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The extreme variability of cloud and rain fields poses serious problems in quantitative use of remotely sensed 
satellite and radar data. We show how to characterize this variability using scale invariant (sensor resolution 
independent) codimension functions which are exponents characterizing the probability distributions. These 
codimension functions in turn form a three parameter universality class. We review the properties of these 
multifractal measures and empirically evaluate the codimension functions as well as the universality classes for 
infrared and visible satellite cloud images using the new probability distribution/multiple scaling technique, 
refining previously published results and relating these to the established lognormal rain and cloud 
phenomenologies. We then show how to solve the radar observers' problem for multifractal radar reflectivity 
factors and to estimate the codimension function of rain from the radar. Finally, we reexamine some earlier 
(monofractal) analysis techniques in the light of our findings. 

1. INTRODUCTION debates about how best to calibrate the radar data from rain 

gages; debates that have been going on for nearly 40 years. 
The development of new in situ and remote measurement In a series of papers [Lovejoy, 1981, 1982; Lovejoy and 

techniques has made large quantities of high-resolution Schertzer, 1983, 1985, 1986a, b; Lovejoy and Mandelbrot, 
geophysical data routinely available for analysis. In the case of 1985; Schertzer and Lovejoy, 1983, 1984, 1985a, b; 1986, 
satellite measurements of the atmosphere, their potential utility 1987a,b; 1989, 1990a; Lovejoy et al, 1987] we have argued that 
has lead to increasingly sophisticated algorithms for the we may expect geophysical fields generally, and atmospheric 
estimation of geophysically significant parameters. One of the fields particularly, to exhibit scaling fractal structures over 
fields which has the longest history of remote measurements is significant fractions of their dynamically important ranges. With 
rain and its associated cloud fields. These remote measurements the development of a series of new notions (particularly, 
have convincingly demonstrated not only the impressive ranges multifractals and generalized scale invariance- see below), we 
of spatial and temporal scales over which variability occurs, but now know that the types of scaling possible are very rich. This 
also the extreme nature of fluctuations at fixed scales. This development of scaling ideas has spawned new data analysis 
extreme variability is largely responsible for the difficulties in techniques which have been important in investigating 
interpreting the data in terms of conventional physical atmospheric fields. Furthermore, the theoretical difficulties 
parameters. For example, quantitative use of radar reflectivifies encountered in dealing with the atmospheric observations have 
typically makes repeated use of assumptions of subresolution contributed to rapid advances in multifractals themselves. 
homogeneity. First, in relating the measured "effective The term "scaling" is used to indicate that certain aspects of a 
reflectivity factor" to the reflectivity factor and then in obtaining system (typically certain statistical exponents such as those found 
rain rates from the latter. A further uniformity assumption is in energy spectra) are independent of scale. The related term 
usually made to adjust these rain estimates to rain gage values "scale invariance" refers to systems in which the statistical 
(here uniformity is needed to compare volume averaged radar properties of small and large scales are related by a scale 
quantities at one scale with time averaged gage network changing operation involving only scale ratios: over the 
quantities at another). Quantitative estimates of cloud amount (or cmTesponding range, the system has no characteristic size. Scale 
satellite rain estimation schemes) also implicitly use subsensor invariant sets are generally fractals; fields and measures 
homogeneity assumptions in order to allow them to be calibrated characterized by a single fractal dimension are here termed 
with in situ data which typically involve averages at quite "mono-fractals" to distinguish them from multifractal measures 
different time and space scales. The seriousness of problems which are characterized by an infinite hierarchy of dimensions. 
caused by the variability is becoming more clearly understood: Although we do not wish to repeat these arguments in detail, the 
for example, a recent study by $hih et al [1988] showed that basic idea may be simply expressed. If we consider scaling as a 
when identical algorithms were used to estimate cloud "fractions" symmetry principle (i.e., the system is unchanged under certain 
over an identical "scene" viewed by two satellites differing in scale changing operations), then we may tentatively assume (a 
spatial resolution by a factor of 10, it was not uncommon for first approximation) that the symmetry is respected except for 
results to differ by factors of 2. In the radar estimation of rain, symmetry-breaking mechanisms. 
the extreme subsensor variability has contributed to ongoing More specifically, it has recently been shown [Schertzer and 
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Lovejoy, 1987a, b] that multiplicative cascade processes 
precisely of the type that are believed to be responsible for the 
concentration of energy, water, and other fluxes into smaller and 
smaller regions of the atmosphere generically give rise to 
multifractal measures in which the increasingly intense regions 
are distributed over increasingly sparse fractal sets. Multifractal 
measures are much more relevant in geophysical applications 
than œractal sets, since geophysical quantities are best described 
as measures, with empirical data being functional approximations 
to the latter, (which as we shall see, are intrinsically strongly 
dependent on the resolution of the sensor). Multifractal 
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measures are characterized by their scale invariant codimension 
[unction, which is an exponent function that determines how the 
probability distribution varies with scale. The geometry of sets 
and their associated fractal dimensions are secondary; the scale 

invariant dynamics (characterized by the generator of the 
measure) play the primary role. 

We and others have already shown [Lovejoy et al., 1987; 
Gabriel et al., 1988] using an analysis technique called 

be expressed as follows (algebraic relations are for the moment 
valid to within proportionality constants and log corrections; see 
below) 

Pr(/X > 3.T) = X-c(h t) (1) 

where Pr means probability, ht is the order of singularity 

"functional box-counting" that both radar rain and satellite cloud associated with the pixel value f3., and c(ht) is the associated 
fields are multifractal over various ranges in scale. In this paper, codimension (the dimension of the underlying space (d) minus 
we first review some basic results on multifractals. We then give the corresponding dimension d(ht)). Equation (1) is the general 
a more refined analysis of both fields using the new probability characterization of multifractal fields and arises directly as the 
distribution/multiple scaling (PDMS) technique [Lavallde et al., result of multiplicative cascade processes [Schertzer and 
1990], and show how to estimate the parameters of the Lovejoy, 1987a, b]. This equation shows that c(ht)is directly 
(stochastic) generators of the fields. We then apply the method related to the probability distribution. Note that in (1) and 
to geostationary satellite (GOES) data in both the visible and below, we ignore any logarithmic corrections. This fact will be 
infi'ared wavelengths over therange8-256 km. In section 4, we used below as the basis for empirically estimating c(ht ). 
show theoretically how to solve the classical radar "observer's Qualitatively, ht is the resolution-independent characterization of 
problem" in order to determine the codimension function for the the intensity of the feature with brightness f3., whereas, c(ht) is 
radar reflectivity factor from the corresponding codimension the resolution independent characterization of the image fraction 
function of the measured effective radar reflectivity factor. occupied by features with brightness.f3.. 
Standard assumptions (which relate the rain field to the For those who are familiar with multifractals, it is worth 
reflectivity factor by a power law) then imply that the rain field noting here that we have denoted the orders of singularities by 
codimension function is obtained by a simple linear the symbolhtbecause the atmosphericquantitiesofinterestare 
transformation of the orders of singularities. Finally, in two modelled by densities of multifractal measures (such as f) and ht 
fairly technical appendices, we discuss several data analysis gives the orders of these singularities directly. In other systems 
techniques that were primarily designed to study such as phase space portraits of strange attractors (e.g. Halsey et 
monodimensional fractal sets. We then argue that many al 1986), it is more usual to treat the singularities of the measures 
apparently contradictory results (including reports of scale (rather than their densities) usually denoted by the symbol ct; the 
breaking) reported in the literature can be understood if these relation between ct and ht being T=d-ct where d is the dimension 
fields are multifractal. of space in which the process occurs. Furthermore, we use the 

codimension function c(ht) rather than a dimension function since 
we are really interested in a family of measures each identical 

2. MULTIb-RACTAL MEASURES except for the dimension of the space in which it is embedded (in 
some applications it is even useful to take the latter as a fractal 

2.1. Discussion set, e.g. the global meterological measuring network), and the 
codimensions specify the probabilities independently of the 

