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1 Introduction

The unprecedented convergence of experiments in particle physics (LHC), astrophysics

(LIGO) and cosmology (Planck) has led to discoveries that confirmed the standard knowl-

edge of quantum interactions and classical gravity, either through the observation of phe-

nomena predicted by the theories (the Higgs boson of the Standard Model [1–3] and general-

relativistic gravitational waves from black-hole binary systems [4–6]) or the gradual refine-

ment of models of the early universe [7, 8]. New physics involving supersymmetry, effects of

quantum gravity, or an explanation of the cosmological constant are the next desirata, which

many scenarios beyond standard predict to be in the range of our current or next-generation

instruments. Some of these scenarios, such as string theory [9–11], loop quantum gravity

(LQG) [12–14], spin foams [15], noncommutative spacetimes [16–19], and effective quan-

tum gravity [20, 21], are very well known by theoreticians and phenomenologists of various

extractions. Others, which include asymptotic safety [22–24], causal dynamical triangula-

tions (CDT) [25], causal sets [26, 27], and group field theory (GFT) [28–30], are perhaps

that famous in the more restricted community of quantum gravity, while nonlocal quan-

tum gravity [32–39] and multifractional spacetimes [40–64] have just begun to make their

appearance on the scene (despite some older precedents), both as theoretical foundations

of new paradigms of exotic geometry and as producers of novel phenomenology.
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Sec. Topic Items No. of items

2 Terminology 01–03 3

3 Motivations 04–06 3

4 Geometry and symmetry 07–21 15

5 Frames and physics 22–30 9

6 Field theory 31–39 9

7 Classical gravity and cosmology 40–45 6

8 Quantum gravity 46–50 5

9 Observations and experiments 51–68 18

10 Perspective 69–72 4

Table 1. Summary of the questions per topic.

It is part of the game that new proposals may meet some resistance at first and, in fact,

multifractional theories have been considered in two rather radical ways: either welcomed

as a fresh insight into several aspects of quantum gravity or rejected tout court with a

wide range of qualifications, from trivial to uninteresting to outright inconsistent. The first

purpose of this paper is to collect the most frequent questions and criticism the author

came across in the last few years and to give them a hopefully clear answer. Rather than

concluding the debate, this contribution will probably fuel it further, either because some of

the answers might not satisfy everybody or because new questions or objections can arise.

The reader is free to make their own judgment on the matter or even to contribute to the

debate actively in the appropriate channels. The recent formulation of two theorems [61]

showing how a universal multiscale measure of geometry naturally emerges whenever the

dimension of spacetime changes with the scale (as in all quantum gravities) provides the

perhaps most powerful justification to the choice of measure in multifractional theories, and

an answer to many of the questions we will see below.

The remarks are presented in an order that permits to introduce the basic ingredients of

multifractional theories in a self-contained way. Therefore, the present work is an updated

review on the subject, which was long due. The most recent one [65] dates back to 2012 and

it does not cover any of the major advancements regarding the motivations of the theory,

several conceptual points about the measure, the field-theory and cosmological dynamics,

and observational constraints. We divide the topics in a preliminary but necessary setting of

the terminology (section 2, 3 items), general motivations (section 3, 3 items), basic aspects

of the geometry and symmetry of multifractional spacetimes (section 4, 15 items), frames

and their physical interpretation (section 5, 9 items), field theory (section 6, 9 items),

classical gravity and cosmology (section 7, 6 items), quantum gravity (section 8, 5 items),

observational and experimental constraints (section 9, 18 items), and a final perspective

(section 10, 4 items). See table 1.

