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‘‘Divergence of high moments and dimension of the carrier’’ is the subtitle of
Mandelbrot’s 1974 seed paper on random multifractals. The key words
‘‘divergence’’ and ‘‘dimension’’ met very different fates. ‘‘Dimension’’ expanded
into a multifractal formalism based on an exponent a and a function f(a). An
excellent exposition in Halsey et al. 1986 helped this formalism flourish. But it
does not allow divergent high moments and the related inequalities f(a) < 0 and
a < 0. As a result, those possibilities did not flourish. Now their time has come
for diverse reasons. The broad 1974 definitions of a and f allow a < 0 and
f(a) < 0, but the original presentation demanded to be both developed and
simplified. This paper shows that both multifractal anomalies occur in a very
simple example, which has been crafted for this purpose. This example predicts
the power law distribution. It generalizes a and f(a) beyond their usual roles of
being a Hölder exponent and a Hausdorff dimension. The effect is to allow
either f or both f and a to be negative, and the apparent anomalies are made
into sources of new important information. In addition, this paper substantially
clarifies the subtle way in which randomness manifests itself in multifractals.

KEY WORDS: Multifractals; power-law distribution; negative dimensions;
critical dimensions; anomalies; two-valued canonical measure.

There are at least two reasons why the view of multifractals common
among physicists demands to be broadened. A first reason is that
Duplantier 1999 obtained f(a) explicitly for the harmonic measure around
a number of diverse physical clusters (Brownian, percolation, and Ising.)
For small but positive values of a, and for large enough values, Duplantier’s
function f(a) is negative.

Had the measures in question been non-random, f(a) would have
been a fractal dimension. Therefore f(a) < 0 would have been ‘‘seriously



anomalous,’’ in fact, an impossibility according to the otherwise excellent
exposition in Halsey et al. 1986, and the considerable literature that
followed along the same lines. However, random clusters create random
measures, and f(a) < 0 is allowed and explained in the earlier theory of
random multifractals proposed in Mandelbrot 1974ab and made mathe-
matically rigorous in Kahane and Peyrière 1976.

Unfortunately, that original theory was overly general and the original
papers, having appeared ‘‘before their time,’’ were difficult. The topic
remained little-known and/or understood and begs for a simple account.

A second reason to broaden the common view of multifractals invol-
ves the fluctuations of certain physical phenomena as well as of financial
prices. My latest model (Mandelbrot 1977, 2001abcd), which has since
become accepted in the finance literature, consists in a Brownian motion
(Wiener or fractional) that does not proceed in clock time, but rather in
a ‘‘trading time’’ that is a multifractal function of ‘‘clock time.’’ I had
discovered in 1962 that actual price increments follow a power law dis-
tribution. In order for the present model to include this feature, the multi-
fractal measure in an interval must itself follow a power law of the form
Pr{measure > m}=m−qcrit, with 1 < qcrit < .. Being concerned with non-
random measures, Halsey et al. had no prediction to make about probabil-
ity distributions. But not only did Mandelbrot 1974ab allow the power-law,
but obtained it as a consequence f(a) < 0 and a < 0. From this double
anomaly, it follows that the equation y(q)=0 not only has a root q=1 but
also a second root that is qcrit.

The Goals of this Paper. This paper introduces and studies the
‘‘two-valued canonical measure,’’ to be noted by TVCM. This is a new
random multifractal that was specifically constructed to illustrate the sub-
title of Mandelbrot 1974 in what seems to be the simplest fashion imagin-
able. This sharply defined goal explains why the references include few
items from the immense literature on nonrandom multifractals or finance.

In the multifractals considered by Duplantier, the supports are
random fractal sets, but in price variation, the support is the time axis. To
simplify and avoid extraneous complications, this paper purposefully
restricts itself to very special multifractals on the interval [0, 1].

The Probability Distribution of the Overall Measure m([0, 1])=W.
Of course, both f(a) and the random variable W are determined by the rule
that defines the multifractal measure. However, knowing f(a) does not
suffice to identify the distribution of W, not even to determine whether or
not W is random. For example, we shall compare the Bernoulli binomial
multifractal, which is non-random, and a very simple random variant,
to be called ‘‘canonical,’’ a special case of TVCM. The function f(a) is
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the same for both, but W is non-random (identically 1) for the original
Bernoulli and random for the canonical variant. Insofar as all moments are
finite, this W is ‘‘not very random.’’ However, the only general conclusion
from the multifractal formalism is that non-randomness, that is, W=1,
requires f(a) > 0. A fortiori, the distribution of W cannot be obtained
without additional assumptions.

The simplest case is the ‘‘very random’’ one, insofar as the anomalies
a < 0 and f(a) < 0 allow the tail probability Pr{W > W} to take the power
law form W−qcrit. In other words, the apparent generality of Halsey et al.
proves a drawback, while the more special nature of my original model
proves an asset. Since 1974, that model has been generalized but became
more complicated (see Mandelbrot 1995). However, the key facts are already
present in the deliberately non-general example described in this paper.

Hölder Analysis of the Decomposition of a Measure Among
Values of a. In order to echo ‘‘Fourier analysis,’’ I describe the multi-
fractal formalism as achieving ‘‘Hölder analysis.’’ Fourier analysis decom-
poses a function into a (denumerably infinite) sum of components, each of
fixed frequency. Hölder analysis decomposes a measure into a (conti-
nuously infinite) sum of measures, each characterized by a value of the
Hölder exponent a. The latter notion is borrowed from 1870 mathematical
esoterica and measures the strength of local ‘‘singularity’’ or ‘‘roughness’’.
Each a > 0 is encountered on a set of fractal dimension f(a) > 0. The
notions of a and f will be generalized by defining f(a) as f(a)=r(a)+1,
where r(a) is a suitably weighted but non-averaged logarithm of a
probability.

All that we learn from the Hölder analysis of m is how the total mass
W is decomposed among the as. When f(a) is only defined for a > 0, all
the moments of W are finite and one can write qcrit=.. When f(a) is
defined for a < 0, one finds qcrit < .. All that we have from the critical qcrit

is how the value of the overall mass is distributed.
Hölder analysis is not directly affected by either the value or the dis-

tribution of W; it is ruled by a first truncated function f+(a)= maximum
of {0, f(a)}. The randomness of W is not directly affected by the Hölder
analysis and is largely ruled by a second truncated function f−(a)=
minimum of {0, f(a)}. In the general case, the main constraint on f(a) is
that it must be cap-convex. Hence the functions f+(a) and f−(a) are only
weakly linked.

Hence, a striking fact is that, to some large extent, the values of W and
qcrit are ruled by two distinct portions of a single generalized function f(a).
By and large, Hölder analysis is ruled by the ‘‘observable’’ values of a,
defined as those for which f(a) > 0. The presence of large excursions in the
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distribution of W is ruled by the ‘‘latent’’ values, defined as those for which
f(a) < 0. And the power law follows from the presence of values of W that
are so extraordinarily unlikely that a ‘‘sensible’’ heuristic could (or would)
disregard them altogether. This is perhaps why their role remains so little
known until now, and the goal of this paper is to provide a presentation
that is both ‘‘sensible’’ and correct.

Thermodynamical Formalisms. In every approach to multifrac-
tals, the philosophy and the formalism were knowingly borrowed from
statistical thermodynamics. For example, the Legendre transform entered
into Mandelbrot 1974 indirectly, since the Cramer’s theory of the proba-
bility of large deviations, on which I relied, is itself rooted in thermody-
namical approximations. The formalism in Halsey et al. follows (without
mentioning it explicitely) the derivation of thermodynamics by the
Darwin–Fowler method of steepest descent. A large literature expanded on
the thermodynamic connection, but is beyond the scope of this paper.

Beyond Formalisms, a Deep Contrast Between Gases and
Multifractals. Analogies can be misleading. Thermodynamics teaches
that zero probability events have no observable effect and can be neglected.
To the contrary, every theory of multifractals deals with ‘‘degrees of thin-
ness’’ of a set. It deals with diverse properties that one can readily observe—
either directly or by close consequences—but that are ruled by events of
probability zero. Those properties are known to include sets of dimension
< 1 and zero measure corresponding to the ‘‘information dimension’’ and
the values of f(a) for a ] a0. This paper shows that my 1974 theory of multi-
fractals goes one step further. It deals with ‘‘degrees of emptiness’’ of a set
that, among others, concern the existence of a finite critical exponent qcrit.