Based on studies of certain fractal sets obtained either as latter. In contrast, in studying strange attractors, d is usually 

purely geometric constructs, or associated with certain stochastic kept fixed and the dimension is denotedf(ct). We therefore have 
processes, Mandelbrot [1982] used these sets as models of the f(o0--d-c(d-o0. 
geometry of various natural systems. However, few natural We can now appreciate some of the difficulties encountered in 
systems are sets (they are usually best treated as fields or •nany of the early studies, where multifractal phenomena were 
measures), and it soon became clear [Hentschel and Proccacia, analyzed with methods originally designed for studying sets 
1983; Grassberger, 1983; Schertzer and Lovejoy, 1983; Benzi et (e.g., area-perimeter relations, distribution of areas, dimensions 
al, 1984, Frisch and Parisi, 1985], that such measures are of graphs, box counting: see appendices A and B). Even before 
fundamentally characterized not by a single dimension, but by a the analysis begins, experimental measuring devices integrate the 
dimension function (sometimes called the "spectrum of underlying measure over a scale L, converting it into a (spatially 
singularities"). Furthermore, this dimension function is simply or temporally discretized) function. This function is then 
related to the probability distribution. In fractal sets, the concept converted into a set with the same resolution, typically with the 
of fractal dimension is important because it is invariant under l•elp of thresholds. Finally the geometric properties of the 
transformations of scale. In fractal measures, the notions of resulting set are characterized by (at most) a few exponents (e.g., 
scaling (or scale invariance) and the generator of the measure are dimensions, area-perimeter exponents) essentially by degrading 
more basic. the resolution of these sets. Although careful and systematic 

Geophysical systems typically have variability extending study of the properties of the sets as functions of scale and 
clown to very small scales *1 (often 1 mm or less) and are threshold (such as with "functional box counting"- [Lovejoy et 
therefore usually observed (literally "measured") at scales (L) al., 1987; Gabriel et al., 1988] can be used to estimate c(ht ), such 
with scale ratio 3. =L/rl>> 1. It is therefore natural to consider the methods are indirect and are less satisfactory than other methods 
underlying phenomenon as a fractal measure, and the empirically such as trace moments [Schertzer and Lovejoy, 1987a] or the 
accessible measurements (e.g., satellite photos) as a series of PDMS method [Lavallde et al., 1990]. For comparison, 
associated functions (denoted f3.(r)), whose properties will functional box-counting exploits (1) by transforming the function 
depend greatly on the averaging scale ratio 3. (e.g. on the size of f3. into an exceedance set (see Appendix A) and coverirfg the 
a pixel). Qualitatively, the relationship of a series of lower and 
lower resolutions (i.e. f•, as 3.-->oo) to the underlying multifractal 
measure is that as the resolution decreases, the structures are 

more and more smoothed out, are found to occupy an increasing 
fraction of the image, while simultaneously decreasing in value 
(e.g., dimming) to compensate. Since over our range of interest, 
there is no characteristic scale, this behavior is algebraic and can 

latter with larger and larger boxes. The fraction of the scene 
covered by boxes of scale 3. is the probability in (1). The 
method works by degrading the resolution of the exceedance 
sets, rather than of the measures themselves. The approach 
described below is more straightforward and statistically robust, 
since it is defined directly by the measures f3. rather than via 
associated sets. In contrast, the use of what might be termed 
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"monofractal" analysis techniques (i.e., techniques designed with 0 _< C 1 _< d, 0 _< ot _< 2, 1/ot + 1/ot' = 1. When ot=l, we 
primarily for analyzing sets) can easily lead to seemingly obtain c(T)=Clexp(T/Cl-1 ). The corresponding universal K(h) 
contradictory results, and even to spurious breaks in the scaling l'unction is given by 
(see appendices). 

Clot' 
K(h) = (ha-h) (7) 

2.2. Some Properties of Multifractal Measures 

The extreme variability (intermittency) of the atmosphere (again, for ot=l, we have K(h)=Clhlogh). When ot<2, (7) only 
results from the concentration of various conserved fluxes holds for h>,0; for h<0, K(h)=oo. The above functions are for 
(energy, concentration variance, etc.)into smaller and smaller conserved (stationary) quantities and are the multiplicative 
regions by the action of nonlinear interactions and instabilities analogs of the standard central limit theorem for the addition of 
operating over wide ranges in scale. Even when the exact random variables, the case ot = 2 corresponding to (log) 
dynamical equations (and corresponding conserved quantities) Gaussian processes, and ot < 2 to (log) Levy processes. Closer 
are not known, it is still likely that such cascades are responsible analysis shows that there are actually 5 qualitatively different 
for much of the observed variability. Fairly recently, research in cases; ot:2, 1 < ot <2, ot=l, 0< ot <1, ot=0 corresponding to log 
turbulence has shown that cascades of this sort where the large normal multifractals, multifractals with unbounded singularities, 
scale multiplicatively modulates the small, when carried out over log Cauchy multifractals, multifractals with bounded singularities 
wide enough ranges of scale with a repeating (scale invariant) (ot' is negative), and the monofractal "[3 model" respectively 
mechanism, generally leads to multifractal measures [Schertzer (Schertzer et al [1988, 1989]). Furthermore, as discussed 
and Lovejoy, 1987a, b]. Such measures can be regarded as elsewhere (especially Schertzer andLovejoy [1987a]), the terms 
superpositions of singularities (order ?) each distributed over sets lognormal, log Levy are not fully correct, it would be better to 
with fractal dimension d(T): see (1). In what follows, we say multifractals with gaussian or Levy generators. The 
provide a brief summary of some of the properties of these universality arises from the fact that the only stable and attractive 
measures. generators are gaussian or Levy "l/f noises" (Schertzer and 

Formula (1) has an equivalent statement in terms of the Lovejoy [1987a,b]). 
statistical moments offx; The only caveate required is that since •K(h)= <f•,h> = 

<exp(hlogf• is the Laplace transform of the generator log/x,, 

Ix, l•hY - only those Levy variables which possess Laplace transforms are <f•.h>=•K(h)= /r/• __. c(T)d), (2) admissible generators; these are the so-called extremal 
(maximally asymmetric) Levy variables. For 0<ot<l these 

where angle brackets indicate ensemble (statistical) averaging extremal Levys are classical (e.g. Feller [ 1971 ]; see Fan [1989a, 
(note that here, and most of this paper, we systematically ignore b] for an exact mathematical treatment of the corresponding 
log corrections to the scaling laws as well as scale independent noise). However, for 1 <ot<2, the extremal Levys are far from 
constants such as c'(T) on the right hand side of (2)). Hence, being classical; for this range of or, Fourier techniques are 
using the method of steepest descents, we obtain usually used. In Schertzer and Lovejoy [ 1990a] (appendix A), 

we proposed a unified Laplace treatment for all the Levy 

K(h) = n•ax (k¾-c(T)) (3) extremals for 0<ot_<2. Schertzer and Lovejoy [1990a] present graphs showing these families of curves. 
For other quantities, related to the conserved quantities by 

This (Legendre) transformation arises because in the limit either dimensional and/or power law relations, the corresponding 
•.--->oo, for each moment h, there is a corresponding singularity c0, ) functions can be obtained by the linear transformation q, ---> 
% which dominates the average: h = c'(Th). The Legendre a), + b. For example, in turbulent cascades, the energy flux • is 
transformation is easy to obtain graphically: it is simply the conserved, and fluctuations in components of the velocity field 
maximum distance between the line h), and the curve c(T). Note are obtained by Av = •1/3•.-1/3; hence a = -b = 1/3. For passive 
that because the Legendre transform is equal to its inverse, we scalar clouds (see Schertzer and Lovejoy [1987a, b] and Wilson 
also obtain et al. [1990] for details on these multifractal cloud and rain 

models), the corresponding quantities are Ap=q01/3•.-1/3, where 
c(T)= n•ax (h T_ K(h)) (4) tp=Z3/2e.-1/2 and Z is the variance flux of the passive scalar 

concentration p. Similarly, semi-empirical radar estimates of 
rain rate (R) from radar reflectivity factors (Z) use relationships showing the complete equivalence between a description in terms 
of the form Z o• R B with B a calibration constant (usually, of moments K(h) or probabilities c(T ). It is also possible to 

define another codimension function associated with moments of B= 1.6). Allowing for these linear transformations of ?, we 
various orders: obtain the following three parameter universality classes for 

A great simplification in multifractal analysis and modeling 
occurs because for quantities conserved by the cascade, the c(T ) 
function is characterized by the following two parameter 
functional forms or "universality classes" (Schertzer and 
Lovejoy, [1987a, b]) 

= Cl + 
lot' 

(6) 

nonconserved quantities: 

with 

(8) 

= , + (9a) 

aC l ot' 
+b (%) 

Since two of the parameters co, TO depend on three fundamental 
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parameters a, b, C1, we will not be able to unambiguously 
determine the latter from the former. Additional information 

(supplied perhaps by theoretical considerations) such as the 
relationship of the field to that of the conserved fluxes is 
required. 