The questions are the subsection titles shown in the table of content (actual text of

the questions adapted). For each answer, bibliography is given where one can find more

– 2 –
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technical details. The question-answer format should both facilitate the search for specific

topics and make an easier reading than the traditional review article. We also note that

this is a “review plus plus” because it contains a number of novel results that augment the

theory by new elements:

1. a more thorough discussion about the physical meaning and consequences of the very

recent flow-equation theorems, succinctly presented in ref. [61], which have repercus-

sions both in general quantum gravity and on the theories of multifractional space-

times (questions 04 , 07 , 10 , 13 , 16 , 29 45 , 48 , and 50 );

2. advances in the theory Tγ with fractional derivatives, incompletely formulated in

refs. [42, 46], regarding its symmetries (question 13 ), a proposal for a multiscale

fractional derivative (question 13 ), a multiscale line element generalizing the no-scale

one of ref. [41] (question 13 ), the recasting of the propagator as a superposition of

quasiparticle modes with a characteristic mass distribution (question 37 ), and its

renormalizability (question 50 );

3. a clarification of the unit conversion of the scales of these geometries, previously

assumed without an explanation (question 08 );

4. the formulation of an important approximation of Tγ , that we will denote by Tγ=α
∼=

Tq, with the theory with q-derivatives, carried through a comparison of their critical

behavior (question 08 ), a comparison and mutual approximation of their differential

calculus (question 13 ), a comparison of their propagators (question 36 ) and of their

renormalization properties (question 50 );

5. the dissipation of some ambiguities [50] in the calculation of the spectral dimension

(question 15 );

6. a discussion on complex dimensions in quantum gravity and fractal geometry

(question 16 );

7. some remarks clarifying that the frame choice in multifractional theories and in

scalar-tensor theories is made, respectively, at the classical and at the quantum level

(question 28 );

8. the recognition, of utmost importance for this class of theories, that the second flow-

equation theorem fixes the presentation of the geometry measure in an elegant way,

which eventually leads to an unexpected solution of the presentation problem (ques-

tion 29 );

9. a detailed summary of results on the renormalization in multifractional theories and

discussions on the new perspectives opened by the stochastic view and on the inade-

quacy of the usual power-counting argument (question 50 );

10. new experimental bounds on the theory with q-derivatives, approximated in the

stochastic view, coming from general dispersion relations (questions 52 and 58 ) and

from vacuum Cherenkov radiation (questions 52 and 59 ).

– 3 –
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2 Terminology

01 What is the dimension of spacetime?

There are several definitions of dimension. The most used in theoretical physics is that of

topological dimension D, which is simply the total number of spatial and time directions. In

a spacetime with Lorentzian signature and one time direction, D = 4 means that there are

three space directions. Other important geometric indicators are the Hausdorff dimension

dh, the spectral dimension ds, and the walk dimension dw. In all these cases and by

a convention accepted by physicists and mathematicians, the dimension of spacetime is

defined after Euclideanizing the time direction.1

The Hausdorff dimension is defined as the scaling of the Euclideanized volume V(ℓ) of

a D-ball of radius ℓ or of a D-hypercube of edge size ℓ. There is no difference in scaling

between the ball and the hypercube. On a classical continuum spacetime, this reads

dh(ℓ) :=
d lnV(ℓ)
d ln ℓ

. (2.1)

Since the volume is the integral V =
´

d̺(x) of the spacetime measure ̺(x) =

̺(x0, x1, . . . , xD−1) in a given region, an approximately constant dh is nothing but the

scaling of the measure under dilations of the coordinates, ̺(λx) = λdh̺(x). On a quan-

tum geometry, the volume V may be replaced by the expectation value 〈V̂〉 of the volume

operator V̂ on a superposition of quantum states of geometry [66, 67]. By using an em-

bedding space, D-balls can be defined also on a discrete geometry or on a pre-geometric

combinatorial structure (for instance, LQG and GFT), as well as on totally disconnected

or highly irregular sets such as fractals [68]. In the latter case, the definition of dh is more

complicated than eq. (2.1) but it conveys essentially the same information, in particular

about the scaling of the measure defining the set [42]. Moreover, a continuous parameter

ℓ exists in all discrete settings or quantum gravities with a notion of distance, even in the

absence of a fundamental notion of continuous spacetime [66, 69]. In such settings, ℓ is

measured in units of a lattice spacing or of the labels of combinatorial complexes.