Examples of Degrees of Emptiness. The Brownian boundaries
studied in Duplantier 1999 provide a new but especially clearcut example of
degrees of emptiness. The 4/3 conjecture in Mandelbrot 1982, now proved,
is that the boundary’s dimension is 4/3. The fact that there exist as for
which Duplantier’s f(a) > 0 expresses that certain properties are only
observed on subsets of the boundary of dimension < 4/3. Other theorems
assert that some properties are almost surely encountered nowhere on the
boundary. ‘‘Nowhere’’ means on an empty set. To consider all empty sets
as identical used to suffice, but no longer. A new challenge has arisen, to
specify ‘‘how empty.’’ The answer is the value of a negative probability.

A Fundamental Procedure that Happens to Be Shared by Modern
Statistical Physics and the Approach of Mandelbrot 1974. The
measure on which this paper focuses is defined on the one-dimensional
‘‘time’’ axis, more precisely, for subintervals of [0, 1]. But in order to fully
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understand negative dimensions and a < 0, one must think simultaneously
of all measures with a two-valued multiplier that act in d-dimensional
spaces with d > 1. The dimension d need not be an integer, and one must
consider an infinity of distinct critical values of the dimension d.

A technically and intellectually important feature of modern statistical
physics falls into three parts. Firstly, a system is not studied in a single
space dimension, such as 1 or 3, but in all possible embedding dimensions.
Secondly, formal arguments allow the embedding dimension not to be an
integer. Thirdly, above some embedding dimension singled out as ‘‘criti-
cal,’’ the systems’ properties follow the so-called ‘‘mean-field’’ theory;
below that dimension the properties are very different.

None of these three features belonged to the early theory (due to A. S.
Besicovitch) of the Bernoulli binomial. However, quite independently of
the developments in physics, all of those three features are present in
Mandelbrot 1974. There, the application is turbulence and the first fea-
ture—simultaneous multiple embeddings—is intrinsic and unavoidable
because a physical phenomenon that occurs in d=3 must be followed
through linear cuts with d=1. Secondly, non-integer dimensions are not
formal but have a completely rigorous mathematical meaning in terms of
fractal dimensions. Thirdly, for each of several distinct ‘‘aspects’’ of
TVCM, a certain ‘‘normal’’ behavior prevails when the embedding dimen-
sion exceeds the corresponding critical value, while an ‘‘anomalous’’
behavior prevails at low embedding dimensions. Compared to statistical
physics, the multifractals’ novelty is that the number of different ‘‘aspects’’
is infinite and so is the number of distinct critical dimensions. These points
will be discussed elsewhere.

1. BACKGROUND: THE BERNOULLI BINOMIAL MEASURE AND

TWO RANDOM VARIANTS: SHUFFLED AND CANONICAL

The prototype of all multifractals is nonrandom: it is a Bernoulli
binomial measure. Its well-known properties are recalled in this section,
then Section 2 introduces a random ‘‘canonical’’ version. Also, all Bernoulli
binomial measures being powers of one another, a broader viewpoint con-
siders them as forming a single ‘‘class of equivalence.’’

1.1. Definition and Construction of the Bernoulli Binomial

A Multiplicative Nonrandom Cascade. A recursive construction
of the Bernoulli binomial measures involves an ‘‘initiator’’ and a ‘‘genera-
tor.’’ The initiator is the interval [0, 1] on which a unit of mass is uni-
formly spread. This interval will recursively split into halves, yielding
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dyadic intervals of length 2−k. The generator consists in a single parameter u,
variously called multiplier or mass. The first stage spreads mass over the
halves of every dyadic interval, with unequal proportions. Applied to
[0, 1], it leaves the mass u in [0, 1

2] and the mass v in [1
2 , 1]. The (k+1)th

stage begins with dyadic intervals of length 2−k, each split in two subinter-
vals of length 2−k − 1. A proportion equal to u goes to the left subinterval
and the proportion v, to the right.

After k stages, let j0 and j1=1 − j0 denote the relative frequencies
of 0’s and 1’s in the finite binary development t=0. b1b2 · · · bk. The
‘‘pre-binomial’’ measures in the dyadic interval [dt]=[t, t+2−k] takes the
value

mk(dt)=ukj0vkj1,

which will be called ‘‘pre-multifractal.’’ This measure is distributed uni-
formly over the interval. For k Q ., this sequence of measures mk(dt) has a
limit m(dt), which is the Bernoulli binomial multifractal.

Shuffled Binomial Measure. The proportion equal to u now goes
to either the left or the right subinterval, with equal probabilities, and the
remaining proportion v goes to the remaining subinterval. This variant
must be mentioned but is not interesting.

1.2. The Concept of Canonical Random Cascade and the Definition

of the Canonical Binomial Measure

Mandelbrot 1974ab took a major step beyond the preceding construc-
tions.

The Random Multiplier M. In this generalization, every recursive
construction can be described as follows. Given the mass m in a dyadic
interval of length 2−k, the two subintervals of length 2−k − 1 are assigned the
masses M1m and M2m, where M1 and M2 are independent realizations of a
random variable M called multiplier. This M is equal to u or v with prob-
abilities p=1/2 and 1 − p=1/2.

The Bernoulli and shuffled binomials both impose the constraint that
M1+M2=1. The canonical binomial does not. It follows that the canoni-
cal mass in each interval of duration 2−k is multiplied in the next stage by
the sum M1+M2 of two independent realizations of M. That sum is either
2u (with probability p2), or 1 (with probability 2 (1 − p) p), or 2v (with
probability (1 − p2).

Writing p instead of 1/2 in the Bernoulli case and its variants compli-
cates the notation now, but will soon prove advantageous: the step to the
TVCM will simply consist in allowing 0 < p < 1.
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1.3. Two Forms of Conservation: Strict and on the Average

Both the Bernoulli and shuffled binomials repeatedly redistribute
mass, but within a dyadic interval of duration 2−k, the mass remains exactly
conserved in all stages beyond the kth. That is, the limit mass m(t) in a
dyadic interval satisfies mk(dt)=m(dt).

In a canonical binomial, to the contrary, the sum M1+M2 is not
identically 1, only its expectation is 1. Therefore, canonical binomial
construction preserve mass on the average, but not exactly.

The Random Variable W. In particular, the mass m([0, 1]) is no
longer nonrandom and equal to 1. It is a basic random variable denoted by
W and discussed in Section 3.

Within a dyadic interval dt of length 2−k, the cascade is simply a
reduced-scale version of the overall cascade. It transforms the mass mk(dt)
into a product of the form m(dt)=mk(dt) W(dt) where all the W(dt) are
independent realizations of the same random variable W.

1.4. The Term ‘‘Canonical’’ Is Motivated by Statistical

Thermodynamics

As is well-known, statistical thermodynamics finds it valuable to
approximate large systems as juxtapositions of parts, the ‘‘canonical
ensembles,’’ whose energy only depends on a common temperature and not
on the energies of the other parts. Microcanonical ensembles’ energies are
constrained to add to a prescribed total energy. In the study of multifrac-
tals, the use of this metaphor should not obscure the fact that the multipli-
cation of canonical factors introduces strong dependence among m(dt) for
different intervals dt.

1.5. In Every Variant of the Binomial Measure, One Can View All

Finite (Positive or Negative) Powers Together, as Forming

a Single ‘‘Class of Equivalence’’

To any given real exponent g ] 1 and multipliers u and v corresponds
a multiplier Mg that can take either of two values: ug=kug with proba-
bility p, and vg=kvg with probability 1 − p. The identity pug+(1 − p) vg

=1/2 demands k[pug+(1 − p) vg]=1/2, that is, k=1/[2OMgP]. The
expression 2OMgP will be generalized and encountered repeatedly, especially
through the expression

y(q)=−log2[puq+(1 − p) vq] − 1=−log2(2OMqP)
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This is simply a notation at this point, but it will be justified in Section 4. It
follows that k=2−y(g), hence

ug=ug2y(g) and vg=vg2y(g).

Assume u > v. As g ranges from 0 to ., ug ranges from 1/2 to 1, and
vg ranges from 1/2 to 0; the inequality ug > vg is preserved. To the con-
trary, as g ranges from 0 to ., vg < ug. For example, g=−1 yields

ug=
1/u

1/u+1/v
=v and vg=

1/v
1/v+1/v

=u.

Thus, inversion leaves both the shuffled and the canonical binomial mea-
sures unchanged. For the Bernoulli binomial, it only changes the direction
of the time axis.

Altogether, every Bernoulli binomial measure can be obtained from
any other as a reduced positive or negative power. If one agrees to consider
a measure and its reduced powers as equivalent, there is only one Bernoulli
binomial measure.

In concrete terms relative to non-infinitesimal dyadic intervals, the
sequences representing log m for different values of g are mutually affine.
Each is obtained from the special case g=1 by a multiplication by g
followed by a vertical translation.