In empirical parameterizations of c(?), it is convenient to 
introduce yet another equivalent parameterization based on the 
parameters Ct, Tt: 

c(y)- Ct ?•Yt + 
t •' 

Which under Legendre transformation, gives 

(10) 

C t•' 
g(h) = (ha-h) -trlt 

Ct/(1-a) - ?t and the latter can be _<d(A) (Schertzer and Lovejoy 
[1983 1985a, b] discuss a discrete rather than continuous 

cascade model outside the above universality classes called the 
"a" model, in which this also occurs). Note that even in the 

latter case, divergence will still occur if the set A is sufficiently 
sparse that d(A) is small enough. 

Rewriting the above, we obtain the following equation for hd: 

r(hd)--d(A )(hd-1) (15) 

Cta' hda+hd(-Yt- d(A) Cta') -- - + a(A)=0 

Corresponding to hd, there is a critical singularity Yd such that 
Td=K(hd). The functional forms for the three-parameter 
universality classes are therefore valid for the observable 

(11) (dressed) quantities only for h<_hd, Y-<Yd with Yd written 
explicitly as 

The above is useful in graphical parameter estimates, since it 
enables one to conveniently exploit a special property of the two 
parameter universality classes (equation (5)). As pointed out by 
Schertzer and Lovejoy [1990a], these classes have the special 
point satisfying c(C1)=C1, c'(C1)=l independent of a. With 
the above parameterization (the subscript t indicates tangent), we 
obtain the analogous property (used in section 3) for the three 
parameter classes: 

c(Ct- = ct 

c'(Ct- •,t) = 1 

Before discussing the analysis of satellite and radar data using 
the above formalism, we must first discuss a complication which 
arises because of a basic distinction between "bare" and 

"dressed" cascade quantities. The bare quantities are essentially 
theoretical: they are obtained after a cascade process has 
proceeded only over a finite range of scales; strictly speaking, 
(10), and (11) apply only to these quantities. The experimentally 
accessible quantities are different; they are obtained by 
integrating cascades (with a measuring device) over scales much 
larger than the inner scale of the cascade (which in the 
atmosphere is typically of the order of 1 mm). The properties of 
such spatial (and/or) temporal averages are approximated by 
those of the dressed cascades, i.e., those in which the cascade 

has proceeded down to the small-scale limit and then integrated 
over a finite scale. The small-scale limit of these multiplicative 
processes is mathematically singular and is responsible for this 
basic distinction. 

Unlike the bare cascade, the dressed cascade displays the 
interesting phenomenon of divergence of high-order statistical 
moments, that is 

<j,h>• h>hd (13) 

Where hd is the critical exponent for divergence. In this sense, 
the dressed quantities are more variable than the bare quantities 
(whose positive moments are all finite). The precise condition 
for divergence is quite simple [Schertzer and Lovejoy, 1987a, b]: 

C(hd)--d(A ) (14) 

where A is the averaging set (e.g., line, plane, or fractal in the 
case of typical measuring networks) over which the process is 

yd = Cta'(hd a-l- 1)- yt (16) 

For T>?d, c(y) is a straight line with slope hd. For h>hd, the 
moments <./h>__>oo; hence, strictly speaking, K(h) is no longer 
cleftned. However, experimentally, finite sample sizes are used 
to estimate (infinite) ensemble averages, and we obtain the 
interesting phenomenon of pseudo-scaling [see Schertzer and 
Lovejoy, 1987a, b; Lavallde et al., 1990]. Like a, estimating Yd 
from the data is difficult because it too is sensitive to the low- 

probability, large T, c(y) part of the function. It is therefore of 
interest to develop approximate graphical methods for its 
estimation (see below; Seed et al., manuscript in preparation 
1990). 

We have already discussed the fact that the various (bare) 
universality classes are lognormal (a=2) and log-levy (a<2), 
respectively. When a is not much smaller than 2, the latter are in 
turn approximately lognormal, since, with the exception of their 
extreme tails, these Levy distributions are themselves nearly 
normal (this "tail" is pushed to lower and lower probability levels 
as a-->2). Our findings here are therefore consistent with the 
widespread hydrological, meteorological (and generally 
geophysical) lognormal phenomenology. Of particular relevance 
here are numerous studies that have claimed that rain rates, cloud 

and radar echo sizes, heights and lifetimes, as well as total rain 
output from storms over their lifetimes are either lognormal or 
"truncated lognormal" distributions [Lopez, 1977a; Drufuca, 
1977; Houze and Cheng, 1977; Konrad, 1978, Warner and 
Austin, 1978; etc.]. Furthermore, the cascade models that 

generate them are actually just concrete implementations of vague 
laws of "proportional effects" (see, e.g: Lopez [1977b] for an 
invocation of this law in the rain context). 

The above comments need only minor modification when 

cicaling with dressed quantities, since compared with the bare 
quantities, the former have even stronger (algebraic) extreme 
fluctuations, but are virtually the same for nonextreme 
fluctuations. Waymire [ 1985], Waymire and Gupta [ 1990] have 
used the expression "fat-tailed" for such (asymptotically 
algebraic) distributions, and "long-tailed" for the lognomal law 
(it could equally well be applied to the log-Levy cases), to 
distinguish these distributions from standard exponential "thin- 
tailed" distributions. Several years ago [Schertzer and Lovejoy, 
1985a, b], we used the expression "hyperbolic intermittency" to 
describe the effect of this strong variability. It has been 

averaged. The phenomenon of divergence of high-order empirically estimated in a variety of meteorological fields: hd•5, 
statistical moments arises directly from the fact that C(h) is for temperature [Lovejoy and Schertzer, 1986a, b, Ladoy et al., 
generally unbounded, and hence for any averaging set A, for 1986], hd= 1.66 in changes in storm-integrated rain rate 
large enough h, C(h)>d(A). In the universality classes above, [Lovejoy, 1981], hd=l.06 in radar reflectivity factors of rain 
the only exception occurs when a<l, which yields max(C(h)) = [Schertzer and Lovejoy, 1987a, b], and respectively. hd--5 and 
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3.33 for wind speed and potential temperatures [Schertzer and 
Lovejoy, 1985a, b]. The recent study by A. Seed et al., 
(manuscript preparation, 1990) has provided more insight into 
the problem by showing that although the parameters defining 
c(T) may not change much from one meteorological situation to 
another, hd could vary considerably, since they find empirically 
0.3<a<0.6 and from (15), we find that when a<l, its value is 
particularly sensitive to small changes in the parameters Ct, Tt, 
tx. This is perhaps not surprising since h d and the other 
parameters metnioned above are statistical and very large sample 
sizes will be needed to provide good estimates of the ensemble 
average values. 