The spectral dimension ds is the scaling of the return probability in a diffusion process

(see [31] for a review). Let K̄(∂) be the Laplacian on a smooth manifold. Placing a

pointwise test particle at point x′ on the manifold and letting it diffuse, its motion will

obey the nonrelativistic diffusion equation (∂σ − κ1K̄)P (x, x′;σ) = 0 with initial condition

P (x, x′; 0) = δ(x − x′)/
√
g, where κ1 is a diffusion coefficient, σ is an abstract diffusion

time parametrizing the process, and g is the determinant of the metric. Integrating the

heat kernel P for coincident points over all points of the geometry, one obtains a function

P(σ) := Z/V =
´

dDx
√
gP (x, x;σ)/V called return probability (the volume factor makes

the normalization finite). In an alternative interpretation [31], the diffusion process is

replaced by a probing of the geometry with a resolution ∼ 1/ℓ, where ℓ =
√
κ1σ is the

characteristic length scale detectable by the apparatus. Adding also a quantum-field-theory

twist to the story, the diffusion equation is reinterpreted as the running equation of the

1The reader uneasy with this convention can limit the discussion in the text to spatial slices and time

separately. Little changes about the main results.
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transition amplitude P defined by the Green function G(x, x′) = −
´ +∞

0 d(L2)P (x, x′;L),

corresponding in momentum space to the Schwinger representation

G̃(k) = − 1

K̃(k)
= −
ˆ +∞

0
d(L2) exp[−L2K̃(k)] . (2.2)

Here L is a parameter related to the probed scale ℓ and K̃ is the Fourier transform of

the kinetic operator K(∂) in the field action (not necessarily equal to K̄, in general; see

question 15 ). The propagator G governs the quantum propagation of a particle from x′ to

x and P[L(ℓ)] is the probability of finding the particle in a neighborhood of x of size ℓ.

Whatever the interpretation of P, the spectral dimension is the scaling of the return

probability:

ds(ℓ) := −d lnP(ℓ)

d ln ℓ
. (2.3)

Using σ instead, one gets the more common form ds = −2d lnP(σ)/d lnσ. For a set with

approximately constant spectral dimension, P(ℓ) ∼ ℓ−ds . As in the case of the Hausdorff

dimension, a continuous parameter ℓ can always be defined. In quantum geometries, the

return probability in eq. (2.3) may be replaced by the expectation value 〈P̂〉 of a certain

operator P̂ on a superposition of quantum states of geometry [66].

The walk dimension is the scaling of the mean-square displacement of a random walker

X(σ) (a stochastic motion X over the manifold):

dw := 2

(

d ln〈X2(σ)〉
d lnσ

)−1

, (2.4)

where 〈X2(σ)〉 =
´

dDx
√
g x2 P (x, 0;σ). For a set with approximately constant walk di-

mension, 〈X2(σ)〉 ∼ σ2/dw . More information on dw can be found in refs. [50, 57].

In a continuous space, there is a relation between the three dimensions we just in-

troduced. Simply by scaling arguments, one notes that2 σ−ds/2 ∼ P = Z/V ∼ V−1 ∼
ℓ−dh ∼ X−dh ∼ σ−dh/dw , hence ds = 2dh/dw. We will comment on this equation in the

next question. For Euclidean space or imaginary-time Minkowski spacetime (K = ∇2), it

is immediate to check that dh = D = ds and dw = 2. Other definitions of dimension, much

less frequently used in theoretical physics, can be found in refs. [42, 68]. In footnote 5 and

questions 04 and 08 , we will invoke one such definition, called capacity of a set.

For continuous manifolds and in the presence of very simple but nontrivial dispersion

relations K(∂) → K̃(k) 6= −k2, it is easy to show that the spectral dimension ds is nothing

but the Hausdorff dimension d
(k)
h of momentum space [70, 71]. For fractals, this identifica-

tion is conjectured but not yet proved [72, 73]. In general, it is not true that ds = d
(k)
h for the

most general multiscale geometry, as already recognized in ref. [70]. Consider the case where

K̃(k) [a function almost always such that K̃(0) = 0 and K̃(∞) = ∞] depends on k =
√

kµkµ

and the measure in k-momentum space is the usual one, dDk = dk kD−1dΩD, where dΩD

is the angular measure. All the other cases, including multifractional spacetimes, can be

derived from this straightforwardly. Calling K2 := K̃(k), we have 2KdK = K̃′(k)dk, where

2In this chain of relations, a small typo in ref. [57] is corrected.