1.6. The Full and Folded Forms of the Address Plane

In anticipation of TVCM, the point of coordinates u and v will be
called the address of a binomial measure in a full address space. In that
plane, the locus of the Bernoulli measures is the interval defined by
0 < v, 0 < u, and u+v=1.

The folded address space will be obtained by identifying the measures
(u, v) and (v, u), and representing both by the same point. The locus of the
Bernoulli measures becomes the interval defined by the inequalities
0 < v < u and u+v=1.

1.7. Alternative Parameters

In its role as parameter added to p=1/2, one can replace u by the
(‘‘information-theoretical’’) fractal dimension D=−u log2 u − v log2 v
which can be chosen at will in this open interval ]0, 1[. The value of D
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characterizes the ‘‘set that supports’’ the measure. It received a new
application in the new notion of multifractal concentration described in
Mandelbrot 2001c. More generally, the study of all multifractals, including
the Bernoulli binomial, is filled with fractal dimensions of many other sets.
All are unquestionably positive. One of the newest features of the TVCM
will prove to be that they also allow negative dimensions.

2. DEFINITION OF THE TWO-VALUED CANONICAL

MULTIFRACTALS

2.1. Construction of the Two-Valued Canonical Multifractal in the

Interval [0, 1]

The TVCM are called two-valued because, as with the Bernoulli
binomial, the multiplier M can only take 2 possible values u and v. The
novelties are that p need not be 1/2, the multipliers u and v are not
bounded by 1, and the inequality u+v ] 1 is acceptable.

For u+v ] 1, the total mass cannot be preserved exactly. Preservation
on the average requires OMP=pu+(1 − p) v=1/2, hence 0 < p=(1/2 − v)/
(u − v) < 1.

The construction of TVCM is based upon a recursive subdivision of
the interval [0, 1] into equal intervals. The point of departure is, once
again, a uniformly spread unit mass. The first stage splits [0, 1] into two
parts of equal lengths. On each, mass is poured uniformly, with the respec-
tive densities M1 and M2 that are independent copies of M. The second
stage continues similarly with the interval [0, 1/2] and [1/2, 1].

2.2. A Second Special Two-Valued Canonical Multifractal:

The Unifractal Measure on the Canonical Cantor Dust

The identity OMP=1/2 is also satisfied by u=1/2p and v=0. In this
case, let the lengths and number of non-empty dyadic cells after k stages be
denoted by Dt=2−k and Nk. The random variable Nk follows a simple
birth and death process leading to the following alternative.

When p > 1/2, ONkP=(ON1P)k=(2p)k=(dt) log(2p). To be able to
write ONkP=(dt)−D, it suffices to introduce the exponent D=−log(2p). It
satisfies D > 0 and defines a fractal dimension.

When p < 1/2, to the contrary, the number of non-empty cells almost
surely vanishes asymptotically. At the same time, the formal fractal
dimension D=−log(2p) satisfies D < 0.
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2.3. Generalization of a Useful New Viewpoint: When Considered

Together with Their Powers From − / to /, all the

TVCM Parametrized by Either p or 1−p Form

a Single Class of Equivalence

To take the key case, the multiplier M−1 takes the values

u−1=

1
u

2 1p
u

+
1 − p

v
2

=
v

2(v+u) − 1
and v−1=

u
2(v+u) − 1

.

It follows that pu−1+(1 − p) v−1=1/2 and u−1/v−1=v/u. In the full
address plane, the relations imply the following: (a) the point (u−1, v−1) lies
on the extension beyond (1/2, 1/2) of the interval from (u, v) to (1/2, 1/2)
and b) the slopes of the intervals from 0 to (u, v) and from 0 to (u−1, v−1)
are inverse of one another. It suffices to fold the full phase diagram along
the diagonal to achieve v > u. The point (u−1, v−1) will be the intersection of
the interval corresponding to the probability 1 − p and of the interval
joining 0 to (u, v).

2.4. The Full and Folded Address Planes

In the full address plane, the locus of all the points (u, v) with fixed p
has the equation pu+(1 − p) v=1/2. This is the negatively sloped interval
joining the points (0, 1/2p) and ([1/2(1 − p)], 0). When (u, v) and (v, u)
are identified, the locus becomes the same interval plus the negatively
sloped interval from [0, 1/2(1 − p)] to (1/2p, 0).

In the folded address plane, the locus is made of two shorter intervals
from (1, 1) to both (1/2p, 0) and ([1/2(1 − p)], 0). In the special case
u+v=1 corresponding to p=1/2, the two shorter intervals coincide.

Those two intervals correspond to TVCM in the same class of equiva-
lence. Starting from an arbitrary point on either interval, positive moments
correspond to points to the same interval and negative moments, to points
of the other. Moments for g > 1 correspond to points to the left on the
same interval; moments for 0 < g < 1, to points to the right on the same
interval; negative moments to points on the other interval.

For p ] 1/2, the Class of Equivalence of p Includes a Measure
that Corresponds to u=1 and v=[1/2−min(p, 1−p)] / [max(p, 1−p)].
This novel and convenient universal point of reference requires p ] 1/2. In
terms to be explained below, it corresponds to amin=−log u=0.
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2.5. Background of the Two-Valued Canonical Measures in

the Historical Development of Multifractals

The construction of TVCM is new but takes a well-defined place among
the three main approaches to the development of a theory of multifractals.

General mathematical theories came late and have the drawback that
they are accessible to few non-mathematicians and many are less general
than they seem.

The heuristic presentation in Frisch and Parisi 1985 and Halsey et al.
1986 came after Mandelbrot 1974ab but before most of the mathematics.
Most importantly for this paper’s purpose, those presentations fail to
include significantly random constructions, hence cannot yield measures
following the power law distribution.

Both the mathematical and the heuristic approaches seek generality
and only later consider the special cases. To the contrary, the approach in
Mandelbrot 1974ab, the first historically, began with the careful investiga-
tion of a variety of special random multiplicative measures. I believe that
each feature of the general theory continues to be best understood when
introduced through a special case that is as general as needed, but no more.
The general theory is understood very easily when it comes last.

In pedagogical terms, the ‘‘third way’’ associates each distinct feature
of multifractals with a special construction, often one that consists of
generalizing the binomial multifractal in a new direction. TVCM is part of
a continuation of that effective approach; it could have been investigated
much earlier if a clear need had been perceived.

3. THE LIMIT RANDOM VARIABLE W=m([0, 1]), ITS DISTRIBUTION

AND THE STAR FUNCTIONAL EQUATION

3.1. The identity EM=1 Implies that the Limit Measure Has the

‘‘Martingale’’ Property, Hence the Cascade Defines

a Limit Random Variable W=m([0, 1])

We cannot deal with martingales here, but positive martingales are
mathematically attractive because they converge (almost surely) to a limit.
But the situation is complicated because the limit depends on the sign of
D=2[ − pu log2 u − (1 − p) v log2 v].

Under the condition D > 0, which is discussed in Section 8, what
seemed obvious is confirmed: Pr{W > 0} > 0, conservation on the average
continues to hold as k Q ., and W is either non-random, or is random and
satisfies the identity OWP=1.

But if D < 0, one finds that W=0 almost surely and conservation on
the average holds for finite k but fails as k Q .. The possibility that W=0
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arose in mathematical esoterica and seemed bizarre, but is unavoidably
introduced into concrete science.

3.2. Questions

(A) Which feature of the generating process dominates the tail dis-
tribution of W? It is shown in Section 5 to be the sign of max(u, v) − 1.

(B) Which feature of the generating process allows W to have a high
probability of being either very large or very small? Section 5 will show that
the criterion is that the function y(q) becomes negative for large enough q.

(C) Divide [0, 1] into 2k intervals of length 2−k. Which feature of the
generating process determines the relative distribution of the overall W

among those small intervals? This relative distribution motivated the
introduction of the functions f(a) and r(a), and is discussed in Section 7.

(D) Are the features discussed under (B) and (C) interdependent?
Section 9 will address this issue and show that, even when W has a high
probability of being large, its value does not affect the distribution under (C).

3.3. Exact Stochastic Renormalizability and the ‘‘Star Functional

Equation’’ for W

Once again, the masses in [0, 1/2] and [1/2, 1] take, respectively, the
forms M1W1 and M2W2, where M1 and M2 are two independent realiza-
tions of the random variable M and W1, and W2 are two independent
realizations of the random variable W. Adding the two parts yields

W — W1M1+W2M2.

This identity in distribution, now called the ‘‘star equation,’’ combines
with OWP=1 to determine W. It was introduced in Mandelbrot 1974 and
has since then been investigated by several authors, for example by Durrett
and Liggett 1983. A large bibliography is found in Liu 2002.

In the special case where M is non-random, the star equation reduces
to the equation due to Cauchy whose solutions have become well-known:
they are the Cauchy–Lévy stable distributions.