3. ESTIMATING c('y) FOR SATELLITE CLOUD RADIANCES 

3.1. PDMS technique 

We seek to directly apply (1) to determining the scale invariant 
codimension function c(ht). To do this, we must first fully 
nondimensionalize (1); we have already introduced the 
dimensionless scale ratio •, to nondimensionalize the scales, we 
must also nondimensionalizefthis is conveniently done by using 
the large-scale average f•aas a reference value for the measure 
where ),.t denotes the scale ratio corresponding to the large (I for 
image scale; •.t=Lt/'rl). Using an overbar to denote the values of 
the function normalized in this way, we write: • = fx,/fx,t. 
Theoretically, the latter should really be the ensemble (i.e., 
climatological) average of the random process at scale )•t; the 
sample average being an approximation to the latter. We 
therefore obtain 

Pr(.f• > X Y ) = F X-c(y) (X>I) (17) 

where F is a prefactor which is only a function of ]t and log•, (for 
example, if F contains a (logk) fi dependency, fi is called a "sub- 
codimenison"). Taking logs and rearranging, we obtain 

log Pr((logf•)/(log X)> ht ) logF 
c(y) .... (18) 

log •. log•. 

Hence, plotting the normalized log probability distribution 
(-logPr/log 30 against the normalized log intensity (log f•/log )•) 
we obtain the resolution (30 independent function c(ht). To 
empirically test this multiple scaling behavior, we therefore take 
our empirical field and successively degrade it by averaging, 

obtaining a series of functions f•l (r),,f•2(r),f•n(r), which 
simulates the results of sensors with successively lower 
resolutions with )q=Lt/Tl>)•n>_3.s>> 1, with )'.s the ratio of sensor 
scale to the inner scale of the variability. Successive factors of 2 
can be easily implemented recursively. Note that we must not 
nonlinearly transform our radiance field (e.g., by transforming 
from radiances to equivalent blackbody temperatures), since this 
does not simulate the result of a lower resolution sensor. 

Furthermore, the normalization based on •.I implicitly assumes 
that the probability distribution in (17) is either from a single 
scene or from several independent scenes. If single scenes are 
used, then we cannot obtain information on the codimension for 

values of c>d(A), since the corresponding structures would have 
negative dimensions. However, when many realizations are 
available, the effective dimension of the sample can be larger, 
and higher values of c(7 ) can be determined; see Lavallde et al., 
[1990] for discussion of this "sampling dimension." Finally, if 
many dependent samples are used (as in the use of time series of 
images in A. Seed et al.,(manuscript in preparation, 1990), then 

an "effective" •I can be determined from regression (as canfx,l). 
The Probability Distribution/Multiple Scaling (PDMS) 

technique refers to the direct exploitation of (17,18) to obtain 

c(ht). This direct method has a number of advantages when 
compared to the conventional route (via the moments K(h) 
followed by Legendre transformation; see for example Halsey et 
al. [1986]) not the least of which is that it avoids the problem of 
estimating high order moments which may in fact diverge (see 
(13)). The PDMS method can be implemented in various ways. 
In Lavallde et al. [1990], histograms of all the values of jrx, = 
f•/f•t at the various resolutions )• were produced, taking for the 
value of f•l the mean of all the sample spatial averages at 
scale 3.t (the number of "scenes"/satellite pictures, etc.). From 
the histogram, the largest to smallest values were summed to 
yield the probability distribution. Finally, c(ht) was determined 
as the absolute slope of plots of log Pr against log 3. for given 
values of hr. This method has the advantage of readily taking into 
account the slowly varying prefactor F, since Log F is simply' 
the intercept at log )•=0. See Lavallde et al. [1990] for a much 
more complete discussion of this method including theoretical 
considerations and numerical simulations. 

In this paper, we used a slightly different method inspired by 
"functional box-counting" (Lovejoy et al. [1987]), in which the 
probability distributions at various scales •. was determined 
differently. The data at highest resolution (•,s) was covered with 
a series of lower resolution grids (the "boxes") as explained 
above. However, rather than using the average value over each 
box (and create histograms of these averages), we used the 
maximum value in each •.X•, box (denoted maxx,(f•)). Since 
the function was not averaged, the singularity corresponding to 
each maximum value was simply estimated as ht = 
(logmaxx,( f•s))/log)•s. The corresponding c(]t) for each 
resolution •. was then estimated as-logPr/log)•. (we assumed 
log•.>>logF, ignoring the prefactor in (17)). Finally, we took 
the average c(]t) function over a series of resolutions •., 
indicating the scatter with one standard deviation error bars. 

Figures l a, lb show the results when this technique is applied 
to five visible and five infrared GOES pictures over Montreal, 

0 
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Fig. l a. PDMS estimates of the function coy) from the five 
visible GOES images over 1024 X 1024 km at 8 km resolution 
discussed in the text. The points indicate the mean c('y) curve 
obtained by averaging the six individual c('y) functions obtained 
at 8, 16, 32, 64, 128,256 km scales (the histograms associated 
with 512 and 1,024 km did not have enough points and were not 
used). The error bars indicate one standard deviation (and were 

of average magnitude +0.011), showing that the c('y) function 
was nearly scale invariant over this range. The solid line is the 
least mean squares fit to the universal form (equation (8)) (c•'=- 
1.70, c• = 0.63). The standard error of the fit was _+0.011. The 

straight line is the line slope 1, which is tangent to the curve. 
The value of c('y) where this occurs is Ct, and the point where the 
line intersects the 'y axis is -'Yt. 
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Fig. lb. PDMS estimates of the function c(ht ) from the five 
infrared GOES images discussed in the text with the same range 
of scales and format as Figure 1 a. The mean standard error was 
+0.023, and the best fit regression to (8) yielded ct'=2.52, 
ct=1.66. The standard error of the fit was +0.015. 

be contaminated by noise. Using (9a) and (9b) we can obtain the 
estimates o• = 0.65, 1.7 for visible and IR, respectively. 

To improve on these results requires complex (nonlinear) 
regression. Here we determined or' by a least squares regression 
on the mean of the 8 - to 256 km curves in Figures la and lb. 
Maximum likelihood estimates for the parameter ot were found to 
be c•=0.63+0.035 and 0t=1.66_+0.37 for the visible and infrared 

data, respectively. The large difference in the maximum 
likelihood errors cited here is due at least in part to the fact that 
we directly estimate or' and Aot =(1 +002Aot'; hence this effect 
alone accounts for a factor 2.7 in difference. Figures la and lb 
show the best fit and mean visible and infrared curves. The 

standard errors in the fit are +0.011 and +0.015 respectively. 
These results show the accuracy of the graphical method. Using 
(13) and (14), we can also estimate hd, Td. We find (using 
d(A)=2) hd=13.80, Td=3.50 for infrared images, but for the 
visible data, max(C(h))=0.21/0.37-0.15=0.42<2; hence there is 
no divergence. The large values estimated for hd in infrared data 
show that the divergence would be difficult to detect directly: 
enormous samples would be needed. 

4. THE CLASSICAL RADAR OBSERVER'S PROBLEM 

FOR MULTIFRACTAL REFLECTIVITY FIELDS 

respectively. The original (raw) satellite pictures were first 
resampled on a regular 8 x 8 km grid over a region of 1024 x 
1024 km. As can be seen, all the distributions are nearly 
coincident, in accord with the multifractal nature of the fields. 

To judge the closeness of the fits, we calculated the mean c(ht) 
curves as well as the standard deviations for 8, 16, 32, 64, 128, 

and 256 km, finding that the variation is small, being typically 
about +0.02 in (ht), which is more accurate than estimates 
obtained using functional box counting on similar data (Gabriel 
et al., [1988] found accuracies of about +0.05). 

3.2. Parameter Estimation, and 

Universality classe• of c(7 ) 

We have already argued that the resolution independent 
codimension function c(T) is of considerably more interest than 
particular values of the function and that the latter is determined 
by ?t, c•, and Ct. The difficulty in testing these ideas empirically 
is that the key parameter or' (recall 1/c•'+ 1/c•=l) characterizes the 
concavity of c(ht), which is pronounced only when ht and c(ht) 
vary over a substantial range. From the point of view of 
nonlinear regression, to fit Tt, Ct, or' to the data, we find that Ct 
and cz' are highly correlated, and hence parameter estimates are 
not very sharp. Gabriel et al., [1988] used functional box 
counting, yielding less accurate estimates of c(ht) than those 
obtained here. The issue was avoided by assuming o•'=2 and 
testing the consistency of the data with that hypothesis. 

