (2006).
4 In addition to its ability to model long memory (cf. (Hurst, 1951, 1955), Hurst index is also a measure for self-similarity

scaling.
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would be expedient to briefly review both classes of models, their strengths and deficiencies, and

outline some future avenues of research.

The rest of the chapter is organized as follows. Section 3.2 reviews the theoretical microstruc-

ture models. Section 3.3 presents different ACD models. The MSMD models are illustrated in

Section 3.4. Section 3.5 delineates the extant diagnostic tests. Some empirical application results

and studies are presented in Section 3.6. Section 3.7 concludes.

3.2. Theoretical Microstructure Models

The theoretical models developed in the microstructure literature try to explain the determinants

of the behavior of prices, the way new information is incorporated into prices, and how the market

structure can influence the efficiency of the stock market. The underlying idea in these models

is that market participants trade with one another for either information or liquidity-motivated

reasons. Accordingly, the theoretical microstructure models can be differentiated into two groups:

Information- and inventory-based models.

The basic idea in the information-based models was built up by Bagehot (1971), and has then

been formalized, developed and extended by Copeland and Galai (1983), Glosten and Milgrom

(1985), Kyle (1985), Admati and Pfleiderer (1988), and Easley and O’Hara (1987). Bagehot

(1971) considers a scenario in which the market participants are heterogenous on the basis of in-

formation they have at hand. He distinguishes between market-makers, informed and uninformed

traders. The competitive and risk-neutral market maker who only has public information available

does not know whether he is trading with informed or uninformed traders. The adverse selection or

asymmetric information problem that the market maker faces here is due to the presence of the in-

formed traders who have superior information (in addition to the public information they also have

private information). To safeguard himself from losses he incurs through trading with informed

traders in the market, the market-maker has to maintain the spread between ask and bid prices

wide enough. Informed traders for their part want to exploit their informational advantage and to

maximize their profits. In Kyle (1985)’s model informed traders only know the asset’s terminal

value. So, their strategy will consist in proportionally trading to the difference between the asset’s

terminal value and the market clearing price set by the risk neutral market maker. By Glosten

and Milgrom (1985) the informed traders will trade intensively whenever they have opportunity to

trade in order to immediately benefit from their informational advantages.

The inventory models have in detail been studied by Stoll (1978), Ho and Stoll (1983), and

Amihud and Mendelson (1980). The role of inventory control by the market maker has first been

discussed in Garman (1976). The basic idea in the inventory control models is that a risk-averse

market maker has to adjust the price level if a discrepancy between his actual and desired posi-

tions occurs during the trading day. Inventory control leads to price adjustment, and thus, to the

existence of the spread between ask and bid prices.

The most contributions mentioned above consider time as an exogenous variable that does not
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affect the price adjustment process. This role of time has been changed by Easley and O’Hara

(1992) who in their model5 give time a prominent informational role. Easley and O’Hara (1992)

argue that uninformed traders trade for liquidity reasons, and not for informational reasons. This is

not the case for informed traders whose decisions to trade depend on the quality of new information

arriving in the market. Long durations between financial events or low trading intensity would

indicate that information arrival in the market is not price relevant and the probability to deal with

uninformed traders is high. Accordingly the market maker will decrease the spread between ask

and bid prices. This is a proof that time plays an essential role in the price adjustment process. This

new role of time heavily influences the market maker’s decision to adjust the price. The theoretical

model of Easley and O’Hara (1992) opened a new research field in financial econometrics and

motivated the development of financial durations models in the empirical financial literature.

3.3. ACD Models

The general form of the ACD models can be expressed as

xt = Ψtξt,

Ψt = h(xt−1, . . . , xt−p,Ψt−1, . . . ,Ψt−q; θ),
(3.1)

where xt and Ψt are the duration and conditional expected duration at time t, respectively, ξt

denotes the innovation in the models. The conditional expected duration Ψt is a function in p past

durations, and q past expected durations. θ is a parameter vector in the models and h(·) can be a

linear or a nonlinear function.

3.3.1. The Standard ACD Model

The conditional expected duration of basic ACD(p, q) model proposed by Engle and Russell

(1998) has a linear functional form and can be formalized as

Ψt = ω +

p∑

j=1

β jxt− j +

q∑

j=1

δ jΨt− j,

= ω + β(L)xt + δ(L)Ψt,

(3.2)

where L denotes the lag operator, β(L) = β1L+β2L2+ · · ·+βpLp, and δ(L) = δ1L+δ2L2+ · · ·+δpLp

are polynomials, and ω > 0, β j > 0, δ j ≥ 0 in order to ensure the positivity of the conditional

expectation of the duration, and thus, of the duration. Engle and Russell (1998) construct the

model in such a way that the intertemporal correlation in the durations can be condensed in their

conditional expectations so that xt/Ψt is independent and identically distributed. They find that

5 The model by Easley and O’Hara (1992) is an extension of the Glosten and Milgrom’s model.
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the eq. (3.2) nicely captures the clustering of transactions as outguessed by the models of Kyle

(1985), Admati and Pfleiderer (1988), and Easley and O’Hara (1992).

Note that for p = q = 1, we obtain the ACD(1,1) model which is the most popular and often used

model in empirical analysis due to its ability to reproducing the temporal dependence in financial

duration data in most cases. The first and second moments of ACD(1,1) model can be found

in Engle and Russell (1998) and its autocorrelation function in Bauwens and Giot (2000). The

specification of the ACD model imposes an exponential decrease of the autocorrelation function

which does not match the hyperbolical decay of the empirical autocorrelation function.

In their seminal paper Engle and Russell used two distributional assumptions, namely the stan-

dard exponential and Weibull6 distributions for the innovation in the model. The exponential dis-

tribution is an asset for the estimation of the model, because it provides consistent quasi-maximum

likelihood estimators (cf. Drost and Werker, 2004), but inadequate for the modeling of the data due

to the fact that it leads to constant conditional hazard function, and thus, not in conformity with

the empirical conditional hazard function. This is overcome by using a Weibull distribution whose

conditional hazard function is increasing when the shape parameter is larger than 1 and decreasing

when the shape parameter is less than 1. However, this flexibility obtained by using a Weibull

distribution is not enough for a good modeling of financial duration data.

In order to obtain an appropriate conditional hazard function, flexible distributions for the inno-

vation have been proposed in the literature. Grammig and Maurer (2000) used a Burr distribution

for the innovation. This distribution includes Weibull, log-logistic, and exponential as special

cases. Note that the Burr distribution requires some parametric restrictions in order to ensure that

the first, second moments and higher moments exist. These restrictions sometimes lead to poor

results when the Burr ACD (BACD) model is applied for modeling high unconditional moments

of financial durations (cf. Bauwens et al., 2008). Another more attractive and often used distribu-

tion in all recent empirical studies is the generalized gamma which encompasses gamma, Weibull,

and exponential as particular cases (cf. Lunde, 1999). The generalized gamma distribution offers

a flexible hazard function7 which is increasing for small durations and decreasing for long dura-

tions. The generalized F distribution8 which encompasses the Burr-type 12, the Lomax, the Fish,

and the folded t distributions as particular cases has been proposed in Hautsch (2001) to analyze

excess volume durations. The Birnbaum-Saunders distribution for financial durations has recently

been proposed by Bhatti (2010).

For forecasting purposes eq. (3.2) is not convenient and one has to rewrite the ACD(p,q) process

as an ARMA(max(p, q), q) process for durations. This can be obtained as follows.

Let et = xt − Ψt be the innovation associated with the duration process or the martingale differ-

6 The Weibull distribution reduces to exponential one if the shape parameter is set to one.
7 The hazard function of the generalized gamma distribution can be found in Glaser (1980).
8 The hazard function of the generalized F has been studied in McDonald and Richards (1987).

47



The Logarithmic ACD (Log-ACD) Model M. Segnon

ence. By inserting et in the eq. (3.2), and rearranging terms we obtain

xt = ω +

max(p,q)∑

j=1

(β j + δ j)xt− j −
q∑

j=1

δ jet− j + et, (3.3)

or equivalently

[1 − β(L) − δ(L)]xt = ω + [1 − δ(L)]et. (3.4)

A well-defined duration process in eq. (3.3) imposes that the following condition muss be

satisfied:
∑p

j=1 β j +
∑q

j=1 δ j < 1. As shown by Nelson and Cao (1992) for GARCH processes it

is clear that the stationarity and invertibility conditions for duration processes in eq. (3.4) require

that the roots of [1 − β(L) − δ(L)] and [1 − δ(L)], respectively, lie outside the unit circle.

A natural way to extend the ACD model is to include some exogenous economic variables such

as the bid-ask spread, the unexpected trading volume9 in the conditional duration equation, cf.

eq. (3.2). This has been done in many papers to improve the forecast performance of the model.

However, some authors find this extension of the ACD model to be incomplete, because it does not

care about the information revealed by the price process that is primary for forecasts. Engle (2000)

proposed an ACD-GARCH model that is a combination of a marginal ACD model for durations

and a GARCH model for returns. The ACD-GARCH model has also been studied by Grammig

and Wellner (2002). Models developed in the literature with the same objective can be found in

Meddahi et al. (2006), Hafner (2005), Darolles et al. (2000), and Russell and Engle (2005).

Note that the estimation of the standard ACD model with different distributional assumptions for

innovations can be easily performed by the maximum likelihood approach. Except for exponential

distribution, other distributional assumptions do not provide asymptotically consistent estimators

under model misspecification by quasi maximum likelihood estimation (QMLE), so that their

inference depends on the quality of the model fit. By exploiting the results of Lee and Hansen

(1994) Engle and Russell (1998) furnished asymptotic properties of the ACD(1,1).

3.3.2. The Logarithmic ACD (Log-ACD) Model

In addition to the fact that the ACD model is well suited to the analysis of the time elapsed between

consecutive transactions, we are also interested in testing some market microstructure hypotheses.

This requires to add other economic variables than lagged durations in the standard ACD model,

and therefore, more restrictions on the parameters to ensure positivity of the conditional expected

duration. To avoid the non-negativity constraints on the parameters, Bauwens and Giot (2000)

proposed the logarithmic version of ACD model. The Log-ACD model imposes a nonlinear re-

lationship between the conditional expected duration and their lagged. The generalized equation

9 The unexpected trading volume is defined as the deviation of the actual trading volume from the time-of-the-day ad-
justed volume.
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form for the conditional expected duration in the Log-ACD model is given by

ψt = ω +

p∑

j=1

β j f (ξt− j) +
q∑

j=1

δ jψt− j, (3.5)

where different functional forms for f (ξt− j) can be used. ψt is the logarithm of Ψt. Bauwens and

Giot (2000) proposed two choices:

1. The first one is f (ξt− j) = ln(ξt− j) = ln
(

xt− j/Ψt− j

)

and eq. (3.5) becomes

ψt = ω +

p∑

j=1

β j ln(xt− j) +
q∑

j=1

(

δ j − β j

)

ψt− j, (3.6)

and this model specification is called Log-ACD1 in the original paper of Bauwens and Giot

(2000). Note that for covariance stationarity the following condition has to be satisfied
∣
∣
∣
∣

∑p

j=1 β +
∑q

j=1 δ
∣
∣
∣
∣ < 1.

2. The second one is f (ξt− j) = ξt− j = xt− j/Ψt− j and eq. (3.5) becomes

ψt = ω +

p∑

j=1

β j

[

xt− j/ exp(ψt− j)
]

+

q∑

j=1

δ jψt− j. (3.7)

• This model specification is termed Log-ACD2, the necessary condition for covariance sta-

tionarity is
∣
∣
∣
∣

∑q

j=1 δ
∣
∣
∣
∣ < 1. The Log-ACD2 is preferred in practice and in empirical analysis

due to its ability to better fit financial duration data than the Log-ACD1. All the above-

mentioned distributional assumptions for the innovation in the standard ACD model can

also be used in the Log-ACD models. The moments of Log-ACD models with any distribu-

tion with positive support are provided in Bauwens et al. (2008) and statistical properties of

the Log-ACD models with Burr and generalized F distributions for innovations have been

investigated in Karanasos (2008). Recently, Allen et al. (2008) proposed the Lognormal

distribution for innovations in the Log-ACD models and proved the consistency and asymp-

totic normality of quasi-maximum likelihood estimators that are essential for a valid infer-

ence and diagnostic tests. The estimation of the Log-ACD models can also be performed

via exact maximum likelihood method.

Bauwens and Giot (2003) argue that the sign of changes in ask and bid prices would affect the

duration for the next price movement, and therefore, have to be taken into account when model-

ing duration. To incorporate this primary information in the Log-ACD model, they combined a

two-state transition model with a Log-ACD model to obtain an asymmetric Log-ACD model that

can jointly model the duration process and the information on the direction of price movement.

Following Bauwens and Giot (2003)’s idea, Allen et al. (2008) developed two new asymmetric

Log-ACD models. The first model is related to the model of Glosten et al. (1993) and is obtained
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by introducing an indicator function It in the second term on the right-hand side of eq. (3.6) that

takes 0 if the significant change in the mid-price is positive and 1 if it is negative. The second one

is the Log-ACD model that permits including some exogenous variables in the eq. (3.6).

3.3.3. The Augmented ACD (AACD) Model

Fernandes and Grammig (2006) generalized the standard ACD model using a Box-Cox transfor-

mation with parameter λ ≥ 0. The motivation is to find a class of models that will avoid an over-

prediction after either very long or very short durations as stressed in Engle and Russell (1998).

The ACD model after the transformation can be expressed as

Ψλt − 1

λ
= ω∗ + β∗Ψλt−1[ξt−1 − b − c(ξt−1 − b)]v + δ

Ψλ
t−1 − 1

λ
. (3.8)

The augmented ACD (AACD) model is obtained by rewriting eq. (3.8) as

Ψλt = ω + βΨ
λ
t−1[|ξt−1 − b| − c(ξt−1 − b)]v + δΨλt−1, (3.9)

whereω = λω∗−δ+1 and β = λβ∗. Note that the Box-Cox transformation is concave if λ ≤ 1 and

convex if λ ≥ 1. The shocks impact curve10 g(ξt) = [|ξt−1 − b|−c(ξt−1−b)]v allows the conditional

duration process to capture asymmetric effects through the shift and rotation parameters b and c,

respectively. The asymmetric responses implied by the shocks impact curve are identified with the

shift parameter b. The parameter c reveals information on the type of rotation. c < 0 indicates a

clockwise rotation and c > 0 a counterclockwise. The shape parameter v determines whether the

shocks impact curve is concave (v ≤ 1) or convex (v ≥ 1). The AACD model includes various

ACD models such the Box-Cox ACD(λ → 0, b = c = 0) model proposed by Dufour and Engle

(2000a), the standard ACD (λ = v = 1 and b = c = 0) model, Log-ACD1 (λ → 0, v = 1

and b = c = 0) model and Log-ACD2 (λ, v → 0 and b = c = 0) model. Sufficient conditions

that guarantee finite higher-order moments for conditional duration processes, strict stationarity,

geometric ergodicity and β-missing property with exponential decay can be found in Fernandes

and Grammig (2006). The parameters of the AACD models can easily be estimated using the

maximum likelihood approach.

3.3.4. Long Memory ACD Models

The basic ACD model belongs to the class of ARMA-type models, and thus, can just account for

short serial dependence in conditional duration. However, empirical intertrade data exhibits long

memory features, i.e. the autocorrelation functions of empirical data display a slow, hyperbolic

rate of decay. Inspired by fractionally integrated GARCH (FIGARCH model) proposed by Baillie

et al. (1996), Jasiak (1998) developed a fractionally integrated version of ACD, termed FIACD

10 cf. Fernandes and Grammig (2006) for illustration of the shocks impact curve for different parameter values for b, c,
and v.
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model that can reproduce the long memory properties observed in the empirical data. By intro-

ducing the fractional differencing operator (1 − L)d, with d ∈ [0, 1] in the ARMA representation

of the ACD(p,q) in eq. (3.4) one obtains the FIACD(p, d, q) model that can be expressed as

[1 − δ(L)]Ψt = ω
∗ + [1 − δ(L) − [1 − β(L) − δ(L)](1 − L)d]xt,

= ω∗ + A(L)xt,

(3.10)

where A(L) = a1L + a2L2 + . . . and δ(L) = δ1L + δ2L2 + . . . are polynomials with ak ≥ 0 and

δk ≥ 0, for k = 1, 2 . . . , and ω∗ > 0 in order to guarantee the positivity of the conditional duration.

The fractional differencing operator (1 − L)d is given by

(1 − L)d =

∞∑

j=0

Γ( j − d)
Γ(−d)Γ( j + 1)

L j, (3.11)

where Γ(·) is the gamma function. For d ∈ [0, 1] the FIACD model is strictly stationary and ergodic

(cf. Jasiak, 1998). The FIACD model can display long memory properties of financial duration

data. If 0 < d < 0.5, the FIACD process is a long memory process and the autocorrelation function

decays hyperbolically. For d = 0, the FIACD model becomes an ACD model, and for d = 1 the

FIACD reduces to an integrated ACD (IACD) model. However, the principal issue related to the

FIACD process is that it is not covariance stationary, in other words, it does not possess finite first

and second unconditional moments. Consequently, the FIACD model does not have long memory

in the usual sense. Furthermore, the asymptotic properties of the model estimator are until now

not well-documented. Recently, alternative specifications have been made available by Koulikov

(2003) and Karanasos (2004). Both proved that their processes possess finite first and second

moments under certain conditions that are not mentioned here. We refer the reader to Koulikov

(2003) and Karanasos (2004). Jasiak (1998) suggested that the asymptotic properties of QML

estimators of the FIACD (p, d, q) model with d ∈ (0, 1) can be obtained by extending the results

found by Lee and Hansen (1994) for the IGARCH(1,1) process with a Gaussian misspecified pdf.

Another model for capturing the long memory properties of financial durations has been de-

veloped by Deo et al. (2010). They proposed a long memory stochastic duration (LMSD) model

that is an extension of the stochastic volatility duration (SCD) model developed by Bauwens and

Veredas (2004), cf. 3.3.6. The model can be formalized as

Ψt = exp(ψt)

ψt = ω + (1 − L)det,
(3.12)

where ω ∈ R, et is a zero-mean Gaussian stationary short memory series, L is the lag operator, and

d ∈ [0, 0.5]. ξt in eq. (3.1) are i.i.d., independent of et. Note that here it is difficult to implement

the MLE due to the fact that the variable ψt in the model is latent, i.e. is unobservable and has

to be integrated out. To circumvent this difficulty, Deo et al. (2010) make use of the Whittle’s
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approximation to implement a quasi-maximum likelihood estimator for the parameters.

3.3.5. Regime-Switching ACD Models

Threshold ACD Model:

It is well-documented that there is a nonlinear dependence between conditional expectations

of durations and past information set available (cf. Engle and Russell, 1998; Zhang et al., 2001;

Meitz and Teräsvirta, 2006). In order to model different dynamics observed in fast and slow trad-

ing period in the market Zhang, Russell, and Tsay proposed the threshold ACD (TACD) model

that is wedded to the threshold autoregressive (TAR) model and the more general threshold autore-

gressive moving average (TARMA) model. Defining Ri = [ri−1, ri), i = 1, 2, . . . , I, for a positive

integer I, where −∞ = r0 < r1 < · · · < rI = ∞ are the threshold values. A I-regime threshold

ACD(p,q) model can be formalized as

Ψt = ω
(i) +

p∑

j=1

β
(i)
j

xt− j +

q∑

j=1

δ
(i)
j
Ψt− j, if lt−d ∈ Ri. (3.13)

lt−d is the threshold variable that determines the regime boundaries. The delay parameter d is a

positive integer. Here it is important to know that the parameter of the innovation distribution in

the TACD model varies across I-regimes, allowing for different shapes for the hazard function in

different trading regimes. Zhang et al. (2001) intensively study the TACD(1,1) model and provide

conditions for geometric ergodicity and existence of moments which can be easily generalized for

higher order models.

Inspired by the smooth transition GARCH models (cf. Lee and Degennaro, 2000; Lundbergh

and Teräsvirta, 2002) Meitz and Teräsvirta (2006) introduced the smooth transition ACD (STACD)

model. The model is closely related to the TACD model and can help avoiding the overprediction

of the expected durations often observed by the linear ACD model after either very long or very

short durations. Meitz and Teräsvirta (2006) also proposed a time-varying ACD (TVACD) model

that in contrast to the standard ADC model allows for changing parameters over the sample period.

The idea to incorporate time-varying parameters in the standard ACD model seems to be more

realistic due to the fact that the economic environment is often affected by negative or positive

shocks, and thus, can also affect the structure of the trading process. The TVACD model represents

the ideal tool for testing the constancy of parameters.

Markov Switching ACD Model:

With the objective to find a model that can capture a broad range of different dynamics observed

in financial duration data, Hujer et al. (2002) proposed a Markov switching ACD (MSACD) model.

The idea is to introduce in the conditional mean function an unobserved random regime variable st

whose evolution over time follows a Markov chain process. The MSACD model can be formalized

as

Ψt =

k∑

i=1

Pr(st = i|ℑt−1; θ)Ψ(i)
t , (3.14)
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where Ψi
t = E(xt|st = i,ℑt−1; θ) is the regime specific conditional mean and may have a linear

or nonlinear autoregressive specification according to the dynamics of a standard ACD model.

Pr(st = i|ℑt−1; θ) represents the probability that st is in state i given the information set ℑt−1 avail-

able at time t − 1. How one has to specify the conditional mean function Ψ(i)
t and the stationarity

conditions are discussed in detail in Hujer et al. (2002). In their paper Hujer et al. (2002) used Burr

family distributions for each regime specific distribution. De Luca and Zuccolotto (2006) studied

the regime switching Pareto ACD models and found that this specification permits capturing better

the dynamic of the duration process.

Discrete Mixture ACD Model:

Recently, Hujer and Vuletić (2007) proposed a discrete mixture ACD (DMACD) model that is

designed by introducing a discrete-valued latent regime variable in the ACD process. By doing so,

Hujer and Vuletić (2007) transform the observable duration process to a latent stochastic duration

process. This new representation for durations encompasses various ACD models such as the

MSACD and the standard ACD models. The DMACD model is a weak form of the ACD model,

because innovations in this modeling framework are serially independent with known discrete

mixture distribution that can be specified as

h(ξt; θ) =
N∑

i=1

αih(ξt|st = i; θ), (3.15)

where αi ∈ [0, 1] is the probability for prevailing state i, st is latent regime variable with count-

able support J = {i|1 ≤ i ≤ I}, I ∈ N.

The idea of mixture distributions for modeling financial durations is not new and mixture ACD

models for durations have been proposed by De Luca and Zuccolotto (2003) and De Luca and

Gallo (2004) before. They found that mixture distributions are convenient to model the presence of

heterogeneous traders in the market. Hujer and Vuletić (2007) gained insights from the empirical

application that by assuming constant regime probabilities all along the trading time one obtains

a static MACD (SMACD) model that parsimoniously models the high persistence of intraday

durations. They recommended to use this static representation to overcome the distributional

problem of the duration in De Luca and Gallo (2004). Though the mixture models can reproduce

high-frequency duration data, they exhibit poor forecasting performance. Hujer and Vuletić (2007)

argue that this is due to the fact that the mixture models cannot properly classify future regimes.

However, these models help to better understand the trade behavior of the market participants.

The estimation of regime switching can be performed by the maximum likelihood method.

The maximum likelihood method is simple, however not so appropriate for switching models

due to the fact that their likelihood functions may have more than one local maximum and these

may be located in boundary regions of the parameter space (cf. Hujer et al., 2002). Hujer et al.

(2002) proposed to use the Expectation-Maximization (EM) algorithm developed by Dempster

et al. (1977) that in contrast to the standard algorithms can solve the problem of multiple local

maximums.
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3.3.6. Stochastic Conditional Duration Model

Bauwens and Veredas (2004) proposed a stochastic conditional duration (SCD) model whose con-

struction is based on the assumption that durations are generated by a dynamic stochastic latent

variable. The latent conditional duration is formalized as

Ψt = exp(ψt),

ψt = ω + βψt−1 + et,
(3.16)

where |β| < 1 and et denotes the innovation in the model.

This specification for the conditional duration permits the SCD model to provide a flexible

structure for the dynamics of the duration process, but however is not adequate for capturing the

asymmetric behavior in duration data. To tackle this shortcoming, Feng et al. (2004) extended the

SCD model by introducing an intertemporal error term in the latent conditional duration process,

allowing the SCD model more flexibility. Feng et al. (2004) formalized the asymmetric SCD

model as

ln(xt) = µ + Ψt + ǫt,

Ψt = βΨt−1 + ̺ǫt−1 + vt,

(3.17)

where |β| < 1, ǫt and vt are i.i.d. innovations and are mutually independent. They assumed that vt

follows Gaussian N(0, σ2
v) and consider three distributions for ǫt, namely log-Weibull, log-gamma

and log standard exponential.

The estimation of the SCD model is difficult, because the likelihood function involves a multi-

dimensional integral due to the presence of the unobservable variable Ψt. Bauwens and Veredas

(2004) proposed an attractive QML method based on the Gaussianity assumption of the log of

the innovations and the use of the Kalman filter in a linear space state model (cf. Harvey et al.,

1994). The shortcomings of this estimation method are that it does not provide efficient estimates

of the parameters. However, the estimators are asymptotically consistent and the estimation is

time parsimonious. Recently, Bauwens and Galli (2009) applied the efficient importance sam-

pling methodologies developed by Liesenfeld and Richard (2003) to estimate the SCD model

and obtained a significant gain in forecasting exercises. Furthermore, the empirical characteristic

function and the GMM methods can also be used to perform the estimation of the SCD model (cf.

Knight and Ning, 2008). Feng et al. (2004) used the Monte Carlo maximum-likelihood (MCML)

approach proposed by Durbin and Koopman (1997) to estimate the asymmetric SCD model.

3.3.7. Stochastic Volatility Duration Models

Ghysels et al. (2004) developed a stochastic volatility duration (SVD) model with the aim to
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capture different patterns of temporal dependence observed in the conditional mean and variance

of financial durations. In the SVD model durations are formalized as

xt =
Ut

aVt

, (3.18)

where Ut,Vt are independent, Ut follows the standard exponential distribution (Ut ∼ Exp(1), or

gamma(1, 1)), and Vt follows a gamma distribution with positive parameter b (Vt ∼ gamma(b, b)).

This specification for durations can be remodeled through suitable transformations in a two factors

model where the factors are Gaussian:

xt =
G(1,Φ(F1t))
aG(b,Φ(F2t))

=
H(1, F1t)

aH(b, F2t)
, (3.19)

where F1t, F2t are i.i.d. standard Normal variables, G(b, .) is the quantile function of the

gamma(b, b) distribution, and Φ is the cdf of the standard Normal. Ghysels et al. (2004) gen-

eralized the model to a class of SVD models by utilizing a bivariate vector autoregressive (VAR)

time series representation for the process Ft = (F1t, F2t)′, where the marginal distribution of Ft is

constrained to be N(0, I) in order to guarantee that the marginal distribution of xt is Pareto.

The model can be expressed in its generalized form by

Ft =

I∑

i

ΩiFt−i + εt, (3.20)

where Ωi is a matrix of autoregressive VAR parameters, and εt is a vector of Gaussian white noise

random variables with variance-covariance matrix Σ(Ω) such that Var(Ft) = Id.

Since its introduction, the SVD model did not achieve success in empirical application due to

the fact that its estimation causes enormous problems. Indeed, the likelihood function involves a

multidimensional integral due to the presence of latent factors. It is clear that a simulated max-

imum likelihood method can be used to perform the estimation (cf. Shephard and Pitt, 1997).

However, this estimation approach is computationally intensive and time consuming. To make

the estimation easier without any additional assumptions on the model parameters, Ghysels et al.

(2004) proposed estimation procedures which consist in first estimating the parameters a and b

using QML method, and then, second making use of the method of simulated moment (cf. Mc-

Fadden, 1989; Gouriéroux and Monfort, 1996, chap. 2) after replacing the parameters a and b

by their respective estimates â and b̂. In addition to the estimation difficulties, the SVD model

is found by Bauwens et al. (2004) to exhibit poor forecast performance compared to the standard

ACD or Log-ACD model.

3.4. Markov Switching Multifractal Duration Models

Here we present a new class of financial duration models. This class includes two duration models

recently developed in the literature. Both models are independently proposed by Chen et al. (2013)
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and Baruník et al. (2012) who used the Markov switching multifractal process proposed in Calvet

and Fisher (2001a, 2004a) as basic ingredients.

3.4.1. Chen/Diebold/Schorfheide Model

Chen et al. (2013) proposed a mixture-of-exponentials representation for intertrade durations.

Their model can be formalized as

xt =
ξt

λ(Mt)
, (3.21)

with

λ(Mt) = λ̄
k∏

i=1

M
(i)
t , (3.22)

where xt represents the time elapsed between two consecutive financial events, ξt is i.i.d. standard

exponential distributed, λ̄ is the unconditional mean intensity (λ̄ > 0) that controls the overall

intensity level, k ∈ N and Mt =
(

M
(1)
t ,M

(2)
t , . . . ,M

(k)
t

)

is the trading intensity state vector at time

t. The latent intensity components M
(1)
t ,M

(2)
t , . . . ,M

(k)
t are drawn from a Binomial distribution

taking values m0 and 2 − m0; m0 ∈ (0, 2], with equal probability so that E
[

Mi
t

]

= 1 is guaranteed.

Each intensity component, M
(i)
t , is renewed at time t with probability γi depending on its rank

within the hierarchy of multipliers and remains unchanged with probability 1 − γi. The transition

probabilities are specified as

γi = 1 − (1 − γ1)(bi−1), i = 1, . . . , k, (3.23)

with parameters γ1 ∈ (0, 1) and b ∈ (1,∞). The transition matrix related to each intensity compo-

nent has the following form:

Pi =





1 − 1
2γi

1
2γi

1
2γi 1 − 1

2γi




. (3.24)

From eq. (3.23) it is clear that the renewal probabilities grow approximately at a geometric rate

b (cf. Calvet and Fisher, 2004a), creating intensity components in descending frequency order, i.e.,

from low-frequency to high frequency components. In sum, the value of γi determines the average

lifetime or persistence of a Mi
t shock. This means that the smaller γi is, the longer average lifetime

the Mi
t shock will have, and conversely. Note that the duration process is stationary, ergodic

because first the processes Mi
t are strictly stationary and ergodic (due to the transition matrix in

eq. (3.24)), and second they are also independent across k and independent of ξt.

Binomial distribution for multipliers implies a finite number of states of the hidden Markov

process, and this permits the estimation of the model using the exact maximum likelihood via

Bayesian updating (cf. Calvet and Fisher, 2004a). The issues related to the maximum likelihood

approach is that it becomes unfeasible if the multipliers have a continuous probability distribu-

tion11 or if the number of the multiplier components is greater or equal to ten (k ≥ 10). As stressed

11 A continuous probability distribution for multipliers implies an infinite state space of the hidden Markov chain.
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in Chen et al. (2013) the MSMD model is afflicted with the following identification problems: the

parameter b is non-identifiable if γi = 1, but becomes weakly identifiable if γi approaches its

upper bound that is set to 0.999. In the next subsection we present an alternative MSMD model

introduced by Baruník et al. (2012). Other identification problems related to b = 1 and m0 = 1 do

not have any relevance for the empirical application.

3.4.2. Baruník/Shenai/Žikeš Model

Baruník et al. (2012) proposed a multiplicative error form where the adjusted duration, xt, is the

product of the Markov switching multifractal process of Calvet and Fisher and an i.i.d. unit-mean

innovation. The model is defined as

xt = λ(Mt)εt, (3.25)

where λ(Mt) is defined as in eq. (3.22). Any positive distribution with positive support can be

assumed for the unit-mean innovation ξt in the model.

In the paper by Baruník et al. (2012) the latent intensity components or multipliers are drawn

from a Binomial distribution taking m0 and 2 − m0; m0 ∈ (1, 2), with equal probability in order

to guarantee the unit-mean of M
(i)
t . In addition to Binomial distribution Baruník et al. (2012) also

considered continuous distribution for the multipliers, namely Lognormal distribution (cf. Lux,

2008). In this case multipliers are determined by the random draws from a Lognormal distribution

with parameter µ, i.e.

Mi
t ∼ LN(−µ, 2µ). (3.26)

Additionally to the exact maximum likelihood method proposed by Calvet and Fisher (2004a),

which can only be used for the estimation of the model when the multipliers follow discrete distri-

butions, e.g., the Binomial distribution, they also propose the Whittle estimator for the parameters

in the MSMD model. The advantage of the latter is that it is applicable to the models with a dis-

crete or continuous distribution for multipliers. The Whittle estimator is obtained by minimizing

the negative Whittle log-likelihood function. For more details of the estimation procedures, we

refer the reader to Baruník et al. (2012). For forecasting purposes optimal (cf. Calvet and Fisher,

2004a) or linear (cf. Lux, 2008) forecasting methodologies can be performed.

3.5. Diagnostic Tests

One important question when modeling high-frequency financial durations remains how to test the

adequacy of models used. Engle and Russell (1998) proposed in their seminal paper to examine

the estimated residuals (ξ̂t = xt/Ψ̂t) and the squared estimated residuals (ξ̂2
t ). The idea is that a

correct specification of the model would imply that ξt are i.i.d. which means that the model can

capture the intertemporal dependence. They applied the well-known Ljung-Box test to ξ̂t and ξ̂2
t

to check the independency hypothesis. This common way of examining the dynamical properties
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of the estimated residuals has often been used in a great number of papers. The issue related to

the Ljung-Box Q-statistic is that its asymptotical behavior is not documented for the ACD models.

This doubtfulness about the asymptotic distribution of the test statistic has been reinforced by the

work of Li and Mak (1994), who find that when applying the Ljung-Box test to the estimated

standardized residuals in GARCH framework the test statistics do not have the usual asymptotic

chi-squared (χ2) distribution under the null hypothesis. Li and Yu (2003) developed a Portmanteau

test for the goodness-of-fit under the assumption that the innovations are exponential distributed12.

Although the Portmanteau test of Li and Yu (2003) is adapted to the ACD framework, its appli-

cation to assess the goodness-of-fit of ACD models remains scarce. Perhaps, this is due to the

fact that exponential or Weibull distribution for durations is not in conformity with the empirical

distribution function of durations. Additionally to Ljung-Box or Portmanteau test some authors

prefer to visualize the autocorrelation function of estimated residuals (cf. Jasiak, 1998; Bauwens

and Giot, 2000) or compare the marginal density of durations obtained from the model with the

empirical marginal density of the observed durations (cf. Bauwens and Veredas, 2004; Ghysels

et al., 2004). Chen et al. (2013) used the information matrix (IM) test developed by White (1982)

to test i.i.d. data and later extended by White (1994) to time series models to assess whether

the MSMD model is well specified. In other papers QQ-plots (cf. De Luca and Gallo, 2004) or

Bartlett identity tests (cf. Prigent et al., 2001) have been used for assessing the adequacy of the

ACD models. Duchesne and Pacurar (2008) proposed a class of tests for testing the adequacy of

ACD models. The test procedures are based on Hong (1996, 1997)’s approach that consists in

utilizing the kernel-based spectral density estimator of the standardized residuals.