3.4. Metaphor for the Probability of Large Values of W, Arising in

the Theory of Discrete Time Branching Processes

A growth process begins at t=0 with a single cell. Then, at every
integer instant of time, every cell splits into a random non-negative number
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of N1 cells. At time k, one deals with a clone of Nk cells. All those random
splittings are statistically independent and identically distributed. The
normalized clone size, defined as Nk/ON1P

k has an expectation equal to 1.
The sequence of normalized sizes is a positive martingale, hence (as already
mentioned) converges to a limit random variable.

When ONP > 1, that limit does not reduce to 0 and is random for a
very intuitive reason. As long as clone size is small, its growth very much
depends on chance, therefore the normalized clone size is very variable.
However, after a small number of splittings, a law of large numbers comes
into force, the effects of chances become negligible, and the clone grows
near-exponentially. That is, the randomness in the relative number of
family members can be very large but acts very early.

3.5. To a Large Extent, the Asymptotic Measure W of a TVCM Is

Large if, and only if, the Pre-Fractal Measure mk([0, 1])

Has Become Large During the Very First Few

Stages of the Generating Cascade

Such behavior is suggested by the analogy to a branching process, and
analysis shows that such is indeed the case. After the first stage, the mea-
sures m1([0, 1/2]) and m1([1/2, 1]) are both equal to u2 with probability p2,
uv with probability 2p(1 − p), and v2 with probability (1 − p)2. Extensive
simulations were carried out for large k in ‘‘batches,’’ and the largest,
medium, and smallest measure was recorded for each batch. Invariably, the
largest (resp., smallest) W started from a high (resp. low) overall level.

4. THE FUNCTION y(q): MOTIVATION AND FORM OF THE GRAPH

So far y(q) was nothing but a notation. It is important as it is the
special form taken for TVCM by a function that was first defined for an
arbitrary multiplier in Mandelbrot 1974ab. (Actually, the little-appreciated
Fig. 1 of that original paper did not include q < 0 and worked with − y(q),
but the opposite sign came to be generally adopted.)

4.1. Motivation of y(q)

After k cascade stages, consider an arbitrary dyadic interval of dura-
tion dt=2−k. For the k-approximant TVCM measure mk(dt). The qth
power has an expected value equal to [puq+(1 − p) vq]k={OMqP]k}. Its
logarithm of base 2 is

log2{[puq+(1 − p) vq]k}=k log2{puq+(1 − p) vq}=log2(dt)[y(q)+1].
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Fig. 1. The full phase diagram of TVCM with coordinates u and v. The isolines of the
quantity p are straight intervals from {1/[2(1 − p)], 0} to {0, 1/[2p]}. The values p and 1 − p
are equivalent and the corresponding isolines are symmetric with respect to the main bisector
u=v. The acceptable part of the plane excludes the points (u, v) such that both u and v are
< 1/2 or both are > 1/2. Hence, the relevant part of this diagram is made of two infinite
halfstrips. They are reducible to one another by folding along the bisector. The folded phase
diagram of TVCM showing isolines of the following quantities: 1 − p and p—each is made of
two straight intervals that start at the point (1, 1) and end at the points {1/[2p], 0} and
{1/[2(1 − p)], 0}; D—curves that start on the interval 1/2 < u < 1 of the u-axis and continue
to the point (., 0); and q—curves that start at the point (1, 0) and continue to the point
(., 0). The Bernoulli binomial corresponds to p=1/2 and the canonical Cantor measure
corresponds to the half line v=0, u > 1/2.

Hence

Omq
k(dt)P=(dt)y(q)+1.

4.2. A Generalization of the Role of W : Middle- and High-Frequency

Contributions to Microrandomness

Exactly the same cascade transforms the measure in dt from mk(dt) to
m(dt) and the measure in [0,1] from 1 to W. Hence, one can write

m(dt)=mk(dt) W(dt).

In this product, frequencies of wavelength > dt, to be described as ‘‘low,’’
contribute mk([0, 1]), and frequencies of wavelength < dt, to be described
as ‘‘high,’’ contribute W.
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4.3. The Expected ‘‘Partition Function’’ ; O mq(dit) P

Section 5 will show that OWqP need not be finite. But if it is, the limit
measure m(dt)=mk(dt) W(dt) satisfies

Omq(dt)P=(dt)y(q)+1 OWqP.

The interval [0,1] subdivides into 1/dt intervals dit of common length
dt. The sum of the qth moments over those intervals takes the form

Oq(dt)P=C Omq(dit)P=(dt)y(q) OWqP.

Estimation of y(q) From a Sample. It is affected by the prefactor
W insofar as one must estimate both y(q) and log OWqP.

4.4. Form of the y(q) Graph

Due to conservation on the average, OMP=pu+(1 − p) v=1/2,
hence y(1)=−log2[1/2] − 1=0. An additional universal value is y(0)=
−log2(1) − 1=−1. For other values of q, y(q) is a cap-convex continuous
function satisfying y(q) < − 1 for q < 0.

For TVCM, a more special property is that y(q) is asymptotically
linear: assuming u > v, and letting q Q .:

y(q) ’ − log2 p − 1 − q log u, and y(−q) ’ − log2(1 − p) − 1+q log v.

The sign of u − 1 affects the sign of log u, a fact that will be very
important in Section 5.

Moving as little as possible beyond these properties, the very special y

function of the TVCM is simple but Fig. 2 suffices to bring out every one
of the delicate possibilities first reported in Mandelbrot 1974a, where
− y(q) is plotted in that little-appreciated Fig. 1.

Other Features of y that Deserve to be Mentioned. Direct proofs
are tedious and the short proofs require the multifractal formalism that will
only be described in Section 10.

The Quantity D(q)=y(q)/(q−1). This popular expression is often
called a ‘‘generalized dimension,’’ a term too vague to mean anything. D(q)
is obtained by extending the line from (q, y) to (1, 0) to its intercept with
the line q=0. It plays the role of a critical embedding codimension for the
existence of a finite qth moment. This topic cannot be discussed here but is
treated in Mandelbrot, 2002c.
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Fig. 2. The functions y(q) for p=3/4 and varying g. By arbitrary choice, g=1 is assigned
to the case u=1 from which follows that g=−1 is assigned to the case v=1. Behavior for
g > 0: as q Q − ., the graph of y(q) is asymptotically tangent to y=−q log2 v, as q Q ., the
graph of y(q) is asymptotically tangent to y=−q log2 v. Those properties are widely believed
to describe the main facts about y(q). But the TVCM are examples to the contrary. For them,
y(q) is also tangent to y=qag

min and to y=qag
max. Beyond the points of tangency, f becomes

< 0. For g > 1, one has u > 1, hence y(q) has a maximum. Values of q beyond this maximum
correspond to amin < 0. Because of capconvexity, the equation y(q)=0 may, in addition to
q=1, have a root qcrit > 1. For u > 2.5, one deals with another and very different phenome-
non, again first described in Mandelbrot 1974ab (see also Mandelbrot 1990c): the TVCM
measure degenerates to zero.

The Ratio y(q)/q and the ‘‘Accessible’’ Values of q. Increase q
from − . to 0 then to +.. In the Bernoulli case, y(q)/q increases from
amax to ., jumps down to − . for q=0, then increases again from − .

to amin. For TVCM with p ] 1/2, the behavior is very different. For
example, let p < 1/2. As q increases from 1 to ., y(q) increases from 0 to a
maximum ag

max, then decreases. In a way explored in Section 10, the values
of a > ag

max are not ‘‘accessible.’’

4.5. Reducible and Irreducible Canonical Multifractals

Once again, being ‘‘canonical’’ implies conservation on the average.
When there exists a microcanonical (conservative) variant having the same
function f(a), a canonical measure can be called ‘‘reducible.’’ The canoni-
cal binomial is reducible because its f(a) is shared by the Bernoulli bino-
mial. Another example introduced in Mandelbrot 1989b is the ‘‘Erice’’
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measure, in which the multiplier M is uniformly distributed on [0, 1]. But
the TVCM with p ] 1/2 is not reducible

In the interval [0,1] subdivided in the base b=2, reducibility demands
a multiplier M whose distribution is symmetric with respect to M=1/2.
Since u > 0, this implies u < 1.

5. WHEN U > 1, THE MOMENT OWqP DIVERGES IF q EXCEEDS

A CRITICAL EXPONENT qcrit SATISFYING y(q)=0;

W FOLLOWS A POWER-LAW DISTRIBUTION OF EXPONENT qcrit

5.1. Divergent Moments, Power-Law Distributions and Limits to

the Ability of Moments to Determine a Distribution

This section injects a concern that might have been voiced in Sections 3
and 4. The canonical binomial and many other examples satisfy the
following properties, which everyone takes for granted and no one seems to
think about: (a) W=1, OWqP < ., (b) y(q) > 0 for all q > 0, and (c) y(q)/q
increases monotonically as q Q ± ..