Here we outline a simple graphical method which proves quite 
accurate. The easiest parameter to estimate graphically is 
c0=c(0), which yields c0=0.16, 0.20 for visible and IR curves, 
respectively. However, Ct, htt can also be found quite easily. 
From (10), we recall that c(ht) has the property that c(Ct-htt)=Ct 
and c'(Ctqtt)=l independent of or. This implies that a line slope 
1 will be tangent to c(ht) at the point c(T)=C t and will intersect the 
-/ axis at the point T=-Tt. Figures la and lb show the 
construction lines, which yield C t=0.21, 0.29, and htt=0.15, 
0.19 for the visible and IR curves, respectively. Note that all 
three parameters estimated this way depend on the values of the 
curve c(ht) in the statistically well-defined region near T=0, rather 
than on the large ht regime corresponding to extremely low 
probabilities, or the small negative ht regime which could easily 

4.1. Discussion 

The observer's problem for radar measurements of rain 
attempts to relate the observed ("effective") radar reflectivity 
factor (Zob) to more physically relevant parameters. In its 
classical form [Marshall and HitschfeM, 1953; Wallace, 1953], it 
too makes assumptions of subsensor homogeneity (specifically 
that the rain drops have Poisson statistics over scales smaller 
than the radar "pulse volume": typically about 1 km3). The 
variability in Zob is then considered to arise from two sources. 
Tile first is the natural variability of interest characterized by the 
reflectivity factor Z (proportional to the variance of the drop 
volumes). The second arises as a result of the random positions 
of each each of the drops within the pulse volume. Under certain 
assumptions about the homogeneity of the field and on the form 
of drop size distribution, Z can be related to the rain rate, total 
volume of liquid water, or other parameters of interest. The 
determination of Z from the observed Zob is therefore considered 
the basic "observer's problem" in radar meteorology. 

Much work has been done to devise sampling and averaging 
strategies to obtain Z from Zob. In this section, we briefly 
review the standard derivation of the relation between Z and Zob 
and point out where it breaks down if the drops are distributed 
over sparse fractal sets rather than uniformly in space. We then 
show that if the latter effect is ignored, but that the Z field is 
multifractal, the observed codimension function Cob(T) (for Zob) 
is identical to the underlying c(ht ) (for Z) in the limit where the 
natural variability builds up over a sufficiently wide range of 
scales (i.e., that the radar resolution is much smaller than the 

outer scale of the rain-producing processes). In other words, in 
this limit the natural variability is so strong that it completely 
dominates that arising from random fluctuations due to drop 
phases. This answers the question raised by Zawadzki [1987] as 
to which variability is strongest. 

Although in this limit (at least as far as estimating c(ht) is 
concerned) the observer's problem disappears, applications may 
require corrections. This is because the large parameter in the 
theory is the natural log of the range in scales (•=ln 3.): taking a 
typical radar resolution of 1 kin, and an external scale for the rain 
processes at 1000 to 10,000 km, we find [ in the range In 
(1,000) to In (10,000) =7 - 9, which is not so large. In practice, 
corrections to the above will occur and the relation between 

Cob(T) and c(ht) will be more complex: we estimate these 
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corrections up to first order in 1/•. We then discuss the We seek to express the observed Cob(Tob) in terms of the true 
consequences of these findings in the light of some recent c(7), and ultimately to express the latter in terms of the former. 
empirical studies of radar reflectivities by ^. Seed et Define 
al.,(manuscript in preparation, 1990). 

Z=•T = e•'Y Zob=•T øb = e•T øb (23) 

4.2. Review of the standard approach p(T)= X-c(T) Pob(Tob)= X-cøb(Tøb) 

Consider a radar at the origin that emits a pulse of Now, using the formula for conditional probabilities, we obtain 
electromagnetic waves that fills a volume •) at range r containing 

n(•)) scattering rain drops. Taking into account the various electrical, antenna, and other geometrical factors, the radar Pob(Tob) = (Zob(Tob) Iz)dZ (24) 
measures the effective reflectivity factor 

Substituting our definitions from above, and (22) for the 
Zob o• [4 • (19) conditional probability, we obtain 

where 

n(V) 

(20) 

e-;Co(Wb) = (25) 

Using the standard method of steepest descent to estimate the 
value of this integral; 

The sum is over all the drops in the volume, the V,/.arises 
because the cross section of each drop is proportional to v, since 
water is polar molecule. The phases qb :=2k'g' where k is the 

radar wave vector, rj the position of the drop, and the factor 2 
arises because the beam must make a round trip. It is now 
customary to introduce the radar reflectivity factor, denoted Z 
(usually measured in units of mm6/m3), defined by 

Z o, n(v) <V2> (21) 

The standard approach now assumes that all the gj_(and hence 
q•j) are independent, and that <V2> is finite. Under these 
incoherent scattering assumptions, each term in the sum A is 
independent, the variances add, yielding Zo• n(x)). Furthermore, 
by applying the central limit theorem, we can obtain the 
conditional probability distribution of Zob given Z: 

,,-. i,-,, 1 _7^•.t7 
p•.Z, ob Iz,) = • e -'-"'ø,'--' 

This is the standard formula for the fluctuations in Zob due to 

random drop phases. 

4.3. Corrections due to multifractal reflectivity factors 

We have deliberately gone through the derivation in some 
detail in order to see exactly where the assumption of subsensor 
homogeneity is required. If the distribution of drops is fractal 
(as indicated by blotting paper analyses reported by Lovejoy and 

o• d/3 w e Schertzer [1990b], then the drops cluster and n(l)) x) , h re 
d<3 is the fractal dimension of the drop distribution (actually, 
horizontal cross sections were studied, yielding d(horizontal) 

•Cob(Tob) = min (e•(Tob-T)+•c(T)) (26) 

The nfinimum occurs when the following condition is satisfied: 

c'(T) = e•(?b-T ) (27) 

Hence, when •-->oo, we obtain Tob-->T, and Cob(Tob)-->c(T ), 
i.e., the observer's problem disappears, since the natural 
fluctuations are far larger than those introduced by the radar 
measurements. (The exceptional case c'<0 which can only occur 
for a=2, T<T0 yields exponential behavior and will not be 
discussed further). 

However, realistic values of • are likely to be in the range 7-9, 
which is not so large. It is therefore of interest to estimate 
corrections due to the finite range of scales. To do this, it is 
convenient to introduce the small correction A/• = T- Tob and to 
solve (27'• tn firat order in 1/•, {vi•.]dlno A = ]n C'(Tob)) 
Dcfining the correction Ac(T) = c(T) - Cob(T) and after a bit of 
algebra, we obtain 

tic(T) =c' (T)(ln c'(T)-l)+ 0(•) (28) 
Since dAc/dc'= In c', Ac has a minimum value of-1/• when 
c'= 1, and a maximum value 

hd(ln hd- 1) 
max(tic(T)) = (29) 

where hd=c'(Td) is the maximum of C'(T) discussed earlier. 