Some authors prefer to concentrate their efforts on verifying the distributional assumptions for

innovations in the ACD models. Engle and Russell (1998) developed an overdispersion test that

can help checking whether the distributional assumptions (exponential, Weibull) for innovations

are suited. Fernandes and Grammig (2005) found that the overdispersion test exhibits poor perfor-

mance. Dufour and Engle (2000a) developed a new Lagrange multiplier test that can be used to

evaluate the accuracy of density forecasts. The test helps to assess whether the ACD models are

well specified. Bauwens et al. (2004) employed density forecast evaluation methods of Diebold

et al. (1998) to assess the specification of duration models. Their methodology is simple and con-

sists in testing the null hypothesis that the sequence of probability transforms of the one-step-ahead

forecasts of the conditional densities of durations are i.i.d.U(0, 1) distribution. The null hypothesis

cannot be rejected if the one-step-ahead forecasts of the conditional densities of the durations are

in conformity with the true densities of durations. Allen et al. (2009) combine density and inter-

val forecast methodologies to test the adequacy of the ACD models. Baruník et al. (2012) check

the goodness-of-fit of their model using the specification test proposed by Chen and Deo (2004).

The idea of Chen and Deo (2004) is that under the null hypothesis of correct model specification

the difference between the estimated model’s spectral density and the smoothed periodogram of

the data has to be zero. Fernandes and Grammig (2005) also proposed new procedures to test

12 In the case the innovations are Weibull distributed one just needs to make a change of variable to obtain an appropriate
portmanteau test for goodness-of-fit (cf. Li and Yu, 2003).
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the ACD models’ specification. This consists in gauging the distance between the parametric and

nonparametric estimates of the density and hazard rate functions of the residuals obtained from

QML estimation.

For other authors the functional form of the conditional mean duration can also be a source of

misspecification. So, other test procedures have been developed for testing the specification of

the conditional mean duration function. The crucial condition for obtaining QML estimators in

the ACD models is the correct specification of the conditional mean function. This basic intuition

has been exploited to develop different test procedures. Meitz and Teräsvirta (2006) proposed a

Lagrange Multiplier (LM) test for testing the functional form of the conditional mean duration.

They also proposed a more general LM test that can be used for testing the adequacy of different

forms (linear, nonlinear, or higher-order ACD models) of specification of the conditional mean

duration function, and the constancy of the parameters over the sample period. In the same line,

Hautsch (2006) developed LM tests against sign bias alternative and nonlinearities in the news

impact function (cf. 3.3.3). He also used various conditional moment (CM) tests and integrated

conditional moment (ICM) tests which are obtained as a conversion of conditional moment test in

to a chi-square test (cf. Bierens, 1990). With the objective to generalize the LM tests that possess

optimal power against local alternative Hautsch (2008) proposed a conditional moment test which

is the robust form of Newey (1985)’s conditional moment test adapted to the ACD framework.

Hautsch (2012) recommended to use CM tests as complements to LM tests in real application.

Chen and Hsieh (2010) also proposed generalized moment tests. Their test allows for testing the

conditional mean function, the i.i.d.ness, and the distributional misspecification.

3.6. Some Empirical Results

The basic ACD model and its extensions have successfully been applied for testing market mi-

crostructure hypotheses and for managing market risk in empirical finance (cf. Bauwens and Giot,

2000; Prigent et al., 2001; Giot, 2005; Dionne et al., 2009). We distinguish three different financial

durations in the literature, namely the trade duration that is defined as the time elapsed between

two consecutive trades, the price duration which is the time required to observe a change in the

mid-price not less than a given threshold (ιp), and the volume duration that is the time in want of

trading certain amount of securities not less than a given threshold (ιv). As we mention before,

financial durations are characterized by high persistence and dispersion, but there exist some dif-

ferences between them. Empirical data clearly show that persistence in trade durations is higher

than that observed in price and volume durations. This can be observed when plotting the auto-

correlation functions of adjusted empirical data which hyperbolical decay is more pronounced for

trade durations than that for price or volume durations. While trade and price durations exhibit

overdispersion, underdispersion is often observed in volume durations. In empirical applications

two major problems are encountered when using financial duration data. The first one is how

to properly remove seasonal patterns from the data without destroying their dynamics properties.
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The second is how to deal with zero durations present in the data.

Engle and Russell (1998) report the presence of seasonality in high-frequency duration data.

They observe high trading activity at the opening and closing time in the market and a slowdown

of trading intensity around noon, which corresponds to lunchtime. These observations clearly

show that data has stochastic and deterministic components. The deterministic component can in

turn be categorized in a day-of-the-week effect and time-of-the-day effect (cf. Bauwens and Giot,

2000) and has to be removed before any estimation (cf. Engle and Russell, 1998). The presence

of the deterministic component in the raw data can be explained by the behavior of market par-

ticipants (traders, market-maker) and the institutional features of trading places. For instance, at

the beginning of each trading day each trader or market-maker wants to benefit from the overnight

macroeconomic news and this leads to higher trading intensity, and thus, short waiting time be-

tween transactions, and at the end of the trading day some traders precipitate to close their positions

causing an increase of the trading activity. There exist two methods that are often used when com-

puting the time-of-the-day function, namely the spline smoothing and the kernel smoothing. In

Engle and Russell (1998) the time-of-the-day function is obtained as follows: each trading day is

split in 13 intervals of thirty minutes, for each interval an expected duration is computed, and then

cubic splines are used to smooth the time-of-the-day function on the thirty minutes intervals. The

second method proposed by Veredas et al. (2001) consists in regressing the raw duration on the

time-of-the-day in a non-parametric framework using a gamma kernel with the Nadaraya-Watson

estimator.

Zero trade durations have first been reported by Engle and Russell (1998) when studying In-

ternational Business Machines (IBM) intertrade durations (about two-thirds of the intertrade IBM

data are zero durations). Engle and Russell (1998) dumped the zero durations before modeling

the data. As by Engle and Russell (1998) zero trade durations are discarded by many authors.

The authors justify their treatment approach for zero trade durations by arguing that simultane-

ous observations may arise from split-transactions, and therefore, are not crucial for the analysis.

Recently, Veredas et al. (2001) claim that zero durations may have information content and their

remove will affect the dynamic properties of the data. Their assertion has been confirmed by

Bauwens (2006) who observed an increase of Q−statistics and residual autocorrelation after zero

durations have been removed from the data. However, the results obtained by taking into consid-

eration zero durations when analyzing trade durations (cf. Zhang et al., 2001; Bauwens, 2006) are

not satisfactory.

Engle and Russell (1998) find clustering effects in financial durations, i.e. short durations tend

to be followed by short durations and long durations by long durations. This result confirms

the theoretical models developed by Kyle (1985), Admati and Pfleiderer (1988), and Easley and

O’Hara (1992). They also find that neither exponential nor Weibull versions of ACD model are

appropriate for modeling trade duration data. Bauwens and Giot (2000) find a significant negative

impact of the trading intensity, the average volume per trade, and the average spread on the bid-

ask quote process using the Log-ACD model. This finding is in conformity with the Easley and
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O’Hara (1992) model. Engle and Lange (2001) proposed a new statistic, VNET, that can be used

for quantifying realized market depth for a specific price deterioration, and find that market depth

varies with volume, transactions and volatility. Hautsch (2003) finds that mid-quote changes, bid-

ask spreads, and trading volumes are crucial for forecasting the intensity of liquidity demand.

Research by Bauwens et al. (2004) reveals that complicated ACD models such as TACD, SCD

and SVD do not exhibit superior forecasting performances compared to the standard ACD or Log-

ACD with flexible distributions (generalized gamma, Burr) for innovations. Allen et al. (2009)

confirm the ability of the basic ACD model with flexible distributions (Burr, generalized gamma)

to provide a good modeling of financial duration data. They also find that Lognormal distribu-

tion performs as well as generalized gamma distribution, and thus, is a convenient candidate for

modeling duration data.

Chen et al. (2013) find that the MSMD model can reproduce the clustering effects, the non-

linearities, and long memory features observed in financial data. Chen et al. (2013)’s model dom-

inates the ACD model with exponential distribution for innovation in forecasting trade durations

over different horizons. Baruník et al. (2012) also find that their MSMD model can properly re-

produce most stylized facts of the price duration data. In empirical application they find that the

model exhibits similar forecasting performance as the LMSD model of Deo et al. (2010). We

finish by summarizing 27 studies on the financial duration data using different ACD and MSMD

models with different distributional assumptions on innovations in Tables 3.1, 3.2, 3.3, 3.4, 3.5,

3.6, 3.7, and some diagnostic tests in Table 3.8. For each study we provide the author, the model

used, the distributional assumptions about innovations, the type of financial durations, the stocks

and the market places where they are traded.

3.7. Conclusion

This chapter has briefly presented various ACD and MSMD models developed in the empirical fi-

nance literature for modeling financial durations. It cannot be denied that the standard ACD model

and its extensions achieve a lot of success in empirical finance. This success is overshadowed by

the inability of the ACD models to properly capture the most stylized facts (scaling behavior, self-

similarity, fat tails, long memory) of financial durations and trade-related variables such as bid-ask

spread, trading volume recently reported in the literature. The applicability of the multifractal pro-

cesses for modeling high-frequency duration data is in the early stages of development, but there

is by now evidence that the MSMD models can provide better fit to financial durations, especially

the intertrade durations than the traditional ACD models. We finish by identifying some research

avenues that can be tracked in the future in order to provide a deep understanding of the intraday

price process in the markets. More investigations are needed about zero durations in order to re-

ally know how the dynamic properties of the financial durations are influenced by zero durations.

The MSMD models can be applied to analyze the impact of the market depth, the bid-ask spread

and dealer costs on the trading process. They can also find applications in forecasting intraday
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market risk, liquidity risk and in pricing options. Multivariate MSMD models can be introduced

to investigate the interdependence between price and duration processes. We are confident that

these research can substantially help to better understand financial markets.
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Table 3.8.: Different diagnostic tests

Authors Diagnostic tests

Engle and Russell (1998)
Ljung-Box test, overdispersion test

Test for detecting nonlinear dependence

Jasiak (1998) Ljung-Box test

Bauwens and Giot (2000) Ljung-Box test

Dufour and Engle (2000a) LM-test

Prigent et al. (2001) Bartlett identity test

Ghysels et al. (2004) Ljung-Box test

Bauwens and Veredas (2004) QQ-plots

Bauwens et al. (2004) Density forecasts

Fernandes and Grammig (2005) D-test, H-test

Meitz and Teräsvirta (2006) LM-test, general battery of tests of LM

Hautsch (2006) LM-tests, CM-tests, ICM-tests

Duchesne and Pacurar (2008) Generalized Box-Pierce/Ljung-Box test

Chen and Hsieh (2010) Generalized moments tests

Chen et al. (2013) White’s information-matrix test
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4. Modeling and Forecasting Crude Oil Price

Volatility: Evidence from Historical and

Recent Data

4.1. Introduction

The recent literature shows a growing interest in modeling and forecasting oil price volatility due

to its impact on the global and regional economies (cf. Wang et al., 2012; Rahman and Serletis,

2012). How oil price shocks may affect economic growth is well-documented in a large body of

research. Different transmission mechanisms were developed in the literature. Examples include

Rotemberg and Woodford (1996) and Finn (2000), among others. Papers by Hamilton (1983)

Davis and Haltiwanger (2001), and Lee and Ni (2002) clearly demonstrated that positive oil price

shocks induce a slow-down in aggregate measures of growth or employment and that negative oil

price shocks lead to an increase in aggregate measures of growth or employment. Recently, Elder

and Serletis (2010) found that increased uncertainty about oil price changes causes a significant

drop in real output and heavily affects measures of durable consumption and fixed investment in

the United States. Their finding is also confirmed by Rahman and Serletis (2012) for the Canadian

economy. In his seminal paper, Hamilton (2003) confirmed the existence of a strong relationship

between oil price changes and GDP growth and showed that this relationship is of a nonlinear

nature. Jones and Kaul (1996) and Sadorsky (1999) showed that oil price shocks have direct or

indirect influence on financial markets. According to Backus and Crucini (2000) they may be

responsible for fluctuations in the international terms of trade. Oil price volatility also represents

an important input for macro-econometric models (cf. Ferderer, 1996), pricing of derivatives (cf.

Wang et al., 2008) and portfolio selection models (cf. Geman and Kharoubi, 2008). So, it is of

primary importance for firms, financial market participants and policy makers to have models

available that can properly reproduce the stylized facts of oil price volatility and provide accurate

forecasts.

The widespread tool used in the literature to analyze oil price volatility consists in GARCH-type

models (cf. Kang et al., 2009; Cheong, 2009; Mohammadi and Su, 2010; Wei et al., 2010). All

these papers have attempted to find the most appropriate GARCH-type models, linear or nonlin-

ear, that can properly reproduce the stylized facts of oil price volatility, and thus, produce accurate

forecasts. While some results speak in favor of fractionally integrated GARCH (FIGARCH) mod-

els (cf. Kang et al., 2009), others provide evidence that the standard GARCH and FIAPARCH (cf.
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Cheong, 2009), and the APARCH models (cf. Mohammadi and Su, 2010) could be more appropri-

ate. In contrast to the previous papers, Wei et al. (2010) consider nine GARCH-type models and

compare their forecasting performance based on six different loss functions. They found that none

of these models can consistently outperform each other, despite the fact that the nonlinear models

can properly capture long memory volatility and/or the asymmetric leverage effect in volatility.

This chapter extends the work of Wei et al. (2010) in two important respects: (i) we add to the

set of GARCH models used in Wei et al. (2010) a new type of volatility model, namely the Markov

switching multifractal (MSM) model, (ii) we consider a large data set that contains oil price ob-

servations of the pre- and post-1900 eras. Our objective is to compare the forecasting performance

of the MSM model with that of GARCH models. Availability of daily data for a twenty-year pe-

riod within the 19th century provides the valuable opportunity to compare the statistical features

of the modern oil market with those of a much earlier phase of the same market. The multi-

fractal1 model provides a completely new approach to the modeling of financial volatility which

it conceives as a multiplicative, hierarchically structured process. Via its particular principles of

construction, it allows to estimate a Markov-switching model with a high number of states without

falling victim to the curse of dimensionality. This structure gives it an intermediate nature between

"true" long-memory processes and simple regime-switching processes allowing to modulate the

temporal dependency via its parameters and the number of hierarchical components. The flexible

regime-switching nature makes it attractive for time series that show pronounced differences be-

tween highly volatile and more tranquil periods (as oil prices do). Research on stock and foreign

exchange markets has documented superior forecasting capabilities of MSM against traditional

GARCH models (Calvet and Fisher, 2004b; Lux and Kaizoji, 2007; Lux et al., 2014). It seems

interesting to explore in how far these findings can be confirmed with important commodities such

as oil. As in Wei et al. (2010), we also use six different loss functions as criteria for comparison,

and then apply the predictive ability test of Hansen (2005) in order to infer whether one particular

model is outperformed by others or not. Here we prefer the predictive ability test of Hansen (2005)

to other powerful evaluation techniques existing in the literature (cf. Diebold and Mariano, 1995;

West, 1996; White, 2000) due to its robustness, and the fact that it allows to compare a benchmark

(possibly nested) model for a whole set of competitors.

The remainder of the chapter is organized as follows. Section 4.2 presents the descriptive statis-

tics of our data sets. Section 4.3 introduces the different volatility models. The forecasting evalu-

ation methodologies are presented in Section 4.4 and results are provided in Section 4.5. Finally,

Section 4.6 concludes.

1 The term multifractal refers to the fractal structure of the resulting volatility process. The MSM has actually been
adapted from very similar models that have first been developed for turbulent flows (cf. Mandelbrot, 1974). Fractality
is also a concept that plays an important role in geophysical research and petroleum geology (cf. Barton and La Pointe,
1995), but it seems unlikely that the two aspects - fractality of oil fields and fractality of oil price volatility - are
materially related to each other.
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4.2. Data

We use daily closing oil prices (in US dollars per barrel) of West Texas Intermediate (WTI) over

two different sample periods. The first one covers the period from January 02, 1875 to December

31, 1895 and the second one runs from January 03, 1977 to March 24, 2014. For the more

recent era, we also split the sample into two different parts. This will help us to better observe

the time evolution of oil prices. The samples are driven purely by availability of daily data at

the time of writing this paper, with the data being sourced from the Global Financial Database,

https://www.globalfinancialdata.com. We compute the percent continuously compounded returns

rt as

rt = 100 ∗ [ln(pt) − ln(pt−1)], (4.1)

where pt denotes the oil price at the end of period t and pt−1 is the oil price on the previous day.

To get some first impression of our data sets we first plot the oil prices, their log-returns and

squared log-returns (cf. Figs. 4.1 through 4.8). Their descriptive statistics are reported in Tables

4.1, 4.2, 4.3 and 4.4. The data sets exhibit high variability, in other words the standard deviations

are very high compared to the sample means. We observe positive skewness for the data set of

pre-1900 and a negative one for the data set of post-1900. Both data sets exhibit excess kurto-

sis. These results show that the computed log-returns do not follow a Normal distribution. This

observation is confirmed by the Jarque-Bera test, which rejects the null hypothesis of Normally

distributed log-returns at any level of significance. We also apply the augmented Dickey-Fuller

(ADF) unit-root test of Dickey and Fuller (1979) to oil returns and the results clearly speak for the

stationarity of both data sets. The Hurst indices reported in Tables 4.1, 4.2, 4.3 and 4.4 are com-

puted via Detrended Fluctuation Analysis (DFA) (cf. Weron, 2002). The Hurst index values for

log-returns are close to 0.5 and not significantly different from this value at the 95% confidence

level, implying absence of long memory features in oil price returns. For absolute and squared

returns the Hurst index values are significantly above 0.5, indicating the presence of long memory

in oil price volatility. Finally, in order to show the decay of the unconditional distribution of oil

price returns in its extremal region, we compute the so-called Hill estimator for the tail index (cf.

Hill, 1975b). We find that the estimates for the tail indices are in the vicinity of 3 and these results

are in harmony with typical findings for other commodities and financial assets, cf. Tables 4.1,

4.2, 4.3 and 4.4.

Figs. 4.2, 4.4, 4.6 and 4.8 depict the autocorrelation functions of log-returns, absolute and

squared log-returns. We observe that the absolute and squared log-returns are highly correlated

and this observation is in conformity with the Ljung-Box statistics, Q(10) and Q(20). The Ljung-

Box tests also reject the null hypothesis of no serial correlation for raw log-returns at the 5%

significance level. This indicates the presence of some serial dependence in the oil price log-

returns. The higher statistics of the Ljung-Box statistics for the raw returns in the 19th century

might indicate a lower degree of "financialisation" of this commodity at earlier times.

74



Model Framework M. Segnon

4.3. Model Framework

In this section we briefly present the volatility models used for our forecasting exercises. In gen-

eral, financial returns in these models are formalized as

rt = µt + σtet, (4.2)

where rt = 100 ∗ [ln(Pt)− ln(Pt−1)], ln (Pt) is the log asset price, µt = Et−1[rt] is the conditional

mean of the return series, σt is the volatility process and et is standard Normally distributed.

Defining xt = rt − µt, the centered returns are given by

xt = σtet. (4.3)

In this chapter we assume that µt follows an AR(1) process and consider two different types of

volatility models for describing σt, namely the linear and nonlinear GARCH-type models and the

Markov switching multifractal (MSM) model.

4.3.1. GARCH-type Models

The underlying idea of the autoregressive conditional heteroskedasticity (ARCH) model was de-

veloped by Engle (1982) in his seminal paper. The ARCH model and its subsequent generalized

versions are well known in the literature for their ability to capture the most important stylized

facts (e.g. clustering effects, long-memory and short-memory effects, asymmetric leverage ef-

fects) observed in all measures of volatility (e.g. absolute log-returns, squared log-returns, etc...).

In the following we list the eight different GARCH models used in this study.

4.3.1.1. The GARCH and IGARCH Models

Introduced by Bollerslev (1986) the linear GARCH model is the most popular volatility model in

the literature. In the simple, but effective GARCH(1,1) (cf. Bollerslev et al., 1994) the conditional

variance is modeled as

σ2
t = ω + αx2

t−1 + βσ
2
t−1, (4.4)

where ω > 0, α > 0, β > 0 and α+β < 1. The nonnegativity constraints on ω, α and β guarantee

the positivity of σ2
t .

h-step ahead forecasts from GARCH(1,1) are obtained recursively as

σ̂2
t+h = ω + (α + β) σ̂2

t+h−1

= σ̄2 + (α + β)
(

σ̂2
t+h−1 − σ̄2

)

= σ̄2 + (α + β)h−1
(

σ̂2
t+1 − σ̄2

)

.

(4.5)
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where σ̄2 = ω (1 − α − β)−1 is the unconditional variance. As h → ∞, it is clear that the

volatility forecast in eq. (4.5) approaches the unconditional variance σ̄2 and (α + β) dictates the

speed of the mean reversion.

If α + β = 1, the GARCH(1,1) reduces to the IGARCH(1,1) model proposed by Engle and

Bollerslev (1986b) in order to account for infinite persistence in the conditional variance. The

h-step ahead forecast representation becomes

σ̂2
t+h = ω̂ + σ̂

2
t+h−1

σ̂2
t+h = ω̂h + σ̂2

t .
(4.6)

4.3.1.2. The Exponential GARCH Model

The exponential GARCH (EGARCH) model was proposed by Nelson (1991) with the aim to cap-

ture the asymmetric relation between stock returns and volatility changes noted by Black (1976).

The conditional variance in the EGARCH (1,1) model is given by

ln
(

σ2
t

)

= ω + αet−1 + γ (|et−1| − E [|et−1|]) + β ln
(

σ2
t−1

)

, (4.7)

where γ represents the asymmetric leverage parameter that quantifies the degree of the volatility

leverage effect in the model and α the magnitude. As in eq. (4.2), et ∼ N(0, 1) with E [|et−1|] =√
2/π. The model parameters are free from nonnegativity constraints.

Following the same procedures as with GARCH(1,1), the h-step ahead forecast formula of the

EGARCH(1,1) can be expressed as

ln σ̂2
t+h = σ̄

2 + βh−1
(

ln σ̂2
t+1 − σ̄2

)

, (4.8)

where σ̄2 = (ω − γ/
√

2/π)/(1 − β).

4.3.1.3. The Glosten/Jagannathan/Runkle GARCH Model

The GJR-GARCH model developed by Glosten et al. (1993) is designed in a way that allows

the model to account for the potential larger impact of negative shocks on return volatility. The

conditional variance in the GJR-GARCH(1,1) can be formalized as

σ2
t = ω +

[

α + γD(xt−1 < 0)
]

x2
t−1 + βσ

2
t−1, (4.9)

where D(.) is an indicator function that takes the value 1 if xt−1 < 0 (bad news), and 0 (good

news) otherwise. The parameter γ quantifies the magnitude of the asymmetric leverage effect. The

h-step ahead forecast representation of the GJR-GARCH(1,1) can be formalized as

σ̂2
t+h = σ̄

2 +

(

α + β +
γ

2

)h−1 (

σ̂2
t+1 − σ̄2

)

, (4.10)
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where σ̄2 = ω/(1 − α − β − γ/2) is the unconditional or long run variance.

4.3.1.4. The Asymmetric Power ARCH Model

The asymmetric power ARCH (APARCH) model introduced by Ding et al. (1993) aims to repro-

duce both leverage and the Taylor effect, named after Taylor (1986) who first documented the fact

that the sample autocorrelation of absolute returns was usually larger than that of squared returns.

The conditional variance in the APARCH(1,1) model is given by

σδt = ω + α (|xt−1| − γxt−1)δ + βσδt−1, (4.11)

where δ > 0 and γ is the leverage coefficient. The APARCH(1,1) model reduces to GARCH(1,1)

when δ = 2 and γ = 0.

The h-step ahead forecast formula of the APARCH(1,1) is given by

σ̂δt+h = ω +
(

αEt

[

(|et+h−1| − γet+h−1)δ
]

+ β
)

σ̂δt+h−1

= κ + (αc + β)h−1
(

σ̂δt+1 − κ
)

,
(4.12)

where κ = ω(1−αc−β)−1 is the long run variance to the power δ and c = Et

[

(|et+h−1| − γet+h−1)δ
]

is given by

c =
1√
2π

[

(1 + γ)δ + (1 − γ)δ
]

2
δ−1

2 Γ

(

δ + 1
2

)

.

4.3.1.5. The Fractionally Integrated GARCH Model

By introducing fractional differences in the GARCH process Baillie et al. (1996) obtained the

FIGARCH model that can reproduce the long memory property of financial returns volatility. The

FIGARCH(1,d,1) model volatility can be expressed as

σ2
t = ω +

[

1 − β(L) − φ(L)(1 − L)d
]

x2
t + βσ

2
t−1, (4.13)

where ω > 0, φ < 1, β < 1, 0 ≤ d ≤ 1. L denotes the lag operator and d is the parameter of

fractional differentiation. The parameters have to fulfill the following conditions:

β − d ≤ φ ≤ (2 − d)
3

(4.14)

and

d

[

φ − (1 − d)
2

]

≤ β(d − β + φ). (4.15)

We can rewrite eq. (4.13) as follows
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σ2
t = ω(1 − β)−1 +

[

1 − (1 − β)φ(L)(1 − L)d
]

x2
t

= ω(1 − β)−1 + η(L)x2
t ,

(4.16)

where η(L) = η1L + η2L2 + . . . , η j ≥ 0 for j = 1, 2, . . . .

η(L) can be computed from the recursions:






η1 = φ̂ − β̂ + d̂,

...
...

η j = β̂η j−1 +
[(

j − 1 − d̂
)

j−1 − φ̂
]

π j−1

(4.17)

where π j ≡ π j−1

(

j − 1 − d̂
)

j−1 are the coefficients in the MacLaurin series expansion of the

fractional differencing operator (1 − L)d. As in previous research, we set the truncation order of

the infinite series (1 − L)d to 1000 lags.

The FIGARCH model reduces to the GARCH model when d = 0 and the IGARCH model when

d = 1.

From eq. (4.16) one can easily derive the one-step ahead forecast of σ2
t

σ̂2
t+1 = ω(1 − β)−1 + η1x2

t + η2x2
t−1 + . . . (4.18)

Using recursive substitution described above the h-step ahead forecasts of the FIGARCH(1,d,1)

are obtained as

σ̂2
t+h = ω (1 − β)−1 +

h−1∑

i=1

ηiσ̂
2
t+h−i +

∞∑

j=0

ηh+ jx
2
t− j. (4.19)

4.3.1.6. The Hyperbolic GARCH Model

Recently developed by Davidson (2004), the hyperbolic GARCH (HYGARCH) model is con-

structed in a way that allows the model not only to reproduce long memory features in volatility

of many financial time series, but also (unlike FIGARCH) to be covariance stationary. The HY-

GARCH(1,d,1) process models the conditional variance as

σ2
t = ω +

{

1 − β(L) − φ(L)
[

(1 − τ) + τ(1 − L)d
]}

x2
t + βσ

2
t−1

= ω(1 − β)−1 + λ(L)x2
t

(4.20)

where λ(L) =
{

1 − (1 − β(L))φ(L)
[

(1 − τ) + τ(1 − L)d
]}

, ω > 0, φ < 1, β < 1, 0 ≤ d ≤ 1 and

τ ≥ 0. λ(L) = λ1L + λ2L2 + . . . , λ j ≥ 0 for j = 1, 2, . . . . L is the lag operator and the HYGARCH
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model reduces to FIGARCH and IGARCH when τ = 1 and τ = 0, respectively. Eqs. (4.14) and

(4.15) become

β − τd ≤ φ ≤ (2 − d)
3

(4.21)

and

τd

[

φ − (1 − d)
2

]

≤ β(τd − β + φ). (4.22)

We refer the reader to Conrad (2010) for more details on the non-negativity conditions for the

HYGARCH model and for the proof for the covariance stationarity of the process. The h-step

ahead forecasts of the HYGARCH(1,d,1) are easily obtained by following the same procedures

used for FIGARCH(1,d,1).

4.3.1.7. The Fractionally Integrated APARCH Model

Inspired by the FIGARCH model Tse (1998) incorporates fractional differences into the asym-

metric power ARCH model of Ding et al. (1993) to obtain the fractionally intergrated APARCH

model. The FIAPARCH(1,d,1) model is defined as

σδt = ω +
[

1 − β(L) − φ(L)(1 − L)d
]

(|xt−1| − γxt−1)δ + βσδt−1, (4.23)

where ω > 0, φ < 1, β < 1, 0 ≤ d ≤ 1 and −1 < γ < 1.

The FIAPARCH process seems to be a promising model due to the fact that it is able to simulta-

neously capture long memory and asymmetric leverage effects in the data. The FIAPARCH model

encompasses the FIGARCH model for γ = 0 and δ = 2. Following the same procedures described

above the forecasts for future variance can be easily obtained.

Note that the parameters in all formulas for forecasting future volatility have to be replaced

by their corresponding estimates. All GARCH-type models are estimated via (quasi-) maximum

likelihood as it is customary in the literature.

4.3.2. The Markov-Switching Multifractal Model

The recently introduced Markov-switching multifractal models are characterized by a multiplica-

tive rather than additive structure of the volatility process. In the MSM framework instantaneous

volatility is modeled as a product of k volatility components or multipliers M1
t ,M

2
t , . . . ,M

k
t and a

positive scale factor σ2 (cf. Calvet and Fisher, 2001b, 2004b; Lux, 2008). Formally, we have

σ2
t = σ

2
k∏

i=1

M
(i)
t . (4.24)

The multipliers or volatility components are assumed to be independent of each other at any time

and satisfy E

[

Mi
t

]

= 1. Each multiplier Mi
t is renewed at time t with probability γi depending on

its rank within the hierarchy of multipliers and remains unchanged with probability 1−γi. In their
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seminal paper Calvet and Fisher (2001b) derived a formalization for the transition probabilities, γi,

that guarantee the convergence of the discrete-time MSM to a Poisson multifractal process in the

continuous-time limit. Here we are not interested in the continuous-time process, and therefore,

we prefer to use the pre-specified transition probabilities proposed by Lux (2008) that are given

by

γi = 2i−k. (4.25)

To fully specify the MSM model we assume that the random multipliers follow a Lognormal2

distribution with parameters λ and ν, i.e.,

Mi
t ∼ LN(−λ, ν). (4.26)

We normalize the distribution of the multipliers to guarantee E

[

Mi
t

]

= 1 which leads to

exp

(

−λ + 1
2
ν2

)

= 1. (4.27)

From eq. (4.27) it is obvious that the shape parameter ν can be expressed as: ν =
√

2λ. With

this restriction the Lognormal distribution of multipliers is fully defined by the scale parameter

λ. So, the parameters to be estimated in the Lognormal MSM (LMSM) are only λ and σ. We

carry out their estimation for all specifications k = 2, . . . , 20 using the GMM approach proposed

by Lux (2008). We then choose the specification with the lowest GMM criterion as our preferred

model for the subsequent forecasting exercise. Note that higher k increases the number of regimes

(which is 2k), and generates proximity to long memory over a larger number of lags, but comes at

no additional computational cost in our approach. The pertinent moments used for the estimation

can be found in Lux (2008). Note that maximum likelihood would be possible only for MSM

models with a finite, discrete support of the multipliers, and computationally feasible only for a

limited number of hierarchical components up to about 8.

We perform the out-of-sample forecasting on the base of the LMSM model using the standard

approach for best linear forecasts outlined in Brockwell and Davis (1991) together with the gener-

alized Levinson-Durbin algorithm proposed by Brockwell and Dahlhaus (2004). The forecasting

procedure is performed in two steps.

1. In the first step: We compute the following zero-mean time series

Zt = x2
t − E

[

x2
t

]

= x2
t − σ2, (4.28)

where σ̂ is the estimate of the scale factor σ.

2 Other distributional assumptions such as Binomial, Gamma can be used as well, but have been found to make little
difference in previous literature, cf. Liu et al. (2007), Lux (2008).
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2. In the second step: Assuming that the oil price volatility data follow the stationary process

{Zt} defined in the first step, h-step best linear forecasts are given by

Ẑn+h =

n∑

i=1

ψ
(h)
ni

Zn+1−i = Ψ
(h)
n Zn, (4.29)

where the vectors of weights Ψ(h)
n =

(

ψ
(h)
n1 , ψ

(h)
n2 , . . . , ψ

(h)
nn

)′
are solutions of

ΓΨ
(h)
n = γ

h
n, (4.30)

with γh
n = (γ(h), γ(h + 1), . . . , γ(n + h − 1))′ being the auto-covariances for the data gener-

ating process of Zt at lags h and beyond, and Γn =
[

γ(i − j)
]

i, j=1,...,n the pertinent variance-

covariance matrix. The pertinent auto-covariances for the multifractal model can be found

in Lux (2008).

In sum, our portfolio of volatility models includes two linear GARCH models (GARCH, IGARCH),

six nonlinear GARCH models (EGARCH, GJR-GARCH, APARCH, FIGARCH, HYGARCH, FI-

APARCH) and one multifractal model (LMSM).

4.4. Forecast Evaluation Methodologies

To obtain our forecasts we proceed as follows: We first split the pre-1900 data set containing oil

price observations from January 3, 1875 to December 31, 1895 into two subgroups. The first one

covers the period from January 3, 1875 to December 31, 1892 and is used as in-sample data for

model estimation. The second one contains oil prices of the last three years, i.e., from January 3,

1893 to December 31, 1895 and serves as out-of-sample data that we use for evaluation purposes.

The estimation period is rolled forward by adding one observation and removing one day by day,

so that the size of the data set used for the estimation remains fixed over the out-of-sample period.

Forecasts are computed for horizons of various lengths: 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,

and 100 days.

Second, we take a portion of the post-1900 data that contains oil price observations from January

6, 1992 to December 31, 2009 and split the oil price observations into in-sample data for volatility

estimation covering the period from January 6, 1992 to December 29, 2006 and out-of-sample

data stretching over the period from January 2, 2007 to December 31, 2009, which is in line with

Wei et al. (2010). The great recession of 2008-2009 after the global financial crisis of 2007-2008

caused a demand contraction of oil and oil prices fluctuated from USD 145.31 (July 03, 2008)

to USD 30.28 per barrel (December 23, 2008). Therefore, we find that this period should be

interesting for testing the performance of our volatility models.

Third, we consider the extended data set covering the period from January 06, 1992 to March

24, 2014. This period of time does not cover only the great recession of 2008-2009, but also the
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subsequent recovery of the world economy. During this period the oil price stabilized at about

USD 100 per barrel. We use oil price observations from January 6, 1992 until December 31, 2009

as in-sample data and the remaining observations, i.e., oil prices from January 4, 2010 to March

24, 2014 as of-out-sample data.