– 5 –
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a prime denotes a derivative with respect to k. Therefore, up to an angular prefactor the

measure in K-momentum space is dk kD−1 = dK w(K), where

w(K) =
2K[K̃−1(K2)]D−1

K̃′(k)|k=K̃−1(K2)

, (2.5)

where we assumed that we can invert K(k) as k = K̃−1(K2). Since a momentum volume of

linear size K is V(K) =
´

dK w(K), the Hausdorff dimension of the K-momentum space is

d
(k)
h =

d lnV(K)

d lnK
=

Kw(K)
´

dKw(K)
. (2.6)

On the other hand, the spectral dimension is

ds =
ℓ2
´ +∞

0 dk kD−1 K̃(k) e−ℓ2K̃(k)

´ +∞

0 dk kD−1 e−ℓ2K̃(k)
=
ℓ2
´ +∞

0 dK w(K)K2 e−ℓ2K2

´

dKw(K) e−ℓ2K2
. (2.7)

For simple dispersion relations, we know that ds = d
(k)
h . For instance, taking the power

law K̃(k) = k2γ , we have w(K) = KD/γ−1/γ, V(K) = KD/γ/D, and ds = D/γ = d
(k)
h .

Already for a binomial dispersion relation K̃(k) = k2γ1 + ak2γ2 , one cannot get an exact

result. Asymptotically, ds ≃ D/γ1,2 [74], and clearly one also has d
(k)
h ≃ D/γ1,2; transient

regimes of ds and d
(k)
h differ. Therefore, one should take eq. (2.6) as yet another definition

of spacetime dimension.

02 Are “multiscale,” “multifractional,” and “multifractal” synonyms?

No. Although there has been, in quantum gravity, a lot of confusion about “fractal” and

“multiscale” geometries before the appearance of this proposal, and between “multiscale”

and “multifractional” after that, now the terminology has been clarified [57]. A geometry

is multiscale if the dimension of spacetime (dh, ds, and/or dw) changes with the probed

scale. By this, we mean that experiments performed at different energy or length scales

are affected by different spacetime dimensionalities. In a multiscale geometry, at different

length scales

ℓ1 > ℓ2 > ℓ3 > . . . , (2.8)

one experiences different properties of the geometry. This is called dimensional flow. In the

infrared (IR, large scales ℓ > ℓ1), the dimension of spacetime is known to be equal to the

topological dimension D. In our case D = 4, there are three spatial dimensions and one

time dimension. The scales of the hierarchy (2.8) are intrinsic to the geometry and appear

in many (not necessarily all) physical observables.

More precisely, a multiscale spacetime is such that dimensional flow occurs with three

properties: [A1] at least two of the dimensions dh, ds, and dw vary; [A2] the flow is contin-

uous from the IR down to an ultraviolet (UV) cutoff (possibly trivial, in the absence of any

minimal length scale); [A3] the flow occurs locally, i.e., curvature effects are ignored (this

is to prevent a false positive). [B] As a byproduct of A, a noninteger dimension (dh, ds,

– 6 –
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dw, or all of them) is observed during dimensional flow, except at a finite number of points

(e.g., the UV and the IR extrema).

On the other hand, multifractional geometries are a special case of multiscale space-

times. Their measure in position and momentum space and their Laplace-Beltrami operator

are all factorizable in the coordinates:

dDq(x) := dq0(x0) dq1(x1) · · · dqD−1(xD−1) , (2.9)

dDp(k) := dp0(k0) dp1(k1) · · · dpD−1(kD−1) , (2.10)

Kx =
∑

µ

K(xµ) , (2.11)

in D topological dimensions.