Many presentations of fractals take those properties for granted in all
cases. In fact, as this section will show, the TVCM with u > 1 lead to the
‘‘anomalous’’ divergence OWqP=. and the ‘‘inconceivable’’ inequality
y(q) < 0 for qcrit < q < .. Also, the monotonicity of y(q)/q fails for all
TVCM with p ] 1/2.

Since Pareto in 1897, infinite moments have been known to charac-
terize the power-law distributions of the form Pr{X > x}=x−qcrit. But in
the case of TVCM and other canonical multifractals, the complicating
factor L(x) is absent. One finds that when u > 1, the overall measure W

follows a power law of exponent qcrit determined by y(q).

5.2. Discussion

The power-law ‘‘anomalies’’ have very concrete consequences deduced
in Mandelbrot 1997 and discussed, for example, in Mandelbrot 2001c.

But does all this make sense? After all, y(q) and OWqP are given by
simple formulas and are finite for all parameters. The fact that those values
cannot actually be observed raises a question. Are high moments lost by
being unobservable? In fact, they are ‘‘latent’’ but can be made ‘‘actual’’ by
a process of ‘‘embedding’’ studied elsewhere.

An additional comment is useful. The fact that high moments are non-
observable does not express a deficiency of TVCM but a limitation of the
notion of moment. Features ordinarily expressed by moments must be
expressed by other means.
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5.3. An Important Apparent ‘‘Anomaly:’’ In a TVCM, the qth

Moment of W May Diverge

Let us elaborate. From long past experience, physicists’ and statisti-
cians’ natural impulse is to define and manipulate moments without
envisioning or voicing the possibility of their being infinite. This lack of
concern cannot extend to multifractals. The distribution of the TVCM
within a dyadic interval introduces an additional critical exponent qcrit that
satisfies qcrit > 1. When 1 < qcrit < ., which is a stronger requirement that
D > 0, the qth moment of m(dt) diverges for q > qcrit.

A stronger result holds: the TVCM cascade generates a measure whose
distribution follows the power law of exponent qcrit.

Comment. The heuristic approach to non-random multifractals fails
to extend to random ones, in particular, it fails to allow qcrit < .. This
makes it incomplete from the viewpoint of finance and several other
important applications.

The finite qcrit has been around since Mandelbrot 1974 (where it is
denoted by a) and triggered a substantial literature in mathematics. But it
is linked with events so extraordinarily unlikely as to appear incapable of
having any perceptible effect on the generated measure. The applications
continue to neglect it, perhaps because it is ill-understood. A central goal of
TVCM is to make this concept well-understood and widely adopted.

5.4. An Important Role of y(q): If q > 1 the qth Moment of W Is Finite

if, and only if, y(q) > 0; the Same Holds for m(dt) Whenever dt

Is a Dyadic Interval

By definition, after k levels of iteration, the following symbolic
equality relates independent realizations of M and m. That is, it does not
link random variables but distributions

mk([0, 1])=Mmk − 1([0, 1])+Mmk − 1([0, 1]).

Conservation on the average is expressed by the identity Omk − 1([0, 1])P
=1. In addition, we have the following recursion relative to the second
moment.

Om2[(0, 1])P=2OM2P[Om2
k − 1([0, 1])P]+2OM2P{Omk − 1([0, 1])P]2.

The second term to the right reduces to 1/2. Now let k Q .. The nec-
essary and sufficient condition for the variance of mk([0, 1]) to converge to
a finite limit is

2(EM2) < 1, in other words y(2)=−log2(EM2) − 1 > 0.
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When such is the case, Kahane and Peyrière 1976 gave a mathemati-
cally rigorous proof that there exists a limit measure m([0, 1]) satisfying
the formal expression

Om2([0, 1])P=
1

2[(1 − 2y(2)]
.

Higher integer moments satisfy analogous recursion relations. That is,
knowing that all moments of order up to q − 1 are finite, the moment of
order q is finite if and only if y(q) > 0.

The moments of non-integer order q are more delicate to handle, but
they too are finite if, and only if, y(q) > 0.

5.5. Definition of qcrit ; Proof that in the Case of TVCM qcrit Is Finite if,

and only if, u > 1

Section 4.4 noted that the graph of y(q) is always cap-convex and for
large q > 0,

y(q) ’ − log2(puq)+ − 1 ’ − log2 p − 1 − q log2 u.

The dependence of y(q) on q is ruled by the sign of u − 1, as follows.

• The case when u < 1, hence amin > 0. In this case, y(q) is mono-
tone increasing and y(q) > 0 for q > 1. This behavior is exemplified by the
Bernoulli binomial.

• The case when u > 1, hence amin < 0. In this case, one has y(q)
< 0 for large q. In addition to the root q=1, the equation y(q)=1 has a
second root that is denoted by qcrit.

Comment. In terms of the function f(a) graphed on Fig. 3, the
values 1 and qcrit are the slopes of the two tangents drawn to f(a) from the
origin (0, 0).

Within the class of equivalence of any p and 1 − p; the parameter g can
be ‘‘tuned’’ so that qcrit begins by being > 1 then converges to 1; if so, it is
seen that D converges to 0.

• Therefore, the conditions qcrit=1 and D=0 describe the same
‘‘anomaly.’’

In Fig. 1, isolines of qcrit are drawn for qcrit=1, 2, 3, and 4. When
q=1 is the only root, it is convenient to say that qcrit=.. This isoset
qcrit=. is made of the half-line {v=1/2 and u > 1/2} and of the square
{0 < v < 1/2, 1/2 < u < 1}.
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Fig. 3. The functions f(a) for p=3/4 and varying g. All those graphs are linked by
horizontal reductions or dilations followed by translation and futher self-affinity. For g > 0
(resp., g < 0) the left endpoint of f(a) (resp., the right endpoint) satisfies f(a) < 0 and the
other endpoint, f(a) > 0.

5.6. The Exponent qcrit Can Be Considered as a Macroscopic

Variable of the Generating Process

Any set of two parameters that fully describes a TVCM can be called
‘‘microscopic’’. All the quantities that are directly observable and can be
called macroscopic are functions of those two parameters.

For the general canonical multifractal, a full specification requires
a far larger number of microscopic quantities but the same number of
macroscopic ones. Some of the latter characterize each sample, but others,
for example qcrit, characterize the population.

6. THE QUANTITY a : THE ORIGINAL HÖLDER EXPONENT AND

BEYOND

The multiplicative cascades—common to the Bernoulli and canonical
binomials and TVCM—involve successive multiplications. An immediate
consequence is that both the basic m(dt) and its probability are most
intrinsically viewed through their logarithms. A less obvious fact is that a
normalizing factor 1/log(dt) is appropriate in each case. An even less
obvious fact is that the normalizations log m/log dt and log P/log dt are of
far broader usefulness in the study of multifractals. The exact extent of
their domain of usefulness is beyond the goal of this paper but we keep to
special cases that can be reated fully by elementary arguments.

6.1. The Bernoulli Binomial Case and Two Forms of the Hölder

Exponent: Coarse-Grained (or Coarse) and Fine-Grained

Recall that due to conservation, the measure in an interval of length
dt=2−k is the same after k stages and in the limit, namely, m(dt)=mk(dt).
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As a result, the coarse-grained Hölder exponent can be defined in either of
two ways,

a(dt)=
log m(dt)
log(dt)

,

and

ã(dt)=
log mk(dt)

log(dt)
.

The distinction is empty in the Bernoulli case but prove prove essential for
the TVCM. In terms of the relative frequencies j0 and j1 defined in
Section 1.1,

a(dt)=ã(dt)=a(j0, j1)=−j0 log2 u − j1 log2 v

=−j0(log2 u − log2 v) − log v.

Since u > v, one has 0 < amin=−log2 u [ a=ã [ amax=−log2 v < .. In
particular, a > 0, hence ã > 0. As dt Q 0, so does m(dt), and a formal
inversion of the definition of a yields

m(dt)=(dt)a.

This inversion reveals an old mathematical pedigree. Redefine j0 and j1

from denoting the finite frequencies of 0 and 1 in an interval, into denoting
the limit frequencies at an instant t. The instant t is the limit of an infinite
sequence of approximating intervals of duration 2−k. The function m([0, t])
is non-differentiable because limdt Q 0 m(dt)/dt is not defined and cannot
serve to define the local density of m at the instant dt.