Finally, we also take the whole post-1900 data, i.e., from January 3, 1977 to March 24, 2014

to evaluate the contribution of a longer in-sample set. We use oil price observations from January

3, 1977 until December 31, 2009 as in-sample data and the remaining observations, i.e., oil prices

from January 4, 2010 to March 24, 2014 as of-out-sample data. Note that forecasts in the second,

third and fourth forecasting experiments are computed as previously done in the first one.

4.4.1. Forecasting Evaluation Criteria

We evaluate the forecasting ability of our volatility models in all four forecasting experiments by

means of the following six different loss functions:

MSE = T−1
T∑

i=1

(

σ2
f ,t − σ2

a,t

)2
, (4.31)

MAE = T−1
T∑

i=1

∣
∣
∣
∣σ

2
f ,t − σ2

a,t

∣
∣
∣
∣ , (4.32)

HMSE = T−1
T∑

i=1




1 −

σ2
a,t

σ2
f ,t





2

, (4.33)

HMAE = T−1
T∑

i=1

∣
∣
∣
∣
∣
∣
∣

1 −
σ2

a,t

σ2
f ,t

∣
∣
∣
∣
∣
∣
∣

, (4.34)

QLIKE = T−1
T∑

i=1




ln

(

σ2
f ,t

)

+
σ2

a,t

σ2
f ,t




, (4.35)

RLOG = T−1
T∑

i=1




ln





σ2
a,t

σ2
f ,t









2

, (4.36)

where σ2
f ,t

denotes the volatility forecast obtained using a GARCH-type model or MSM model,

σ2
a,t is the daily actual volatility that is computed using the daily squared returns, and T denotes

the number of out-of-sample observations. MSE and MAE are the mean square error and mean

absolute error, respectively, and HMSE and HMAE are their corresponding heteroscedasticity

adjusted statistics. QLIKE quantifies the loss implied by a Gaussian likelihood and RLOG puts

more weight on small observations (cf. Bollerslev et al., 1994).

All the above-mentioned loss functions are well known in the literature and each of them can be

used depending on the contexts and the objective of the users. However, based only on these loss

function criteria, it is difficult to conclude that the forecasting performance of one model dominates
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that of the other one. To draw such conclusions, we need statistical tests that can provide more

reliable information. In the next section, we briefly describe the superior predictive ability (SPA)

test of Hansen (2005).

4.4.2. Superior Predictive Ability Test

The superior predictive ability (SPA) test of Hansen (2005) sheds light on the relative performance

of a particular model in comparison with its competitors. In other words, it answers the question

whether any of the alternative models are better than the particular benchmark model in terms of

expected loss. The null hypothesis that the benchmark model is not dominated by any of the other

competitive models is postulated as follows

H0 : max
i=1,...,K

E [dt] ≤ 0, (4.37)

where dt =
(

di,t, . . . , dK,t

)′ is a vector of relative performances, di,t, that are computed as di,t =

L
(0)
t,h
− L

(i)
t,h

. K is the number of the competitive models, h denotes the forecasting horizon and L
(0)
t,h

and L
(i)
t,h

are the loss functions at time t for a benchmark model M0 and for its competitor models,

Mi(i=1,...,K) , respectively.

The associated test statistic is given by

SPA = max
i=1,...,K

√
Td̄i

√

lim
T→∞

Var(
√

Td̄i)

, (4.38)

where d̄ = T−1
∑

dt. We use a stationary bootstrap procedure to obtain the p-values of the

SPA. A high p-value indicates non-rejection of the null hypothesis that a particular model is

not outperformed by its competitors. We refer the reader to Hansen (2005) for more details on

technical issues.

4.5. Empirical Results

4.5.1. Estimation Results

We estimate the GARCH models via the ML approach and the results are reported in Tables 4.5,

4.6, 4.7 and 4.8. Overall the estimates of β in GARCH, IGARCH, EGARCH, GJR-GARCH and

APARCH models are close to 1 and significant at the 1% level. While the asymmetric leverage

parameters are significant at the 1% level in the EGARCH model in Tables 4.5, 4.6 and 4.7 and

not significant at any level in Table 4.8, they are insignificant at any level in the GJR-GARCH and

APARCH models.
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With the pre-1900 oil price data, the estimate of τ in the HYGARCH model is quite close to 1

and significant at the 1% level. The estimates of δ are 1.748 in the APARCH model and 1.315 in

the FIAPARCH model. In contrast to the APARCH model the asymmetric leverage parameter in

the FIAPARCH model is significant at the 1% level. The estimates of d in FIGARCH, HYGARCH

and FIAPARCH models are significant at the 1% level and give evidence of the presence of long

memory effects in oil price volatility.

With the post-1900 oil price data, we first estimate the GARCH models using oil price obser-

vations from January 6, 1992 to December 31, 2009. Here the estimate of τ in the HYGARCH

model is significant at the 1% level and different from 1. By expanding the estimation sample, i.e.

from January 6, 1992 to March 24, 2014, we do not observe a dramatic change in the estimation

results. The estimates of d are significant at the 1% level in all long memory GARCH models.

Finally, we estimate the whole post-1900 oil price data. The estimates of d in FIGARCH,

HYGARCH and FIAPARCH models are now equal to 1 and significant at the 1% confidence

level. These results indicate the presence of infinite persistence in the oil price data post-1900.

When we look at the estimation diagnostics, it seems that the three long memory GARCH

models perform better in terms of fitting oil price observations over all different periods of time. In

sum, the Log(L), AIC and BIC for the long memory models are smaller than those of short memory

models. Furthermore, the Ljung-Box tests on the squared residuals and the ARCH tests also speak

in favor of the long memory models. For all three long memory models the Ljung-box tests mostly

cannot reject the null hypothesis of no serial correlation in the squared standardized residuals at

the 5% level and the ARCH tests mostly accept the null hypothesis that the standardized residuals

consist of independent identically distributed (i.i.d) Gaussian disturbances.

We now turn to the estimation of the Lognormal MSM. The best GMM objective function

implies a high number of hierarchical levels, k = 20. The estimates of the Lognormal parameter,

λ̂, and the scale factor parameter, σ̂, are reported in Table 4.9. Higher λ̂ in the pre-1900 era

indicates a higher degree of fractality of the series in the 19th than the 20th and 21st centuries,

i.e. more pronounced changes between tranquil and turbulent phases which is in harmony with the

visual impression of more "spikyness" in the years 1875-1895.

4.5.2. Forecasting Results

The results of the SPA test for our three forecasting exercises for all our volatility models are re-

ported in Tables 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, and 4.17. The first column in each table

contains the benchmark models and each model is tested against the remaining eight models. It

also contains individual model combination forecasts that are tested against all nine single models.

The p-values of the SPA test are computed based on 5000 bootstrap samples in the empirical test

under any pre-specified loss function. First, we observe that in each case of the four forecasting

exercises none of our volatility models can outperform all other models at short and long hori-

zons across all six different loss functions. The forecasting performance of our volatility models

also differs from one sample period to another. Often, a volatility model that provides relatively
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accurate forecasts for a period of time might perform poorly in terms of forecasting performance

when expanding or reducing the sample size. However, all in all it seems that the long memory

volatility models are more appropriate to forecast oil price volatility. We also observe that for the

more standard loss functions such as MSE or MAE, the MSM model mostly cannot be outper-

formed. Based on the SPA results, we count for each of our volatility models the cases where it

cannot be outperformed by others across all time spans and criteria. The results indicate that in 99

cases the LMSM cannot be outperformed by its competitor models at the 10% confidence level,

followed by HYGARCH (94 cases), FIAPARCH (89 cases), GARCH (74 cases), EGARCH (70

cases), IGARCH (49 cases), FIGARCH (45 cases), GJR-GARCH (42 cases), and APARCH (28

cases). Overall, the new multifractal model, therefore, appears to perform better on average than

any particular model from the GARCH family. This is particularly remarkable as (i) it has fewer

parameters than all GARCH-type models (i.e., only two while the second best, the HYGARCH

model, comes with five parameters that have to be estimated), (ii) our estimation and forecasting

methods used for the multifractal model are not the most efficient ones, while we have used the

most efficient ML estimates and conditional expectations based upon those to compute forecasts

for the GARCH family. Across time periods and criteria we find the following tendencies: First,

the MSM and FIAPARCH do well and cannot be rejected as non-dominated models for the 19th

century data and for the 2010-2014 out-of-sample period. Both do not perform well for the 2007-

2009 out-of-sample period. The HYGARCH model gains its prominent rank particularly from

its better performance in this period, but also other short-memory GARCH-type models do better

in this period than in the others. Presumably, the higher volatility in the crisis period rewards a

concentration on the short-run dynamics rather than long trends in volatility. Across criteria, the

RLOG statistic is typically an outlier in its patterns of SPA results which is not surprising given

the higher weight it attributes to small rather than large events.

The difficulty to discover a uniformly best model across all six different loss functions at short

and long horizons motivates us to also try simple average forecast combinations. Granger and

Teräsvirta (1999) and Aiolfi and Timmermann (2006) pointed out that it is often preferable to

combine forecasts from competitive models in a linear way and thereby generate hopefully su-

perior predictions. Following this idea, we adopt two different combination strategies. The first

combination strategy is given by equally weighted linear combinations of short memory GARCH-

type models (GARCH, IGARCH, GJR-GARCH, EGARCH and APARCH) and long memory

GARCH-type and MSM models (FIGARCH, HYGARCH, FIAPARCH and LMSM). The second

one is also obtained by equally weighted linear combinations of long memory GARCH-type mod-

els and the LMSM. Both combination strategies shed light on the complementarities of the short-

and long-memory GARCH models on the one side and the complementarities of two classes of

volatility models, GARCH-type and MSM, on the other side. In fact, both strategies lead to a

high number of forecast combinations. To reduce the number of forecast combinations we only

considered GARCH-type models that have the highest p-values according to the SPA test results

for our single volatility models. Note that this selection criterion does not hold for the LMSM, so
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that we always combined the best GARCH-type models in terms of their p-values with the LMSM

in order to explore their complementarities. This selection criterion for GARCH-type models led

to different forecast combinations for different loss functions. The new predictor is tested against

the single models and the test results are reported in Tables 4.10, 4.11, 4.12, 4.13, 4.14, 4.15,

4.16, and 4.17. The results are diverse: First, one often observes that forecast combinations of

two relatively successful models do not necessarily improve performance against single models.

This holds particularly for combinations of short-memory GARCH specifications. Combinations

of long-memory GARCH models with the MSM model are more often successful, but we never-

theless find cases where the combination of well performing single models can be outperformed

by the forecasts from one or more of those single models. This exercise underlines that forecast

combination is a delicate operation: There is apparently no guarantee that two good models are

complementary in their virtues, they could also lead to an overall deterioration when applied in

combination. This underscores the necessity of finding more elaborate rules for combinations that

are data-driven and react on the single models’ advantages and disadvantages.

4.6. Conclusion

This chapter has analyzed the forecasting performance of two classes of volatility models, namely

the GARCH-type models and the MSM model via six different loss functions and the superior

predictive ability test. The analysis is performed by using a large sample of oil prices of the

pre- and post-1900 period. Results were largely uniform for the data of the 19th century and

the later record of the 20th/21st centuries with the crisis period 2007 - 2009 showing somewhat

unusual behavior. Empirical results of the SPA test indicate that none of the volatility models

including the MSM model can outperform their competitor models under all loss criteria. As it

turned out, however, the new MSM model most often cannot be outperformed when standard loss

functions are used. Across all forecasting horizons and subsamples used, it is the model that in the

highest number of cases cannot be outperformed by any other models, and, in this respect, it beats

all simple models from our broad selection of GARCH-type processes. Forecast combination

exercises point to more robustness of combinations of long-memory GARCH and MSM models

rather than short-memory GARCH models. However, superior forecast performance of combined

models against their single components is in no way guaranteed.

All in all, the MSM model appears a valuable addition to the toolbox of volatility models not

only for financial assets, but also for commodities like oil. Given its highest number of non-

rejections by the SPA test, it comes out as the more robust model compared to any GARCH

specification, and it also is the most parsimonious one among all candidates considered.
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Table 4.1.: Descriptive statistics of the data pre-1900

Log-returns Absolute returns Squared returns

6376 observations (from January 02,1875 to Decem 31, 1895)

Minimum -16.186 0 0

Maximum 33.647 33.647 1.132E+3

Mean -0.007 1.439 5.129

Standard deviation 2.265 1.749 21.291

Skewness 0.752 3.715 29.944

Kurtosis 18.240 34.497 1.460E+3

Hurst index 0.540 0.842∗∗∗ 0.868∗∗∗

Hill tail index at 5% tail 2.547 [2.485 2.610]

Q(10) 79.177 2.467E+3 659.798

Q(20) 100.685 3.169E+3 712.731

JB 5.343E+4

ADF - 73.875

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for Wiener Brownian
motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the point estimate based upon the
limiting distribution of the estimator.

Table 4.2.: Descriptive statistics of the data post-1900 containing oil prices from Jan 06,1992 to
December 31, 2009

Log-returns Absolute returns Squared returns

4521 observations (from January 06,1992 to December 31, 2009)

Minimum -17.092 0 0

Maximum 16.414 17.092 292.129

Mean 0.031 1.748 6.078

Standard deviation 2.466 1.739 16.326

Skewness -0.154 2.700 8.361

Kurtosis 8.222 15.256 99.210

Hurst index 0.490 0.856∗∗∗ 0.905∗∗∗

Hill tail index at 5% tail 2.797 [2.716 2.879]

Q(10) 31.015 1099.7 875.701

Q(20) 42.686 2051.1 1556.1

JB 5155.4

ADF - 68.396

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for Wiener Brownian
motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the point estimate based upon the
limiting distribution of the estimator.
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Table 4.3.: Descriptive statistics of the data post-1900 containing oil prices from Jan 06,1992 to
March 24, 2014

Log-returns Absolute returns Squared returns

5590 observations (from January 06,1992 to March 24, 2014)

Minimum -17.092 0 0

Maximum 16.414 17.092 292.129

Mean 0.030 1.654 5.482

Standard deviation 2.341 1.657 15.030

Skewness -0.145 2.753 8.889

Kurtosis 8.525 15.993 113.634

Hurst index 0.471 0.868∗∗∗ 0.910∗∗∗

Hill tail index at 5% tail 2.899 [2.823 3.975]

Q(10) 31.447 1.419E+3 1.127E+3

Q(20) 41.038 2.647E+3 1.999E+3

JB 7.129E+3

ADF -75.996

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for Wiener Brownian
motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the point estimate based upon the
limiting distribution of the estimator.

Table 4.4.: Descriptive statistics of the complete data post-1900

Log-returns Absolute returns Squared returns

9417 observations (from January 03,1977 to March 24, 2014)

Minimum -40.204 0 0

Maximum 19.861 40.204 1614.4

Mean 0.021 1.363 4.922

Standard deviation 2.219 1.751 22.929

Skewness -0.832 3.962 40.176

Kurtosis 22.738 42.191 2624.4

Hurst index 0.517 0.938∗∗∗ 0.944∗∗∗

Hill tail index at 5% tail 2.668 [2.614 2.722]

Q(10) 52.030 7.804E+3 1.458E+3

Q(20) 75.992 1.458E+4 1.681E+3

JB 1.540E+5

ADF -98.326

Note: ∗∗∗ indicates 1% significance of Hurst coefficients based on the simulated boundary values of Weron (2002) for Wiener Brownian
motion. For the tail index estimates, the brackets contain the 95% percent confidence intervals of the point estimate based upon the
limiting distribution of the estimator.
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Table 4.5.: Estimation results using oil prices from January 2, 1875 to December 31, 1895

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 0.066 0.065 0.083 0.066 0.074 0.301 0.277 0.224
(0.033) (0.029) (0.016) (0.035) (0.052) (0.040) (0.054) (0.051)

α 0.127 0.128 0.007 0.127 0.131
(0.027) (0.033) (0.012) (0.028) (0.029)

β 0.871 0.872 0.961 0.872 0.869 0.550 0.550 0.524
(0.030) (0.033) (0.011) (0.031) (0.038) (0.080) (0.078) (0.097)

γ 0.302 0.001 0.002 -0.239
(0.037) (0.003) (0.001) (0.062)

δ 1.748 1.315
(0.776) (0.114)

φ 0.254 0.255 0.302
(0.052) (0.051) (0.056)

d 0.493 0.489 0.396
(0.049) (0.047) (0.062)

τ 1.012
(0.019)

Diagnostic

Log(L) -12806 -12806 -12757 -12806 -12802 -12749 -12749 -12729

AIC 25618 25618 25522 25620 25614 25506 25508 25470

BIC 25638 2538 25550 25647 25648 25533 25541 25511

Q(20) 37.248 37.240 34.517 37.263 37.349 32.905 32.782 32.309
[0.011] [0.011] [0.023] [0.011] [0.011] [0.035] [0.036] [0.040]

Q2(20) 28.591 28.561 30.376 28.585 31.990 16.956 16.862 22.671
[0.090] [0.097] [0.064] [0.096] [0.043] [0.656] [0.662] [0.305]

Arch(20) 27.544 27.525 29.137 27.536 30.653 16.490 16.395 22.105
[0.121] [0.121] [0.085] [0.121] [0.060] [0.686] [0.692] [0.335]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood function. AIC
and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-Box Q-statistics of order
20 obtained from the standardized residuals and squared standardized residuals respectively. ARCH(20) denotes the no conditional
heteroscedasticity statistic of order 20. The values reported in square brackets are the p-values of the statistics.
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Table 4.6.: Estimation results using oil prices from January 06,1992 to December 31, 2009

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 0.052 0.033 0.027 0.051 0.046 0.569 0.255 0.197
(0.022) (0.017) (0.016) (0.022) (0.026) (0.132) (0.106) (0.186)

α 0.064 0.068 -0.005 0.068 0.072
(0.017) (0.019) (0.008) (0.029) (0.019)

β 0.929 0.932 0.988 0.930 0.928 0.469 0.414 0.382
(0.017) (0.019) (0.028) (0.019) (0.002) (0.083) (0.026) (0.090)

γ 0.156 -0.008 0.003 -0.132
(0.019) (0.028) (0.021) (0.068)

δ 1.63 1.889
(0.241) (0.175)

φ 0.214 0.204 0.211
(0.092) (0.056) (0.072)

d 0.364 0.290 0.261
(0.046) (0.059) (0.052)

τ 1.112
(0.281)

Diagnostic

Log(L) -10024 -10026 -10022 -10023 -10020 -10014 -10013 -10008

AIC 20054 20056 20052 20055 20054 20037 20035 20029

BIC 20073 20069 20078 20081 20082 20062 20068 20067

Q(20) 19.655 19.418 21.498 19.502 20.389 22.225 22.506 22.991
[0.480] [0.495] [0.368] [0.489] [0.434] [0.328] [0.314] [0.289]

Q2(20) 43.085 42.259 49.062 43.338 45.733 30.682 29.907 30.403
[0.002] [0.003] [<0.001] [0.002] [<0.001] [0.060] [0.071] [0.064]

Arch(20) 37.525 36.912 41.822 37.727 39.417 28.478 27.943 28.193
[0.010] [0.012] [0.003] [0.010] [0.006] [0.099] [0.111] [0.105]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood function. AIC
and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-Box Q-statistics of order
20 obtained from the standardized residuals and squared standardized residuals respectively. ARCH(20) denotes the no conditional
heteroscedasticity statistic of order 20. The values reported in square brackets are the p-values of the statistics.
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Table 4.7.: Estimation results oil prices from from January 06,1992 to March 24, 2014

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 0.041 0.028 0.022 0.041 0.039 0.431 0.149 4.982E-5
(0.020) (0.013) (0.010) (0.019) (0.071) (0.105) (0.153) (3.558E−5)

α 0.063 0.067 0.144 0.057 0.069
(0.017) (0.017) (0.038) (0.021) (0.034)

β 0.931 0.933 0.989 0.932 931 0.491 0.431 0.135
(0.018) (0.017) (0.005) (0.017) (0.053) (0.138) (0.124) (0.049)

γ 0.221 0.011 -0.017 -0.999
(0.026) (0.020) (0.009) (0.312)

δ 1.610 1.574
(0.817) (0.195)

φ 0.251 0.238 0.111
(0.132) (0.127) (0.041)

d 0.360 0.285 0.070
(0.044) (0.054) (0.020)

τ 1.113
(0.069)

Diagnostic

Log(L) -12074 -12076 -12069 -12073 -12068 -12061 -12059 -12069

AIC 24154 24156 24147 24154 24146 24130 24128 24149

BIC 24174 24170 24173 24181 24179 24157 24161 24189

Q(20) 17.345 17.195 19.311 17.682 18.507 20.055 20.352 22.334
[0.631] [0.640] [0.502] [0.608] [0.554] [0.455] [0.436] [0.323]

Q2(20) 47.267 46.878 55.311 47.102 50.154 29.610 28.514 36.200
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [0.076] [0.098] [0.015]

Arch(20) 41.457 41.263 47.483 41.304 43.473 27.511 26.755 33.973
[0.003] [0.003] [<0.001] [0.003] [0.001] [0.122] [0.142] [0.026]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood function. AIC
and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-Box Q-statistics of order
20 obtained from the standardized residuals and squared standardized residuals respectively. ARCH(20) denotes the no conditional
heteroscedasticity statistic of order 20. The values reported in square brackets are the p-values of the statistics.
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Table 4.8.: Estimation results oil prices from from January 03,1977 to March 24, 2014

GARCH IGARCH EGARCH GJR-GARCH APARCH FIGARCH HYGARCH FIAPARCH

ω 3.852E-4 3.846E-4 0.031 3.791E-4 2.098E-4 0.004 0.004 0.011
(1.986E−4) (1.946E−4) (0.006) (1.949E−4) (4.187E−4) (0.002) (0.002) (0.013)

α 0.079 0.079 0.221 0.074 0.088
(0.008) (0.009) (0.027) (0.015) (0.017)

β 0.921 0.921 0.987 0.921 912 0.924 0.914 0.921
(0.009) (0.009) (0.004) (0.009) (0.033) (0.014) (0.018) (0.016)

γ -0.016 0.010 -0.029 -0.203
(0.015) (0.019) (0.268) (0.016)

δ 2.250 1.591
(0.893) (0.097)

φ 4.632E-8 3.123E-8 1.898E-7
(1.405E−8) (1.173E−8) (9.175E−7)

d 1.000 1.000 1.00
(0.023) (0.038) (0.031)

τ 1.017
(0.006)

Diagnostic

Log(L) -16182 -16180 -15963 -16180 -16131 -16114 -16047 -16030

AIC 32370 32365 31933 32368 32273 32236 32103 32072

BIC 32392 32379 31962 32397 32308 32264 32139 32115

Q(20) 177.286 177.450 132.202 179.483 177.855 187.193 193.544 204.216
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Q2(20) 12.904 12.866 7.523 13.313 12.836 11.969 9.567 8.820
[0.882] [0.883] [0.995] [0.864] [0.884] [0.917] [0.974] [0.984]

Arch(20) 12.708 12.672 7.530 13.110 13.073 11.764 9.807 8.824
[0.890] [0.891] [0.994] [0.873] [0.874] [0.924] [0.972] [0.985]

Note: The numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood function. AIC
and BIC are the Akaike and Bayesian information criterion respectively. Q(20) and Q2(20) are the Ljung-Box Q-statistics of order
20 obtained from the standardized residuals and squared standardized residuals respectively. ARCH(20) denotes the no conditional
heteroscedasticity statistic of order 20. The values reported in square brackets are the p-values of the statistics.

Table 4.9.: Estimation results of LMSM model

Parameters Jan 2, 1875 to Dec 31, 1895 Jan 6, 1992 to Dec 31, 2009 Jan 6, 1992 to March 24, 2014 Jan 3, 1977 to March 24, 2014

λ 1.320 1.016 1.034 1.011

σ 2.252 2.465 2.341 2.218

Note that the optimal objective function of the GMM estimation is obtained for k = 20.
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Table 4.10.: Superior predictive ability (SPA) test results using oil price observations from January
3, 1875 to December 31, 1892 as in-sample and from January 3, 1893 to December
31, 1895 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.020 0.062 0.156 0.090 0.070 0.040 0.074 0.046 0.134 0.432 0.012 0.004

IGARCH 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.008 0.032 0.016 0.022 0.084 0.058 0.338 0.080 0.226 0.226 0.604 0.632

EGARCH 0.020 0.118 0.740 0.644 0.656 0.688 1.000 0.766 0.980 0.752 0.578 0.170

APARCH 0.004 0.014 0.002 0.004 0.018 0.014 0.542 0.032 0.234 0.400 0.928 0.836

FIGARCH 0.012 0.092 0.700 0.554 0.040 0.016 0.076 0.066 0.088 0.018 0.004 0.000

HYGARCH 1.000 0.380 0.148 0.032 0.024 0.038 0.038 0.034 0.038 0.026 0.020 0.014

FIAPARCH 0.044 0.732 0.602 0.450 0.176 0.052 0.078 0.050 0.050 0.028 0.022 0.018

LMSM 0.042 0.170 0.880 0.924 0.404 0.312 0.316 0.270 0.240 0.204 0.130 0.126

FCOM1 0.004 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM11 0.026 0.202 1.000 0.931 0.992 1.000 0.846 0.305 0.348 0.305 0.185 0.139

FCOM111 0.049 0.216 0.999 0.864 0.468 0.086 0.209 0.127 0.153 0.231 0.047 0.012

MAE

GARCH 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.002 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.512 0.360 0.098 0.060 0.066 0.058 0.046 0.052 0.080 0.062 0.080

FIAPARCH 0.020 0.488 0.984 1.000 0.574 0.292 0.344 0.276 0.192 0.170 0.142 0.144

LMSM 0.000 0.018 0.250 0.056 0.486 0.708 0.656 0.724 0.808 1.000 1.000 1.000

FCOM2 0.000 0.000 0.005 0.000 0.007 0.048 0.015 0.062 0.131 0.102 0.073 0.076

FCOM21 0.000 0.045 0.460 0.207 0.725 0.485 0.988 0.505 0.355 0.222 0.198 0.193

HMSE

GARCH 0.102 0.118 0.070 0.058 0.042 0.062 0.034 0.054 0.014 0.022 0.038 0.032

IGARCH 0.024 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GJR-GARCH 0.020 0.032 0.066 0.046 0.008 0.022 0.010 0.036 0.022 0.016 0.032 0.018

EGARCH 0.008 0.056 0.042 0.038 0.018 0.032 0.024 0.028 0.020 0.016 0.028 0.024

APARCH 0.008 0.036 0.076 0.050 0.014 0.030 0.018 0.040 0.008 0.020 0.034 0.030

FIGARCH 0.084 0.130 0.072 0.058 0.032 0.062 0.032 0.054 0.020 0.022 0.042 0.030

HYGARCH 1.000 0.048 0.082 0.064 0.022 0.088 0.010 0.050 0.006 0.034 0.058 0.030

FIAPARCH 0.040 0.112 0.072 0.052 0.014 0.052 0.008 0.026 0.020 0.030 0.056 0.014

LMSM 0.068 0.040 0.032 0.036 0.026 0.050 0.036 0.046 0.022 0.016 0.034 0.030

FCOM3 0.007 0.232 0.079 0.061 0.033 0.053 0.036 0.047 0.032 0.035 0.041 0.021

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model cannot be
outperformed by other competitor models. The values in bold face represent the p-values that are greater than or equal to the 10%
confidence level under a pre-specified loss function. We combine: FCOM1=EGARCH+APARCH, FCOM11=EGARCH+LMSM,
FCOM111=FIAPARCH+LMSM, FCOM2=HYGARCH+FIAPARCH+LMSM, FCOM21=FIAPARCH+LMSM, and
FCOM3=IGARCH+HYGARCH+
LMSM.

93



Conclusion M. Segnon

Table 4.11.: Superior predictive ability (SPA) test results using oil price observations from January
3, 1875 to December 31, 1892 as in-sample and from January 3, 1893 to December
31, 1895 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.012 0.060 0.046 0.046 0.018 0.044 0.012 0.020 0.004 0.012 0.006 0.006

IGARCH 0.006 1.000 1.000 1.000 1.000 0.016 0.008 0.012 0.000 0.002 0.012 0.002

GJR-GARCH 0.010 0.020 0.040 0.034 0.012 0.014 0.010 0.020 0.010 0.014 0.022 0.016

EGARCH 0.006 0.006 0.006 0.006 0.005 0.030 0.012 0.006 0.004 0.004 0.006 0.002

APARCH 0.006 0.008 0.020 0.016 0.006 0.026 0.008 0.012 0.004 0.004 0.022 0.008

FIGARCH 0.002 0.064 0.042 0.038 0.006 0.028 0.008 0.014 0.004 0.006 0.014 0.002

HYGARCH 1.000 0.010 0.018 0.010 0.000 0.026 0.000 0.004 0.000 0.002 0.004 0.000

FIAPARCH 0.050 0.094 0.042 0.020 0.004 0.018 0.002 0.002 0.000 0.002 0.004 0.000

LMSM 0.002 0.008 0.006 0.006 0.004 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FCOM4 0.000 0.695 0.089 0.058 0.017 0.025 0.011 0.031 0.013 0.018 0.019 0.000

FCOM41 0.000 0.165 0.056 0.044 0.015 0.024 0.007 0.017 0.004 0.007 0.012 0.000

QLIKE

GARCH 0.000 0.566 0.960 0.846 0.160 0.032 0.260 0.154 0.362 0.500 0.066 0.024

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.006 0.540 0.606 0.778 0.664 0.508 0.546 0.650 0.870

EGARCH 0.000 0.060 0.520 0.250 0.992 0.962 0.570 0.846 0.714 0.878 0.432 0.162

APARCH 0.000 0.000 0.000 0.004 0.600 0.524 0.402 0.308 0.632 0.604 0.524 0.302

FIGARCH 0.000 0.518 0.220 0.172 0.072 0.052 0.014 0.022 0.006 0.014 0.022 0.000

HYGARCH 1.000 0.786 0.224 0.128 0.062 0.062 0.022 0.030 0.010 0.014 0.024 0.004

FIAPARCH 0.000 0.156 0.146 0.082 0.042 0.042 0.018 0.024 0.012 0.014 0.014 0.004

LMSM 0.000 0.164 0.930 0.616 0.396 0.366 0.344 0.238 0.192 0.128 0.082 0.076

FCOM5 0.000 0.002 0.893 0.322 0.997 0.676 0.742 0.666 0.758 0.600 0.324 0.075

FCOM51 0.000 0.000 0.939 0.275 0.775 0.997 0.671 0.698 0.554 0.462 0.347 0.239

FCOM511 0.000 0.001 0.793 0.382 1.000 1.000 1.000 0.540 0.619 0.593 0.560 0.330

FCOM5111 0.000 0.494 0.870 0.676 0.455 0.143 0.247 0.100 0.155 0.088 0.074 0.038

RLOG

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FIAPARCH 0.834 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.023 0.902 0.453 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM611 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model cannot be outper-
formed by other competitor models. The values in bold face represent the p-values that are greater than or equal to the 10% confidence
level under a pre-specified loss function. We combine: FCOM4=IGARCH+HYGARCH+LMSM, FCOM41=HYGARCH+LMSM,
FCOM5=GARCH+GJR-GARCH+EGARCH, FCOM51=GJR-GARCH+EGARCH+
HYGARCH, FCOM511=EGARCH+GJR-GARCH+LMSM, FCOM5111=HYGARCH+LMSM, FCOM6=GARCH+
HYGARCH, FCOM61=HYGARCH+FIAPARCH, and FCOM611=HYGARCH+LMSM.
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Table 4.12.: Superior predictive ability (SPA) test results using oil price observations from January
6, 1992 to December 29, 2006 as in-sample and from January 2, 2007 to December
31, 2009 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.002 0.282 0.780 0.820 0.294 0.532 0.410 0.894 0.302 0.314 0.100 0.100

IGARCH 0.002 0.004 0.002 0.004 0.000 0.004 0.016 0.088 0.960 0.938 0.550 0.828

GJR-GARCH 0.004 0.008 0.004 0.002 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.002 0.000 0.004 0.006 0.000 0.006 0.010 0.036 0.128 0.260 0.626 0.172

APARCH 0.000 0.002 0.002 0.004 0.000 0.002 0.000 0.000 0.008 0.002 0.004 0.040

FIGARCH 0.000 0.122 0.020 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.838 0.332 0.222 0.706 0.536 0.654 0.170 0.294 0.010 0.000 0.000

FIAPARCH 0.000 0.006 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

LMSM 0.002 0.080 0.018 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM1 0.003 0.068 0.027 0.042 0.012 0.014 0.089 0.006 0.000 0.000 0.001 0.002

FCOM11 0.002 0.235 0.111 0.124 0.383 0.767 0.573 0.286 0.004 0.000 0.000 0.000

FCOM111 0.003 0.310 0.500 0.670 0.636 0.993 0.994 0.302 0.012 0.000 0.000 0.000

MAE

GARCH 0.000 0.016 0.016 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.826 0.680 0.268 0.810 0.238 0.180 0.002 0.002 0.000 0.000 0.000

GJR-GARCH 0.000 0.596 0.420 0.114 0.930 0.970 1.000 1.000 1.000 1.000 1.000 1.000

EGARCH 0.000 0.074 0.254 0.798 0.786 0.444 0.064 0.012 0.000 0.000 0.000 0.000

APARCH 0.000 0.202 0.760 0.184 0.310 0.058 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.006 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.124 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 0.902 0.084 0.054 0.028 0.518 0.144 0.078 0.056 0.038 0.126 0.036 0.116

LMSM 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM2 0.002 0.342 0.002 0.194 0.858 0.706 0.086 0.015 0.000 0.000 0.000 0.000