=1.82). This clustering means that the qb,/are correlated, giving Furthermore, the straight line asymptote of c(T) for T>Td is 
rise to some degree of coherent scattering. The effect of the preserved; there is only a shift in the starting point to higher 
coherent scattering is to make the modulus < [412> o• n(•))2H values of y. Tdob---"id +(ln hd)/• as well as a shift in the values of 
with 2H>l (Lovejoy and Schertzer [1990b] empirically find the codimensions of hd(ln hd-1)/•. Since the straight line 
2//=1.24). The combined effects of d<3, 2H>l lead to asymptote corresponds to the algebraic tail of the probability 
systematic corrections, so that Zob can no longer be directly distribution, the above result is simply interpreted to mean that 
regarded asanestimateofZ(seeLovejoyandSchertzer[1990b] the exponent of the latter is conserved by the weaker 
for details). Presumably, it also leads to corrections in the above (exponential) reflectivity fluctuations. 
probability distributions, although empirical investigations would We can now estimate the effect of the above corrections if the 
require much more data than used in the study cited. In the graphical method outlined in section 3.2 is used to estimate the 
following, we ignore these subresolution fractal effects, parameters. Since the correction is-1/• when the slope is c'=l, 
concentrating our attention on the effect of the standard drop and this point is used to estimate Ct, 'it, we have Ct=Ctob-1/•, 
phase fluctuations on C(T ). Tt----Ttob-1/•, and corrections for co being much smaller. Using 
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A. Seed et al.'s data (manuscript in preparation, 1990), we can 
estimate the maximum size of these corrections at the extreme 

large y end, since empirically, they find that 3•max (c')<3.5 for 
the four meteorological situations studied over Montreal. Using 
the largest of these, and the smallest likely • (--7), we obtain a 
maximum correction of 0.14. It should be noted that these 

corrections only apply to raw radar data, not data that have been 
artificially degraded in resolution by averaging Zob, as in A. 
Seed et al. (manuscript in preparation, 1990) for resolutions 4 
km and greater. In the latter case, the true correction is likely to 

excessive emphasis on the study of sets and their fractal 
dimensions. For example, using a threshold on satellite cloud 
and radar rain data, Lovejoy [1981, 1982] determined area- 
perimeter and area-distribution exponents. Although limited to 
the range 1-1000 km, and to a single cloud and rain intensity 
level and meteorological situation, Lovejoy [1982] showed that 
scaling could hold over a wide range of meteorologically 
significant length scales. Since then, these and related methods 
have been used by a number of other investigators [e.g., Carter 
et al., 1986; Ludwig and Nitz, 1986; Rhys and Waldvogel, 

be smaller, although this mixture of averaging at subradar 1986; Welch et al., 1988; and Cahalan, 1990], occasionally 
resolution in Z and at larger resolution in Zob is not easy to yielding apparently contradictory results. For example, the value 
analyze. of the area-perimeter exponent of 1.35 found in Lovejoy [1982] 

Once we have obtained an estimate for c(ht) for the reflectivity was at first considered a fundamental constant, which was 
factor, the corresponding function for the rain rate can be subsequently found to be not always reproducible; Rhys and 
obtained by the linear tranformation ht-->Bht (see section 2.2). Waldvogel [1986] and Cahalan [ 1990] found generally higher 

5. CONCLUSIONS 

The extremely variable nature of rain and cloud fields over 

wide ranges of scale typically implies that remote measurements 
of the fields involve sensor resolutions much larger than the 
smallest scale of the variability. These data will therefore contain 
(potentially strong) resolution dependencies. It has been 
suggested for some time, on both theoretical and empirical 
grounds, that over considerable ranges, these fields exhibit 
scaling fractal (and more recently, multifractal) structures. In 
multifractal systems, a resolution-independent function exists 
(the codimension function c(),)) which is essentially an 
(appropriately normalized) probability distribution, which 
characterizes the statistical properties of the field over the entire 
scaling range and can be measured by observers using 
instruments at widely differing scales (it is therefore useful in 
calibration). These codimension functions are themselves 

expected to be determined by three dynamically important 
parameters (determining the "universality classes"), thus 
considerably simplifying the analysis and modeling of such 
fields. A relevant point to note here is that the universality 
classes are readily compatible with lognormal phenomenologies. 

In this paper, we reexamined some earlier analyses. Some 
(which we termed monofractal) used methods primarily designed 
for studying fields characterized by a single fractal dimension. 
In appendices, we discuss at a fairly technical level some of the 
problems that arise when such methods are applied to 
multifractals. We also reviewed some of the recent 

developments in the field of multifractals indicating some of their 
basic proerties and outlined a new technique [Lavallde et al., 
1990] for empirically estimating c()') called the probability 
distribution/multiple scaling (PDMS) technique, applying the 
method to satellite cloud data at both visible and infrared 

wavelengths. In a final section, we showed how radar estimates 
of' c(),) can be corrected for the classical effect of "drop 
randomization" in order to determine c()') for the radar reflectivity 
[actor (Z) from the measured effective radar reflectivity factor. 
We then indicated how the latter can be used to obtain the 

corresponding function for the rain rate via a linear 
transformation of the orders of singularities of Z. We discussed 
these results in comparison with the empirical c(),) measured by 
A. Seed et al. (manuscript in preparation, 1990). 

values that depended on the realization ("meteorological 
situation"), and Carter et al. [1986] estimated the dimension of 

the "graph" of infrared radiance intensity from clouds, obtaining 
yet another value of the dimension. However, once the 

multifractal nature of the fields is appreciated, these results can 
be easily explained. In particular, the interpretation and 
significance of the area-perimeter and area distribution 
exponents, graph dimensions, as well as their relationship to the 
fractal dimensions of the rain or cloud regions themselves must 
be reexamined. This is done below; the most important results 
are (1) the area-perimeter exponent will in general not be equal to 
the fractal dimension of perimeter, and (2) the range of possible 
values and significance of the area distribution exponent is 
different than that obtained by simple arguments on geometric 
sets. We then reexamine these early studies in this multifractal 
context. 

A.2. Multifractal Exceedance Sets, 
Perimeter Sets, and Graphs 

Consider the function fx(r) obtained by averaging a 
multifractal measure over scale ratio )c=L• where q is the inner 
scale of the variability, in a region of the plane 91 size RxR 
(generalizations to higher dimensional spaces are straightforward 
and will not be explicitly considered). As mentioned in section 
2, the underlying measure is most directly studied by considering 
how the properties of fx vary as we change )• (e.g., by 
successively degrading our sensor resolution). However, most 
applications of remotely sensed data involve studying the 
properties of fx at fixed )•. When, as is often the case, these 
exponents are obtained by using thresholds (7') on fx to define 
sets, we find that the results will depend directly on )L via the 
multifractal relation T= T•JLfL•)-¾, where TI is the large (e.g., 
image) scale resolution value of the field (T• is the same as fxt in 
section 2). Our exponents will therefore depend (via T) on both 
the sensor resolution ()L), and the meteorological situation (i.e., 
stochastic realization) of the process, and hence be of limited 
utility. Below, we fix the function resolution L, and write 
simply f(r). 

Define the (closed) exceedance set Sr• as the set of points 
satisfyingf(r) >T. Iff(r) is a scaling function, the (Hausdorff) 
dimension D(S•) of Sr• will be a nonincreasing function of T, 
since S• • Srz for T'>T and the dimension of a subset must 

less than or equal to the dimension of the entire set (this property 
is so basic that it holds for all def'mitions of dimension of which 

APPENDIX A' THRESHOLDING AND MULTIFRAcTAL we are aware, including topological dimensions). Complications 
MEASURES R EEVALUATION OF S E V E R A L arising from non-self-similar, anisotropic scaling (generalized 

MONODIMENSIoNAL ANALYSIS TECHNIQUES scale invariance, [e.g., Schertzer and Lovejoy, 1987a, b]), will 
not be considered here. 