The need for alternative measures of roughness of a singularity
expression first arose around 1870 in mathematical esoterica due to
L. Hölder. In fractal/multifractal geometry this expression merged with
a very concrete exponent due to H. E. Hurst and is continually being
generalized. It follows that for the Bernoulli binomial measure, it is legitimate
to interpret the coarse as as finite-difference surrogates of the local
(infinitesimal) Hölder exponents.

6.2. In the General TVCM Measure, a ] ã, and the Link Between ‘‘a’’

and the Hölder Exponent Breaks Down; One Consequence Is

that the ‘‘Doubly Anomalous’’ Inequalities amin < 0, Hence

ã < 0, Are Not Excluded

A Hölder (Hurst) exponent is necessarily positive. Hence negative ã ’s
cannot be interpreted as Hölder exponents. Let us describe the heuristic
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argument that leads to this paradox and then show that ã < 0 is a serious
‘‘anomaly:’’ it shows that the link between ‘‘some kind of a’’ and the
Hölder exponent requires a searching look. The resolution of the paradox
is very subtle and is associated with the finite qcrit introduced in Section 5.4.

Once again, except in the Bernoulli case, W ] 1 and m(dt)=
mk(dt) W(dt), hence

a(dt)=ã(dt)+log W(dt)/log dt.

In the limit dt Q 0 the factor log=W/log(dt) tends to 0, hence it seems
that a=ã. Assume u > 1, hence amin < 0 and consider an interval where
ã(dt) < 0. The formal equality

‘‘mk(dt)=(dt) ã ’’

seems to hold and to imply that ‘‘the’’ mass in an interval increases as its
interval length Q 0. On casual inspection, this is absurd. On careful
inspection, it is not—simply because the variable dt=2−k and the function
mk(dt) both depend on k. For example, consider the point t for which
j0=1. Around this point, one has mk=umk − 1 > mk − 1. This inequality is
nothing paradoxical about it.

Furthermore, Section 7 shows that the theory of the multiplicative
measures introduces ã intrinsically and inevitably and allows ã < 0.

Those seemingly contradictory properties will be reexamined in
Section 8. Values of m(dt) will be seen to have a positive probability but
one so minute that they can never be observed in the way a > 0 are
observed. But they affect the distribution of the variable W examined in
Section 3, therefore are observed indirectly.

7. THE FULL FUNCTION F(a) AND THE FUNCTION r(a)

7.1. The Bernoulli Binomial Measure: Definition and Derivation of

the Box Dimension Function f(a)

The number of intervals of denumerator 2−k leading to j0 and j1 is
N(k, j0, j1)=k!/(kj0)! (kj1)!, and dt is the reduction ratio r from [0, 1]
to an interval of duration dt. Therefore, the expression

f(k, j0, j1)=−
log N(k, j0, j1)

log(dt)
=−

log[k!/(kj0)! (kj1)!]
log(dt)
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is of the form f(k, j0, j1)=−log N/log r. Fractal geometry calls this the
‘‘box similarity dimension’’ of a set. This is one of several forms taken by
fractal dimension. More precisely, since the boxes belong to a grid, it is a
grid fractal dimension.

The Dimension Function f(a). For large k, the leading term in the
Stirling approximation of the factorial yields

lim
k Q .

f(k, j0, j1)=f(j0, j1)=−j0 log2 j0 − j1 log2 j1.

7.2. The ‘‘Entropy Ogive’’ Function f(a); the Role of Statistical

Thermodynamics in Multifractals and the Contrast

Between Equipartition and Concentration

Eliminate j0 and j1 between the functions f and a=−j0 log u −
j1 log v. This yields in parametric form a function, f(a). Note that
0 [ f(a) [ min {a, 1}. Equality to the right is achieved when j0=u. The
value a where f=a is very important and will be discussed in Section 8.
In terms of the reduced variable j0=(a − amin)/(amax − amin), the function
f(a) becomes the ‘‘ogive’’

f̃(j0)=−j0 log2 j0 − (1 − j0) log2 (1 − j0).

This f̃(j0) can be called a universal function. The f(a) corresponding
to fixed p and varying g are affine transforms of f̃(j0), therefore of one
another. The ogive function f̃ first arose in thermodynamics as an entropy
and in 1948 (with Shannon) entered communication theory as an informa-
tion. Its occurrence here is the first of several roles played by the formalism
of thermodynamics in the theory of multifractals.

An Essential But Paradoxical Feature. Equilibrium thermody-
namics is a study of various forms of near-equality, for example postulates
the equipartition of states on a surface in phase space or of energy among
modes. In sharp contrast, multifractals are characterized by extreme
inequality

between the measures in different intervals of common duration dt.
Upon more careful examination, the paradox dissolves by being turned
around: the main tools of thermodynamics can handle phenomena well
beyond their original scope.

Multifractal Power Law Distributions 761



7.3. The Bernoulli Binomial Measure, Continued: Definition and

Derivation of a Function r(a)=f(a)−1 that Originates as a

Rescaled Logarithm of a Probability

The function f(a) never fully specifies the measure. For example, it
does not distinguish between the Benoulli, shuffled and canonical bino-
mials. The function f(a) can be generalized by being deduced from a func-
tion r(a)=f(a) − 1 that will now be defined. Instead of dimensions, that
deduction relies on probabilities. In the Bernoulli case, the derivation of r

is a minute variant of the argument in Section 8.1, but, contrary to the
definition of f, the definition of r easily extends to TVCM and other
random multifractals.

In the Bernoulli binomial case, the probability of hitting an interval
leading to j0 and j1 is simply P(k, j0, j,)=N(k, j0, j1) 2−k=k!/(kj0)!
(kj1)! 2−k. Consider the expression

r(k, j0, j1)=−
log[P(k, j0, j1)]

log(dt)
,

which is a rescaled but not averaged form of entropy. For large k, Stirling
yields

lim
k Q .

r(k, j0, j1)=r(j0, j1)=−j0 log2 j0 − j1 log2 j1 − 1=f(a) − 1.

7.4. Generalization of r(a) to the Case of TVCM; the Definition of

f(a) as r(a)+1 Is Indirect but Significant Because It Allows

the Generalized f to Be Negative

Comparing the arguments in Sections 7.1 and 7.2 link the concepts of
fractal dimension and of minus log (probability). However, when f(a) is
reported through f(a)=r(a)+1, the latter is not a mysterious ‘‘spectrum
of singularities.’’ It is simply the peculiar but proper way a probability dis-
tribution must be handled in the case of multifractal measures. Moreover,
there is a major a priori difference exploited in Section 10. Minus log
(probability) is not subjected to any bound. To the contrary, every one of
the traditional definitions of fractal dimension (including Hausdorff–
Besicovitch or Minkowski–Bouligand) necessarily yields a positive value.

The point is that the dimension argument in Section 7.1 does not carry
over to TVCM, but the probability argument does carry over as follows.
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The probability of hitting an interval leading to j0 and j1 now changes to
P(k, j0, j1)=p(j0k)!/(kj0)! (kj1)! One can now form the expression

r(k, j0, j1)=−
log[P(k, j0, j1)]

log(dt)
.

Stirling now yields

r(j0, j1)= lim
k Q .

r(k, j0, j1)

={ − j0 log2 varphi0 − j1 log2 j1}+{j0 log2 p+j1 log2(1 − p)}.

In this sum of two terms marked by braces, we know that the first one
transforms (by horizontal stretching and translation) into the entropy
ogive. The second is a linear function of j, namely j0[log2 p − log2(1 − p)]+
log2(1 − p). It transforms the entropy ogive by an affinity in which the line
joining the two support endpoints changes from horizontal to inclined. The
overall affinity solely depends on p, but j0 depends explicitly on u and v.

This affinity extends to all values of p. Another property familiar from
the binomial extends to all values of p. For all u and v, the graphs of r(a),
hence of f(a) have a vertical slope for q= ± ..

Alternatively, r(j0, j1)=−j0 log2 [j0/p] − j1 log2[j1/(1 − p)].

7.5. Comments in Terms of Probability Theory

Roughly speaking, the measure m is a product of random variables,
while the limit theorems of probability theory are concerned with sums.
The definition of a as log m(dt)/log(dt) replaces a product of random
variables M by a weighted sum of random variables of the form log M. Let
us now go through this argument step by step in greater rigor and generality.
One needs a cumbersome restatement of ak(dt).

The Low Frequency Factor of mk(dt) and the Random Variable
H low. Consider once again a dyadic cell of length 2−k that starts at t=0.
b1b2 · · · bk. The first k stages of the cascade can be called of low frequency
because they involve multipliers that are constant over dyadic intervals of
length dt=2−k or longer. These stages yield

mk(dt)=M(b1) M(b1, b2) · · · M(b1,..., bk)=D M.
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We transform mk(dt) into the low frequency random variable

Hlow=log[mk(dt) rb/log(dt)

=(1/k)[ − log2 M(b1) − log2 M(b1, b2) − · · · ].