FCOM21 0.002 0.588 0.166 0.017 0.909 0.394 0.255 0.016 0.009 0.000 0.000 0.000

FCOM211 0.025 0.456 0.297 0.043 0.868 0.640 0.426 0.333 0.252 0.414 0.179 0.382

HMSE

GARCH 0.038 0.152 0.796 0.104 1.000 0.854 0.148 0.806 0.390 0.282 0.086 0.000

IGARCH 0.000 0.002 0.002 0.000 0.000 0.022 0.018 0.104 0.308 0.874 0.408 0.734

GJR-GARCH 0.000 0.002 0.002 0.000 0.000 0.004 0.000 0.008 0.006 0.000 0.002 0.002

EGARCH 0.000 0.002 0.002 0.000 0.000 0.000 0.010 0.030 0.036 0.512 0.592 0.266

APARCH 0.000 0.000 0.006 0.000 0.000 0.002 0.006 0.012 0.008 0.010 0.008 0.004

FIGARCH 0.008 0.128 0.096 0.010 0.054 0.028 0.020 0.024 0.026 0.008 0.006 0.000

HYGARCH 1.000 1.000 0.204 1.000 0.108 0.146 0.852 0.240 0.874 0.144 0.056 0.020

FIAPARCH 0.000 0.086 0.070 0.018 0.040 0.028 0.002 0.000 0.002 0.010 0.000 0.010

LMSM 0.078 0.122 0.020 0.026 0.050 0.034 0.022 0.016 0.034 0.018 0.012 0.006

FCOM3 0.000 0.001 0.015 0.002 0.011 0.033 0.175 0.032 0.007 0.011 0.016 0.007

FCOM31 0.000 0.027 0.057 0.031 0.022 0.064 0.831 0.158 0.013 0.020 0.019 0.012

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that
a base model cannot be outperformed by other competitor models. The values in bold face represent the p-
values that are greater than or equal to the 10% confidence level under a pre-specified loss function. We com-
bine: FCOM1=GARCH+IGARCH, FCOM11=GARCH+IGARCH+HYGARCH, FCOM111=HYGARCH+LMSM, FCOM2=GJR-
GARCH+EGARCH, FCOM21=GJR-GARCH+IGARCH, FCOM211=GJR-GARCH+FIAPARCH, FCOM3=GARCH+IGARCH
and
FCOM31=GARCH+IGARCH+HYGARCH.
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Table 4.13.: Superior predictive ability (SPA) test results using oil price observations from January
6, 1992 to December 29, 2006 as in-sample and from January 2, 2007 to December
31, 2009 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.000 0.136 0.292 0.062 0.594 0.490 0.060 0.518 0.216 0.758 0.068 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.038 0.666 0.798 1.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.144 0.312 0.026

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.030 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 1.000 0.708 1.000 0.406 0.510 1.000 0.482 0.784 0.412 0.010 0.000

FIAPARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.016 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM4 0.000 0.302 0.721 0.216 0.837 1.000 0.517 0.167 0.000 0.000 0.000 0.000

FCOM41 0.000 0.018 0.002 0.003 0.005 0.003 0.001 0.012 0.001 0.000 0.000 0.000

QLIKE

GARCH 0.000 0.286 0.662 0.158 0.808 0.764 0.116 0.772 0.546 0.068 0.010 0.002

IGARCH 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.098 0.752 1.000 0.560 1.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.034 0.138 0.238 0.440 0.084

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.144 0.022 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.790 0.338 0.842 0.192 0.236 0.884 0.316 0.564 0.076 0.000 0.000

FIAPARCH 0.000 0.004 0.002 0.002 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.022 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM5 0.000 0.034 0.011 0.026 0.013 0.015 0.090 0.005 0.000 0.000 0.001 0.001

FCOM51 0.000 0.379 0.995 0.360 0.532 0.641 0.925 0.054 0.000 0.001 0.002 0.000

FCOM511 0.000 0.170 0.129 0.131 0.167 0.141 0.025 0.043 0.001 0.001 0.002 0.000

RLOG

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.002

IGARCH 0.002 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.002 0.014 0.006 0.002 0.004 0.016 0.012 0.012 0.008

EGARCH 0.742 0.882 1.000 1.000 0.082 0.004 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.458 0.118 0.008 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 0.444 0.000 0.000 0.080 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 1.000 0.006 0.031 0.200 0.180 0.016 0.002 0.002 0.006 0.006 0.002 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model
cannot be outperformed by other competitor models. The values in bold face represent the p-values that are greater than
or equal to the 10% confidence level under a pre-specified loss function. We combine: FCOM4=GARCH+HYGARCH,
FCOM41=HYGARCH+LMSM, FCOM5=GARCH+IGARCH, FCOM51=GARCH+HYGARCH, FCOM511=HYGARCH+LMSM
and FCOM6=EGARCH+FIAPARCH.
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Table 4.14.: Superior predictive ability (SPA) test results using oil price observations from January
6, 1992 to December 31, 2009 as in-sample and from January 4, 2010 to March 24,
2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.020 0.040 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.002 0.024 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.032 0.000 0.012 0.008 0.100 0.094 0.076 0.086 0.002 0.042 0.076

FIAPARCH 0.018 0.106 0.160 0.186 0.196 0.370 0.694 0.526 0.728 0.754 0.864 1.000

LMSM 0.004 1.000 1.000 0.866 0.872 0.704 0.306 0.558 0.334 0.246 0.136 0.082

FCOM1 0.104 0.495 0.400 0.387 0.484 0.824 0.852 0.850 0.997 0.967 0.678 0.716

FCOM11 0.018 0.652 0.606 0.695 0.808 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MAE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.007 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.008 0.006

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.011

FIAPARCH 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

LMSM 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.876 0.901

FCOM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HMSE

GARCH 0.054 0.068 0.008 0.178 0.194 0.560 0.450 0.314 0.104 0.098 0.072 0.110

IGARCH 0.004 0.002 0.004 0.008 0.008 0.004 0.010 0.018 0.022 0.012 0.044 0.020

GJR-GARCH 0.004 0.002 0.004 0.006 0.006 0.008 0.008 0.014 0.004 0.008 0.018 0.008

EGARCH 0.006 0.002 0.006 0.012 0.004 0.028 0.032 0.720 1.000 1.000 1.000 1.000

APARCH 0.006 0.004 0.004 0.008 0.004 0.014 0.006 0.010 0.000 0.026 0.054 0.066

FIGARCH 0.052 0.194 1.000 0.908 0.826 0.440 0.762 0.156 0.036 0.052 0.086 0.060

HYGARCH 1.000 0.888 0.040 0.124 0.076 0.064 0.090 0.032 0.026 0.024 0.046 0.058

FIAPARCH 0.004 0.032 0.022 0.014 0.008 0.010 0.000 0.004 0.000 0.000 0.000 0.002

LMSM 0.012 0.212 0.088 0.018 0.044 0.084 0.076 0.054 0.056 0.036 0.054 0.038

FCOM3 0.035 0.005 0.014 0.013 0.005 0.097 0.134 0.995 0.067 0.066 0.086 0.084

FCOM31 0.039 0.006 0.016 0.019 0.012 0.130 0.092 0.957 0.051 0.061 0.078 0.083

FCOM311 0.002 0.482 0.068 0.134 0.076 0.270 0.111 0.040 0.083 0.065 0.072 0.085

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model can-
not be outperformed by other competitor models. The values in bold face represent the p-values that are greater than or
equal to the 10% confidence level under a pre-specified loss function. We combine: FCOM1=HYGARCH+FIAPARCH,
FCOM11=FIAPARCH+LMSM, FCOM2=GARCH+FIAPARCH, FCOM21=GARCH+LMSM, FCOM211=FIAPARCH+LMSM,
FCOM3=GARCH+EGARCH, FCOM31=EGARCH
+FIGARCH and FCOM311=FIGARCH+HYGARCH.
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Table 4.15.: Superior predictive ability (SPA) test results using oil price observations from January
6, 1992 to December 31, 2009 as in-sample and from January 4, 2010 to March 24,
2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.000 0.026 0.010 0.124 0.116 0.074 0.200 0.488 0.170 0.200 0.314 0.242

IGARCH 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.008 0.186 0.330 0.280 0.308

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004

FIGARCH 0.000 0.034 1.000 1.000 0.884 1.000 0.800 0.512 0.854 0.752 0.896 0.890

HYGARCH 1.000 1.000 0.132 0.038 0.008 0.006 0.004 0.000 0.002 0.000 0.002 0.014

FIAPARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.038 0.000 0.000 0.002 0.004 0.004 0.002 0.000 0.004 0.002 0.008

FCOM4 0.000 0.058 0.324 0.121 0.018 0.048 0.010 0.027 0.044 0.003 0.029 0.088

FCOM41 0.000 0.469 0.526 0.496 0.052 0.022 0.005 0.048 0.046 0.009 0.066 0.017

QLIKE

GARCH 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.000 0.000 0.126 0.076 0.686 0.628 0.764 0.796 0.624 1.000 1.000

FIAPARCH 0.034 0.006 0.002 0.012 0.008 0.024 0.050 0.014 0.026 0.036 0.052 0.070

LMSM 0.004 1.000 1.000 0.874 1.000 0.314 0.372 0.236 0.204 0.376 0.080 0.018

FCOM5 0.000 0.058 0.020 0.180 0.408 0.916 0.587 0.966 0.986 0.971 0.137 0.050

FCOM51 0.202 0.602 0.628 0.904 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RLOG

GARCH 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model
cannot be outperformed by other competitor models. The values in bold face represent the p-values that are greater than
or equal to the 10% confidence level under a pre-specified loss function. We combine: FCOM4=FIGARCH+HYGARCH,
FCOM41=FIGARCH+LMSM, FCOM5=HYGARCH+LMSM, FCOM51=FIAPARCH+LMSM, FCOM6=GARCH+FIAPARCH
and FCOM61=FIAPARCH+LMSM.
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Table 4.16.: Superior predictive ability (SPA) test results using oil price observations from January
3, 1977 to December 31, 2009 as in-sample and from January 4, 2010 to March 24,
2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

MSE

GARCH 0.015 0.007 0.053 0.125 0.392 0.232 0.749 0.772 0.360 0.303 0.538 0.571

IGARCH 0.029 0.094 0.046 0.053 0.037 0.158 0.261 0.010 0.010 0.026 0.005 0.003

GJR-GARCH 0.021 0.106 0.028 0.127 0.773 0.218 0.517 0.364 0.178 0.058 0.014 0.007

EGARCH 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.012 0.044 0.008 0.082 0.368 0.016 0.144 0.084 0.004 0.002 0.000 0.000

FIGARCH 0.014 0.084 0.031 0.156 0.581 0.160 0.817 0.192 0.272 0.026 0.219 0.259

HYGARCH 1.000 0.006 0.001 0.005 0.002 0.009 0.000 0.001 0.002 0.000 0.000 0.000

FIAPARCH 0.021 0.013 0.015 0.040 0.071 0.096 0.323 0.131 0.298 0.397 0.379 0.524

LMSM 0.009 1.000 1.000 1.000 0.814 1.000 0.730 0.732 0.884 0.812 0.872 0.817

FCOM1 0.030 0.242 0.201 0.322 0.695 0.272 0.803 0.883 0.415 0.488 0.895 0.884

FCOM11 0.017 0.117 0.163 0.253 0.645 0.350 0.846 1.000 0.731 0.775 0.850 0.771

MAE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.021 0.005 0.004 0.006 0.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000

FCOM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HMSE

GARCH 0.019 0.003 0.028 0.004 0.067 0.030 0.034 0.000 0.016 0.021 0.074 0.026

IGARCH 0.015 0.013 0.025 0.018 0.087 0.070 0.049 0.018 0.059 0.054 0.074 0.009

GJR-GARCH 0.016 0.013 0.012 0.005 0.086 0.068 0.047 0.020 0.067 0.053 0.074 0.008

EGARCH 0.032 0.023 0.847 0.863 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

APARCH 0.091 0.031 0.003 0.034 0.086 0.011 0.023 0.023 0.043 0.035 0.030 0.120

FIGARCH 0.035 0.001 0.019 0.026 0.052 0.056 0.053 0.017 0.028 0.064 0.069 0.022

HYGARCH 1.000 0.036 0.025 0.010 0.038 0.001 0.056 0.009 0.030 0.055 0.073 0.119

FIAPARCH 0.011 0.024 0.018 0.041 0.073 0.015 0.000 0.014 0.003 0.000 0.000 0.004

LMSM 0.023 1.000 0.153 0.137 0.046 0.018 0.019 0.026 0.019 0.030 0.036 0.050

FCOM3 0.006 0.042 0.046 0.015 0.059 0.026 0.069 0.040 0.047 0.069 0.119 0.140

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a
base model cannot be outperformed by other competitor models. The values in bold face represent the p-values
that are greater than or equal to the 10% confidence level under a pre-specified loss function. We combine:
FCOM1=GARCH+GJR-GARCH+FIGARCH, FCOM11=GARCH+GJR-GARCH+LMSM, FCOM2=GJR-GARCH+FIAPARCH,
FCOM21=FIAPARCH+LMSM and FCOM3=EGARCH+HYGARCH+LMSM.
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Table 4.17.: Superior predictive ability (SPA) test results using oil prices observation from January
3, 1977 to December 31, 2009 as in-sample and from January 4, 2010 to March 24,
2014 as out-of-sample.

Base model Forecast horizons

1 5 10 20 30 40 50 60 70 80 90 100

HMAE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.004 0.001

GJR-GARCH 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.006 0.001

EGARCH 0.000 0.002 0.426 1.000 1.000 1.000 1.000 1.000 0.868 0.789 0.546 0.384

APARCH 0.000 0.000 0.000 0.000 0.004 0.001 0.001 0.012 0.011 0.010 0.012 0.012

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.003 0.001

FIAPARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 1.000 0.574 0.045 0.006 0.020 0.029 0.083 0.132 0.211 0.454 0.616

FCOM4 0.000 0.045 0.877 0.159 0.043 0.158 0.312 0.646 0.825 0.901 0.773 0.604

QLIKE

GARCH 0.002 0.003 0.042 0.022 0.052 0.032 0.067 0.135 0.045 0.079 0.118 0.076

IGARCH 0.002 0.082 0.208 0.343 0.140 0.419 0.538 0.980 0.315 0.835 0.256 0.817

GJR-GARCH 0.003 0.309 0.485 0.630 0.542 0.569 0.305 0.466 0.172 0.372 0.175 0.415

EGARCH 0.000 0.104 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.003 0.131 0.348 0.315 0.489 0.188 0.416 0.393 0.068 0.036 0.038 0.001

FIGARCH 0.004 0.351 0.135 0.462 0.639 0.465 0.780 0.871 0.697 0.692 0.986 0.869

HYGARCH 1.000 0.373 0.470 0.529 0.735 0.777 0.766 0.396 0.664 0.647 0.779 0.345

FIAPARCH 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LMSM 0.000 0.916 0.854 0.866 0.833 0.714 0.793 0.534 0.783 0.710 0.497 0.524

FCOM5 0.003 0.097 0.186 0.388 0.166 0.618 0.457 0.722 0.193 0.607 0.275 0.659

FCOM51 0.000 0.584 0.652 0.775 0.844 1.000 1.000 0.880 0.902 0.873 0.868 0.890

RLOG

GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GJR-GARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

APARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIAPARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LMSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FCOM61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table entries are the p-values of the SPA test of Hansen (2005). The null hypothesis is that a base model cannot be
outperformed by other competitor models. The values in bold face represent the p-values that are greater than or equal to the 10%
confidence level under a pre-specified loss function. We combine: FCOM4=EGARCH+LMSM, FCOM5=IGARCH+GJR-GARCH,
FCOM51=FIGARCH+HYGARCH+LMSM, FCOM6=HYGARCH+FIAPARCH and FCOM61=FIAPARCH+LMSM.
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Figure 4.1.: Plot of oil prices, log-returns and squared returns (from January 2, 1875 to December
31, 1895)
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Figure 4.2.: Plot of autocorrelation functions of log-returns, absolute and squared log-returns
(from January 2, 1875 to December 31, 1895)
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Figure 4.3.: Plot of oil prices, log-returns and squared returns (from January 6, 1992 to December
31, 2009)
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Figure 4.4.: Plot of autocorrelation functions of log-returns, absolute and squared log-returns
(from January 6, 1992 to December 31, 2009)
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Figure 4.5.: Plot of oil prices, log-returns and squared returns (from January 6, 1992 to March 24,
2014)
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Figure 4.6.: Plot of autocorrelation functions of log-returns, absolute and squared log-returns
(from January 6, 1992 to March 24, 2014)
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Figure 4.7.: Plot of oil prices, log-returns and squared returns (from January 6, 1977 to March 24,
2014)
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Figure 4.8.: Plot of autocorrelation functions of log-returns, absolute and squared log-returns
(from January 6, 1977 to March 24, 2014)
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5. Assessing Forecast Performance of

Financial Duration Models via Density

Forecasts and Likelihood Ratio Test

5.1. Introduction

The evaluation of a model’s forecasting performance plays an important role in financial econo-

metrics. This is due to the fact that it provides information on the adequacy of the models used and

on the reliability of their forecasts. In the past point forecasts have been applied in most research

works. However, with the development of interval forecasts (cf. Chatfield, 1993) and density fore-

casts (cf. Diebold et al., 1998) the attention has shifted from point forecasts to interval and density

forecasts.

The purpose of this chapter is to evaluate in detail the predictive ability of the Markov switching

multifractal duration (MSMD) model recently proposed by Chen et al. (2013). Although the

MSMD model has already been evaluated by Chen et al. (2013) via point forecasts, we broaden the

scope of the evaluation of the model in four important aspects: (i) we use a broad set of benchmark

processes for comparison, (ii) we use a larger number of distributions for the innovations, (iii) we

apply additional criteria for comparison of the performance of alternatives, i.e. density forecasts,

and (iv) we look at further data beyond those investigated by Chen et al. (2013).

Given the existing strand of research on the evaluation of different specifications of ACD models

(cf. 3.3) and the promising new competitor in the form of the Binomial MSMD model, we find

that it is of paramount importance to assess the predictive ability of the Binomial MSMD model

and compare its forecasting performance to those of the ACD, Log-ACD and FIACD models.

We use Weibull, Lognormal, Burr, and generalized gamma distributions for the innovations in

the ACD and Log-ACD models and exponential one for the innovation in the FIACD model.

The forecasting performance comparison between the Binomial MSMD model and the alternative

ACD models is done via density forecasts and likelihood ratio test for a sample of eight stocks

traded on the New York Stock Exchange.

The rest of the chapter is organized as follows. In Section 5.2, we give a brief overview of the

different financial duration models, and we present in Section 5.3 the different methodologies for

estimation of these models. We describe the methodologies for the evaluation of density forecasts

in Section 5.4. Section 5.5 reports the empirical results, and we conclude in Section 5.6.
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5.2. Model Review

In this section, we briefly describe the standard ACD(1,1), the logarithmic ACD(1,1), the FI-

ACD(1,d,1), and the Binomial Markov switching multifractal duration (Binomial MSMD) mod-

els.

5.2.1. The ACD Model

In the standard ACD(1,1) model a financial duration, xt, is modeled as

xt = Ψtξt

Ψt = ω + β1xt−1 + δ1Ψt−1,

(5.1)

where ω > 0, β1 > 0, δ1 > 0, and β1 + δ1 < 1. The innovation term ξt is independent identically

Exponentially distributed with unit-mean. The constraints on the coefficients are to ensure positive

durations and the existence of the unconditional mean of the durations.

Empirical observations of the distribution of financial durations indicate that the hazard function

of xt, which is defined as the density function divided by the survivor function, may be increasing

for small durations and decreasing for long durations. In the following, we propose four different

distributions for the innovations which can replicate these variations in the hazard function. The

corresponding density functions of durations are obtained using a transform of variables technique

(cf. Appendix A.1).

1. The Weibull distribution:

The Weibull distribution allows for either increasing or decreasing hazard functions. This

flexibility makes it more attractive than the exponential distribution, which leads to constant

hazard function. In financial duration models it requires a distribution with unit expecta-

tion. Assuming that ξt in eq. (5.1) are independent and identically distributed and follow a

Weibull(1,α) distribution, the corresponding pdf is given by

f (ξt;α) =






αξα−1
t exp

[−ξαt
]

ξt ≥ 0

0 ξt < 0.

(5.2)

It is clear that the expectation of ξt is: E(ξt) = Γ

(

1 +
1
α

)

which does not fulfil the unit-mean

requirement. Therefore, we normalize the distribution so that E[ξt] = 1. The normalization

leads to the following pdf
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g(ξt;α) =






αξα−1
t cα exp

[−(ξtc)α
]

ξt ≥ 0

0 ξt < 0,

(5.3)

where c = Γ

(

1 +
1
α

)

.

Given g(ξt;α), and the fact that xt is a monotonic transformation of ξt, cf. (5.1), we can

easily derive the pdf of xt by making the change of variable as follows. We have






xt = Ψtξt

f (xt;α) = g(ξt;α)
∣
∣
∣
∣
dξt

dxt

∣
∣
∣
∣ .

(5.4)

eq. (5.4) leads to the pdf of xt

f (xt;α) =






α
xt

[
xt

φt

]α
exp

[

−
(

xt

φt

)α]

xt ≥ 0

0 xt < 0,

(5.5)

where φt = Ψt [Γ(1 + 1/α)]−1.

Given the information set ℑ available at time t − 1, the conditional density of xt is then

W(xt|ℑt−1;α) =
α

xt

[

xt

φt

]α

exp

[

−
(

xt

φt

)α]

, x ≥ 0. (5.6)

2. The Burr distribution:

The Burr distribution goes back to Burr (1942). Lancaster (1990) points out that the Burr

distribution can be derived as a gamma mixture of Weibull distributions. This distribution

offers more flexibility because it has the exponential, Weibull and log-logistic distributions

as limiting cases. We assume that ξt are independent and identically distributed and fol-

low a Burr(κ, σ2) distribution. We normalize the distribution so that E[ξt] = 1 and the

corresponding pdf is given by

f (ξt; κ, σ
2) =

κaκξκ−1
t

(

1 + σ2aκξκt
)

(

1
σ2 +1

) , ξt ≥ 0, (5.7)

where

a =





Γ
(

1 + 1
κ

)

Γ
(

1
σ2 − 1

κ

)

(

σ2)(1+ 1
κ ) Γ

(
1
σ2 + 1

)




and κ > 0, σ2 > 0. (5.8)
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We proceed as previously done for the case of the Weibull distribution (cf. eq. (5.4)) and

obtain the conditional density of xt as

B(xt|ℑt−1; κ, σ2) =
κπκt xκ−1

t

(

1 + σ2πκt xκt
)

(

1
σ2 +1

) , x ≥ 0, (5.9)

where

πt = aΨ−1
t . (5.10)

3. The generalized gamma (GG) distribution:

The generalized gamma density also provides more flexibility to fit the data. The general-

ized gamma distribution introduced by Stacy (1962) has exponential, gamma, and Weibull

as subfamilies. The Lognormal distribution is obtained as a limiting distribution when ν

approaches ∞. Assuming that ξt are independent and identically distributed and follow a

GG(τ, ν) distribution and normalizing the distribution so that E[ξt] = 1 the corresponding

pdf is given by

f (ξt; ν, τ) =






νξντ−1
t

βντΓ(τ)
exp

[

−
(

ξt

β

)ν]

, if ξt > 0

0, otherwise,

(5.11)

where β =
Γ(τ)

Γ(τ + 1
ν
)

and Γ(·) is the gamma function defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt. (5.12)

Following the same procedures as previously done in the case of the Weibull distribution

(cf. eq. (5.4)) we obtain the conditional density of xt as

GG(xt|ℑt−1) =
ν(xt)ντ−1

(θt)ντΓ(τ)
exp

[

−
(

xt

θt

)ν]

, x ≥ 0, (5.13)

where

θt = Ψt

Γ(τ)

Γ(τ + 1
ν
)
, τ > 0 ν > 0. (5.14)

4. The Lognormal distribution:

The log-normal distribution has only recently been introduced in the context of durations

modeling by some authors (cf. Allen et al., 2008, 2009; Sun et al., 2008) who find that this
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distribution also constitutes a good candidate for modeling of financial durations. Assuming

that ξt are independent and identically distributed and follow a ln N(µ, σ2) distribution and

normalizing the distribution so that E[ξt] = 1, the associated pdf is given by

f (ξt;σ) =
1√

2πσ2ξt

exp





−

(

ln (ξt) +
1
2
σ2

)2

2σ2





, ξt ≥ 0. (5.15)

Normalization via E[ξt] = 1 leads to exp
(

−µ + 0.5σ2
)

= 1. From this restriction one can

establish the following relationship: µ = 0.5σ2. As result, the distribution is completely

determined by the scale parameter σ2.

By applying the change of variable technique we obtain the conditional density function of

xt, given the past information set ℑt−1, as

f (xt;σ) =
1√

2πσ2xt

exp





−

(

ln (xt/Ψt) +
1
2
σ2

)2

2σ2





, xt ≥ 0. (5.16)

5.2.2. The Log-ACD Model

Bauwens and Giot (2000) investigated the logarithmic ACD (1,1) model. In the Log-ACD model

a financial duration, xt, is formalized as

xt = exp(ψt)ξt, ξt ∼ i.i.d., with E(ξt) = 1

ψt = ω + β1ξt−1 + δ1ψt−1,

(5.17)

where ψt is the logarithm of the conditional duration Ψt = exp(ψt).

5.2.3. The Fractionally Integrated ACD Model

As defined in sec. 3.3.4 a financial duration xt in the FIACD(p,d,q) can be formalized as

[1 − δ(L)]Ψt = ω
∗ + [1 − δ(L) − [1 − φ(L)](1 − L)d]xt

= ω∗ + A(L)xt

(5.18)

where A(L) = a1L+a2L2+a3L3+ . . . is a polynomial of infinite order with ak ≥ 0, k = 1, 2, . . . ,

ω∗ > 0, and 0 ≤ d ≤ 1.

Here we study a special specification of the FIACD(p,d,q) where p = q = 1 and assumed that
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the innovation, ξt, is standard exponential distributed. In the FIACD(1,d,1) eq. (5.18) becomes

Ψt = ω
∗ (1 − δ1L)−1 +

[

1 − (1 − δ1L)−1 (1 − φ1L) (1 − L)d
]

xt

= ω + B(L)xt,
(5.19)

where

B(L) = b1L + b2L2 + · · · = 1 − (1 − δ1L)−1 (1 − φ1L) (1 − L)d (5.20)

is a polynomial of infinite order with bk ≥ 0, k = 1, 2, . . . , and ω > 0.

The parameters, bk, of the B(L) can be expressed as

b1 = φ1 − δ1 + d

b2 = (d − δ1)(δ1 − φ1) +
d(1 − d)

2
...

bk = δ1bk−1 +

(

k − 1 − d

k
− φ1

)

πd,k−1 k = 2, 3, . . . ;

(5.21)

where πd,k = πd,k−1(k−1−d)k−1. Note that πd,k represents the terms of the expansion of (1−L)d

that can be expressed as

πd(L) =
∞∑

k=0

πd,kLk. (5.22)

To guarantee positivity of durations in the FIACD(1,d,1) the parameters φ, δ and d have to fulfill

the following conditions:

δ1 − d ≤ φ1 ≤
2 − d

3
, d

(

φ − 1 − d

2

)

≤ δ1(d − δ1 + φ1).

As stressed in Jasiak (1998) the FIACD(1,d,1) can be easily estimated via maximum likelihood

method by choosing a suitable truncation point that we set to 1000 in our empirical study (cf.

Jasiak, 1998; Baillie et al., 1996).

5.2.4. The Binomial MSMD Model

In the MSMD model proposed by Chen et al. (2013) a financial duration, xt, can be expressed

as

xt =
ζt

λt

, (5.23)

where ζt is i.i.d. standard exponential distributed, and λt is the mean intensity. The dynamic

process governing the mean intensity is described in detail in sec. 3.4.1
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5.3. Estimation Methods

5.3.1. ML Estimation for ACD Models

For the standard ACD, Log-ACD and FIACD models the estimation of parameters can be ob-

tained via a maximum likelihood method. Let L(x1, . . . , xT ;Ξ) be the likelihood function with

parameter vector Ξ = (ω, β1, δ1, d; η) with ω, β1, δ1 and d the structural parameters of eq. (5.1)

or (5.17) or (5.19) and η the vector of distributional parameters for the pertinent choice of the

distribution for innovations. The maximum likelihood estimator (MLE) is given by

Ξ̂ = arg max
Ξ

ln L(x1, . . . , xT ;Ξ), (5.24)

where L(x1, . . . , xT ;Ξ) is the product of the T appropriate density functions. It is clear that the

functional form of the likelihood function depends on the distributional assumption on ξt.

5.3.2. ML Estimation for the Binomial MSMD Model

With standard filtering methods a closed form solution can also be obtained for the likelihood

function of the Binomial MSMD model and a maximum likelihood method can be used to esti-

mate the parameter vector ϕ = (m0, λ̄, b, γ1) of the model. Let

f (x1, . . . , xT ;ϕ) =
T∏

t=1

f (xt|xt−1, . . . , x1;ϕ), (5.25)

the joint probability density function of durations (x1 . . . , xT ). Given the information set ℑt−1

available at the time t − 1, the one step ahead density can be written as

f (xt|xt−1, . . . , x1;ϕ) =
2k
∑

k=1

f (xt|Mt−1 = mi;ϕ)Pr(Mt−1 = mi|xt−1, . . . , x1), (5.26)

and the joint probability density function becomes

f (x1, . . . , xT ;ϕ) =
T∏

t=1

ω(xt;ϕ)(πt−1A). (5.27)

ω(xt;ϕ) is a vector of dimension 2k of conditional densities ( f (xt|Mt−1 = mi;ϕ) = λt(mi) exp[−λt(mi)xt])

of any observation xt for intensity regime mi and the transition matrix A has components ai, j =

Pr(Mt+1 = m j|Mt = mi). Mt is a latent variable, but one can recursively compute the conditional

probabilities πi
t = Pr(Mt = mi|xt, . . . , x1) through Bayesian updating

πt =
ω(xt;ϕ) ∗ (πt−1A)

∑

ω(xt;ϕ) ∗ (πt−1A)
. (5.28)

where ∗ represents the element by element product. The estimates of the parameters are obtained
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as

ϕ̂ = arg max
ϕ

T∑

t=1

ln [ω(xt) (πt−1A)] . (5.29)

5.4. Density Forecasts

Since we also wish to discriminate between different candidate distributions for the innovations,

we evaluate the predictive ability of different duration models not via point forecasts, but via their

density forecasts. Point forecasts just tell us how well a model captures the dynamics of the

durations around the mean, but do not shed much light on the accuracy of the shape of the residual

distribution. In order to compare ACD models, we need information about the suitability of each

model and the appropriateness of the residual distribution. To this end, we use tests of density

forecasts as developed by Diebold et al. (1998). With their tools it is possible to evaluate nested

and non-nested models. The methodology for evaluating density forecasts is based on the integral

transform which goes back to Rosenblatt (1952). Let us denote by {pt(xt|ℑt)}∞t=1 a sequence of

densities identifying the data generating process governing the durations xt and { ft(xt|ℑt)}∞t=1, the

sequence of one-step-ahead density forecasts produced by any duration model. Diebold et al.

(1998) prove that the correct density is weakly superior to all other forecasts. This suggests to

test whether { ft(xt|ℑt)}∞t=1 = {pt(xt|ℑt)}∞t=1 which seems not to be feasible at first sight. Rosenblatt

(1952) derived that under the null hypothesis the probability integral transform, zt =
∫ xt

−∞ ft(y)dy,

is uniformly distributed. Diebold et al. (1998) extended Rosenblatt’s research and showed that

under the null hypothesis the probability integral transform, zt, is i.i.d. uniformly distributed.

This implies that the evaluation of forecasts consists in assessing whether the probability integral

transform series, {zt}Tt=1, are i.i.d. U(0, 1). Diebold et al. (1998) recommended simple tests of

i.i.d. U(0, 1) behavior such as those of Kolmogorov-Smirnov and Cramer-von Mises and graphical

tools as complements to these tests. For visual inspection, one can plot a histogram based on an

empirical z sequence as well as the autocorrelation function of (zt− z̄), (zt− z̄)2. A visual inspection

of the histogram can help to detect departures from uniformity and Pearson’s goodness-of-fit test

can be computed by exploiting statistical properties of the histogram under the null hypothesis of

uniformity. The autocorrelation functions reveal potential deficiencies of a model to account for

the dynamics of a duration process and Ljung-Box Q-statistic for (zt − z̄) and (zt − z̄)2 may be used

to test independencies.

Recently, Berkowitz (2001) proposes a more powerful tool for evaluating density forecasts. His

suggestion is to use the inverse Normal transform of the z sequence. This transformation allows

us to simply use the likelihood ratio test.

The density forecasts of ACD or Binomial MSMD models are the conditional densities of xt

given the past information ℑt−1. The z sequences of ACD and of Binomial MSMD models are

obtained by integral transforms of the conditional densities.
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5.4.1. Testing Density Forecasts

To compare the predictive ability of ACD models to Binomial MSMD model, we used two

goodness-of-fit measures, namely the Kolmogorov-Smirnov (referred to as KS henceforth) statis-

tic and the Anderson-Darling (referred to as AD henceforth) statistic proposed by Rachev and

Mittnik (2000) as well as the likelihood ratio test developed by Berkowitz (2001).

5.4.1.1. Kolmogorov-Smirnov Distance

The Kolmogorov-Smirnov test is used in order to know whether a sample comes from a hypoth-

esized continuous distribution. As stressed in Conover (1999) the KS-statistic or distance counts

among the supremum class of empirical distribution function (EDF) test statistics1 and is designed

on the largest vertical difference between the hypothesized and empirical distribution.

Here the Kolmogorov-Smirnov statistic helps us to test i.i.d. U(0, 1) behavior of {zt}Tt=1. We test

the hypothesis

H0 : F(x) = F0(x) against Ha : F(x) , F0(x) ∀x, (5.30)

where F0 denotes a known cumulative distribution function (cdf).

The test statistic (KS) is defined as

KS = sup
x∈R
|F̂(x) − F0(x)| (5.31)

where

F̂(z) :=
1
T

T∑

t=1

1{xt ≤ z} (5.32)

is the empirical distribution function (EDF), and F0(x) is a uniform cumulative distribution func-

tion. The major drawback of the KS statistic is that it tends to be more sensitive near the center of

the distribution, i.e., around the median value, F0(x) = 0.5, than at the tails where F0(x) is close

to 0 or 1.

5.4.1.2. Anderson-Darling Distance

As an alternative to the KS statistic we also used the AD statistic proposed by Rachev and Mittnik

(2000) to test i.i.d. U(0, 1) behavior of {zt}Tt=1. This test statistic is designed in such a way that

discrepancies in the tails of the distribution are conveniently weighted. Rachev and Mittnik (2000)

defined the AD statistic as follows

AD = sup
x∈R

|F̂(x) − F0(x)|√
F0(x)(1 − F0(x))

, (5.33)

1 An EDF test statistic is defined as a statistic that measures the difference between the empirical distribution function
(EDF) and the hypothesized one.
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where F̂(x) and F0(x) are defined as in eq. (5.31).

With both statistics; the KS distance appropriate for the deviations around the median of the

distribution and the AD distance convenient for the tails, we can obtain reliable results of testing

the empirical distribution. Research results by Arshed et al. (2003) pointed out that the AD test

is the most powerful EDF test. By comparing the AD test to the KS test Razali and Wah (2011)

found that the AD test is more powerful than the KS test. However, they pointed out that the power

of both tests remains still low for small sample size.