A.1 Discussion Consider next the "graph" (G) off(r) defined as those points 
in three-dimensional (r,f(r)) space. As before, we may define 

We have argued (especially in section 2) that emphasis on the Gr as the subset of G such that f(r)>T (see Figure A1 for an 
geometric properties of scale invariant processes has lead to illustration, and appendix B.2 for more discussion). Consider 
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I 

thus the set of "contact" points of Srz which are required to close 
it, yielding [Srz]. We thus obtain 

f(E) 

T 

Pr = [ Srz] n Srz (A1) 

It is important not to confuse this zero-crossing set with the set 
of points r such thatf(r)=T, which is the intersection of G with 
the plane f(r)=T, (GriT) denoted St=. In general, PT will be 
different from ST.- with the two coinciding only if special 
conditions apply such as G is everywhere continuous (i.e., if G 
rarely jumps from one side of the plane f(r)=T without 
intersecting it); PT = ST-- does, however, generally apply to the 
mono-dimensional processes such as fractional Brownian motion 
discussed by Mandelbrot [1982]. However, in what follows, 
we see that in general, G is discontinuous, and all we obtain is 

R R 

x 

Fig. Ala. Schematic illustration showing some of the definitions 
used in the text. GT is the set of points in the black spiky region 
above the plane (f(r)=T). 

now the perimeter set of S•, denoted PT; PT is the "border set" 
of S•, more properly defined as the "T-crossing set" of G with 
the planef(r)=T (in analogy with the expression "zero-crossing" 

D(S•z) > D(pT) (A2) 

(since St> D Pt) with the actual value of D(pT), however, 
depending critically on the topological structure (i.e., 
connectedness) of the set. Figure Alc compares the functions 
D(ST>), D(pr), D(ST=) for a numerical simulation of a 
multifractal cascade process on a 128X128 point grid (mean of 
1), with Gaussian generator (except for the extreme fluctuations, 
the intensities are lognormally distributed; see Lavallde et al. 
[ 1990] for more details). The dimensions were estimated using 
box counting. In order to get a large enough sample size to 
estimate the dimension function D(ST=), the latter was estimated 

used in the theory of stochastic processes). This is the set of fi'om the sets ST+aT'e_-ST> with AT=0.2T. 
points r such that arbitrarily small neighborhoods of r contain 
some points such thatf(r)<T and some such that f(r)>T. Using 
basic notions about sets, we can now give a definition of PT. 

Define the (open) complement of S• as: S• = 9t -ST: Pr is 

Note that as T•oo, D(S•) can --•Doo >0, although in general 
(especially in continuous cascades), we expect Do,, =0. In the 
latter (more general) case, D(pr) may initially increase with T, 
although it must eventually decrease. 

A.3. The relation between D(pr) and 
area-perimeter exponents 

We can now relate the areas and perimeters by eliminating R in 
the above equationsß Using box counting to estimate the 
[4m].•dc•rff dime. n•icm% we. c•htaln 

R•D(S•_) Ns(r) = (•j - (A3) 

$ 'r• PT• 

Fig. Alb. Schematic illustration showing the definition of S•, 
PT used in the text, for two different thresholds T•<T2. The 
illustration was produced using a multiplicative cascade process 
(an "alpha model") with a cascade discretized into eight steps 
with a scale factor 2 in each step. 
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Fig. Alc. Graph of the functions D(Sz•) (white squares), D(pr) 
(diamonds), D(Sr_-) (solid squares) determined numerically from 
a multiplicative cascade process on a 128 X 128 point grid. As 
expected, the functions respect the inequality (A2). 
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where N is the number of rXr boxes required to cover the set 
(which is of linear size R). 

The areas At(r) and perimeters Pt(r) are given by 

=mr); = ( 7. - 

Pr(r)=Np(r)r= ( •)D(Pr) r 
eliminating R, we obtain 

_ Pt=AT D(pr)/D(S•) r 

OF. 

p• (•}•T rl-•r 

where •r = 2D(pr)/D(Sr>). When D(Sr>)=2 (i.e., the 
exceedance sets are not fractal), we obtain •r = D(pr), which is 
the relationship discussed by Mandelbrot [1982], and applied to 
cloud areas by Lovejoy [1982]. Alternatively, using the value •r 

monodimensional counterparts. Two other techniques that have 
been used to study scaling in cloud fields are area distribution 
exponents and the dimensions of graphs. Both techniques must 
be applied with considerable care to multifractal fields. In the 

(A4) former case (discussed in detail in appendix B) the interpretation 
of the exponents is quite different for multifractal and 
monofractals. In the latter, shortcuts in performing box counting 
that assume continuity of the process (which holds in many 
common monofractal processes but not generally in multifractal 
ones) can (and do) lead to erroneous results. 

Another aspect of multifractals that must be carefully 
(A5) considered in analyzing data is that unlike the monodimensional 

case, the thresholds that correspond to a given fractal dimension 
depend directly on the resolution with which the basic fractal 
measure is averaged by the measuring device. Even if the 

(A6) resolution is constant, the dimension corresponding to a given 
threshold will also depend on the realization of the process (e.g. 
the meteorological situation). As argued earlier, this difference 
between monofi'actal and multifractal processes is very basic; for 
now, we briefly discuss how these new dependencies can lead to 
practical difficulties, including apparent breaks in the scaling 
symmetry. 

rather than D(pr), we are in error by the ratio 2/D(Sr>_) > 1. Pooling data from different realizations. Pooling data (e.g., in 
Recently, Welch et al. [1988] used the same method to analyze box counting, in area-perimeter graphs, or in area histograms) is 

LANDSAT data with 28 m resolution to study visible cloud a useful way of increasing sample size to obtain better statistical 
radiance fields. Although the authors claim that two straight estimates of the parameters. However, it must be performed 
lines with slightly different slopes (what they call "bifractal" carefully in multifractal fields, since it can "mix" fractals with 
behavior) can be fit to their graphs (with a break at about 1 km2), different dimensions. For example, Rhys and Waldvogel [1986] 
single straight lines (one for each scene) do excellent jobs, as consider area-perimeter relations obtained by pooling areas and 
readers may verify for themselves (see Figure A2 reproduced perimeters of radar rain areas over consecutive images in time, 
from their Figure 8). In any case, since these authors applied using the same threshold. Since the dimensions for the fixed 
their analyses to single scenes, there will be statistical threshold will in general vary in time, this mixes fractals with 
fluctuations due to the finite sample size. Furthermore, basic different dimensions. If the sample was large enough, this 
theoretical ideas about multifractals (as well as cascade would not be serious, since the largest area-perimeter exponent 
simulations performed by Lavallde et al. [1990]) indicate that for would eventually dominate the rest. However, if the fractals 
multifractal fields, fluctuations will generally be very large have nearly the same dimensions (as they do in their study), the 
(strong intermittency) from one realization to another. In any convergence is extremely slow, and finite samples will yield 
case, it would be interesting (following Gabriel et al. [1988]) for either large spreads or nonlinear log-log plots that can easily (and 
the authors to reanalyze their data to try (for each scene erroneously) be interpreted as breaks in the scaling. These 
seperately) to statistically reject the hypothesis that individual results must therefore be reanalyzed before any conclusions 
straight provide good fits. For the moment, we interpret these about symmetry breaking can be drawn. 
data as giving strong support for the scaling of cloud radiance 
perimeters between 10 -2 and 104 km 2 for a variety of cloud 
types (i.e., precisely through the range of 1 km 2 where Cahalan 
[ 1990] claims evidence for a break). 

The above analysis shows that we should not be surprised by 
the empirical finding that area-perimeter relations give fairly 
constant exponents typically in the range 1.3_<•r_<1.6, since both 
D(pr) and D(Sr>__) are likely to decrease slowly with increasing T, 
and hence the ratio D(pr)/D(Sr>) may be expected to remain 
relatively fixed (see Yano and Takeushi [1990] and Cahalan 
[ 1990]; the latter finds a slight increase of •r with T, yielding 
typical low (dim) cloud values of 1.5, and high (bright) cloud 
values of 1.6). Note that this correction is not negligible; 
empirically, we find (section 3 and Gabriel et al. [1988]) that 
even for very low values of T, D(Sr>• = 1.8 at both visible and 
infrared wavelengths, and may easily decrease to =1.5 for very 

Combining spatial averaging with thresholding. The variation 
of fractal dimension with threshold can lead to artificial 

symmetry breaking in yet another way. Consider taking a 
shortcut in estimating areas and dimensions by fixing a threshold 
and degrading successively the resolution of the set which 
exceeds the threshold (e.g., by box counting), calculating Pr 
from the set at different resolutions. This method will work 

whether or not the field is multifractal, since it is first converted 

into a set having a well-defined dimension. However, if rather 
than degrading the set resolution, we degrade the multifractal 
field itself by simply averaging the field (rather than the set) over 
larger and larger scales, and then defining the exceedance set 
with respect to the previous threshold (as in Yano and Takeuchi 
[1990]), the method will no longer work. To recuperate a set 
with the same dimension, the threshold must be appropriately 
tiecreased to compensate for the fact that averaging over larger 

bright regions or cold tops. These values lead to corrections of scales decreases (smooths) the intense regions (the precise 
1.11 and 1.33, respectively. Applying these to Cahalan's typical amount of decrease can be quantitatively estimated by associating 
range of •T values we obtain D(pr)= 1.35 and 1.20, 
respectively. 