We saw in Section 3.5. that the first few values of M largely determine
the distribution of W. But the last expression involves an operation of
averaging in which the first terms contributing to m(dt) are asymptotically
washed out.

7.6. Distinction Between ‘‘Center’’ and ‘‘Tail’’ Theorems in

Probability

The quantity ãk(dt)=j0 log2 u − j1log2v is the average of a sum of
variables − log M but its distribution is not Gaussian and the graph of
r(a) is an entropy ogive rather than a parabola. Why is this so? The law of
large numbers tells us that ãk(dt) almost surely converges to its expectation
which tells us very little. A tempting heuristic argument continues as
follows. The central limit theorem is believed to ensure that for small dt,
Hlow(dt) becomes Gaussian, therefore the graph of log r(dt) should be
expected to be a parabola. This being granted, why is it that the Stirling
approximation yields an entropy ogive—not a parabola?

In fact, there is no paradox of any kind. While the central limit
theorem is indeed central to probability theory, all it asserts in this context
is that, asymptotically, the Gaussian rules the center of the distribution,
its ‘‘bell.’’ Renormalizations reduce this center to the immediate neigh-
borhood of the top of the r(a) graph and the central limit theorem is
correct in asserting that the top of the entropy ogive is locally parabolic.
But in the present context this information is of little significance. We need
instead an alternative that is only concerned with the tail behavior which it
ought to blow up. For this and many other reasons, it would be an
excellent idea to speak of center, not central limit theorem. The tail limit
theorem is due to H. Cramer and asserts that the tail consisting in the bulk
of the graph is not a parabola but an entropy ogive.

7.7. The Reason for the Anomalous Inequalities f(a)<0 and a<0

Is that, by the Definition of a Random Variable m(dt), the

Sample Size Is Bounded and Is Prescribed Intrinsically;

the Notion of Supersampling

The inequality r(a) < − 1 characterizes events whose probability is
extraordinarily small. The finding that this inequality plays a significant
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role was not anticipated, remains difficult to understand and appreciate,
and demands comment.

The common response is that, even extremely low probability events are
captured, if one simply takes a sufficiently long sample of independent
values. But this is impossible, even if one forgets that, in the present
uncommon context, the values are extremely far from being statistically
independent. Indeed, the choice the duration dt=2−k has two effects. Not
only does it fix the distribution of m(dt), but it also sets the sample size at the
value N=1/dt=2k. Roughly speaking, a sample of size N can only reveal
values having a probability greater than 1/N, which means r(a) > − 1.

In summary, it is true that decreasing dt to 2−k − 1 increases the sample
size. But it also changes the distribution and does so in such a way that the
bound r=−1 remains untouched.

This bound excludes all items of information that correspond to
f(a) < 0 (for example, the value of qcrit when finite). Those items remain
hidden and latent in the sense that they cannot be inferred from one sample
of values of m(dt). Ways of revealing those values, supersampling and
embedding, are examined in Mandelbrot 1989b, 1995 and the forthcoming
Mandelbrot 2003.

Figure 3 shows, for p=3/4, how the graph of f(a) depends on g.

7.8. Excluding the Bernoulli Case p=1/2, TVCM Faces Either One of

Two Major ‘‘Anomalies:’’ for p >−1/2, One Has f(amin)=

1+log2 p > 0 and f(amax)=1+log2(1−p) < 0; for p < 1/2,

the Opposite Signs Hold

The fact that the values of r(amin)=f(amin) − 1 and r(amax)=
f(amax) − 1 are logarithms of probabilities confirms and extends the defini-
tion of p(a)=f(a) − 1 as a limit rescaled probability. Here, those endpoint
values of f(a) are independent of g and the affinity that deduces them
from the entropy ogive (with ends on the horizontal axis) characterizes the
class of equivalence of p and 1 − p. If, and only if, p=1/2 and u+v=1,
that is, in the familiar Bernoulli binomial case, one has r(amin)=r(amax)=
log2(1/2)=−1 hence f(amin)=f(amax)=0. When u+v ] 1, one of the
endpoints satisfies f > 0 and the other satisfies f < 0. Sections 7.9 and 9
shall examine the sharply differing consequences of those inequalities.

7.9. The ‘‘Minor Anomalies’’ f(amax) > 0 Or f(amin) > 0 Lead to

Sample Function with a Clear ‘‘Ceiling’’ or ‘‘Floor’’

Suppose that f(amin)=0 and f(amax)=0, as is the case for p=1/2.
Then, using terms often applied to the printed page—but after it has been
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turned 90°. to the side—the sample functions are ‘‘non-justified’’ or
‘‘ragged’’ for both high and low values. That is, the values tend to be
unequal; one is clearly larger than all others, a second is clearly the second
largest, etc.

To the contrary, TVCM with p ] 1/2 yield either f(amax) > 0 or
f(amin) > 0. Sample functions have a conspicuous ‘‘ceiling’’ (resp., a
‘‘floor’’). That is, a largest (resp., smallest) value is attained repeatedly for
values of t belonging to a set of positive dimension. To use the printers’
vocabulary, when one side is ‘‘ragged’’ the other is ‘‘justified.’’ On visual
inspection of the data, the ceiling is always visible; the floor merges with
the time axis, except when one plots log[m(dt)].

8. THE FRACTAL DIMENSION D=yŒ(1)=2[−pu log2 u−(1−p) v log2 v]

AND MULTIFRACTAL CONCENTRATION

The function f(a) satisfies f(a) [ a, with equality f(a)=a when
a=D=yŒ(1). From the value of a=D follows one of the most important
properties of multifractals. Mandelbrot 2001d proposed to call it ‘‘mul-
tifractal concentration.’’ This section will first examine its opposite, which
is asymptotic negligibility.

8.1. In the Bernoulli Binomial Measure, Weak Asymptotic

Negligibility Holds but Strong Asymptotic

Negligibility Fails

Recally that during construction, the total binomial measure of [0,1]
remains constant and equal to 1. But the first few stages of construction
make its distribution become very unequal and a few values that stand out
as sharp spikes. After k stages, the maximum measure is uk, which is far
larger than the minimum measure vk. From the relations

2−k=dt, 2k=N, −log2 u=amin < 1, and − log2 v=amin > 1,

it follows that

uk=b(−logb u)(−k)=(dt)amin=N−amin.

In words: even the maximum uk tends to 0. This is a weak form of asymp-
totic negligibility following a power-law.
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The preceding result holds for every multifractal for which there is an
amin > 0 that plays the same role as in the binomial case. (In more general
multifractals the same role is held by some ag

min > max{amin, 0}.)
Similarly, the total contribution of any fixed number of largest spikes

is asymptotically negligible.

8.2. For the Bernoulli or Canonical Binomials, the Equation f(a)=a
Has One and Only One Solution; that Solution Satisfies D > 0

and Is the Fractal Dimension of the ‘‘Carrier’’ of the Measure

We now proceed to the total contribution of a number of spikes that is
no longer fixed but increases with N. In the simplest of all possible worlds,
many spikes would have been more or less equal to the largest, and the sum
of all the other spikes would have been negligible. If so, the sum of Namin

spikes would have been of the order of NaminN−amin=1.
While the world is actually more complicated there is an element of

orderliness. The equality j0=u is achieved for a=f(a)=−u log u −
v log v=D. For finite but large k, it follows that

m(k, j0, j1) ’ 2−ka=2−kD and N(k1j0, j1) ’ 2kf(a)=2kD.

Hence,

m(k1j0, j1) N(k1j0j1) is approximately equal to 1.

Actually, this product is necessarily [ 1, but the difference tends to 0
as k Q .. That is, an increasingly overwhelming bulk of the measure tends
to ‘‘concentrate’’ in the cells where a=D. The remainder is small, but in
the theory of multifractals even very small remainders are extremely signi-
ficant for some purposes.

8.3. The Notion of ‘‘Multifractal Concentration’’

A key feature of multifractals is a subtle interaction between number
and size that is elaborated upon in Mandelbrot 2001d. Section 8.2. showed
that the contributions that are large are too few to matter. The small con-
tributions are very numerous, but so extremely small that their total con-
tribution is negligible as well. The bulk of the measure is found in a rather
inconspicuous intermediate range one can call ‘‘mass carrying.’’ Since
D > amin, the ND spikes of size N−D are far smaller than the largest one.
Separately, each is asymptotically negligible. But their number ND is
exactly large enough to insure that their total contribution is nearly equal
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to the overall measure 1. When a sample is plotted, this range does not
stand out but it makes a perfect match between size and frequency.