5.4.1.3. Likelihood Ratio Test

The likelihood ratio test is a more powerful tool for evaluating density forecasts. Using a simple

transformation to normality, Berkowitz (2001) obtained the following proposition:

• If the sequence zt =
∫ xt

∞ f (u)du is distributed as an i.i.d. U(0, 1), then

vt = Φ
−1

[∫ xt

∞
f (u)du

]

is an i.i.d. N(0, 1). (5.34)

With the new sequence v, one can test the joint null hypothesis (H0) of independence and nor-

mality against a first-order autoregressive AR(1) with mean and variance different from 0 and 1,

respectively.

Let us consider the following AR(1) process vt − µ = ρ(vt−1 − µ) + εt, where µ is the mean of

vt, ρ is the AR(1) parameter and εt is a white noise process. The exact log-likelihood (L) function

associated with the AR(1) process is given by

L = −1
2

ln(2π) − 1
2

ln[σ2/(1 − ρ2)] −
[

v1 − µ/(1 − ρ)
]2

2σ2/(1 − ρ2)

− T − 1
2

ln(2π) − T − 1
2

ln(σ2) −
T∑

t=2

[

(vt − µ − ρvt−1)2

2σ2

]

.

(5.35)

The likelihood ratio test statistic is given by

LR = −2
[

L(0, 1, 0) − L(µ̂, σ̂2, ρ̂)
]

, (5.36)

where L(0, 1, 0) is the value of the log-likelihood function under H0 and L(µ̂, σ̂2, ρ̂) is the estimated

log-likelihood function associated with the AR(1) process. Under the null hypothesis, the test

statistic is chi-squared distributed with three degrees of freedom (χ2(3)).

The LR test by Berkowitz has some shortcomings. It can happen that the null hypothesis is

accepted because the conditions µ = 0, ρ = 0 and Var(εt) = 1 are true, but the sequence v is

not normal, as it should be under the null hypothesis. In other words, Berkowitz’s test can fail to

detect model failure arising from non-normality of the sequence v. To solve this problem, Dowd

(2004) suggests the Jarque-Bera test as a complement to the Berkowitz’s test.
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5.5. Empirical Application

5.5.1. Data

We use data of eight stocks traded on the New York Stock Exchange (NYSE): Citigroup (C),

International Business Machines (IBM), Bank of America (BAC), Coca Cola (KO), Walt Disney

(DIS), Boeing (BA), General Motors (GM), and Ford Motor (F). For each stock trade durations

are defined as time elapsed between two consecutive trades. The sampling period corresponds

to July 2004 which has 21 trading days. We also consider price durations for only two stocks,

namely IBM, and BAC. The price duration (xt(ιp)) is the minimal time interval needed to observe

a change in the mid-price2 (p) not less than a threshold (ιp) that is set to $0.0625. Mathematically,

we define the price duration as:

xt = inf{x ∈ R+, such that |pTt+x − pTt
| ≥ ιp}. (5.37)

For price durations, the sampling period covers July and August 2004. The data were extracted

from the Trade and Quote (TAQ) database3 available at the NYSE. For each stock we only take

into account the transactions in the period from 10 : 00 to 16 : 00 in order to avoid the effects of

opening auction (cf. (Engle and Russell, 1998); and (Ghysels et al., 2004)). Note that we do not

include the over night durations and zero-values. Table 5.1 reports the statistical characteristics of

the raw data for trade durations.

5.5.1.1. Seasonal Adjustment

The Raw data shows a strong seasonal patterns which can be categorized in two groups: a day-

of-the-week effect and a time-of-the-day effect. The first one comes from the fact that the trading

activity at the beginning of the week is low and becomes very high at the end of the week. This can

be observed in Fig. 5.1 where durations remain constantly high between Monday and Wednesday,

then decrease continuously afterward, and finally show their smallest values on Friday. The sec-

ond one is due to systematic variations of trade arrivals over the trading day. Typically, the average

duration is short at morning opening time and afternoon closing time, and long around noon or at

lunch time. At the start of the day, trading activities are very high due to new events (macroeco-

nomic news or news released by firms after the previous market close) that occurred during the

night. At the end of the day, traders want to close their positions before the end of the trading

session (cf. Fig. 5.2). Following Engle and Russell (1998), raw data can be adjusted as follows:

We first remove the day-of-the-week effect by averaging the duration for each weekday and divide

the raw data for each day of the week by the average duration. To eliminate the remaining effect

known as the time-of-the-day effect from the data (X̃t) obtained after the first adjustment, we use

a cubic spline with 13 knots chosen over the trading day to smooth the time-of-day function. To

2 Mid-price is used to avoid biases caused by a bid-ask bounce (cf. (Roll, 1984)).
3 This database consists of two parts: The first reports all trades, while the second lists the best bid and the ask prices

posted by market makers.
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obtain the values at each knot, the first one being at 10 : 00 and the last one being at 16 : 00, we

consider intervals of 30 minutes around each knot and calculate the average duration over these

30 minutes. The adjusted duration is obtained as:

xt = X̃t/̺(Tt) (5.38)

where X̃t is the duration after the day-of-week effect has been removed, ̺(Tt) is the time-of-day

effect and xt denotes the adjusted duration (cf. Figs. 5.5 and 5.6 for examples of plots of raw and

adjusted durations). Applying the cubic spline approach for price durations the structure of data

changes drastically and this affects the estimates of parameters. For this reason we also make use

of other approaches for seasonal adjustment and find that only the linear spline does not modify

the structure of raw data (price durations). The adjusted price durations are obtained by using a

linear spline with 7 knots at round hours, 10 : 00, 11 : 00, 12 : 00, 13 : 00, 14 : 00, 15 : 00, and

16 : 00.

5.5.2. Results of Performance Comparison

For each stock and for each type of data (trade and price durations), we estimate the ACD, the

Log-ACD, the FIACD and the Binomial MSMD models. The results of the estimation and the

standard errors are reported in Tables 5.7, 5.8, 5.9, and 5.10.

5.5.2.1. Estimation and Comparison of Estimated Models

The design of the simulation consists of two different experiments. We first generate data from

the Binomial MSMD model, using different number of intensity components (k) and different

values of m0. Table 5.5 shows the empirical moments obtained from the simulation exercise.

The Binomial MSMD model exhibits overdispersion, clustering, asymmetry, and heavy tails. By

varying the intensity components k and the value for m0, we observe that the Binomial MSMD

model offers a lot of flexibility to fit data with different degrees of heterogeneity and different

dynamic structures. This means that one can generate data from the Binomial MSMD model with

different values for k and m0 and compare the dynamic properties of the simulated data to those of

the raw data at hand.

Secondly, we estimate the standard ACD, the Log-ACD, FIACD and the Binomial MSMD

models, using trade duration data for IBM. Note that in the estimation procedures of the Binomial

MSMD model we use k = 7. The choice of intensity components, k, is motivated from the results

we obtained in the first simulation exercise. The estimated parameters are used to generate data

from each model specification (ACD, Log-ACD, FIACD and Binomial MSMD models) and to

compare their empirical moments and autocorrelation functions to those of IBM trade durations.

The results are reported in Table 5.6. Except for the ACD or Log-ACD model with Weibull dis-

tribution for error terms, all models exhibit overdispersion which is consistent with IBM duration

data. Skewness and kurtosis obtained from simulated data are sometimes above or below that
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obtained from IBM trade duration data. The inability of the Binomial MSMD model to proprely

reproduce the asymmetric effects in the data is due to the fact that the MSM process used is sym-

metric. In Fig. 5.7 and 5.8 the autocorrelation functions of WACD, LACD, BACD, and GGACD

models decay quickly and after some lags run parallel to that of IBM trade durations. In contrast,

the autocorrelation function of the FIACD and Binomial MSMD model decay hyperbolically and

nicely approximate that of IBM trade durations. This suggests that both models can better capture

the long memory (cf. Deo et al., 2010) which is observed in the real data. Fig. 5.9 depicts the

autocorrelation functions of simulated data from the FIACD model, the Binomial MSMD model

and IBM trade durations.

5.5.2.2. In- and Out-Of-Sample Results

To evaluate and compare the four models we conduct "in-sample" and "out-of-sample" exercises.

To do this, we split the data set for each stock into four subsets of equal size. For the "in-sample"

we estimate each model with the last fourth of the data, and then forecast densities and probability

integral transforms (z) are calculated on the same sample. In the case of "out-of-sample" we use the

first three-fourths of the data to estimate each model specification, and then the forecast densities

and z sequences are computed on the last fourth of the data, using the parameters obtained from

the estimation using the first three-fourths of the data.

With z sequences obtained from "in-sample" and "out-of-sample" exercises using duration data,

we first calculate KS and AD statistics for each model specification and each stock. The results

are reported in Table 5.11. Except for KO trade durations the best model under "the AD distance"

to fit trade durations in the tails of the distribution by conducting "in-sample" exercises is the

Binomial MSMD model while for C, IBM, and KO trade durations the best model under "the KS

distance" to fit the data near the median is the Burr ACD model. Expect for C the KS and AD

statistics for all other stocks obtained from the Binomial MSMD model by doing "out-of-sample"

exercises are smaller than those of the ACD, Log-ACD and FIACD models. This gives evidence

that the Binomial MSMD model is the best model to fit the data near the median as well as in

the tails of the distribution under "the KS and AD distances". We do not report the results of the

Log-ACD model because both the Log-ACD and ACD models exhibit similar results. Secondly,

the null hypothesis of the LR test, and the Jarque-Bera (JB) test for trade durations are strongly

rejected because the p-values are very small. One can argue, however, that this strong rejection

of the models is due to the large sample size of the data used in this empirical application. To

have more information about how the models perform, we consider two stocks, namely Ford (F)

and General Motors (GM) and visualize the histograms of their probability integral transforms (z)

and the autocorrelation functions of z for ACD and Binomial MSMD models. z-histograms of F

and GM obtained from WACD, LACD, BACD, and GGACD models have peaks near 0 and 1 (cf.

Fig. 5.10 and 5.11). This suggests that these models might not be able to capture the heavy tails

in trade duration data. This suggestion is in harmony with the AD statistics, which are very high

for WACD, LACD, BACD, and GGACD models. By the EFIACD model we also observe a peak
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near 1. However, this is not so pronounced. Compared to the z-histograms for WACD, LACD,

BACD, GGACD, and EFIACD models the z-histograms for Binomial MSMD model are relatively

"well-behaved" and seem to approximate the histograms of the uniform distribution.

If a model is successful in capturing the dynamic structure of the durations, then the z sequences

should be independent. To get information on how far the models capture the time dependence

in duration data, we plot the z-correlograms for F and GM and perform the Ljung-Box test. For

WACD, LACD, BACD, and GGACD models the null hypothesis (no autocorrelation) is strongly

rejected because the p-values are very small. In the EFIACD model while the null hypothesis is

rejected for F, it is accepted at the 1% confidence level for GM. For Binomial MSMD model the

results of the Ljung-Box test are fine. The null hypothesis of no autocorrelation is accepted at

least at the 1% confidence level for both stocks F and GM (cf. Table 5.13). In sum, there is also

evidence that the Binomial MSMD model is more successful in capturing the dynamic structure

of the trade durations (cf. Table 5.14).

For IBM price durations, the WACD and EFIACD models followed by the Binomial MSMD

model exhibit high KS and AD statistics, while small values for KS and AD statistics are obtained

by the generalized gamma distribution. This implies that the best model to fit IBM price durations

in the median and in the tail of the distribution is the GGACD model. This result is also in

harmony with the LR test, and the Jarque-Bera (JB) test that are significant at the 5% level for the

GGACD model, i.e. the null hypothesis of the LR test and the JB test cannot be rejected at the 5%

confidence level (cf. Table 5.12). The WACD and Binomial MSMD models are strongly rejected

because the p-values are very small. Lognormal and Burr distributions also exhibit small KS and

AD statistics compared to those of WACD and Binomial MSMD models.

One has to be careful when interpreting the results of the Berkowitz LR tests we obtained for

IBM price durations in LACD and BACD models. In fact, while the null hypothesis of the LR tests

are accepted at the 10% level, the null hypothesis of the JB tests (Normality) are strongly rejected

at all confidence levels. These results indicate that the LR test fails to detect the non-normality of

the v sequences (v = Φ−1(z)) and that it makes sense to supplement the LR test with the JB test in

order to avoid wrong inferences.

By observing the z-histograms of IBM price durations, it is clear that the z-histograms for

LACD, BACD and GGACD models nicely approximate that of the uniform distribution (cf. Fig.

5.12 and 5.13). The null hypothesis of no autocorrelation in the z sequence are almost accepted at

the 5% confidence level for all models and the visual inspection of z-correlograms suggests that

WADC, LACD, BACD, GGACD, and Binomial MSMD models exhibit similar performance in

capturing the dynamic structure of the IBM price durations (cf. Fig. 5.14 and 5.15). Surprisingly,

the EFIACD model shows some deficiencies by capturing the dynamic structure. We believe that

this is due to the uncertainty associated with the parameters estimation.

For BAC price durations the KS and AD statistics for Binomial MSMD model are smaller than

those of WACD, LACD, BACD, GGACD, and EFIACD models. The null hypothesis of the LR

and the JB tests are accepted at the 5% level for the Binomial MSMD model in both in-sample and
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out-of-sample. In the case of in-sample exercises the null hypothesis of the LR and the JB tests are

accepted at the 5% level for WACD, BACD, and GGACD models and rejected for the EFIACD

model. Here the Ljung-Box tests for no autocorrelation are strongly significant for all models at

the 5% level. These results are also supported by the visual inspection of z-correlograms for BAC

price durations. The z-correlograms reveal that all models are similarly successful in modeling the

dynamic structure of BAC price durations (cf. Fig. 5.16 and 5.17).

5.6. Conclusion

We analyze four different models, namely the ACD, the Log-ACD, the FIACD models both

with different distributional assumptions (exponential, Weibull, Lognormal, Burr, and general-

ized gamma) for error terms, and the Binomial MSMD model. Our Monte Carlo studies show

that the BMSMD model is able to mimic the most important stylized facts such as clustering ef-

fects, overdispersion, non-linearities, long memory and heavy tails observed in financial duration

data. Results from Monte Carlo analysis give evidence that the Binomial MSMD model can bet-

ter reproduce the long memory property than the ACD or Log-ACD model and is similar to the

FIACD in term of reproducing the long range dependence. We applied density forecast evaluation

methodologies and likelihood ratio test to compare the predictive ability of the Markov switching

multifractal duration model to those of standard ACD, Log-ACD and FIACD models with differ-

ent distributional assumptions for error terms. The choice of the standard ACD and Log-ACD is

due to the fact that there is evidence in the literature (cf. (Bauwens et al., 2004)) that forecast per-

formances of complex models such as TACD, SCD or SVD are not superior to those of ACD and

Log-ACD models. The results from empirical application show that the Binomial MSMD model

outperforms the ACD, Log-ACD and FIACD models when modeling trade duration data. It is

also worthwhile to note that the ACD model and Log-ACD model exhibit similar forecast perfor-

mances. Compared to ACD and Log-ACD models which only allow for ARMA-type dynamics,

the Binomial MSMD model allows for a multiplicative mixture of components determining the

duration between trades. The use of the Markov switching multifractal (MSM) process seems to

provide for higher flexibility due to its large number of intensity states so that it dominates the

performance of the ACD or Log-ACD model.

When applying the Binomial MSMD model to price durations, we observe that the Binomial

MSMD model slightly dominates or exhibits similar forecast performance as the ACD or Log-

ACD model. Here it is important to note that the distributional assumptions for error terms play

an important role in the modeling of price durations. So, the ACD model with generalized gamma

distribution for the error term provides in most cases good results and is sometimes preferred to

the Binomial MSMD model. We find that the Burr distribution performs well and can also be used

when modeling price durations. Surprisingly, the forecast performance of the FIACD is not so

good. The FIACD model is dominated by the standard ACD models.

A promising future research avenue seems to try appropriate extensions of the Binomial MSMD
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modeling approach. The MSM process used in the Binomial MSMD modeling approach is a

discrete version of a Poisson multifractal process. Duration data are statistically viewed as point

processes. It is well known that the Poisson process is a simple point process itself. For this

reason it might be more convenient to use the continuous-time Poisson multifractal process in the

modeling approach. Another possibility to improve the model is to introduce asymmetries. It is

well documented that financial duration data exhibit asymmetry, but unfortunately, however the

MSM process is symmetric. We think that one should be able to enhance predictive ability of the

Binomial MSMD model by introducing appropriate asymmetries.

In the next chapter 6 we propose new alternative MSMD models, compare their forecast perfor-

mance to that of the standard MSMD model developed by Chen et al. (2013), and infer from the

results obtained here and those of the next chapter 6.
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Table 5.1.: Information on the raw data

Trade durations

C IBM BAC KO DIS BA GM F

Number of obs. 94520 89162 72899 68052 68002 63067 51797 48295

Minimum value 1 1 1 1 1 1 1 1

Maximum value 141 91 129 281 129 199 218 228

Mean value 4.796 5.086 6.220 6.660 6.668 7.189 8.750 9.384

Standard dev. 5.587 5.829 8.004 9.070 8.338 9.791 11.928 11.613

Overdispersion 1.165 1.146 1.287 1.362 1.250 1.362 1.363 1.238

Skewness 3.861 3.433 3.522 4.357 3.221 3.722 3.694 3.378

Kurtosis 32.726 22.214 22.528 45.249 19.764 26.682 26.420 23.937

Table 5.2.: Information on the adjusted data

Trade durations

C IBM BAC KO DIS BA GM F

Number of obs. 94520 89162 72899 68052 68002 63067 51797 48295

Minimum value 0.109 0.091 0.068 0.054 0.076 0.065 0.046 0.036

Maximum value 24.592 24.457 25.316 42.461 16.018 21.993 16.961 16.960

Mean value 0.962 0.952 0.940 0.944 0.933 0.941 0.948 0.935

Standard dev. 1.075 1.027 1.138 1.198 1.103 1.204 1.221 1.075

Overdispersion 1.118 1.079 1.211 1.269 1.182 1.280 1.288 1.150

Skewness 3.621 3.095 3.297 4.011 2.885 3.301 3.314 2.880

Kurtosis 27.634 19.871 21.837 44.782 15.804 21.538 20.780 17.427

Q(10) 2224.9 1631.7 1306.1 1144.3 2104.3 909.394 798.909 860.316

Q(100) 3708.1 4020.5 2774.5 2422.8 5188.5 1797.5 1835.2 2034.5

Note: Q(10) and Q(100) denote the Ljung-Box Q-statistic of order 10 and 100 on the durations.
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Table 5.3.: Information on the adjusted data

Price durations

IBM BAC

Number of obs. 4734 3057

Minimum value 0.009 0.001

Maximum value 11.644 17.160

Mean value 1.002 1.027

Standard dev. 1.062 1.321

Overdispersion 1.060 1.286

Skewness 2.802 4.2538

Kurtosis 15.169 35.738

Q(10) 99.400 106.969

Q(100) 177.215 195.626

Note: Q(10) and Q(100) denote the Ljung-Box Q-statistic of order 10 and 100 on the durations.
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Table 5.4.: Dynamic Properties of the IBM Trading Durations

Raw Data Adjusted Data

Partial Partial

Lags Autocorrelation Autocorrelation Autocorrelation Autocorrelation

1 0.095 0.095 0.070 0.070

2 0.090 0.082 0.063 0.059

3 0.072 0.058 0.047 0.039

4 0.067 0.049 0.040 0.031

5 0.061 0.042 0.032 0.022

6 0.057 0.037 0.029 0.021

7 0.055 0.034 0.028 0.020

8 0.053 0.031 0.026 0.017

9 0.055 0.033 0.028 0.019

10 0.064 0.041 0.040 0.031

11 0.056 0.030 0.028 0.017

12 0.054 0.027 0.026 0.015

13 0.056 0.029 0.026 0.016

14 0.054 0.026 0.028 0.017

15 0.045 0.016 0.019 0.008

16 0.050 0.023 0.024 0.014

17 0.043 0.015 0.017 0.007

18 0.053 0.026 0.025 0.015

19 0.050 0.022 0.025 0.015

20 0.044 0.015 0.016 0.005
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Table 5.5.: Empirical Moments of the BMSMD model for different k and m0 values

Overdispersion Skewness Kurtosis

m0 = 1.1

k=6 1.054 2.303 11.541

k=7 1.062 2.356 12.119

k=8 1.073 2.413 12.545

m0 = 1.2

k=6 1.205 3.041 18.817

k=7 1.244 3.239 21.168

k=8 1.277 3.451 24.498

m0 = 1.3

k=6 1.451 4.072 31.500

k=7 1.542 4.580 40.491

k=8 1.631 5.058 49.868

m0 = 1.4

k=6 1.796 5.359 52.414

k=7 1.934 5.968 63.996

k=8 2.122 7.084 93.771

m0 = 1.5

k=6 2.219 6.564 73.831

k=7 2.502 7.918 108.685

k=8 2.792 9.286 149.422

Note: The values in the Table are average results based on Monte-Carlo simulations (400 samples of size 5000). We set b = 2 and
γ1 = 0.5.

128



Conclusion M. Segnon

Table 5.6.: A Comparison of empirical moments of ACD, Log-ACD and BMSMD Models

Distributions Models Overdispersion Skewness Kurtosis

Weibull
ACD 0.912 1.796 7.844

Log-ACD 0.909 1.772 7.655

Lognormal
ACD 1.094 4.396 45.752

Log-ACD 1.98 4.464 48.209

Burr
ACD 4.078 25.944 1113.089

Log-ACD 6.053 16.884 567.583

gen. gamma
ACD 1.135 4.649 51.515

Log-ACD 1.144 4.548 46.390

Exponential FIACD 1.024 2.170 10.392

Model Intensity Components Overdispersion Skewness Kurtosis

BMSMD

k=6 1.070 2.389 12.264

k=7 1.071 2.416 12.766

k=8 1.069 2.397 12.416

Trade Duration Overdispersion Skewness Kurtosis

IBM 1.079 3.095 19.871

Note: The values in the Table are average results (except in the last row) based on Monte-Carlo simulation (200 samples of size equals
to that of IBM trade data). The parameters used for each model specification are set equal to the values obtained from the estimation
of each model using IBM data. The last column reports the descriptive statistics for the IBM data.
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Figure 5.1.: Day-of-the-week effect.
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Table 5.12.: Mean of KS and AD statistics, the likelihood ratio (LR) test, and Jarque Bera (JB) test
for price durations.

In − S ample

IBM BAC

Distributions KS AD LR JB KS AD LR JB

Weibull 0.034 0.077 25.207 3.540 0.014 0.034 2.384 4.165
(0.000) (0.170) (0.497) (0.125)

Lognormal 0.012 0.031 0.463 23.741 0.033 0.090 0.186 147.254
(0.927) (0.000) (0.980) (0.000)

Burr 0.013 0.032 2.993 8.022 0.011 0.029 1.576 5.351
(0.393) (0.018) (0.665) (0.069)

gen. gamma 0.006 0.016 1.038 2.766 0.010 0.029 1.354 5.504
(0.792) (0.251) (0.716) (0.064)

EFIACD 0.024 0.061 34.373 361.614 0.040 0.107 34.117 39.456
(0.000) (0.000) (0.000) (0.000)

BMSMD 0.026 0.065 57.697 35.064 0.007 0.022 2.464 1.433
(0.000) (0.000) (0.482) (0.488)

Out − S ample

Weibull 0.025 0.060 19.576 3.444 0.026 0.068 12.846 0.089
(0.000) (0.179) (0.005) (0.957)

Lognormal 0.018 0.045 1.845 23.783 0.021 0.139 96.563 157.829
(0.605) (0.000) (0.000) (0.000)

Burr 0.009 0.025 0.904 11.139 0.029 0.094 44.952 10.204
(0.824) (0.004) (0.000) (0.006)

gen. gamma 0.008 0.020 1.089 4.170 0.024 0.088 54.446 20.746
(0.780) (0.124) (0.000) (0.000)

EFIACD 0.031 0.082 57.558 239.209 0.033 0.098 53.587 49.327
(0.000) (0.000) (0.000) (0.000)

BMSMD 0.028 0.069 60.262 36.700 0.011 0.030 4.194 0.570
(0.000) (0.000) (0.241) (0.752)

Note: LR and JB denote the Berkowitz’s likelihood ratio test and the Jarque Bera test, respectively.
The numbers in parentheses are the p-values.
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Table 5.13.: Ljung-Box tests for z (the probability integral transforms) and z2

Trade Durations Price Durations

F IBM

Model In-sample Out-of-sample In-sample Out-of-sample

pv pv2 pv pv2 pv pv2 pv pv2

WACD 0.000 0.000 0.000 0.001 0.512 0.692 0.570 0.685

LACD 0.000 0.000 0.000 0.002 0.550 0.604 0.569 0.611

BACD 0.000 0.000 0.000 0.001 0.467 0.604 0.541 0.603

GGACD 0.000 0.000 0.000 0.001 0.523 0.623 0.584 0.620

EFIACD 0.001 0.126 0.000 0.079 0.372 0.622 0.000 0.006

BMSMD 0.068 0.102 0.021 0.092 0.294 0.533 0.352 0.509

GM BAC

Model In-sample Out-of-sample In-sample Out-of-sample

pv pv2 pv pv2 pv pv2 pv pv2

WACD 0.000 0.000 0.000 0.000 0.833 0.518 0.817 0.395

LACD 0.000 0.000 0.000 0.000 0.868 0.629 0.806 0.399

BACD 0.000 0.000 0.000 0.000 0.836 0.531 0.809 0.423

GGACD 0.000 0.000 0.000 0.000 0.838 0.533 0.810 0.404

EFIACD 0.011 0.105 0.000 0.001 0.734 0.402 0.121 0.089

BMSMD 0.023 0.075 0.061 0.106 0.723 0.280 0.765 0.342

Note: pv and pv2 represent the p-values of the Ljung-Box Q statistic based on the first 50 autocor-
relations of the z (probability integral transforms) and z2, respectively. The values in bold refer to
the highest p-values.
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Table 5.14.: Number of significant autocorrelations out of 50 for z at 5% level

Trade Durations

F GM

Model In-sample Out-of-sample In-sample Out-of-sample

AC(z) AC(z) AC(z) AC(z)

WACD 9 7 14 9

LACD 10 9 15 11

BACD 9 6 14 11

GGACD 10 10 16 10

EFIACD 7 9 5 7

BMSMD 5 4 6 5

Price Durations

IBM BAC

Model In-sample Out-of-sample In-sample Out-of-sample

AC(z) AC(z) AC(z) AC(z)

WACD 3 3 1 1

LACD 3 3 2 2

BACD 3 3 1 1

GGACD 3 3 1 1

EFIACD 3 7 1 3

BMSMD 3 3 1 1
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Figure 5.2.: Time-of-the-day function for IBM trade durations
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Figure 5.3.: Time-of-the-day function for IBM price durations
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Figure 5.4.: Autocorrelation functions of adjusted trade duration data for the eight stocks
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Figure 5.5.: Plot of raw and adjusted IBM trade durations
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Figure 5.6.: Plot of raw and adjusted Coca-Cola trade durations
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Figure 5.7.: Autocorrelation functions of IBM trade durations and simulated data sets correspond-
ing to WACD, Log-WACD, GGACD, and Log-GGACD specifications. The parame-
ters used for the simulation are set equal to their estimated value for the IBM data.
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Figure 5.8.: Autocorrelation functions of IBM trade durations and simulated data sets correspond-
ing to BACD, Log-BACD, LACD, and Log-LACD specifications. The parameters
used for the simulation are set equal to their estimated value for the IBM data.
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Figure 5.9.: Autocorrelation functions of IBM trade durations and simulated data sets correspond-
ing to EFIACD specification and BMSMD specification with different intensity com-
ponents (k). The parameters used for the simulation are set equal to their estimated
value for the IBM data. Note that BMSMD stands for Binomial MSMD.
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Figure 5.10.: Histograms of the Probability Integral Transforms for Ford and General Motors
Trade Durations (In-sample). Note that BMSMD stands for Binomial MSMD.
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Figure 5.11.: Histograms of the Probability Integral Transforms for Ford and General Motors
Trade Durations (Out-of-sample). Note that BMSMD stands for Binomial MSMD.
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Figure 5.12.: z-Correlograms for Ford and General Motors Trade Durations (In-sample). Note that
BMSMD stands for Binomial MSMD.
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Figure 5.13.: z-Correlograms for Ford and General Motors Trade Durations (Out-of-sample). Note
that BMSMD stands for Binomial MSMD.
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Figure 5.14.: Histograms of the Probability Integral Transforms for IBM and BAC Price Durations
(In-sample). Note that BMSMD stands for Binomial MSMD.

151



Conclusion M. Segnon

0 0.2 0.4 0.6 0.8 1
0

20

40
Hist of z−IBM (WACD)

0 0.2 0.4 0.6 0.8 1
0

20

40
Hist of z−BAC (WACD)

0 0.2 0.4 0.6 0.8 1
0

50
Hist of z−IBM (LACD)

0 0.2 0.4 0.6 0.8 1
0

50

100
Hist of z−BAC (LACD)

0 0.2 0.4 0.6 0.8 1
0

50
Hist of z−IBM (BACD)

0 0.2 0.4 0.6 0.8 1
0

50

100
Hist of z−BAC (BACD)

0 0.2 0.4 0.6 0.8 1
0

20

40
Hist of z−IBM (GGACD)

0 0.2 0.4 0.6 0.8 1
0

50

100
Hist of z−BAC (GGACD)

0 0.2 0.4 0.6 0.8 1
0

50
Hist of z−IBM (EFIACD)

0 0.2 0.4 0.6 0.8 1
0

20

40
Hist of z−BAC (EFIACD)

0 0.2 0.4 0.6 0.8 1
0

50
Hist of z−IBM (BMSMD)

0 0.2 0.4 0.6 0.8 1
0

20

40
Hist of z−BAC (BMSMD)

Figure 5.15.: Histograms of the Probability Integral Transforms for IBM and BAC Price Durations
(Out-of-sample). Note that BMSMD stands for Binomial MSMD.
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Figure 5.16.: z-Correlograms for IBM and BAC Price Durations (In-sample). Note that BMSMD
stands for Binomial MSMD.
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Figure 5.17.: z-Correlograms for IBM and BAC Price Durations (Out-of-sample). Note that
BMSMD stands for Binomial MSMD.

154



6. Modeling Financial Duration Data Using

Alternative Markov Switching Multifractal

Duration Models

6.1. Introduction

The mixture of distributions is not new in finance and goes back to Clark (1973). This idea of mix-

ing distribution has also been used by Tauchen and Pitts (1983) to explain the positive association

between daily price variability and the trading volume. The mixture of distribution models have

been applied for modeling financial duration data and achieved successful results in the literature.

For instance, the SVD model of Ghysels et al. (2004) is obtained from a combination of a gamma

distribution and an exponential distribution. The SCD model of Bauwens and Veredas (2004)

combines a Lognormal distribution and a Weibull (or gamma) distribution. De Luca and Gallo

(2004) also used a mixture of two exponential distributions for modeling intra-daily durations. In

this chapter we propose a mixture of generalized gamma and Burr representations for financial

durations. In fact, both representations are generalized versions of the MSMD model.

Empirical studies on financial duration data give evidence that flexible distributional assump-

tions as such generalized gamma, Burr or Lognormal for the innovations in the ACD models

provide a satisfactory fit for the data and contribute a lot to the forecast performance of the mod-

els. In line with this, we find that it would be interesting to explore generalized gamma and Burr

distributional assumptions for innovations in the MSMD model in order to verify whether a better

fit can be achieved. We compare the ability of the new models to fit financial duration data to that

of the standard MSMD model of Chen et al. (2013) via the likelihood ratio test, the Akaike and

the Bayesian information criterion.

We find that the mixture of generalized gamma, Burr and their particular cases (Weibull, gamma

and exponential) are able to capture long memory, heavy tails, and clustering effects simultane-

ously, and thus, may provide relatively accurate forecasts. The main finding here is that the func-

tional form of the MSMD models is more determinant for obtaining accurate forecasts than the

distributional assumptions for innovations.

The rest of the chapter is organized as follows. In Section 6.2 we introduce the mixture of

generalized gamma and Burr representations for financial durations. Section 6.3 presents statistical

properties of the models. The estimation procedures and model selection criteria are described in

Section 6.4 and 6.5, respectively. Section 6.6 illustrates the empirical application and we conclude
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in Section 6.7.

6.2. Alternative Markov Switching Multifractal Duration Models

The MSMD model in its generalized form is defined as






xt =
ζt

λt

,

λ(Mt) = λ̄
k∏

i=1

M
(i)
t ,

(6.1)

where xt denotes the duration between two consecutive financial events occurring at times Tt−1

and Tt and ζt is an i.i.d. unit-mean innovation. In principle, any distribution with positive support

can be used for the innovation. The dynamic processes governing λ(Mt) are defined as in sec.

3.4.1.

6.2.1. Mixture of Generalized Gamma Distribution

Here we assume that the innovation ζt is generalized gamma distributed and normalize the distri-

bution so that E[ζt] = 1. The corresponding probability density function (pdf), GG, of ζt is given

by

GG(ζt; δ, α) =






δζδα−1
t

βδαΓ(α)
exp



−
(

ζt

β

)δ


 , if ζ > 0

0, otherwise,

(6.2)

where α and δ are shape parameters, β =
Γ(α)

Γ(α + 1
δ
)

represents the scale parameter and Γ(·) is the

gamma function defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt. (6.3)

Given the pdf of ζ in eq. (6.2) and the fact that ζt is a monotonic transformation of xt, we can

easily obtain the pdf, p, of xt by applying the change of variables technique as previously done in

sec. 5.2.1. We have

p(xt;φ) =
δxδα−1

t

θδαt Γ(α)
exp



−
(

xt

θt

)δ


 (6.4)

where φ is the parameter vector and θt =
β

λt

represents the time-varying scale parameter.

We can rewrite the mixture density in eq. (6.4) as

p(xt|ℑt−1;φ) =
n∑

i=1

wi
t pi(xt|Mt−1 = mi), (6.5)
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where

1. ℑt−1 denotes the information set available at time t − 1,

2. φ = (m0, λ̄, b, γ1, δ, α) is the parameter vector of the model,

3. n is the number of mixture density components; with n = 2k, where k is the number of

intensity components in the model,

4. wi
t = Pr(Mt = mi|x1, . . . , xt) represents the ith mixture weight, satisfies wi

t ≥ 0,
n∑

i=1

wi
t = 1,

and can be calculated as in eq. (2.37)

5. pi(xt|Mt−1 = mi) is a conditional generalized gamma density given the intensity components

or multipliers and is given by

pi(xt|Mt−1 = mi) =
δxδα−1

t

θδα
i
Γ(α)

exp



−
(

xt

θi

)δ


 , (6.6)

where θi which is given by

θi =
β

λ(mi)
, (6.7)

represents the state-dependent scale parameter.