A.4. Other implications of multifractals, 
For analysis methods 

The preceding subsections have shown that multifractal fields 
are generally considerably more difficult to analyze than their 

each threshold with singularities as in the following section). As 
long as the thresholds used are sufficiently low that the 
dimension varies relatively little with threshold (i.e., in this range 
of thresholds, the field is approximately monodimensional), this 
effect will not be too important, but at extreme threshold levels, 
where the dimension changes more rapidly with threshold (e.g., 
for the cirrus clouds in Yano and Takeuchi [1990]), this will 

yield systematic (but totally artificial) breaks in the scaling (the 
downward curvature observed in their curves). 
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Fig. A2 Area-perimeter curves for nine different LANDSAT scenes (28 rn resolution) reproduced from Welch et 
al. [ 1988]. Although, as expected, different scenes yield different slopes, there is no evidence for a break in the 
scaling over the entire range of 10 -2 to 10 a kn9. 
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APPENDIX B: OTHER PRIMARILY MONODIMENSIONAL 

ANALYSIS TECHNIQUES 

B.1. Area distribution exponents 

Consider the problem of relating the distribution of contiguous 
areas equal to or exceeding T to the set St>. If D(S•) > 1, then 
St> will generally be made up of many contiguous subsets 
(de-noted sty(i)), each with external scale Ai for the ith region. 
Because of the assumed scaling, the A will generally be 
distributed (to within logarithmic corrections) as 

Nr(A>L) ,,,: L -Br (B 1) 

where Nr indicates the number of subsets st>(i) whose size 
exceeds L. Note that since St>__ D sr•, D(sr>O <- D(Sr>_). 

At resolution r, a subset s• with scale L will have area 

ar) ( r: 

Hence, eliminating L in terms of aT, we obtain 

Nr(Ar>ar) o, ar-B'r (B3) 

where B'r = Br/D(sm). Empirically, B'r is the most readily 
accessible area exponent. Lovejoy [1981], and Lovejoy and 
Mandelbrot [ 1985] show empirically that for light rain rates, low 
clouds, B'r = 0.75. Lovejoy and Mandelbrot [1985] and 
Lovejoy and Schertzer [1985] also develop monodimensional 
models with B'r in the range 0.5-0.75. Another reference is 
C ahalan [1990], who obtains B'r =0.8 for satellite cloud 
pictures. 

We now seek to relate Br, D(s•) and D(Sr>_). To do so, note 
that the total number of boxes required to cover Sr is 

R 

Ns(r,--(•) D(S•-)o• I(-5)D(S•)dNr(L>L) (B4) 
r 

wilere dNr(A>L) ,,,: L -Br- 1 dL is the number density associated 
with Nr(A>L). The above yields 

R 

Ns(r)•r-D(s•) ILD(ST•_)L-BT-ldL 

taking into account the sign of D(sr) - BT, this yields 

(B5) 

Ns(r) o• r-O(x• ) [IRD(X•)-BT_ rD(x•)-BTI ] (B6) 

The relative values of D(s•_) and Br depends on the topological 
(connectedness) properties of the process. We must now 
distinguish two cases depending on which is greater: 

For the case BI>D(sL_>•. In this case, in the limit r->O, the 
r ø(sr>-)'uT term dominates the 1• D($T->)-'B'•' term and the number of 
boxes/subset is small compared with the total number; 
fragmentation dominates, and 

Ns(r) o• r-Br :=• Br=D(S• (B7) 

This is the case discussedby Mandelbrot [1982], where 
geometric generators are used to produce fractal sets which yield 
D(ST>_)<D(Sr>). We therefore have D(Sr>•=BT>D(sr>• :=• B'T = 
Br/D(s• > 1. 

For the case B.<D.(.s•_• In this case, in the limit r->O, R D(s•-)- 
B r ß l)•,s dominates r m r and the number of boxes/fractal subset 

is a large fraction of the total; the number of boxes needed to 
cover the fragments is negligible compared with the number 
needed to cover individual connected regions, this yields: 

Ns(r) o• r-D(s•- ) • D(s• = D(S• ([18) 

and Br<D(sr•) and hence B' r =Bv'D(s•) <1. Each contiguous 
region has the same dimension as the entire set, and the 
fragmentation is relatively unimportant. This is the case relevant 
to multifractal fields and of interest in geophysical applications. 

B.2 Graphs and their dimensions 

Carter et al. [1986] considered the x-z cross section 

(intersection) of the graph G of the infrared cloud radiance as a 
function of telescope scanning angle (for clarity, we use the 
notation (r,f(r)) = (x,y,z) since r = (x,y) and f=z=radiance, x,y 
are angle variables). Denote this intersection set by Gm(xz). 
They then estimate the dimension of G using boxcounting to 
cover the graph of Gr•(xz). However, their method actually 
implicitly assumes continuity; they use additional boxes to cover 
not only their experimental points, but also those points on 
straight lines connecting the latter. Their resulting estimate of 
D(Gch(xz)) is very near 1 (1.16 and 1.11, depending on the 
wavelength used), and we may therefore suspect that it is an 
artifact of their assumption of continuity (since the connecting 
straight lines have dimension 1, while the experimental points 
have D<I, their method will estimate the maximum of the two). 
We now discuss this possibility in more detail. 

The simplest way to relate D(Gr) to D(S•) and D(Sr=) is to 
recall that S• is the projection of Gr with the x,y plane. The 
projection set (S•,) of S1 onto S2 has dimension 

D(Sp) = min(D(S1),D(S2)) (B9) 

which is a basic property of projections. In this case, we obtain 

D(ST>_) = min(D(Gr),2) (B 10) 

Tilere are now two distinct possibilities. 

For the case D(•i>_)=2. If the process is nonstationary, such 
as the (monodimensional, Gaussian) fractal Brownian motion 

processes used by Mandelbrot [1982] and Voss [1983] to model 
mountains, then the graph is continuous (but nondifferentiable) 
but rarely crosses the plane f(r)=T, and D(Sr>)=2, and the 
projection relation gives us no further information about D(Gr). 

For the case D(Si_>)<2. The process is stationary (as are 
cascade processes and, presumably, most remotely sensed 
fields); in this case we will generally have D(Sr>_)<2, and hence 
the projection relation yields 

D(Gr)=D(Sr>_)<2 (Bll) 

In this case (which applies to the examples shown in Figures 
Ala-Alc), Gr will be discontinuous everywhere. We now 
consider Gr•(xz) studied by Carter et al. [1986]. All the 
preceding results apply to Gr•(xz), Sr>•(xz), etc., as long as 
the dimensions of all the above sets are reduced by one (if the 
corresponding value becomes negative, it must be reset to zero). 
Since we have empirical evidence that generally D(Sr>_)<2 (see 
section 2), we expect D(Sr>)=D(Gr), so that D(Grch(xz)) = 
D(Sr>r•(xz))<l, implying that Gr•(xz) is discontinuous 
everywhere. However, Carter et al. [1986] assumed that 
G r•(xz) was continuous and effectively interpolated their 
experimental points with a continuous line (dimension 1, which 
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is > D[Gch(xz)]); hence we expect them to obtain an estimate 
D=I (the maximum of the dimension of the set of points on 
Gc•(xz) and the set on the line connecting them). Indeed, careful 
inspection of the Carter et al. [1986] box-counting figures (N(L) 
versus L) indicate that the function N(L) -- L-1 (hence D = 1) fits 
well over most of the range of L (which was only over roughly 2 
orders of magnitude anyway). 

This example illustrates the dangers of approaching the data 
analysis with unwarranted theoretical preconceptions about the 
continuity of the process. 
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