Practically, the number of visible peaks is so small compared to ND

that a combination of the peaks and the intermediate range is still of the
order of ND. The combined range has the advantage of simplicity, since it
includes the ND largest values. Note that the peaks tend to be located in
the midst of stretches of values of intermediate size.

8.4. The Case of TVCM with p < 1/2 Allows D to Be Positive,

Negative, or Zero

Using the alternative expression for f(a) given in Section 8.4, the
identity f(a)=a demands the equality of the two expressions

f(a)=−j0 log2[j0/p] − j1 log2[j1/(1 − p] and

a=−j0 log2 u − j1 log2 v.

The solution is, obviously, j0=pu and j1=(1 − p) v. The sum j1+j1 is 1,
as it must. Hence, D=−pu log2 u − (1 − p) v log2 v, as announced. The
novelty is that TVCM allow D > 0, D=0, and D < 0.

Familiar Role of D Under the Inequality D > 0. Mandelbrot
1974ab obtained the following criterion, which has become widely known
and includes the TVCM case. When positive, D is the fractal dimension of
the ‘‘set that supports’’ the measure. Figure 1 shows isolines of D for
D=0, 1/4, 1/2, and 3/4. The isoline for D=1 is made of the interval
{u=1, 0 < v < 1} and the half-line {v=1, u \ 1}. The key result is that,
contrary to the Bernoulli binomial case, the half line 1 < q < . subdivides
into up to three subranges of values.

Largely Unfamiliar Consequence of the Inequality D < 0. For all
non-random multifractals, yŒ(1) > 0. A casual acquaintance with multi-
fractals takes for granted that this is not changed by randomness. But M74
also allows for an alternative possibility, which has so far remained little
known. The example of TVCM shows that, in a canonical case, the for-
mally evaluated D can be negative. In the example of TVCM, D is negative
when the point (u, v) falls in a domain to the bottom right of the folded
phase diagram in Fig. 1. The consequences of D < 0 are drastic: the multi-
fractal reduces to 0 almost surely and is called degenerate.

A Classical ‘‘Pathological Limit’’ as Metaphor. This limit behav-
ior of the distribution of m seems incompatible with the fact that Em=1 by
definition. But in fact, no contradiction is observed. A convincing idea of
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the distribution is provided for each p, by the behavior of the g Q . limit
of the weights ug2y(g) and vg2y(g). This recalls a classical counterexample of
analysis, namely, the behavior for k Q . of the variable Pk defined as
follows: Pk=k with the probability 1/k and Pk=0 with the probability
1 − 1/k. For finite k, one has EPk=1. But in the limit k Q ., P.=0,
hence EP.=0, so that in the limit the expectation drops discontinuously
from 1 to 0. In practice, the preasymptotic measure is extremely small with
a high probability and huge with a tiny probability.

The Condition D=0. It defines the threshold of degeneracy.

9. A NOTEWORTHY AND UNEXPECTED SEPARATION OF ROLES,

BETWEEN THE ‘‘DIMENSION SPECTRUM’’ AND THE TOTAL

MASS W; THE FORMER IS RULED BY THE ACCESSIBLE a
FOR WHICH f(a)>0, THE LATTER, BY THE INACCESSIBLE a
FOR WHICH F(a)<0

Brought together, Sections 3, 6, 7, and 8 imply, in plain words, that
what you do not necessarily see may affect you significantly. This section
serves to underline that the notion of canonical multifractal is very subtle
and deserves to be well-understood and further discussed.

9.1. Definitions of the ‘‘Accessible Ranges’’ of the Variables:

qs from qg
min to qg

max and as from ag
min to ag

max;

the Accessible Functions y*(q) and f*(a)

Mandelbrot 1995 was led to introduce the function ff*(a)=
max{0, f(a)}. That is,

• In the interval [ag
min, ag

max] where f(a) > 0, f*(a)=f(a),

• When f(a) [ 0, f*(a)=0.

The graph of f*(a) is identical to that of f(a) except that the ‘‘tails’’
with f < 0 are truncated so that f* > 0. In terms of y(q), the equality
f(a)=0 corresponds to lines that are tangent to the graph of y(q) and also
go through (0,0). In the most general case, those lines’ slopes are ag

min and
ag

max and the points of contact are denoted by qg
max(satisfying > 0) and

qg
min(satisfying < 0). Therefore, the function f*(a) corresponds to the

following truncated function y*(q).

• When q < qg
min, y*(q)=ag

maxq,

• When qg
min < q < qg

max, y*(q)=y(q),

• When q > qg
max, y*(q)=ag

minq.
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In other words, the graph of y* is identical to that of y except that
beyond qg

max or qg
min it follows the tangents that go through the origins.

Therefore it is straight.
For the TVCM, one has either ag

max=amax with qg
min=−., or

ag
min=amin with qg

max=..

9.2. A Confrontation

Section 3 noted that the largest values of W([0, 1]) are generated when
a sample cascade begins with a few large values. Section 6 noted that the
value of W([0, 1])—irrespective of size—ceases, for k Q ., to have any
impact on a. Section 7 noted that, again for k Q ., values of a such that
f(a) < 0 have a vanishing probability of being observed. Section 8.1
followed up by defining the accessible function f(a). Section 8 returned to
large values of W([0, 1]) and noted their association with qcrit < .. The
values of a they involve satisfy a < 0, hence a fortiori f(a) < 0. Those
values do not occur in multifractal decomposition, yet they are extremely
important.

9.3. The Simplest Cases Where f(a) > 0 for all a, as Exemplified by

the Canonical Binomial

Here, the large values of W are ruled by the left-most part of the graph
of f(a). That is, the same graph controls those large values and the distri-
bution of W([0, 1]) among the 1/dt intervals of length dt.

9.4. The Extreme Case Where f(a) < 0 and a < 0 Both Occur,

as Exemplified by TVCM when u > 1

Due to the inequality f(a) < a, the graph of f(a) never intersects the
quadrant where a < 0 and f > 0. The key unexpected fact is that the por-
tions of f(a) within other quadrants play more or less separate roles. In the
TVCM case, those quadrants are parts of one (analytically simple) func-
tion. But in general they are nearly independent of each other.

The function f(a) was defined as having a graph that lies in the non-
anomalous quadrant a > 0 and f > 0. This f determines completely the
multifractal decomposition of our TVCM measure, in particular, the
dimension D and the exponents qg

min, qg
max, ag

min and ag
max.

To the contrary, qcrit is entirely determined by the doubly anomalous
left tail located in the quadrant characterized by f(a) < 0 and a < 0.
A priori, it was quite unexpected that this quadrant should exist and play
any role, least of all a central role, in the theory of multifractals. But in
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fact, qcrit has a major effect on the distribution, hence the value of the total
measure in an interval.

9.5. The Intermediate Case Where amin > 0 but f(a) < 0 for some

Values of a

When p < 1/2, but u < 1 so that qcrit=. and all moments are finite,
large values of m have a much lower probability than when u > 1. As
always, however, their probability distribution continues to be determined
by the left tail of the probability graph where f < 0.

10. A BROAD FORM OF THE MULTIFRACTAL FORMALISM THAT

ALLOWS a < 0 AND f(a) < 0

The collection of rules that relate y(q) to f(a) is called ‘‘multifractal
formalism.’’ TVCM was specifically designed to understand multifractals
directly, thus avoiding all formalism. However, general random multifrac-
tals more than TVCM demand their own broad multifractal formalism.
Once again, the most widely known form of the multifractal formalism
does not allow randomness and yields f(a) > 0, but the broad formalism
first introduced in Mandelbrot 1974 concerns a generalized function for
which f(a) < 0 is allowed.

10.1. The Broad ‘‘Multifractal Formalism’’ Confirms the form of f(a)

and Allows f (a) < 0 for Some a

Through a point on the graph of coordinates q and y(q), draw the
tangent to that graph. Under wide conditions, the tangent’s slope is a(q)
and its intercept by the ordinate axis is − f(q). Thus

a(q)=dy(q)/dq and − f(q)=y(q) − q dy(q)/dq.

Through the quantities a(q) and f(q), a function f(a) is defined by
using q as parameter.

The slope fŒ(a) is the inverse of the function a(q). The tangent of
slope fŒ(a) intersects the line a=0 at the point of ordinate − y(q). The
D(q) tangent’s equation being − y(q)+qa, its intersection with the bisector
satisfies the condition − y+q=a, hence D=y(q)/(q − 1). This is the
critical embedding dimension discussed in Section 4.4.
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10.2. The Legendre and Inverse Legendre Transforms and the

Thermodynamical Analogy

The transforms that replace q and y(q) by a and f(a), or conversely,
are due to Legendre. They play a central role in thermodynamics, as does
already the argument that yielded f(a) and r(a) in the original formalism
introduced in Mandelbrot 1974ab.
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