6.2.2. The Mixture of Burr Distribution

Assuming that the innovation (ζ) is Burr distributed and normalizing the distribution so that

E[ζt] = 1, we obtain the pdf that is given by

B(ζt|τ, κ) =
κcκζκ−1

t

(1 + τcκxκt )1/τ+1
, (6.8)

where 0 < τ < κ and c =
Γ(1 + 1

κ
)Γ( 1

τ
− 1

κ
)

τ(1+ 1
κ

)Γ( 1
τ
+ 1)

.

By applying the change of variables rule we obtain the pdf, p, of financial duration, xt, as

p(xt;Ω) =
κϕκt xκ−1

t

(1 + τϕκt xκt )1/τ+1
, (6.9)

where Ω = (m0, λ̄, b, γ1, κ, τ) is the parameter vector of the model and ϕt is given by

ϕt = cλt. (6.10)

The conditional density of xt given the information set, ℑt−1, available at time t − 1 is then

p(xt|ℑt−1;Ω) =
κϕκt xκ−1

t

(1 + τϕκt xκt )1/τ+1
. (6.11)
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We can rewrite the pdf in eq. (6.11) as we previously did in eq. (6.5) and in this case the

conditional density of the duration given the latent intensity component Mt−1, pi(xt|Mt−1 = mi),

becomes

pi(xt|Mt−1 = mi) =
κϕκ

i
xκ−1

t

(1 + τϕκi xκt )1/τ+1
, (6.12)

where 0 < τ < κ, and ϕi is given by

ϕi = cλ(mi). (6.13)

Unlike the generalized gamma distribution, the Burr distribution is rarely used in duration anal-

ysis. This is due to the fact that the Burr distribution requires some restrictions on parameters in

order to ensure finite moments. However, compared to exponential or Weibull distribution, the

Burr distribution function depends on two parameters that enable the distribution to be more flexi-

ble than the two former. The mixture of Burr distribution includes the mixture of Weibull (τ→ 0),

and the mixture of exponential (τ→ 0 and κ = 1)

6.3. Statistical Properties

6.3.1. Moments

The moments of MSMD models depend on the moments of ζt. By the definition the unconditional

expectation (µx) and variance (σ2
x) of xt are:

µx = E

[

ζt

λt

]

= E

[

λ−1
t

]

, (6.14)

and,

σ2
x = E





(

ζt

λt

)2
 −

[

E

(

ζt

λt

)]2

= E

(

ζ2
t

)

E





(

1
λt

)2
 −

[

E

(

1
λt

)]2

.

(6.15)

If for instance, ζ is generalized gamma distributed, then the second moment E
(

ζ2
t

)

is given by

E

(

ζ2
t

)

=
Γ(α)Γ(α + 2/δ)

Γ2(α + 1/δ)
. (6.16)

Following the argumentation of Chen et al. (2013), it is clear that the duration processes in

the alternative MSMD models are also stationary, ergodic and possess finite moments. The clear

proofs of this assertion are:

1. The transition probability matrix in eq. (3.24) describes the dynamic process of the intensity

components or multipliers Mi
t . Given that γi > 0, it is clear that the processes Mi

t are

stationary and ergodic.
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2. By the construction of the Markov switching process, it is assumed that Mi
t are independent

across k and t and also independent of ξt (cf. Calvet and Fisher, 2004a).

3. In sum, it is obvious that the vector process
(

ξt,M
i
t , . . . ,M

k
t

)

that determines the duration

process in the MSMD models is stationary and ergodic, and thus, the duration process as

well.

4. By assuming that the latent multipliers are drawn from Binomial distribution taking m0 in

the high state and 2 − m0 in the low state, with m0 ∈ (0, 2], one can easily obtain an upper

bound as λt = λ̄mk
0, if all intensity components or multipliers are in the high state and a

lower bound λt = λ̄(2 − m0)k, if all intensity components are in the low state, for the mean

intensity λt. This implies that the expectation of the mean intensity λt exists and is finite,

and thus, the expectation of the xt.

Dispersion

The mixture of generalized gamma and Burr representations for financial durations exhibit over-

and underdispersion. Compared to the model of Chen et al. (2013) that can only reproduce overdis-

persion, the capacity of both models to display over- and underdispersion is an additional asset for

our models.

σ2
x − µ2

x = E





(

ζt

λt

)2
 − 2

[

E

(

ζt

λt

)]2

≥ E

(

ζ2
t

)

E





(

1
λt

)2
 − 2



E

(

1
λt

)2


=
[

E

(

ζ2
t

)

− 2
]

︸        ︷︷        ︸

=h(α,δ)

E





(

1
λt

)2
 .

(6.17)

If α = 1 and 0 < δ ≤ 1 or 0 < α ≤ 1 and δ = 1, h(α, δ) takes positive values. This means that the

difference σ2
x − µ2

x is positive, and thus, the MSMD processes display overdispersion. A special

case is when α = δ = 1 and h(1, 1) = 0 (exponential case). If α = 1 and δ > 1 or α > 1 and δ = 1,

the function h(α, δ) takes negative values due to the fact that E
(

ζ2
t

)

approaches 1. In this case, the

MSMD processes display underdispersion.

In sum, it is clear that there exist combinations of α and δ (by the generalized gamma distribu-

tion) or κ and τ (by the Burr distribution) that lead to over- or underdispersion. In the next subsec.

6.3.3 we present a simulation study that confirms our results.

6.3.2. Long Memory Feature

Here we concentrate on the autocorrelation function of financial durations and show that the MSM

process can mimic the hyperbolic decay in autocorrelation functions exhibited by financial dura-

tions. By the definition the autocorrelation function for a range of lags is
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ρ(l) =
E [(xt − E[xt]) (xt+l − E[xt+l])]

E

[

(xt − E[xt])2
]1/2

E

[

(xt+l − E[xt+l])2
]1/2

. (6.18)

From the duration process we know that

E[xt] = E[xt+l]. (6.19)

We make use of eq. (6.19) to obtain the following reduced form of eq. (6.18)

ρ(l) =
E (xt xt+l) − [E(xt)]2

σ2
xt

, (6.20)

where σ2
xt

is calculated as in eq. (6.15).

Following Calvet and Fisher (2004a) we obtain the formula for the autocorrelation function of

the durations in the models

ρ(l) =

∏k
i=1[1 + η(1 − γi)l] − 1

ς(1 + η)k − 1
, (6.21)

where ς = E[ζ2
t ], and η = E(M−2)[E(M−1)]−2 − 1.

Define ̺ = logb

(

E(M)/[E(M1/2)]2
)

and consider two arbitrary numbers α1 and α2 in the open

interval (0, 1) such that α1 < α2. The set of integers Ωk = {l : α1 logb(bk) ≤ logb l ≤ α2 logb(bk)}
contains a considerable number of intermediate lags.1

Proposition 1. The autocorrelation of durations fulfills

sup
l∈Ωk

∥
∥
∥
∥
∥

ln ρ(l)
ln l−̺

− 1
∥
∥
∥
∥
∥
→ 0 as k → +∞. (6.22)

The proposition 1 evidences the capacity of the MSMD processes to reproduce the long memory

exhibited by financial duration data. The presence of the high persistence in IBM trade durations

has been first pointed out by Engle and Russell (1998) in their seminal paper. Its relevance has

been well-documented in details in the volatility literature for a long time and nowadays it is

unthought of introducing a model that cannot mimic this feature. In empirical financial duration

literature long memory has been only modeled by Jasiak (1998) and later by Deo et al. (2010). So,

our MSMD models complete the list of the long memory financial duration models.

6.3.3. Numerical Simulations

Due to the fact that the unconditional moments and autocovariances cannot be computed analyt-

ically, we conduct numerical simulations with several sets of parameters (cf. Table 6.1) to gain

insight into each model specification. We concentrate on the empirical dispersion, the skewness,

1 cf. Calvet and Fisher (2004a) for the proof and more information.
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and the kurtosis obtained in each model. Table 6.1 presents average results for the dispersion, the

skewness, and the kurtosis based on Monte Carlo simulations (100 samples of size 15000). Dif-

ferent parameter scenarios lead to different average values for the dispersion, the skewness, and

the kurtosis. It is clear that the mixture of gamma, generalized gamma, Weibull, and Burr mod-

els can not only fit data characterized by overdispersion (σx/µx > 1) but also underdispersion2

(σx/µx < 1). One can also see that by varying the parameter values the empirical moments for

skewness and kurtosis also change. These results confirm the fact that the new models offer a lot

of flexibility which is missed in the mixture of exponential model proposed by Chen et al. (2013).

With simulated samples we check the autocorrelation functions and we find that they exhibit long

memory feature for various parameter scenarios. Fig. 6.1 depicts the autocorrelation functions

in each model specifications (generalized gamma, gamma, Weibull, and Burr) compared to that

of exponential. We also see that the shape of the autocorrelation functions for different distribu-

tions for innovations remains almost identical (curves shift left). The shift of the autocorrelation

functions comes from the term ς in eq. (6.21). This suggests that the ability of the MSMD mod-

els to reproduce long memory patterns come more from the MSM process than the distributional

assumption for the innovation.

6.4. ML Estimation

The estimation of the alternative MSMD models can easily be performed by the ML estimation

procedures we adopted for Chen et al. (2013)’s MSMD model in sec. 5.3.2.

6.4.1. Small-Sample Properties

We assess the small-sample properties of the ML estimator by conducting Monte Carlo simula-

tions. The design of the simulation is as follows: For each model specification we use k = 7

(the number of intensity components) and Binomial distribution for multipliers. The choice of k

is motivated by the research results obtained by Chen et al. (2013); Segnon and Lux (2012). The

simulation requires four basic parameters for the multifractal process and one or two additional

parameters depending on the distributional assumption for the innovation in the model. The basic

parameters are: the Binomial value m0, the unconditional intensity λ̄, the frequency growth rate b,

and the high-frequency switching probability γ1. The additional parameters are: α for a gamma

distribution, δ for a Weibull, α and δ for a generalized gamma, and τ and κ for a Burr distribution.

All simulations use m0 = 1.2, λ̄ = 1, b = 2, γ = 0.5, δ = 0.8, α = 1.2, τ = 0.5 and κ = 1.2 and

we consider two sample sizes: T = 5000, and T = 10000, and there are 100 replications for each

sample size.

For each model specification and for each simulation the ML estimation provides a set of pa-

rameter estimates. We compute the biases, standard errors (SE) and the root mean-squared errors

(RMSE) and the results are reported in Table 6.3. As it turned out, for parameter m0, results are

2 Volume durations exhibit underdispersion.
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almost identical over models in terms of biases, standard errors and root mean squared errors. The

estimators ˆ̄λ, b̂ and γ̂ in the exponential MSMD model exhibit larger biases and smaller RMSEs.

In other models we observe a tendency towards increasing RMSEs and decreasing biases.

In sum, the parameters are well estimated in all models and the decrease in RMSE with sample

size in all models is in harmony with T 1/2 consistency: proceeding from 10,000 to 5,000, the root

mean-squared error increases roughly with factors of about
√

2.

6.5. Model Selection Criteria

To address the issue of the model selection we make use of the three widely applied criteria in

the literature, namely the likelihood ratio test, the Akaike information criterion (AIC), and the

Bayesian information criterion (BIC).

1. The Likelihood Ratio Test:

The likelihood ratio test is the most popular and often used test in the literature due to its

simplicity and the opportunity it offers to test two nested models. The test statistic has the

following form

LR = −2 ln

(

Ls

Lg

)

, (6.23)

where Ls and Lg are the likelihood functions under the null and alternative hypotheses,

respectively. The test statistic is asymptotically chi-squared (χ2) distributed with degrees of

freedom equal to pg − ps, with ps and pg the number of free parameters of specified and

generalized models under the null and alternative hypotheses, respectively.

2. The Akaike Information Criterion (AIC):

The AIC proposed by Akaike (1974) is defined as

AIC = −2 ln(L) + 2p, (6.24)

where ln(L) is the log-likelihood of the estimated model and p is the number of estimated

parameters.

3. The Schwarz or Bayesian Information Criterion (SIC or BIC)

The concept of the BIC has been developed by Schwarz (1978) in a Bayesian framework

and is defined as

BIC = −2 ln(L) + p ln(T ), (6.25)

where ln(L) is the log-likelihood of the estimated model, p is the number of estimated

parameters and T is the sample size. Here the BIC works under the assumption that the true

model exists and is embedded in the set of aspirant models under consideration.

From eq. (6.24), it is clear that as the sample size (T ) grows, the penalty term (2p) remains

constant. In other words, AIC does not weight the penalty term conveniently. As results, the AIC
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can rapidly overfit, and select a model with a larger number of parameters than it must be.

The overfitting problem of the AIC is overcome by the BIC that re-adjusts the penalty term as

the sample size grows. Haughton (1988, 1989) and Nishii (1984) demonstrated that the BIC is a

consistent estimator of the model as long as the true model is in the class of candidate models.

This means that the probability of selecting the true model approaches 1 as the sample size (T )

goes to +∞. However, note that if the true model is not in the class of candidate models and the

sample size (T ) approaches ∞, the BIC has the tendency to underfit, i.e., it gives more weights to

the penalty term than it is necessary, and selects a model with a few number of parameters.

6.6. Empirical Application

6.6.1. Raw Data

The raw data consist of three stocks traded on the New York Stock Exchange (NYSE): Citigroup

(C), International Business Machines (IBM), and Ford Motor (F) and three stocks traded on the

NASDAQ: Apple (AAPL), Dell (DELL), and Microsoft (MSFT). We define trade and volume

durations for C, IBM and F and a price duration for AAPL, DELL and MSFT. Trade durations are

defined as time elapsed between two consecutive trades. The price duration (xt(ιp)) is the minimal

time interval needed to observe a change in the mid-price3 (p) not less than a threshold (ιp) that is

set to $0.0156. Mathematically, we define the price duration as:

xt = inf
{

x ∈ R+, such that |pTt+x − pTt
| ≥ ιp

}

. (6.26)

The volume duration4 is the minimal time needed to trade a certain amount of shares at least

equal to a threshold ιv that we set to 25000.

xt = inf





x ∈ R+, such that

t+x∑

i=t

Vi ≥ ιv




. (6.27)

The volume durations characterize the liquidity of a stock on the market. Long volume durations

imply that more time is needed to trade a given amount of shares. A stock is said to be liquid if it

is characterized by the short volume durations with small changes in either bid, ask or mid-point

price over these volume durations. The sampling period corresponds to July 2004 which has 21

trading days. The data were extracted from the Trade and Quote (TAQ) database5 available at the

NYSE.

3 Mid-price is used to avoid biases caused by a bid-ask bounce (cf. Roll, 1984).
4 Volume durations have been introduced by Gouriéroux et al. (1999).
5 This database consists of two parts: The first reports all trades, while the second lists the best bid and the ask prices

posted by market makers.
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6.6.2. Seasonal Adjustment

We adjust the raw data as it has already been described above in sec. 5.5.1.1.

6.6.3. Comparison of the MSMD Models

First we estimate all the model parameters and the results are reported in Tables 6.4, 6.6, 6.8, 6.10,

6.12, 6.14. We observe a change in the estimates of the parameter, γ1, in the different models with

different data sets.

• For trade duration data: While the estimates of the transition probability parameter γ1 in

the standard MSMD model (M-Exp) are 0.335, 0.351 and 0.980 for C, IBM and F stocks,

respectively, they quickly reach their upper bound value, 0.999, in the generalized MSMD

models (M-Weibull, M-Gamma, M-GG and M-Burr). This might indicate a tendency of

the generalized models to overestimate the parameter γ1, and thus, distort the extent of the

persistence in trade duration data.

• For price and volume duration data: Except for MSFT and F stocks, the parameters in the

standard and generalized MSMD models are well estimated. For MSFT and F stocks the

estimates of the rate, b, at which the transition probability increases are closer to 1. One can

argue that this may be the reason why the estimates for the parameter, γ1, for both stocks

are so small.

To document the ability of the MSMD models to reproduce the long memory observed in the

trade duration data we estimate the MSMD models using Ford trade durations and then, use the

estimated parameters to generate data from each model specification. Figs. 6.2 depicts the auto-

correlation functions of each model specification and that of the Ford trade durations.

The MSMD models can account well for a hyperbolically decaying autocorrelation function

(ACF) observed by trade durations. In Fig. 6.2 we see that except for the ACF of the mixture of

gamma all the other ACFs start at a relatively high first autocorrelation compared to that of the

Ford data. The ACF of the mixture of generalized gamma is the closest to the ACF of the Ford

data. This suggests that the mixture of generalized gamma model has the best fit as far as the

ACF is concerned. This result will be confirmed by the Akaike information criterion (AIC) and

Bayesian information criterion (BIC).

In our empirical study, we define the price duration as a time needed to observe a cumulative

change in the mid-price not less than a threshold (ιp) that is set to $0.0156 and the volume duration

as a minimal time needed to trade a given amount of shares at least equal to a threshold (ιv) that we

set to 25000. By decreasing the thresholds the persistence in both types of data becomes higher

and one may need models such as MSMDs that can capture the high persistence and provide

accurate forecasts.

From sec. 6.2 it clear that on the one hand the mixture of generalized gamma, gamma, Weibull,

and exponential are nested and on the other hand the mixture of Burr, Weibull, and exponential are

also. So, we can compare their fit using a simple likelihood ratio (LR) test. We test the hypothesis
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H0 : the true model = the simple model

against

Ha : the true model = the generalized model.

By doing so, we obtain seven model comparisons. The null hypothesis that the true model is

the simple model is strongly rejected at 5%, 2.5% and 1% confidence levels, cf. Table 6.16. This

means that the simple model is always rejected in favor of the generalized model. We obtain

similar results for different types of financial durations (trade, price and volume) and all stocks

used in this study.

The results we obtain by considering the AIC and BIC selection criteria are in conformity with

the LR test results. In other words, the AICs and BICs in Tables 6.5, 6.7, 6.9, 6.11, 6.13, 6.15 also

speak in favor of the generalized models.

6.7. Conclusion

In this chapter we have introduced the alternative MSMD models, namely the mixture of gamma,

Weibull, generalized gamma and Burr representations for financial durations and analyzed their

performance to fit the data. The results from simulation studies and empirical application give

evidence that with gamma, Weibull, generalized gamma and Burr distributions for the innovation

financial duration data (trade, price and volume durations) can be fitted properly. Compared to the

mixture of exponential distribution we just observed a slight superiority of the new models in terms

of fitting the data. The MSMD models are more appropriate for modeling financial duration data

than the ACD models that have ARMA structure, and thus, cannot capture the high persistence

observed in the trade duration data. In sum, the generalized versions of the MSMD model are

convenient for modeling financial duration data and offer researchers a new tool for empirical

investigations. In the next chapter we extend the univariate MSMD model to a bivariate MSMD

model that can permit a simultaneous modeling of the price and duration processes.
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Table 6.1.: Simulated empirical moments of the Models

T = 15000, R = 100

α δ κ τ Overdispersion S kewness Kurtosis

M-GG

0.600 0.700 2.212 6.496 83.395

1.800 1.900 0.694 1.762 7.857

1.800 0.700 1.330 3.826 29.130

0.600 1.900 0.967 2.242 11.162

M-Gamma

0.500 1.000 1.683 4.309 35.486

0.600 1.000 1.549 3.991 31.410

1.500 1.000 0.999 2.895 17.930

1.800 1.000 0.995 2.698 15.690

M-Weibull

1.000 0.650 1.881 5.883 76.442

1.000 0.700 1.732 5.070 53.360

1.000 1.200 1.001 2.804 16.644

1.000 1.900 0.815 1.999 9.403

M-Exp 1.000 1.000 1.252 3.336 22.973

M-Burr
1.500 0.500 1.468 9.761 304.692

2.500 0.500 0.858 2.944 22.287

Note: R denotes the number of replications and T the sample size. The values in the Table are average results based on Monte-Carlo
simulations.
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Table 6.2.: Raw Data

Raw data

Trade Durations Price Durations Volume Durations

C IBM F APPL DELL MSFT C IBM F

Number of obs. 94520 89162 48295 9877 6423 4861 6268 2862 3689

Overdispersion 1.165 1.146 1.238 1.648 1.479 1.192 0.747 0.655 0.871

Skewness 3.861 3.433 3.378 5.064 4.504 3.078 1.733 1.415 1.863

Kurtosis 32.726 22.214 23.937 53.443 36.256 17.477 8.703 5.977 9.298

Adjusted data

Overdispersion 1.118 1.079 1.150 1.855 1.317 1.440 0.632 0.528 0.734

Skewness 3.621 3.095 2.880 10.946 3.140 17.083 1.363 0.986 1.505

Kurtosis 27.634 19.871 17.427 256.301 17.986 633.833 7.479 4.438 6.830

Q(10) 2224.9 1631.7 860.316 3478.9 417.280 920.401 1053.6 865.633 882.794

Q(100) 3708.1 4020.5 2034.5 4502.3 606.936 1037.5 1352.6 1113.2 1003.4
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Table 6.3.: Monte Carlo MLE results

Parameters m0 λ̄ b γ m0 λ̄ b γ

T=5000 T=10000

M-Exp

Bias -0.011 -0.246 -0.206 -0.082 -0.013 -0.229 -0.155 -0.055

SE 0.001 0.002 0.022 0.016 0.001 0.001 0.016 0.012

RMSE 0.008 0.018 0.214 0.160 0.006 0.014 0.163 0.124

Parameters m0 λ̄ b γ δ α τ κ

T=5000

M-GG

Bias -0.009 -0.177 -0.039 -0.038 0.018 -0.009

SE 0.002 0.006 0.046 0.030 0.010 0.017

RMSE 0.021 0.055 0.459 0.300 0.101 0.165

T=10000

M-GG

Bias -0.014 -0.161 -0.066 -0.038 0.006 0.004

SE 0.002 0.004 0.037 0.026 0.008 0.013

RMSE 0.018 0.044 0.368 0.261 0.080 0.132

T=5000

M-Weibull

Bias -0.010 -0.241 -0.224 -0.089 0.001

SE 0.002 0.004 0.042 0.027 0.002

RMSE 0.018 0.038 0.420 0.273 0.017

T=10000

M-Weibull

Bias -0.014 -0.229 -0.191 -0.073 -0.002

SE 0.001 0.003 0.026 0.020 0.001

RMSE 0.012 0.025 0.261 0.203 0.010

T=5000

M-gamma

Bias -0.012 -0.188 -0.073 -0.044 -0.005

SE 0.0011 0.002 0.022 0.018 0.003

RMSE 0.009 0.021 0.217 0.179 0.030

T=10000

M-gamma

Bias -0.015 -0.167 -0.066 -0.022 -0.006

SE 0.001 0.002 0.016 0.012 0.002

RMSE 0.005 0.015 0.155 0.126 0.022

T=5000

M-Burr

Bias -0.011 -0.241 -0.238 -0.088 -0.007 -0.001

SE 0.002 0.005 0.051 0.033 0.004 0.004

RMSE 0.023 0.053 0.511 0.328 0.043 0.037

T=10000

M-Burr

Bias -0.013 -0.229 -0.138 -0.044 -0.006 -0.003

SE 0.001 0.004 0.034 0.026 0.003 0.003

RMSE 0.015 0.037 0.342 0.262 0.031 0.025

The parameters are: m0 = 1.2, λ̄ = 1, b = 2, γ = 0.5, δ = 0.8, α = 1.2, τ = 0.5, κ = 1.2 and k = 7.
The table shows average results over 100 replications.
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Table 6.16.: Results of the likelihood ratio tests

H1

M-Gamma M-Weibull M-GG M-Burr

H0

M-exp 0.000 0.000 0.000 0.000

M-Gamma 0.000 0.000 0.000 0.000

M-Weibull 0.000 0.000 0.000 0.000

Note: The null hypothesis that the true model is the simple model is rejected at any standard confidence levels for all stocks.
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Figure 6.1.: Autocorrelation functions of simulated data sets corresponding to the mixture of ex-
ponential, gamma, Weibull, Burr, and generalized gamma specifications with intensity
components k that we set to 7. The parameters used for the simulation are: m0 = 1.2,
b = 2, γ1 = 0.5, λ̄ = 1
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Figure 6.2.: Autocorrelation functions of Ford trade durations and simulated data sets correspond-
ing to the mixture of exponential, gamma, Weibull, Burr, and generalized gamma
specifications with intensity components k that we set to 7. The parameters used for
the simulation are set equal to their estimated value for the Ford trade duration data.
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Figure 6.3.: Time-of-the-day function for Ford trade durations
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Figure 6.4.: Time-of-the-day function for AAPL price durations
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Figure 6.5.: Time-of-the-day function for Citigroup volume durations
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7. A Bivariate Markov-Switching Multifractal

Duration Model

7.1. Introduction

It is well-documented that financial durations have information content, and therefore, are crucial

for the price adjustment process. Since the seminal paper of Engle and Russell (1998), various

extensions of the standard ACD model have been proposed in the literature. One issue related

to all these models is that they only model the time elapsed between market events, and do not

take into account the information given by the price process. This information may be of a great

importance for a better understanding of trading activities in the market and may help to answer

important empirical questions. It seems worthwhile to extend the univariate models in a way that

allows for a joint modeling of the price and the duration processes. Such models can permit re-

searchers, for instance, to analyze the impact of the market activity, measured by durations or the

average volume per transaction on the magnitude of the bid-ask spread or trade-to-trade return

volatilities. They can also enable the scrutiny of interdependencies between durations, prices and

trading volumes, or the co-movement between bid-ask spread volatilities. These research ques-

tions receive widespread attention in the microstructure literature. With the availability of high

frequency data it seems appropriate to verify whether these theories can be confirmed empirically.

In line with this, Russell and Engle (2005) introduced the autoregressive conditional multinomial

(ACM) model that permits a simultaneous modeling of the trade duration process and the discrete

price changes process. The ACM is a combination of an ACD model with a dynamic multinomial

model. Engle (2000) combined an ACD model with a GARCH model to obtain an ACD-GARCH

model which allows for a joint modeling of the timing between trades and the volatility related to

the price process. Trade durations are modeled by means of the ACD model while volatilities of

trade-to-trade returns are captured by the GARCH model conditional on the concurrent trade dura-

tion. This model has been extended by Grammig and Wellner (2002) for allowing for a reciprocal

relationship between the trade duration process and the volatility process. Hasbrouck (1991) and

later Dufour and Engle (2000b) used a vector autoregressive (VAR) system to analyze interdepen-

dencies between microstructure economic variables, namely trade durations, prices and volumes.

This modeling approach has been extended by Manganelli (2005).

Recent empirical investigations of high-frequency data reveal that many financial quantities

exhibit long memory properties and multifractality. For example, Qiu et al. (2012) report strong
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multifractality in spread returns. Hautsch (2012) accounts high persistency in the bid-ask spreads.

Long memory in trade durations and in trading volume has been documented by Jasiak (1998)

and Lobato and Velasco (2000), respectively. Chen et al. (2013) report self-similarity properties

in inter-trade duration data. It seems essential that we need new models that can reproduce the

above-mentioned features as well as permit a simultaneous modeling of the duration and price

processes.

In this chapter we introduce a bivariate Markov switching multifractal duration (MSMD) model

that is built on the bivariate Markov switching multifractal (MSM) process developed by Calvet

et al. (2006). Inspired by the univariate Markov switching multifractal process (cf. Calvet and

Fisher, 2001a, 2004a) Calvet et al. (2006) proposed a bivariate MSM process which has been ap-

plied for analyzing risk transmission, co-movement of volatilities and volatility spillovers in finan-

cial markets (cf. Idier, 2011). The bivariate MSM process also found application in the calculation

of value-at-risk (VaR) forecasts for portfolios (cf. Calvet et al., 2006; Liu, 2008). Recently, Liu

and Lux (2014) refined the bivariate MSM model by allowing correlations between volatility com-

ponents to be non-homogeneous with two different parameters that control volatility correlations

at high and low frequencies. Our bivariate MSMD model can be used to analyze irregularly spaced

as well as regularly spaced data. So far, extant Markov switching multifractal duration (MSMD)

models are univariate ones. They have independently been proposed by Chen et al. (2013) and

Baruník et al. (2012) and seem to be more appropriate for the analysis of high-frequency finan-

cial duration data. However, as we can see above multivariate settings are preferable in empirical

research because they allow to answer many important questions. Our motivation is to provide re-

searchers and practitioners a tool that can be used for the joint modeling of the price and duration

process as well as for the study of the co-movement in microstructure or trade-related variables at

high-frequency level.

The rest of the chapter is organized as follows. Section 7.2 introduces the bivariate Markov

switching multifractal duration model. Its statistical properties are presented in Section 7.3. An

empirical application is illustrated in Section 7.5 and Section 7.6 concludes.

7.2. A Bivariate MSMD Model

The bivariate MSMD model is defined as:

zt = g[λ(Mt)] ∗ ξt, (7.1)

where zt = (z1,t, z2,t)′ is a (2 × 1) vector of economic variable series, the vector ξt = (ξ1,t, ξ2,t)′

is assumed to follow a bivariate Lognormal distribution such that ln ξt is a bivariate normally

distributed random variable with mean vector µ and variance-covariance Σ. ∗ denotes element

by element multiplication. The mean intensity function λ(Mt) is the vector of the products of

multifractal intensity components, i.e. λ(Mt) = [λ(M1,t), λ(M2,t)]′, where each λ(Mq,t) is defined

as the product of intensity components for series q:
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λ(Mq,t) = λ̄q

k∏

i=1

Mi
q,t. (7.2)

The constant scale parameter λ̄q represents the unconditional mean intensity and Mi
q,t is the inten-

sity component at frequency i of series q.

• Two choices of g(·) can be proposed, in particular:

• g(y) = y. This functional form is straightforward and has been employed by Baruník et al.

(2012) to analyze financial price durations. In this case, we have: g[λ(Mt)] = λ(Mt).

• g(y) = 1/y. This second one has been proposed by Chen et al. (2013) in order to provide

a convenient modeling for financial intertrade durations. In this case, we have: g[λ(Mt)] =

[λ(Mt)]−1.

The period t intensity state is characterized by a 2 × k matrix Mt =
(

M1
t ; M2

t ; . . . ; Mk
t

)

and the

vector of the components at the ith frequency is Mi
t = (Mi

1,t Mi
2,t). The intensity vectors Mi

t are

persistent, non-negative and satisfy E[Mi
t] = 1, where 1 = (1, 1)′. Economic intuition behind the

choice of the dynamics for each vector Mi
t is that intensity arrivals are correlated but not necessarily

simultaneous across markets. For this reason Calvet et al. (2006) allow arrivals across series to

be characterized by a correlation coefficient ̺. By considering two random variables Ii
1,t and Ii

2,t

which are equal to 1 if each series q ∈ {1, 2} is hit by an information arrival with probability γi,

and equal to zero otherwise, Calvet et al. (2006) specified the arrival vector to be i.i.d. and its

unconditional distribution has to satisfy three conditions. First, the arrival vector is symmetrically

distributed: (Ii
1,t, I

i
2,t)

d
= (Ii

2,t, I
i
1,t). Second, the switching probability of a series is equal to an

exogenous constant: Pr(Ii
2,t = 1) = γi. Third, there exists ̺ ∈ [0, 1] such that

Pr(Ii
1,t = 1|Ii

2,t = 1) = (1 − ̺)γi + ̺. (7.3)

̺ = 0 signifies that new arrivals are independent and ̺ = 1 signifies that they are simultaneous.

The above-mentioned three conditions define a unique distribution of (Ii
1,t, I

i
2,t) whose switching

probabilities are defined as:

γi = 1 − (1 − γ1)bi−1
, (7.4)

with parameters γ1 ∈ [0, 1] and b ∈ (1,∞).

The choice of the bivariate Lognormal distribution is motivated by the previous research. In fact,

Allen et al. (2008) and later Allen et al. (2009) demonstrated the ability of the univariate Lognor-

mal distribution to fit financial duration data. Furthermore, Lognormal distribution also found

application in modeling of the price volatility (cf. Stein and Stein, 1991) and realized volatility

(cf. Andersen et al., 2003). The bivariate Lognormal distribution has a closed form conditional

density function that allows us to easily apply the maximum likelihood estimation approach. All
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these reasons determine us to use the bivariate Lognormal distribution for the innovations in the

bivariate MSMD model. Note that any other bivariate distribution with positive support can also

be used.

For the empirical application we borrow the simple specification in Calvet et al. (2006) which

consists in assuming that each Mi
t is drawn from a bivariate binomial distribution M = (M1,M2)′,

with M1 taking values m1 ∈ (0, 2) and 2 − m1, and M2 taking values m2 ∈ (0, 2) and 2 − m2.

In their seminal paper Calvet et al. (2006) allowed for variation of the correlation (ρm) between

components M1 and M2 and reported that the hypothesis of a perfect positive correlation, i.e.

ρm = 1, is never rejected. We also follow Calvet et al. (2006) and set ρm to one in our empirical

study.

7.3. Statistical Properties of the Model

The mean vector µ and variance-covariance matrix Σ of ln ξt are given by

µ =





µ1

µ2




and Σ =





σ11 σ12

σ21 σ22




. (7.5)

Thus, the mean and variance-covariance of the ξ are given by

E[ξt]i = exp

[

µi +
1
2
Σii

]

, (7.6)

Var[ξt]i j = exp

[

µi + µ j +
1
2

(

Σii + Σ j j

)
]
[

exp
(

Σi j

)

− 1
]

= (di j). (7.7)

Note that by assuming µi = −1
2Σii we obtain:

E[ξt]i = 1 and Var[ξt]i j =
[

exp
(

Σi j

)

− 1
]

= (di j). (7.8)

This restriction helps to reduce the number of parameters to be estimated in the model.

Let ρ denote the correlation coefficient between ln ξ1,t and ln ξ2,t, then the corresponding corre-

lation coefficient ς between ξ1,t and ξ2,t is given by

ς =
exp(ρ

√
σ11σ22) − 1

√

[exp(σ11) − 1][exp(σ22) − 1]
= h(ρ), (7.9)

where ς ∈ (−1, 1), h(ρ) = 0 if ρ = 0, |ς| < ρ, and h(ρ) , −h(−ρ), cf. Mostafa and Mahmoud

(1964) for more detail.

The conditional covariance quantifies the co-movement and is given by

Cov(z1,t+l, z2,t+l) = ς
√

d11d22E
(

g[λ(M1,t+l)]g[λ(M2,t+l)]
) −C, (7.10)
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and the conditional correlation becomes

Corr(z1,t+l, z2,t+l) =
ς
√

d11d22E
(

g[λ(M1,t+l)]g[λ(M2,t+l)]
) −C

h
(

g[λ(M1,t+l)], g[λ(M2,t+l)]
) (7.11)

where

h(·) =
[(

E[g(λ(M1,t))] exp(σ11) − a2
1

) (

E[(λ(M2,t))] exp(σ22) − a2
2

)]1/2
, (7.12)

and C = a1a2 with a1 = E[g(λ(M1,t))] and a2 = E[g(λ(M2,t))].

7.4. Estimation Approach

Our bivariate MSMD model requires ten parameters
(

m1
0,m

2
0, λ̄1, λ̄2, σ1, σ2, b, γ1, ρ, ̺

)

where m1
0

and m2
0 determine the bivariate Binomial distribution of intensity components, γ1 their transition

probabilities, λ̄1 and λ̄2 are the unconditional mean intensities, σ1 and σ2 represent the standard

deviations of the Normal innovations, ρ is the correlation between Normal innovations and ̺ the

correlation of arrivals across series. To estimate these parameters we use the two-step estimation

procedures proposed by Calvet et al. (2006). The main asset of this two-step estimation approach

is that it allows for performing the estimation of the bivariate model in two straightforward steps.

In the following we briefly describe the two steps:

1. The first step consists in optimizing the sum of the two univariate log-likelihoods

L
(

z1t,m
1
0, λ̄1, σ1, b, γ1

)

+ L
(

z2t,m
2
0, λ̄2, σ2, b, γ1

)

(7.13)

where L is the log-likelihood of the univariate MSMD. This first step provides the estimates

of the parameter vector Φ =
(

m1
0,m

2
0, λ̄1, λ̄2, σ1, σ2, b, γ1

)

that are consistent as long as the

gradient of the sum of the both univariate log-likelihoods with respect to the true parameters

are zero.

2. In the second step we obtain the remaining parameters (ρ, ̺) via the simulated likelihood

method. we use the particle filter described in sec. 2.5.2 to optimize the likelihood function

of the bivariate MSMD process. The bivariate pdf in the MSMD model is given by

f
(

z1t, z2t|ℑt−1
)

=

N∑

i=1

f (z1t, z2t|M1t = mi
1,M2t = mi

2)Pr(M1t = mi
1,M2t = mi

2|ℑt−1). (7.14)

where f
(

z1t, z2t|M1t = mi
1,M2t = mi

2

)

is

f
(

z1t, z2t|M1t = mi
1,M2t = mi

2

)

=
1

2πz1tz2tσ1σ2

√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
Q

]

, (7.15)
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with

Q =





ln
(

z1tλ(mi
1)
)

− µ1

σ1





2

−2ρ





ln
(

z1tλ(mi
1)
)

− µ1

σ1









ln
(

z2tλ(mi
2)
)

− µ2

σ2




+





ln
(

z2tλ(mi
2)
)

− µ2

σ2





2

.

With simulated draws M̂i
t from Mt|ℑt−1 that we obtain via the particle filter, the Monte Carlo

estimate of the conditional density is thus,

f̂ (zt|ℑt−1) =
1
N

N∑

i=1

f
(

zt|Mt = M̂i
t ; Φ̂

)

(7.16)

conditional on the parameter vector Φ̂ obtained in the first step. As explained in Calvet et al.

(2006) we simulate each vector Mi
t one-step forward and re-weight using an importance

sampler (cf. sec. 2.5.2).

This estimation procedure is a special case of GMM, and thus, provides estimators that are con-

sistent and asymptotically normally distributed (cf. Calvet et al., 2006, for more details.).

7.5. Empirical Application

7.5.1. Data

For the empirical study we use four stocks, namely Citigroup (C), International Business Ma-

chine (IBM), Bank of American (BAC) and Coca-Cola (KO), traded on the NYSE. The data were

extracted from the Trade and Quote (TAQ) database available on the NYSE. The sample period

correspond to July 2004 which has 21 trading days. The TAQ database is composed of two sec-

tions: The first section reports all trades and the second contains the best bid-ask prices posted

by the market-makers. Here we use the data from the second section for computing the bid-ask

spread. The bid-ask spread serves as an indicator for the market liquidity and is positively cor-

related with the transaction cost (cf. Hautsch, 2012). The role of the bid-ask spread in financial

markets has been described in detail in information- or inventory-based models developed in the

market microstructure literature. In fact, all these models consider the bid-ask spread as the only

one instrument that gives the market maker a margin to avoid losses when trading with informed

traders. Hautsch (2003) finds that the width of the bid-ask spread posted at the beginning of a spell

can be used to predict a market-makers’ assessment of liquidity risk.

A growing body of research devoted to the dynamical properties of the bid-ask spreads demon-

strates how informational they are for the markets. Farmer et al. (2004), and later Mike and

Farmer (2008) demonstrate that the pdf of the bid-ask spreads follows a power law with the ex-

ponent around 3. Long memory properties in the bid-ask spread series have been documented by

Qu et al. (2007) and Mike and Farmer (2008). It is also well-documented and reported by Hautsch

(2012) that the bid-ask spreads exhibit high persistence and long-range dependence. Research by
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Qu et al. (2007) pointed out that the bid-ask spreads are characterized by monofractality, a feature

that is different from multifractal structure found by a number of financial quantities (e.g. finan-

cial returns). Recently, the analysis of bid-ask spread returns and volatilities provides results that

speak in favor of a strong multifractality in the spread returns and a presence of long-range cross-

correlations between spread volatilities of different stocks (cf. Qiu et al., 2012). In this chapter we

investigate the relationship between bid-ask spreads of different stocks by means of our bivariate

MSMD model.

To do this we first compute the irregularly spaced bid-ask spreads st and rescale them as an

average bid-ask spread ∅st in time interval ∆t = 1 (cf. Plerou et al., 2005):

∅st =
1
τ

τ∑

t=1

st, (7.17)

where τ is the total number of quotes posted in the time interval ∆t = 1.

7.5.2. Data Adjustment

High-frequency data exhibit strong seasonality due to the different trading activities observed dur-

ing each trading day. These seasonal patterns have also been found in bid-ask spread (cf. Chung

et al., 1999; Qu et al., 2007) and bid-ask spread volatilities (cf. Qiu et al., 2012). McInish and

Wood (1992) pointed out that the bid-ask spreads display U-shaped patterns over the trading day.

In other words, bid-ask spreads are higher at the opening and closing time than the rest of the trad-

ing day and these seasonal patterns are the opposite of that observed by the intertrade durations.

It is well-known that such intraday patterns can lead to spurious results and have to be removed

before using the data for any estimation. Different methods have been applied to remove the in-

traday patterns: A ϑ−time scale method by Dacorogna et al. (1993), the maximal overlap discrete

wavelet transform (MODWT) by Dacorogna et al. (2001). Here we adopt the methodologies re-

cently proposed by Liu et al. (1999) that consist in segmenting the data set for each trading day

that extends from 10 : 00 a.m. to 16 : 00 p.m. (360 minutes) into 360 consecutive 1 min intervals

and then averaging over the total number of trading days. Formally, we have:

as(t
′) =

1
N

N∑

i=1

si(t
′) (7.18)

where as(t′) denotes the intra-day pattern of the bid-ask spread at time t′ in the 360 continuous

working minutes on the NYSE, i is the ith trading day, and N is the number of trading days. The

estimated seasonal pattern displays two kinds of shapes. The first one matches predicted trading

patterns by information models that claim that bid-ask spreads are high at the opening time and

decline throughout the day (cf. Glosten and Milgrom, 1985; Easley and O’Hara, 1987; Madhavan,

1992). This trading pattern can be explained by the diminution of the adverse selection problem the

market-makers face throughout the trading day. The second ones correspond to that predicted by
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market-power models which show a crude reverse J-shape (cf. Stoll and Whaley, 1990; McInish

and Wood, 1992) intra-day pattern (cf. Fig. 7.5).

7.5.3. Results

We first scrutinize the bid-ask spread data for the four stocks. We compute the empirical first,

second, third and fourth moments for bid-ask spread data of each stock. The results are reported

in Tables 7.1 and 7.2. The values for standard deviations are smaller than 1 and thus, indicate a

presence of a low dispersion in the data. The bid-ask spread data for all four stocks exhibit high

and positive skewness and excess kurtosis. Positive excess kurtosis indicates a peaked distribution

while positive values for skewness show that the data are right skewed (cf. Figs. 7.8 through

7.11). Figs. 7.3 and 7.4 display the autocorrelation functions of the raw and adjusted data. To

see whether the data for the bid-ask spread of the four stocks display long memory we employ the

detrended fluctuation analysis to estimate the Hurst exponent (H) (cf. Figs. 7.3 and 7.4). The Hurst

exponent belongs to the classical statistical methods for gauging the extent of persistency in a time

series. It was introduced by English hydrologist Hurst (1951) in his seminal paper to address the

problem of reservoir control near Nile River Dam in depth. In finance, the Hurst exponent (H)

is popular due to the fact that it allows for classifying time series into different types and gaining

insights into their dynamic properties. The Hurst exponent can only takes values in the interval

(0, 1). A Hurst exponent around 0.5 corresponds to Brownian time series. A Hurst exponent value

between 0 and 0.5 refers to time series that exhibit anti-persistent behavior and that between 0.5

and 1 is indicative of persistent behavior. The estimates of the Hurst exponent for the four stocks

reported in Tables 7.1 and 7.2 are markedly greater than 0.5 and smaller than 1 (roughly speaking

are located in interval (0.5, 1)), and thus, indicate the presence of persistence in the data used in

this study.

We also compute for each stock the tail index (α) using the Hill’s method (1975a)

γH =
1
α
=

1
m

m∑

i=1

[

ln(x(i)) − ln(x(m))
]

, (7.19)

where γH is a consistent estimate of the inverse of α. T is the sample size, m the number

of observations located in the distribution’s tail and the observations in the sample are put in

descending order: x(1) ≥ x(2) ≥ · · · ≥ x(m) ≥ · · · ≥ x(T ).

The results are presented in Tables 7.1 and 7.2. The tail index provides information about the

behavior of the tails of all possible distributions and helps to categorize them in three classes. We

distinguish between thin-tailed distributions that possess finite moments, a cumulative distribution

function which declines exponentially in the tails and a tail index that approaches to ∞ (α → ∞),

fat-tailed distributions whose cumulative distribution function declines with a power in the tails

and exhibit finite and positive tail index (α > 0), and bounded distributions that have no tails and

whose tail index is negative (α < 0) (cf. Dacorogna et al., 2001). In this study each of the four

stocks has a tail index between 3.3 and 4.7 (roughly between 3 and 5). The estimates of the tail

187



Conclusion M. Segnon

indexes are finite, positive and greater than 2. This is an evidence that the distribution of the bid-

ask spread data used in this study belongs to Fat-tailed distributions and that the distribution would

converge under aggregation to the Gaussian. As stressed by Racheva and Samorodnitsky (2003)

when H = 1/α, depending on the value of α the data exhibit either persistence or no memory. In

this study it is clear that 1/α takes values in the interval (0, 0.5) and that the values obtained for H

are greater than 1/α which means that the data exhibit long-range dependence.

The estimates of the parameters in the bivariate MSMD model are reported in Table 7.3. We

make use of eq. (7.9) to calculate the correlation coefficient ς and its standard error is obtained

using the delta method (cf. Appendix A.5 for more details about the delta method). Note that for

our empirical studies we use the specification of Chen et al. (2013). The estimates of the bivariate

MSMD model for bid-ask spread pairs (BAC, C), (IBM, C) and (BAC, IBM) seem precisely

estimated and are high significant. We do not obtain similar results for the last both parameters

for the bid-ask spread pair (C, KO). Although the estimated values for ̺ are small, we can infer

that the first three bid-ask spread pairs (cf. Table 7.3) comove or are dependent. It is clear that

the intensity of the dependence is low, but significant and thus, cannot be neglected. This may be

important for the market-maker to know stocks whose bid-ask spreads are simultaneously affected

by arrival of new information in the market, and therefore, facilitate the risk management of their

portfolio.

7.6. Conclusion

In this chapter we have proposed a bivariate MSMD model that can be used to model duration and

price processes simultaneously. This model can also be utilized to analyze the covariation in mi-

crostructure variables. The new model is an extension of the univariate MSMD models developed

by Chen et al. (2013) and Baruník et al. (2012), independently to bivariate settings. By analyzing

tick-by-tick bid-ask spread data of four stocks traded on NYSE we find that the data exhibit long

range dependence, fat tails, and self-similarity properties. Our new model can properly capture

all these features and helps us to identify covariation in bid-ask spreads of different stocks. The

market-makers or market participants have to manage huge portfolios over the trading day. So,

these results can help them to better manage the market risk.
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Table 7.1.: Descriptive statistics of raw bid-ask spread data

KO BAC IBM C

Min 0.010 0.010 0.010 0.010

Max 0.273 0.177 0.386 0.262

Mean 0.018 0.023 0.026 0.017

Std 0.010 0.011 0.013 0.008

Skewness 6.851 3.410 5.266 7.179

Kurtosis 107.846 29.878 93.523 142.330

Hurst Exponent(H) 0.754 0.711 0.754 0.821

Tail Index(α) 3.595 4.116 3.990 3.341

Q(10) 2842.2 1464.5 1822.4 2354.5

Q(100) 4044 2156.5 4090.6 5775
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Table 7.2.: Descriptive statistics of adjusted bid-ask spread data

KO BAC IBM C

Min 0.268 0.315 0.270 0.364

Max 7.332 6.203 9.685 9.540

Mean 1.002 1.001 1.001 1.000

Std 0.467 0.460 0.462 0.412

Skewness 3.791 2.374 2.892 4.108

Kurtosis 34.405 16.033 29.147 43.963

Hurst Exponent(H) 0.741 0.712 0.747 0.823

Tail Index(α) 4.191 4.681 4.336 3.913

Q(10) 2649.1 1601.2 2062 2490.8

Q(100) 3921.3 2379.8 4981.6 7307.4
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Table 7.3.: Two-Step Bivariate MSMD Parameters estimation

BAC-C IBM-C BAC-IBM C-KO

Estimates

λ̄1 1.126∗∗∗ 1.118∗∗∗ 1.126∗∗∗ 0.925∗∗∗

(0.002) (0.005) (0.002) (0.002)

λ̄2 1.093∗∗∗ 1.089∗∗∗ 1.123∗∗∗ 1.066∗∗∗

(0.002) (0.004) (0.003) (0.003)

m1 1.086∗∗∗ 1.076∗∗∗ 1.086∗∗∗ 1.097∗∗∗

(0.002) (0.003) (0.002) (0.002)

m2 1.029∗∗∗ 1.011∗∗∗ 1.087∗∗∗ 1.156∗∗∗

(0.002) (0.004) (0.003) (0.003)

b 1.710∗∗∗ 2.210∗∗∗ 1.710∗∗∗ 3.833∗∗∗

(0.001) (0.002) (0.001) (0.001)

γ 0.783∗∗∗ 0.777∗∗∗ 0.783∗∗∗ 0.564∗∗∗

(0.002) (0.007) (0.003) (0.004)

σ1 0.261∗∗∗ 0.282∗∗∗ 0.261∗∗∗ 0.251∗∗∗

(0.008) (0.019) (0.009) (0.008)

σ2 0.225∗∗∗ 0.238∗∗∗ 0.259∗∗∗ 0.254∗∗∗

(0.007) (0.017) (0.010) (0.006)

ς 0.102∗∗∗ 0.141∗∗∗ 0.127∗∗∗ 0.111

(0.039) (0.058) (0.082) (0.129)

̺ 0.191∗∗∗ 0.203∗∗∗ 0.148∗∗∗ 0.111

(0.018) (0.055) (0.053) (0.124)

Note that we use for the estimation k = 6 and standard errors in parentheses are computed as described in Calvet et al. (2006). ∗∗∗

indicate that the parameters are significant at the 1% level. The numbers in bold in parentheses are standard errors of the estimations.
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Figure 7.1.: Plot of raw bid-ask spread data for the four stocks
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Figure 7.2.: Plot of adjusted bid-ask spread data for the four stocks
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Figure 7.3.: Illustration of the long-term dependence observed in the bid-ask spread raw data for
Coca-Cola (left upper panel), Bank of America (left first central panel), International
Business Machines (left second central panel) and Citigroup (lower left panel). The
determination of the corresponding Hurst exponent H is displayed in the right-hand
panels.
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Figure 7.4.: Illustration of the long-term dependence observed in the bid-ask spread adjusted data
for Coca-Cola (left upper panel), Bank of America (left first central panel), Interna-
tional Business Machines (left second central panel) and Citigroup (lower left panel).
The determination of the corresponding Hurst exponent H is displayed in the right-
hand panels.
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Figure 7.5.: Intraday pattern of bid-ask spread
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Figure 7.6.: Plot of sample cross-correlation
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Figure 7.7.: Plot of sample cross-correlation
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Figure 7.8.: Probability Plot of KO-spread compared to Normal and Student distributions
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Figure 7.9.: Probability Plot of BAC-spread compared to Normal and Student distributions
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Figure 7.10.: Probability Plot of IBM-spread compared to Normal and Student distributions
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Figure 7.11.: Probability Plot
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8. Forecasting Intraday Value-at-Risk Using

Markov-Switching Multifractal Duration

Model

8.1. Introduction

Over the last decade the interest to forecasting irregularly spaced intraday value-at-risk (ISIVaR)

has been grown due to the rapid change in the trading environment. The automatization of financial

markets and the improvement in information technology (IT) allow active market participants to

execute transactions at fine time intervals. Traditional trading strategies such as buy-and-hold have

been abandoned in favor of day trading and now the market is dominated by high frequency traders.

In this new environment where prices of equities, commodities, exchange rates and interest rates

interruptedly change, and thus, continuously cause a change in market risk, risk measurement

plays a central role. Indeed, capital adequacy rules are determined by risk levels (cf. Basel II

and III). It becomes important for the market participants, especially high-frequency traders and

financial institutions whose investment horizons are less than 5 or 10 minutes, to be able to estimate

and control their exposure to market risk.

The use of value-at-risk as a tool for financial risk assessment in the market is popular by

regulators and owners of financial institutions, because it helps to quantify the maximal amount to

be lost on a portfolio over a given period of time, at a certain confidence level. Different value-at-

risk models and sophisticated statistical methodologies for their assessment have been proposed in

the literature (cf. Christoffersen and Pelletier, 2004; Engle and Manganelli, 2004; Giacomini and

Komunjer, 2005; Haas, 2005; Berkowitz et al., 2011), but unfortunately, however, all these models

and techniques are not appropriate for analyzing ISIVaR. This is due to the fact that financial data

used for computing ISIVaR are irregularly spaced.

Until now, less research has been done to develop tools that can allow to assess the market

risk at intraday time horizons. Fixed interval models as such Normal GARCH, Student GARCH,

and RiskMetrics can be used to forecast intraday value-at-risk (IVaR) for a given time interval,

for instance 15 or 30 minutes (cf. Giot, 2005), but they are not convenient for ISIVaR, because

they cannot capture the irregularly spacing feature of financial duration data. Meanwhile high-

frequency models have been developed in the literature, for instance the standard ACD model

(cf. Engle and Russell, 1998) and its extensions, cf. sec. 3.3 and Pacurar (2008), albeit the non-

existence of an appropriate backtesting makes it difficult to test the performance of these ISIVaR
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models.

Giot (2005) was the first, to our knowledge, working on the forecasting intraday market risk in a

conditional value-at-risk framework. To estimate the conditional intraday volatility and compute a

conditional parametric ISIVaR, he applied the Log-ACD model to price durations. Unfortunately,

however, the performance of the Log-ACD model compared to that of Normal GARCH or Student

GARCH in the fixed interval framework is poor. One can argue that the poor performance of

the Log-ACD model is due to the fact that he used an average of the ISIVaRs on a given time

interval as a regularly spaced intraday VaR for backtesting purposes. Another work on the same

issue of intraday market risk measurement has also been performed by Dionne et al. (2009). Their

methodology consists in combining a Log-ACD-ARMA-EGARCH model with an intraday Monte

Carlo simulation. The lack of an appropriate backtesting for ISIVaR models obliges them to make

use of an average of ISIVaRs in 15 minutes interval as a regularly spaced intraday VaR for testing

the performance of their model.

In this chapter we forecast the ISIVaR in a semi-parametric framework using the Markov-

switching multifractal duration (MSMD) model and the generalized gamma autoregressive con-

ditional duration (GGACD) model. We choose the GGACD model because findings by Bauwens

et al. (2004) and in sec. 5.5.2.2 show that the GGACD properly fits price durations and outper-

forms the more complicated models such as the stochastic conditional duration (SCD) model of

Bauwens and Veredas (2004), the stochastic volatility duration (SVD) model of Ghysels et al.

(2004) and the FIACD model of Jasiak (1998). To evaluate and compare their forecasting abilities

we employ a GMM duration-based test recently developed by Candelon et al. (2011). In contrast to

the duration-based approach of Christoffersen and Pelletier (2004) that ignored the discrete nature

of the problem and that has been designed using the continuous Weibull distribution, the GMM

duration-based test is implemented based on the geometric distribution. Haas (2005) demonstrated

throughout Monte Carlo simulations that the use of the continuous Weibull distribution instead of

an appropriate discrete distribution would negatively affect the power of the test. It is important to

note that we can directly apply the GMM duration-based test to the ISIVaRs.

Papers by Baruník et al. (2012) and Segnon and Lux (2012) shed light on the ability of the

MSMD model to reproduce financial price durations. We think that the MSMD model can be of

great importance for financial institutions in terms of avoiding the under- or overestimation of the

risk.

The rest of the chapter is organized as follows. We present in Section 8.2 intraday volatility

associated to price duration models. We define in Section 8.3 the irregularly spaced intraday

VaR and Section 8.4 describes the GMM duration-based backtesting procedures. An empirical

application is presented in Section 8.5 and we conclude in Section 8.6.
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8.2. Intraday Volatility

Here we do not present again the Markov switching multifractal duration (MSMD) and the stan-

dard autoregressive conditional duration model. We refer the reader to sec. 3.4 and 3.3.1, respec-

tively.

8.2.1. Instantaneous Price Changes Volatility

In their seminal work Engle and Russell (1998) formally showed how the instantaneous intraday

volatility can be linked to the conditional hazard rate function of price durations. Following them

we first define the conditional intensity function as

ϑ
[

T |N(T ),T1, . . . ,TN(T )
]

= lim
∆T→0

Pr
[

N(T + ∆T ) > N(T )|N(T ),T1, . . . ,TN(T )
]

∆T
, (8.1)

Pr
[

N(T + ∆T ) > N(T )|N(T ),T1, . . . ,TN(T )
]

is the conditional probability of an event in (T,T +

∆T ) given the history ℑT =
[

N(T ),T1, . . . ,TN(T )
]

of events up to time T , and N(T ) is the number

of events that occurred at time T .

We can rewrite eq. (8.1) as

lim
∆T→0

Pr
[

∆N(T,T+∆T ) > 0|ℑT

]

∆T
= lim
∆T→0

Pr
[

xt ∈ (T,T + ∆T ) | xt > T,ℑT

]

∆T
, (8.2)

where xt is the waiting time for the tth event conditional on ℑT . Once again, we can rewrite eq.

(8.2) as

lim
∆T→0

Pr(∆N(T,T+∆T ) > 0|ℑT )

∆T
= lim
∆T→0

F(T + ∆T | ℑT ) − F(T | ℑT )
1 − F(T | ℑT )

. (8.3)

By passing the limit we obtain

ϑ
(

T |ℑT

)

=
f (T | ℑT )

1 − F(T | ℑT )
, (8.4)

where F is the cumulative distribution function and f the probability density function of the wait-

ing time xt conditional on ℑT . The right-hand side of the last line in eq. (8.3) corresponds to the

definition of the conditional hazard function. It is clear that the conditional intensity function and

the hazard function are interchangeable.

Engle and Russell (1998) defined the instantaneous volatility as

σ2(T ) = lim
∆T→0

E






1
∆T

[

P(T + ∆T ) − P(T )
P(T )

]2




, (8.5)
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with P(T ) a stock price related to the arrival time T . So, we can define the conditional instanta-

neous intraday volatility as

σ2(T |TN(T ), . . . ,T1) =

(
ιp

P(T )

)2

ϑ(T |TN(T ), . . . ,T1), (8.6)

where P(T ) represents the bid-ask midpoint, ιP is a constant, and ϑ(T |TN(T ), . . . ,T1) is the condi-

tional intensity function or the conditional hazard function.

8.2.2. Conditional Hazard Functions

In the following we derive the pertinent conditional hazard functions associated with the Binomial

MSMD model and the GGACD(1,1) model.

• The Binomial MSMD model:

The innovation in the MSMD model is standard exponential distributed. Using a transform

of random variables technique (cf. Appendix A.1) the conditional density function of a price

duration xt given a state intensity Mt, f (xt|Mt = mi), follows an exponential distribution.

Formally, we have

f (xt|Mt = mi) = λt(m
i) exp[−λt(m

i)xt]. (8.7)

So, one can obtain the conditional hazard function as follows. We proceed in two steps. In

the first step we provide the mathematical formula of the conditional density function of a

duration xt given the past history ℑt−1. We have:

f (xt|ℑt−1) =
n∑

i=1

f (xt|Mt = mi)Pr
(

Mt = mi | ℑt−1

)

=

n∑

i=1

λt(m
i) exp[−λt(m

i)xt]Pr
(

Mt = mi | ℑt−1

)

,

(8.8)

where Pr
(

Mt = mi | ℑt−1

)

represents the probability of Mt conditional on the past history

and satisfies this condition:
n∑

i=1

Pr
(

Mt = mi | ℑt−1

)

= 1.

In the second step we derive the corresponding cumulative probability function that is given

by

F(xt|ℑt−1) =
∫ xt

0
f (ut|ℑt−1)dut

=

∫ xt

0

n∑

i=1

f (ut|Mt−1 = mi)Pr(Mt−1 = mi|ℑt−1)dut.

(8.9)

f (ut|Mt−1 = mi) = λt(mi) exp[−λt(mi)ut] is Lebesgue integrable. This allows us to apply the

linearity rule of integration, i.e., the integral of a sum of functions is the sum of the integrals

206



Conditional Hazard Functions M. Segnon

of the functions. By applying this rule, F(xt|ℑt−1) becomes

F(xt|ℑt−1) =
n∑

i=1

Pr(Mt−1 = mi|ℑt−1)
∫ xt

0
λt(m

i) exp[−λt(m
i)ut]dut

=

n∑

i=1

Pr(Mt−1 = mi|ℑt−1)
(

1 − exp[−λt(m
i)xt]

)

=

n∑

i=1

Pr(Mt−1 = mi|ℑt−1) −
n∑

i=1

Pr(Mt−1 = mi|ℑt−1) exp[−λt(m
i)xt]

= 1 −
n∑

i=1

Pr(Mt−1 = mi|ℑt−1) exp[−λt(m
i)xt].

(8.10)

Given the conditional cumulative distribution function F(xt|ℑt−1) the conditional hazard

function g(xt|ℑt−1) is defined as

g(xt|ℑt−1) =

∑n
i=1 αiλt(mi) exp[−λt(mi)xt]
∑n

i=1 αi exp[−λt(mi)xt]
, (8.11)

with αi = Pr(Mt−1 = mi|ℑt−1).

Thus, the conditional instantaneous intraday volatility in the MSMD model becomes

σ2(xt|ℑt−1) = c(xt)

∑n
i=1 αiλt(mi) exp[−λt(mi)xt]
∑n

i=1 αi exp[−λt(mi)xt]
, (8.12)

where c(xt) is a time varying scaling factor
(

c(xt) = (ιp/P(xt))
2
)

.

• The generalized gamma ACD model:

Here we assumed that the innovation is generalized gamma distributed and its probability

density function is given by

GG(ξt; η, α) =






η(ξt)ηα−1

θηαΓ(α) exp
[

−
(
ξt

θ

)η]

if ξ ≥ 0

0 if ξ ≤ 0

(8.13)

where η, α > 0, Γ(·) denotes the gamma function and θ = Γ(α)/Γ
(

α + 1
η

)

.

Using a transform of random variables technique (cf. Appendix A.1) the corresponding

probability density function f (xt|ℑt−1) of the duration xt is given by

f (xt|ℑt−1) =
η(xt)ηα−1

θ
ηα
t Γ(α)

exp

[

−
(

xt

θt

)η]

, (8.14)

where θt = Ψt
Γ(α)

Γ(α+1/η) is the time-varying scale parameter. Ψt is defined as in eq. (5.1).
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The associated conditional survivor function involves the incomplete gamma function and

is defined as

S (xt|ℑt−1) = 1 − I

[

α,

(

xt

θt

)η]

, (8.15)

where I (α, z) =
∫ ∞

z
tα−1 exp(−t)dt, with z =

(
xt

θt

)η
.

eqs. (8.14) and (8.15) lead to the hazard (or intensity) function that can be formalized as

g(xt|ℑt−1) =

η(xt)ηα−1

θ
ηα
t Γ(α)

exp[−(xt/θt)η]

1 − I(α, (xt/θt)η)
. (8.16)

8.3. Irregularly Spaced Intraday VaR

Irregularly spaced intraday VaR (ISIVaR) is an extension of VaR to irregularly spaced intraday

returns (ISIR) that are computed as r(t) = ln(Pt) − ln(Pt−1) using average prices1 at which quotes

are posted by market makers. we use the term irregularly spaced returns due to the fact that quotes

are recorded continuously so that the observed bid and ask prices are no longer equidistantly time-

spaced data. As in Colletaz et al. (2007) we defined the irregularly spaced intraday VaR (ISIVaR)

for a shortfall probability α as a couple (λt|t−1, ISIVaRt|t−1(α)) that gives simultaneously two main

information, namely, the expected duration for tth price change, 1/λt|t−1, and the corresponding

level of risk ISIVaRt|t−1(α) as such

Pr[rt < −ISIVaRt|t−1(α)] = α, ∀t ∈ Z. (8.17)

Without loss of generality let us formalize the irregularly spaced intraday returns as

rt = σ(xt|ℑt−1)ξt, (8.18)

where σ(xt|ℑt−1) is the instantaneous price change volatility and ξt an i.i.d. innovation with zero

mean and unit variance.

The market risk for the tth price variation can be obtained as

ISIVaRt|t−1(α) = −F−1(α)
ιp

P(xt)
[gt|t−1(xt)]

1/2, (8.19)

where F(·) is the cumulated distribution function of variable ξt and ιp is the size of the cumulative

absolute price change and exogenously fixed.

For the MSMD model the 1-ahead out-of-sample ISIVaR forecast for price change number

(τ + 1) can easily be generated using the information contained in the τ price changes as follows.

1 Pt the bid-ask mid-point
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1. The first step consists in estimating the MSMD model with the adjusted duration {xt}τt=1.

With the estimated parameters, we calculate the 1-ahead out-of-sample f̂ (xτ+1) and 1 −
F̂(xτ+1), and the conditional 1-ahead hazard function as

ĝ(xτ+1) =
f̂ (xτ+1)

1 − F̂(xτ+1)
(8.20)

and the forecast value of volatility is given by

σ̂2(xτ+1|ℑτ) = ĝ(xτ+1)

[
ιp

P(Tτ)

]2

. (8.21)

2. With the results of the above MSMD model, compute the series of in-sample standardized

series of returns as

ξ̂t =
rt

σ̂(xt|ℑt−1)
, (8.22)

where σ̂(xt|ℑt−1) are the series of computed in-sample volatilities.

3. Compute the empirical α−quantile q of in-sample standardized series of returns as follows

q = percentile
(

{ξt}τt=1, 100α
)

, (8.23)

and at the end calculate the value of ISIVaR for the next price change with a given shortfall

probability α as

ISIVaRτ+1(α) = −qσ̂(xτ+1|ℑτ). (8.24)

We applied the algorithm described above to the standard generalized gamma ACD (1,1) model.

Note that it can also be applied to the MSMD model of Baruník et al. (2012), the ACD models

with different distributional assumptions for the innovations and its extensions without changing

any step.

8.4. GMM Duration-Based Test Approach

One important question remains how to test the predictive ability of the ISIVaR models. Here

we adopt the GMM duration-based test approach developed by Candelon et al. (2011). The Test

approach is developed based on orthonormal polynomials associated to the geometric and expo-

nential distribution in the GMM framework and follows the basic idea of Bontemps and Meddahi

(2005, 2012). The benefit of the GMM duration-based test is that it allows by means of the choice

of moments conditions to test the unconditional coverage (uc), independence (ind), and conditional

coverage (cc) hypotheses separately. These options have been missed by the extant duration-based

tests in the literature. As in Christoffersen (1998), we define the hit-no-hit variable, It, as
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It(α) =






1, if rt < −ISIVaRt|t−1(α)

0, else
(8.25)

which imparts when a price change happens, if the observed return is lower or higher than the

ex-ante level of ISIVaR. Following Christoffersen (1998) ISIVaR forecasts are valid if and only if

the sequences of hit-no-hit variables {It} fulfill the following two hypotheses:

1. The probability of an ex post irregularly spaced return exceeding the ISIVaR forecast must

be equal to the coverage rate (α). This first hypothesis is termed the unconditional coverage

hypothesis. Formally, we have

Pr [It(α) − 1 = 0] = α. (8.26)

2. The second is the independence hypothesis which requires that ISIVaR violations observed

at two different dates for the same coverage rate must be distributed independently. In other

words, the correlation between hit-no-hit variables It(α) and It−k(α) at time t and t−k ∀k , 0

is zero.

The simultaneous fulfillment of the both hypotheses uc and ind leads to say that the ISIVaR fore-

casts have a correct conditional coverage. We see that a correct ISIVaR forecast imposes that the

hit-no-hit variable It has to follow a martingale process:

E
[

It(α) − α|ℑt−1
]

= 0. (8.27)

This, in turn, implies that the sequence {It(α)} are i.i.d. Bernoulli distributed with a success prob-

ability equals to α. Indeed, the duration (D) between consecutive two violations is geometric

distributed as it has been showed by Kupiec (1995). Formally, we define D as:

Dt = Tt − Tt+1 (8.28)

where, Tt is the time at which the tth hit occurs. The probability density function of the duration

D is given by

Geo(d; p) = p(1 − p)d−1, d = 1, 2, 3 . . . , (8.29)

with p the success probability.

Despite the discrete nature of the problem, many papers adopt rather the continuous approxi-

mation of the geometric2 distribution to implement appropriate test statistics. Since the work of

Haas (2005) who to our knowledge, was the first to use the discrete Weibull in the backtesting

procedures, it becomes clear that the use of the continuous approximation of the geometric dis-

tribution can have negative consequences for the power of the duration-based backtests in finite

2 The geometric distribution has the nice property of the memoryless-ness.
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samples. Following Haas (2005), Candelon et al. (2011) proposed a GMM duration-based test

that is implemented using the geometric distribution. They provide orthonormal polynomials and

moment conditions associated with the geometric distribution and its continuous analogous, i.e.

the exponential distribution. In the following we briefly describe the orthonormal polynomials and

moment conditions that will be used to test the performance of our models.

8.4.1. Orthonormal Polynomials and Moment Conditions

The classical orthonormal polynomials can be classified in two categories: Orthonormal polyno-

mials associated with discrete variables or discrete orthonormal polynomials (Charlier, Meixner,

Hahn, ...) and orthonormal polynomials associated with continuous variables or continuous or-

thonormal polynomials (Jacobi, Laguerre, Hermite, ...). Discrete orthonormal polynomials are on

a linear lattice and the continuous ones on the real line. These orthonormal polynomials have the

nice property that their expectation is equal to zero (cf. Appendix A.6). Bontemps and Meddahi

(2012) derived moment conditions using the Hermite orthonormal polynomials associated to the

Normal distribution to test for normality. In this chapter we employ orthonormal polynomials re-

lated to the geometric and exponential distribution. The first one can be viewed as a special case of

the Meixner orthonormal polynomials related to a negative Binomial (Pascal) distribution and the

second one is known as the Laguerre orthonormal polynomial. In the following we briefly present

both orthonormal polynomials:

1. Geometric distribution: Let assume that the stochastic variable z, ∀z ∈ N∗, is geometric dis-

tributed with a success probability θ. The associated orthonormal polynomials are defined

as

M j+1(z; θ) =
(1 − θ)(2 j + 1) + θ( j − z + 1)

( j + 1)
√

1 − θ
M j(z; θ) −

(

j

j + 1

)

M j−1(z; θ) (8.30)

with j = 1, . . . , p, M−1(z; θ) = 0, and M0(z; θ) = 1.

These orthonormal polynomials have been used in Candelon et al. (2011). In Appendix

A.7 we explain how they can be obtained as a special case of the Meixner orthonormal

polynomials related to a negative Binomial.

2. By assuming that the stochastic variable z, ∀z ∈ R+, is exponential distributed with a pa-

rameter θ, the associated Laguerre orthonormal polynomials satisfy the following recurrence

relation

L j+1(z; θ) =
1

j + 1

[

(2 j + 1 − θz)L j(z; θ) − jL j−1(z; θ)
]

, ∀ j ≥ 1 (8.31)

and

L0(z; θ) = 1, L1(z; θ) = 1 − θz. (8.32)
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If the true distribution of Z is a geometric distribution with a success probability θ or exponential

one with a parameter rate θ, then the moment conditions E[M j(z; θ)] = 0, or E[L j(z; θ)] = 0 are

valid ∀ j > 1 and can be tested, individually or jointly.

In the empirical application we apply the orthonormal polynomial associated with the geomet-

ric distribution and the Laguerre orthonormal polynomial to derive moment conditions and test

the forecasting performance of the models. With the hit-no-hit variables {It(α)}T
t=1 we compute a

sequence of N durations, {z1, . . . , zN}, between ISIVaR violations. Under the null of correct con-

ditional coverage (cc), the durations zi, i = 1, . . . ,N, are i.i.d. and have a geometric (one can also

assume that zi are exponentially i.i.d.)3 distribution. The null cc hypothesis can be formalized as

H0,cc : E[M j(zi;α)] = 0 j = 1, . . . , k (8.33)

or

H0,cc : E[L j(zi;α)] = 0 j = 1, . . . , k (8.34)

where k is the number of moment conditions considered and α is the coverage rate.

Interesting is that the moment conditions also permit to test the unconditional coverage and

independence hypothesis separately. The correct unconditional coverage hypothesis implies that

the probability of an ISIVaR violation occurring has to be equal to the coverage rate, α, and

the independence hypothesis requires that ISIVaR violations happened at two different dates for

the same coverage rate must be independently distributed. This offers the opportunity to check

whether both hypotheses are simultaneously fulfilled or not.

The null uc hypothesis is defined as

H0,uc : E[M1(zi;α)] = 0 or E[L1(zi;α)] = 0, (8.35)

and that of the ind hypothesis can be expressed as

H0,ind : E[M j(zi; θ)] = 0 or E[L j(zi; θ)] = 0, (8.36)

which means that the duration between two consecutive violations is geometric or exponential

distributed and if θ , α the correct uc is not valid.

8.4.2. Empirical Test Method

Within the GMM framework the implementation of the test procedure is very easy due to the

fact that the asymptotic variance-covariance matrix of the orthonormal polynomials are known

(cf. Bontemps and Meddahi (2012) for Hermite orthonormal polynomials). Here under the as-

sumption that the sequence of N durations {z1, . . . , zN} are i.i.d., the moments associated with the

orthonormal polynomials are asymptotically independent with unit variance (cf. Candelon et al.,

3 This has been the common approach before the work of Haas (2005). Here we also consider this case and formulate
the corresponding hypothesis.
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2011). As result, the test statistic Jcc under the null hypothesis of correct conditional coverage

related to the k first orthonormal polynomials is given by

Jcc =





1√
N

N∑

i=1

δ(zi;α)





′ 


1√
N

N∑

i=1

δ(zi;α)





d−→
N→∞

χ2(k) (8.37)

where δ(zi;α) is a vector of dimension (k, 1) whose entries are the orthonormal polynomials

M j(zi;α), for j = 1, . . . , k, and α is the coverage rate. Under the null hypothesis of the correct

unconditional coverage (uc), the test statistic, Juc, is obtained as a particular case of the Jcc when

k is equal to one (k = 1).

At the finish, the test statistic for the independence (Jind) hypothesis is given by

Jind =





1√
N

N∑

i=1

δ(zi; θ)





′ 


1√
N

N∑

i=1

δ(zi; θ)





d−→
N→∞

χ2(k) (8.38)

where δ(zi; θ) is a vector of dimension (k, 1) whose entries are the orthonormal polynomials

M j(zi; θ), for j = 1, . . . , k, and θ is a success probability at which the orthonormal polynomials

M j(zi; θ) are computed.

As stressed by Candelon et al. (2011) the true ISIVaR violations rate θ is unknown and may

be different from the coverage rate α predefined by the risk manager. So, the test statistic for

independence has to be computed by replacing θ by its consistent estimator θ̂. It is well known in

the literature that such a substitution may change the asymptotic distribution of the test statistic.

Nevertheless, Bontemps and Meddahi (2012) demonstrated that the asymptotic distribution does

not change if the moments can be formalized as a projection onto the orthogonal of the score.

This condition is satisfied by the orthonormal polynomials related with geometric or exponential

distribution. As consequence, the test statistic becomes

Jind =





1√
N

N∑

i=1

δ(zi; θ̂)





′ 


1√
N

N∑

i=1

δ(zi; θ̂)





d−→
N→∞

χ2(k − 1) (8.39)

with the adjusted degrees of freedom k − 1.

8.5. Empirical Study

8.5.1. Data

For the empirical analysis we consider two stocks traded on the New Stock Exchange during the

period from 1 to 30 July 2004 that includes 21 trading days: Boeing (BA), and Coca-Cola (KO).

The data were extracted from the Trade and Quote (TAQ) database available at the NYSE. For

each stock we define the irregularly spaced intraday returns as r(t) = ln(pt) − ln(pt−1), where p

represents the bid-ask mid-point and the price duration (xt(ιp)) is the minimal time interval needed
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to observe a change in the mid-price4 (p) not less than a threshold (ιp) that is set to $0.0156.

8.5.2. Data Adjustment

We adjust the raw data as it has already been described above in sec. 5.5.1.1.

8.5.3. Results of Backtesting

We first estimate the parameters in both models using the total sample of observations. The results

for the estimation of the models are reported in Table 8.2.

For each stock we first split the total sample of observations T in two sub-samples: An esti-

mation sample S e of size τ which contains adjusted durations xt with t = τ0 . . . τ (τ0 = 1) and a

forecast sample S f . To generate out-of-sample ISIVaR we use the algorithm described in sec. 8.3

and two different forecasting schemes, namely a fixed and a rolling forecast scheme with a fixed

window width.

1. A fixed scheme: We estimate the parameters in each model specification (GGACD, MSMD)

only once using data of the estimation sample of size τ and with the estimated parameters

we generate all the forecasts for the out-of-sample period stretching over τ + 1 to T .

2. A rolling scheme: To explain how we proceed by the rolling forecast scheme, let us define

τ0 as τ0 = τ− L where L is the length of the window used for estimating the model. Indeed,

as τ is increased, new durations are included in estimation sample but older are removed.

By each estimation we produce the ISIVaR forecast for the next observation of the forecast

sample.

Figs. 8.3 and 8.4 depict the forecasts for intraday volatilities and expected durations for Boeing

and Coca-Cola stocks. The expected duration is the inverse of the mean intensity and can be

interpreted as the liquidity risk. Small mean intensities imply higher expected durations which in

turn mean high liquidity risk. Clustering effects can be observed and give evidence that the model

can capture the flow of information in the market.

In order to examine the performance of both models (MSMD and GGACD models) to produce

accurate forecasts for ISIVaR we generate the hit-no-hit variables It by comparing the observed ir-

regularly spaced returns to out-of-sample ISIVaR forecasts. Fig. 8.5 displays the plots for ISIVaRs

obtained using rolling scheme in red and irregular spaced intra-day returns in blue for both stocks,

Boeing and Coca-Cola. With the hit-no-hit variables It we produce the duration variables Dt and

then apply the test statistic for validation purpose. Tables 8.4 through 8.6 present the results of the

backtesting for both stocks at different confidence levels.

For both stocks (Boeing and Coca-Cola) the null hypothesis of a correct unconditional coverage,

i.e. the proportion of hits is not statistically different from the coverage rate, α, cannot be rejected

4 Mid-price is used to avoid biases caused by a bid-ask bounce.

214



Conclusion M. Segnon

at all levels (5%, 2.5%, 1%) in both models by considering both forecasting schemes. This gives

evidence that both models perform well.

Concerning the conditional coverage test statistics (Jcc) we consider higher order orthonormal

polynomials (k = 2, 3). In the following we present the results of the comparison between both

models:

1. At 5% confidence level with fixed forecast scheme, the null hypothesis of a correct condi-

tional coverage is rejected in both models using orthonormal polynomials associated with

a geometric distribution. This is due the violation of the independence assumption that can

be confirmed with the results in Table 8.6. However, the null hypothesis is accepted when

instead of the geometric distribution one employs its continuous counterpart, i.e. the ex-

ponential distribution. The results obtained under the assumption that the duration variable

D is exponential distributed show that although the consecutive hit-no-hit variables It are

not independent, the null hypothesis of correct conditional coverage is accepted leading to

wrong inferences. This confirms the findings of Haas (2005) who warned against using the

continuous distribution that can deteriorate the sensitivity of the test.

2. At 5% confidence level with rolling forecast scheme, we obtain similar results in both models

(GGACD and MSMD) for the Boeing stock (BA) as described above (cf. Tables 8.5 and

8.6). Interestingly, we see that using the rolling scheme the conditional coverage property is

reached by the Coca-Cola stock (KO) in the MSMD model (cf. Table 8.5). This means that

the null hypothesis of a correct conditional coverage is accepted for KO. It is obvious that

the MSMD model outperforms the GGACD model.

3. At 2.5% and 1% confidence level with fixed forecast scheme, except for the Coca-Cola stock

(KO) the null hypothesis is overall accepted. The results show that both models (GGACD

and MSMD) perform well for both stocks (Boeing and Coca-Cola).

4. At 2.5% and 1% confidence level with rolling forecast scheme, the null hypothesis of a

correct conditional coverage is accepted in both models for BA stock. For KO stock both

models have some problems to provide accurate forecasts. However, we observe a superior

performance of the MSMD model compared to that of the GGACD model.

In sum, both models perform well when using the fixed forecast scheme and exhibit similar

performance. By employing the rolling scheme we find that the MSMD model dominates the

GGACD model. We hope that these results can motivate practitioners and researchers to use the

MSMD model.

8.6. Conclusion

In this chapter we have shown how the Markov-switching multifractal duration model can be used

to compute the market risk at intraday level. We compare the forecasting performance of the
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Table 8.1.: Information on the raw data

Price durations

Boeing stock (BA) Coca-Cola stock (KO)

Number of observations 8586 6906

Minimum value 1 1

Maximum value 800 2341

Mean value 52.726 65.400

Overdispersion 1.322 1.513

Skewness 3.456 6.134

Kurtosis 21.733 84.163

MSMD model to that of the standard GGACD model via the GMM duration-based test proce-

dures developed by Candelon et al. (2011). The results of the Backtesting are quite satisfactory

and prove that both models (GGACD and MSMD) are adequate to forecasting ISIVaR. Interest-

ingly, we find the forecasting performance of the MSMD model when using the rolling forecasting

scheme is superior to that of the GGACD model. We conclude that the MSMD model considerably

dominates the GGACD model. Another important finding is that we can empirically confirm the

fact that using the continuous distribution in the implementation of the backtesting methodology

can lead to make wrong inferences. We recommend the market participants to use the MSMD

model when forecasting the intraday market risk.

For future research, one can apply the MSMD model to calculate a market liquidity risk. It is

clear that the average of times elapsed between intertrade durations quantifies the speed of trading

activity and is a natural indicator of market liquidity (cf. Ghysels et al., 2004). They define the

Time at Risk (TaR) at level α as Pt(xt+1 > TaR) = α, where Pt is the conditional distribution at

time t of the one step ahead duration xt+1, and TaR(α) defines the minimal time without a trade

that may happen with probability α.
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Table 8.2.: Adjusted data

Price durations

Boeing stock (BA) Coca-Cola stock (KO)

Number of observations 8586 6906

Minimum value 0.006 0.006

Maximum value 21.784 41.497

Mean value 1.001 1.003

Overdispersion 1.269 1.610

Skewness 3.536 9.652

Kurtosis 29.794 189.739

Table 8.3.: Estimation of MSMD and GGACD models

MSMD

Boeing Coca-Cola

Estimates St. Error Estimates St. Error

m0 1.210 0.009 1.227 0.011

λ̄ 1.584 0.073 1.702 0.082

b 1.407 0.183 1.659 0.195

γ 0.335 0.120 0.737 0.159

GGACD

Boeing Coca-Cola

Estimates St. Error Estimates St. Error

ω 0.092 0.019 0.107 0.027

β 0.155 0.019 0.131 0.019

δ 0.746 0.035 0.751 0.043

α 4.219 0.705 4.491 0.859

η 0.421 0.038 0.389 0.039

Note: In the MSMD model we set the intensity components to seven (k=7).
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Table 8.4.: Fixed scheme backtesting Results

k GGACD MSMD

Boeing (BA)

α = 5%

Hits Freq. 0.144 0.159

Discrete Cont. Discrete Cont.

Juc 1 0.258 0.295 0.241 0.282

Jcc
2 0.001 0.280 <0.001 0.068

3 0.002 0.063 <0.001 0.003

α = 2.5%

Hits Freq. 0.092 0.095

Juc 1 0.278 0.301 0.270 0.294

Jcc
2 0.116 0.462 0.048 0.337

3 0.206 0.644 0.085 0.533

α = 1%

Hits Freq. 0.044 0.041

Juc 1 0.328 0.339 0.350 0.361

Jcc
2 0.594 0.534 0.451 0.363

3 0.791 0.711 0.661 0.550

Coca-Cola (KO)

α = 5%

Hits Freq. 0.150 0.167

Juc 1 0.255 0.294 0.256 0.300

Jcc
2 0.002 0.291 0.001 0.395

3 0.002 0.031 0.003 0.098

α = 2.5%

Hits Freq. 0.086 0.095

Juc 1 0.220 0.241 0.246 0.270

Jcc
2 <0.001 0.003 0.004 0.081

3 <0.001 0.006 0.008 0.168

α = 1%

Hits Freq. 0.047 0.048

Juc 1 0.294 0.306 0.278 0.291

Jcc
2 0.473 0.567 0.293 0.430

3 0.652 0.768 0.380 0.594

Note: The hit empirical frequency is the ratio of ISIVaR violations to the forecast sample size. The length of the forecast sample is
4294 for Boeing stock and 3453 for Coca-Cola. The data correspond to the period from 15 to 30 July, 2004. The Table contains the
p-values for the backtesting using orthonormal polynomials related to the geometric and exponential distributions. The p-values in
bold indicate that the null hypothesis of the correct conditional coverage is rejected.
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Table 8.5.: Rolling scheme backtesting Results

k GGACD MSMD

Boeing (BA)

α = 5%

Hits Freq. 0.152 0.159

Discrete Cont. Discrete Cont.

Juc 1 0.248 0.288 0.238 0.279

Jcc
2 <0.001 0.142 <0.001 0.051

3 <0.001 0.012 <0.001 0.002

α = 2.5%

Hits Freq. 0.088 0.086

Juc 1 0.281 0.303 0.289 0.311

Jcc
2 0.156 0.492 0.276 0.576

3 0.197 0.699 0.355 0.776

α = 1%

Hits Freq. 0.040 0.038

Juc 1 0.348 0.358 0.356 0.366

Jcc
2 0.475 0.393 0.414 0.337

3 0.679 0.561 0.622 0.511

Coca-Cola (KO)

α = 5%

Hits Freq. 0.147 0.151

Juc 1 0.272 0.310 0.277 0.317

Jcc
2 0.037 0.558 0.062 0.606

3 0.039 0.067 0.129 0.227

α = 2.5%

Hits Freq. 0.083 0.088

Juc 1 0.240 0.260 0.248 0.270

Jcc
2 0.003 0.040 0.011 0.093

3 0.007 0.093 0.012 0.185

α = 1%

Hits Freq. 0.044 0.042

Juc 1 0.239 0.249 0.241 0.251

Jcc
2 0.029 0.070 0.038 0.083

3 0.001 0.002 0.013 0.016

Note: The hit empirical frequency is the ratio of ISIVaR violations to the forecast sample size. The length of the forecast sample is
4294 for Boeing stock and 3453 for Coca-Cola. The data correspond to the period from 15 to 30 July, 2004. The Table contains the
p-values for the backtesting using orthonormal polynomials related to the geometric and exponential distributions. The p-values in
bold indicate that the null hypothesis of the correct conditional coverage is rejected.
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Table 8.6.: Independence tests for Boeing and Coca-Cola using both fixed and rolling schemes

k GGACD MSMD GGACD MSMD

Fixed scheme Rolling scheme

Boeing (BA) Boeing (BA)

5% 5%

Jind
2 <0.001 <0.001 <0.001 <0.001

3 0.001 <0.001 <0.001 <0.001

2.5% 2.5%

Jind
2 0.039 0.026 0.055 0.111

3 0.104 0.038 0.097 0.199

1% 1%

Jind
2 0.309 0.209 0.225 0.187

3 0.596 0.455 0.473 0.417

Coca-Cola (KO) Coca-Cola (KO)

5% 5%

Jind
2 <0.001 <0.001 0.011 0.051

3 0.001 0.001 0.017 0.062

2.5% 2.5%

Jind
2 <0.001 0.001 0.001 0.002

3 <0.001 0.003 0.003 0.005

1% 1%

Jind
2 0.234 0.130 0.011 0.014

3 0.457 0.228 0.001 0.010

Note: The hit empirical frequency is the ratio of ISIVaR violations to the forecast sample size. The length of the forecast sample is
4294 for Boeing stock and 3453 for Coca-Cola. The data correspond to the period from 15 to 30 July, 2004. The Table contains the
p-values for the backtesting using the geometric and exponential distributions. The p-values in bold indicate that the null hypothesis
of the correct independence is rejected.
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Figure 8.1.: Estimated time-of-the-day effects for Boeing

221



Conclusion M. Segnon

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4
Coca−Cola

Lags

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15

0.2
Boeing

Lags

Figure 8.2.: Autocorrelation functions for both stocks (Boeing and Coca-Cola)
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Figure 8.3.: Conditional volatility for price events (Boeing and Coca-Cola)
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Figure 8.4.: Conditional expected mean for both stocks (Boeing and Coca-Cola)
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Figure 8.5.: Plot of ISIVaRs obtained using the rolling scheme in red and Boeing and Coca-Cola
irregular spaced intra-day returns in blue.
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9. General Conclusions and Outlooks

9.1. General Conclusion

The development of multifractal measures and processes started in the earlier seventies with Man-

delbrot (1974)’s works and achieved a lot of success in modeling of energy in turbulent dissipation

in statistical physics. Although the ability of the processes to reproduce the most universal char-

acteristics of asset returns (long memory, fat tails, multifractality and scaling behavior), they met

with disapproval by econometricians and did not find successful applications in empirical finance.

The reasons for this negligence are twofold: (i) The first generation models are non-causal nature

and (ii) the extant estimation procedures are not familiar to economists.

Nowadays their acceptance and application in quantitative finance is due to the development of

iterative time series models (Calvet and Fisher, 2001a, 2004a) and appropriate econometric tools

that allow statistical inferences (Calvet and Fisher, 2004a; Calvet et al., 2006; Lux, 2008). A

huge number of studies have already assessed their forecast performance and the empirical results

indicate that multifractal models outperform the GARCH, MS-GARCH and FIGARCH models in

terms of fitting and forecasting asset return volatility at long horizons.

In this thesis we have provided evidence of the capacity and robustness of the multifractal

processes to model high frequency financial intertrade duration, bid-ask spreads, and oil price

volatility. Our empirical results confirmed once again that the multifractal models outperform the

traditional ACD models and the GARCH-type models in terms of fitting and forecasting financial

data.

Chapter 4 has shown that the multifractal model can be used for forecasting oil price volatility.

It seems impossible to demonstrate the superiority of the multifractal model over the GARCH-

type models across six different loss functions that are used as criteria to evaluate our portfolio

of models. However, based on the standard loss functions we observe that the multifractal model

mostly cannot be outperformed by the GARCH-type models. Furthermore, we found that long

memory GARCH models and the multifractal model can be combined to obtain accurate volatility

forecasts.

We have found in chapters 5 and 6 that the Markov switching multifractal duration models can

properly reproduce the long memory properties, the fat tails and the clustering effects observed

in high frequency financial duration data (trade, price and volume durations). Using adequate

statistical procedures we obtained the empirical results that witness the superiority of the MSMD

models over the traditional ACD models with flexible distributions for innovations and over the ex-

ponential FIACD (EFIACD) model. We also found that flexible distributions (generalized gamma
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and Burr) did not enhance the forecast performance of the MSMD model as it is the case in the

ACD models. This pointed out that the ability of the MSMD model to fit high frequency financial

durations stems in large part from the multifractal processes.

In chapter 7 we extended the univariate MSMD model to a bivariate setting. The bivariate

MSMD model offers the opportunity to model not only the duration processes but also the pri-

mary information available by financial transactions and to obtain more accurate forecasts. In

addition, it also allows to analyze the interdependence between trade related variables. Our em-

pirical results provided new insights into the bid-ask spreads of different stocks. Bid-ask spreads

represent the crucial instruments for market makers in the financial markets and offer them the

possibility to offset the costs they incur by trading with informed traders. We found that the bid-

ask spreads of sector-specific or cross-sector stocks may be move together. This results will be of

important interest for market makers and portfolio managers and will help them to better control

their exposure to market risk.

In chapter 8 we have proved that the MSMD model is able to forecast accurately irregularly

spaced intraday value-at-risk (ISIVaR). We have assessed the forecasting performance of the

MSMD via a GMM duration-based test and compared it to that of generalized gamma ACD model.

The empirical results that we obtained at different confidence levels (5%, 2.5% and 1%) are robust

and clearly speak for the MSMD model.

In sum, the MF models are appropriate tools for the measurement and management of the mar-

ket risk. The market risk is a vital input in portfolio optimization, asset allocation, derivative

pricing and hedging, trading and conducting effective monetary policy. Therefore, we find that

multifractal models can help financial institutions, portfolio managers, and regulators to exactly

quantify market risk and avoid an over- or underestimation of the market risk. Because an over-

estimation of the market volatility would lead to an increase of the regulatory capital requirement

and an underestimation can cause a collapse of the financial institution leading to a banking melt-

down. Such a collapse can destabilize the whole financial sector and affect the real economy. We

recommend policy makers to use the MF models when forecasting volatility because compared

to other models, MF models are the only ones to our knowledge to provide accurate and robust

forecasts over the long term.

9.2. Outlooks

There are many research questions that are very interesting and that we do not pursue in this thesis.

These questions can be avenues for future research. The Markov switching multifractal duration

models of Chen et al. (2013) or of Baruník et al. (2012) can be exploited to test some market

microstructure hypotheses. Following Bauwens and Giot (2000) one can utilize the MSMD model

to analyze the way the market maker revise their beliefs relative to bid-ask prices. Additional

explicative variables relative to the trades can be introduced in the MSMD models in order to see

whether these variables may improve the forecast performance of the models. One can also apply
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the models to study the concept of excess volume durations introduced by Hautsch (2003). Future

research can extend the MSMD models to asymmetric ones using the asymmetric MSM process

proposed by Leövey (2013) in his PhD thesis.

The bivariate MSMD model can also be used to analyze the interdependence between trading

volumes and bid-ask spreads. The bivariate MSMD model can be generalized to multivariate set-

ting. Multivariate MSMD model would provide possibilities to model duration and price processes

simultaneously and better understand the price formation process.
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A. Supplement to the Thesis

A.1. Transformation of Random Variables

Given a random variable X whose probability density function fX(x) is known, the transformation

of random variable method allows to derive the probability density function of another random

variable Y related to X by the Y = h(X) where the function h(.)

h : R→ R.

The inverse image of a set Ω is given by

h−1 (Ω) = {x ∈ R; h(x) ∈ Ω} .

So, the mapping

Ω 7→ Pr {h(X) ∈ Ω} = Pr
{

X ∈ h−1 (Ω)
}

fulfils the axioms of a probability and we have the following theorem (cf. Casella and Berger,

2002, chap. 2).

Theorem A.1.1 (Transformation Theorem) Let X have pdf fX(x) and Y = h(X), where h is a

monotone function. Suppose that fX(x) is continuous on h−1 (Ω) and that h−1(Y) has a continuous

derivative on Ω. Then, the pdf of Y is given by

fY (y) = fX

[

h−1(y)
]
∣
∣
∣
∣
∣

d

dy
h−1(y)

∣
∣
∣
∣
∣
, y ∈ Ω. (A.1)

Proof In order to compute the probability density function of Y = h(X) in terms of the probability

density function of X, let start with the cumulative distribution function of Y and assume that h is

an increasing function. We have

FY (y) = Pr (Y ≤ y) = Pr
[

h(X) ≤ y
]

= Pr
[

X ≤ h−1(y)
]

= FX

[

h−1(y)
]

. (A.2)

By applying the chain rule to eq. (A.2), we obtain the pdf of Y as

fY (y) =
d

dy
FX

[

h−1(y)
]

= fX

[

h−1(y)
] d

dy
h−1(y). (A.3)
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If h is a decreasing function on the range of X, then we rewrite the cumulative distribution

function as

FY (y) = Pr (Y ≤ y) = Pr
[

h(X) ≤ y
]

= Pr
[

X ≥ h−1(y)
]

= 1 − FX

[

h−1(y)
]

, (A.4)

and the pdf of Y is given by

fY (y) = − d

dy
FX

[

h−1(y)
]

= − fX

[

h−1(y)
] d

dy
h−1(y). (A.5)

A.2. Transformation of Random Variables in 2-D case

In the bivariate case one has to use the Jacobian matrix of the transformation (cf. also Casella and

Berger, 2002, chap. 4).

Definition Suppose that x and y are two independent variables that are related to another two

independent variables u and v by x = h(u, v), y = g(u, v). The Jacobian, J(u, v) of x and y with

respect to u and v is given by

J(u, v) =
∂(x, y)
∂(u, v)

=

∣
∣
∣
∣
∣
∣
∣
∣

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

∣
∣
∣
∣
∣
∣
∣
∣

(A.6)

The joint distribution function of x and y is

f (x, y) = f (g(u, v), h(u, v)) |J(u, v)| . (A.7)

A.3. Uni- and Bivariate Lognormal Distribution Function

By assuming that a positive random variable ξ follows Lognormal distribution, then ln ξ follows

Normal distribution with mean µ and standard deviation σ. The probability density function of the

random variable ξ is given by

f (ξ) =
1

ξσ
√

2π
exp



−
1
2

(

ln(ξ) − µ
σ

)2
 , ξ > 0. (A.8)

Its cumulative distribution function can be expressed as

F(ξ) = Φ

(

ln(ξ) − µ
σ

)

(A.9)

where Φ is the cumulative distribution function of the standard Normal distribution.

The joint distribution function of two positive correlated continuous lognormally distributed

random variables ξ1 and ξ2 can be obtained via the Jacobian of the transformation. The joint
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distribution function is known in the literature as the bivariate Lognormal distribution function

and can be formalized as

f (ξ1, ξ2) =
1

2πξ1ξ2σ1σ2

√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
Q

]

, (A.10)

where

Q =

(

ln(ξ1) − µ1

σ1

)2

− 2ρ

(

ln(ξ1) − µ1

σ1

) (

ln(ξ2) − µ2

σ2

)

+

(

ln(ξ2) − µ2

σ2

)2

, (A.11)

and µ1, σ1 and µ2, σ2 are the means and standard deviations of ln ξ1 and ln ξ2, respectively (cf.

Yerel and Konuk, 2009, for more detail on the uni- and bivariate Lognormal distribution functions).

A.4. The Joint Probability Density Function of the Bivariate

MSMD Model

The bivariate MSMD model can be formalized as






z1t =
ξ1t

λ1t

z2t =
ξ2t

λ2t

.

(A.12)

The joint probability density function, h(z1t, z2t) of the bivariate MSMD model is given by

h (z1t, z2t) = f (z1tλ1t, z2tλ2t)

∣
∣
∣
∣
∣
∣
∣
∣

∂ξ1t

∂z1t

∂ξ1t

∂z2t

∂ξ2t

∂z1t

∂ξ2t

∂z2t

∣
∣
∣
∣
∣
∣
∣
∣

= f (z1tλ1t, z2tλ2t)

∣
∣
∣
∣
∣
∣
∣
∣

λ1t 0

0 λ2t

∣
∣
∣
∣
∣
∣
∣
∣

= λ1tλ2t f (z1tλ1t, z2tλ2t) ,

(A.13)

where f is the bivariate Lognormal distribution function defined in A.3

A.5. The Delta Method

Let denote ρ the correlation coefficient between ln ξ1,t and ln ξ2,t, then the corresponding correla-

tion coefficient ς between ξ1,t and ξ2,t is given by

ς =
exp(ρ

√
σ11σ22) − 1

√

[exp(σ11) − 1][exp(σ22) − 1]
= h(ρ), (A.14)

where ς ∈ (−1, 1), h(ρ) = 0 if ρ = 0, |ς| < ρ, and h(ρ) , −h(−ρ).
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Using the two-steps estimation approach described in Sec. 7.5.1 we obtain the estimate ρ̂ that

is asymptotically Normal distributed. This means

√
T (ρ̂ − ρ0)→d N(0, σ2

ρ0
) (A.15)

where σ2
ρ0

is the asymptotic variance of the estimate ρ̂ and ρ0 is the "true" unknown parameter.

In fact, we are interested in the limiting distribution of ς and its asymptotic variance. The delta

method allows us to derive the limiting distribution of ς (cf. Weisberg, 2001). Let h : R→ R be a

continuously differentiable function such that h′(ρ0) , 0. We can rewrite h as Taylor series of the

form:

h(X) ≡ h(µ) + (X − µ)h′(µ), (A.16)

where

h′(µ) =
∂h(X)
∂X

|X=µ (A.17)

and

Var [h(X)] = Var (X − µ)
[

h′(µ)
]2

= σ2 [

h′(µ)
]2
,

(A.18)

where σ2 is the variance of X.

From the eq. (A.16) we have

√
T (h(ρ̂) − h(ρ0))→d N(0, σ2

ρ0
[h′(ρ0)]2). (A.19)

The delta method estimator of the variance of the ς is obtained by using the estimators of ρ and

σ2
ρ0

as above-described

Var[ς] = σ̂2 [

h′(ρ̂)
]2
. (A.20)

A.6. Classical Discrete Orthogonal Polynomials

As defined in Arvesú et al. (2003) orthogonal polynomials {pn : n = 0, 1, 2, . . . } in account with a

positive measure µ on the real line fulfill the conditions

∫

pn(x)x jdµ(x) = 0, j = 0, 1, . . . , n − 1. (A.21)

In the case of discrete orthogonal polynomials the corresponding discrete measure µ can be

expressed as a linear combination of Dirac measures on the N + 1 points x0, . . . , xN . Formally, we

have
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µ =

N∑

k=0

ρkδxk
, ρk > 0, xk ∈ R and N ∈ N ∪ {+∞}. (A.22)

The orthogonality conditions of a discrete orthogonal polynomial pn on the set {xk = k : k = 0, 1, . . . ,N}
are formalized as (cf. Arvesú et al., 2003)

N∑

k=0

pn(k)(−k) jρk = 0 j = 0, 1, . . . , n − 1, (A.23)

with (a) j = a(a + 1) . . . (a + j − 1) if j > 0 and (a)0 = 1 (cf. the Pochhammer symbol).

Meixner Orthogonal Polynomials:

The monic1 discrete orthogonal polynomials associated with a negative Binomial (NB) distribution

(Pascal distribution) on N satisfy the following orthogonality conditions

+∞∑

k=0

Mn (k; β, c) (−k) j

(β)k

k!
ck = 0, j = 0, 1, . . . , n − 1, (A.24)

with β > 0 and 0 < c < 1.

β > 0 and 0 < c < 1.

As demonstrated in Filipuk and Van Assche (2013) the Meixner orthonormal polynomial Mn

satisfies the following recurrence relation

xMn (x; β, c) = an+1Mn+1 (x; β, c) + bnMn (x; β, c) + anMn−1 (x; β, c) , (A.25)

with n ≥ 0, where the recurrence coefficients are given by

a2
n =

cn(β + n − 1)

(1 − c)2
, bn =

n + (β + n)c
(1 − c)

, (A.26)

and initials conditions are M0 = 1 and M−1 = 0.

We can rewrite eq. (A.25) as

Mn+1 (x; β, c) =
x − bn

an+1
Mn (x; β, c) − an

an+1
Mn−1 (x; β, c) , (A.27)

or equivalently,

Mn+1 (x; β, c) = h(x; β, c)Mn (x; β, c) − g(x; β, c)Mn−1 (x; β, c) , (A.28)

where

g(x; β, c) =
an

an+1
, (A.29)

1 In algebra, a univariate polynomial is said to be monic, if its leading coefficient is equal to 1.
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and

h(x; β, c) =
x − bn

an+1
. (A.30)

A.7. A Special Case of Meixner Orthonormal Polynomials

The geometric distribution is a special case of the negative Binomial distribution. By setting β = 1

and c = 1 − α we obtain the geometric distribution (Geo(d;α)=NB(x; 1, 1 − α)). The eq. (A.28)

becomes

Mn+1 (d;α) = k(d;α)Mn (d;α) − q(d;α)Mn−1 (d;α) , (A.31)

where

q(d;α) = g(x; β, c) =
n

n + 1
, (A.32)

and

k(d;α) = −h(x; 1, 1 − α) =
(1 − α)(1 + 2n) + α(n − x + 1)

(1 + n)
√

1 − α
, (A.33)

with x = d − 1 and initials conditions do not change: M0 = 1 and M−1 = 0.
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