Weakly multifractal spacetimes are multiscale spacetimes with the following property

(inherited from fractal geometry, a standard branch of mathematics) in addition of A and

B: [C] the relations

dw = 2
dh
ds
, ds 6 dh (2.12)

hold at all scales in dimensional flow. Strongly multifractal geometries satisfy A, B, C, and

[D] are nowhere differentiable in the sense of integer-order derivatives, at all scales except at

a finite number of points (e.g., the UV and the IR extrema). For the traditional definition

of fractal set, which we will not use in this context of spacetime models, see [57, 68] and

references therein.

03 How many multiscale, multifractional, and multifractal theories are there?

There are as many multiscale theories as the number of proposals in quantum gravity,

plus some more. In fact, dimensional flow (mainly in ds, but in some cases also in dh) is

a universal phenomenon [75–77] found in all the main scenarios beyond general relativity:

string theory [78], asymptotically-safe gravity (ds ≃ D/2 in D topological dimensions at the

UV non-Gaussian fixed point; analytic results) [24, 79, 80]; CDT (for phase-C geometries,

ds ≃ D/2 in the UV [81–84] or, more recently, ds ≃ 3/2 [85]; numerical results) and the

related models of random combs [86, 87] and random multigraphs [88, 89]; causal sets [90];

noncommutative geometry [91–93] and κ-Minkowski spacetime [43, 60, 94–97]; Stelle higher-

order gravity (ds = 2 in the UV for any D [31]); nonlocal quantum gravity (ds < 1 in the

UV in D = 4) [34].

In LQG, while there is no conclusive evidence of variations of the spectral dimension for

individual quantum-geometry states based on given graphs or complexes [69], genuine di-

mensional flow has been encountered in nontrivial superpositions of spin-network states [66],

as an effect of quantum discreteness of geometry. These states appear also in spin foams

(where there were preliminary results [98, 99]) and GFT, so that both theories inherit the

same feature. It must be said, however, that not all possible quantum states may correspond

to multiscale geometries.

Other examples, all based on analytic results, are Hořava-Lifshitz gravity (ds ≃ 2 in the

UV for any D) [80, 84, 100], spacetimes with black holes [101–103], fuzzy spacetimes [104],

and multifractional spacetimes (variable model-dependent dh and ds).

– 7 –
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String theory Quantum gravities T1,v,q,γ T̃1 Early proposals Scale relativity

[77, 105, 106] [107–110] [111, 112, 114]

Multiscale ✓ (low-energy limit) ✓ (all) ✓ ✓ ✗ ✓

Multifractional ✗ ✗ ✓ ✗ ✗ ✗

Multifractal ? case dependent case dependent ? ✗ (only fractal) ?

Table 2. Multiscale, multifractional, and (multi)fractal theories and models.

With the exception of noncommutative spacetimes, all these multiscale examples have

factorizable measures in position and momentum space, either exactly or in certain effective

limits (for instance, the low-energy limit in string field theory, or the continuum limit

of discretized or discrete combinatorial approaches such as CDT, spin foams, and GFT).

However, only multifractional geometries are characterized by factorizable Laplace-Beltrami

operators (hence their name). There are one multifractional toy model and three theories

in total, depending on the differential operators appearing in the action: the model T1
with ordinary derivatives [41, 42, 50, 54] (a special case of the original nonfactorizable

model T̃1 of refs. [77, 105, 106]) and the theories Tv, Tq, and Tγ with, respectively, weighted

derivatives [44, 46, 49, 50, 52, 54, 56] (fixing the problems of T1), q-derivatives [42, 50, 52, 54,

55, 58, 59], and fractional derivatives [41, 42, 45, 46]. We will explain their differences later.

Finally, only a few of these theories have been explicitly checked to be weakly mul-

tifractal: asymptotic safety, certain multiscale states in LQG/spin foams/GFT, and the

multifractional theory with q-derivatives. The multifractional theory with fractional deriva-

tives is strongly multifractal. Noncommutative spacetimes where ds > dh in the UV (as

in most realizations of κ-Minkowski) and black-hole geometries described by a nonlocal

effective field theory violate the inequality in (2.12), hence they are not multifractal. In

the other cases, one should calculate the walk dimension dw to verify whether spacetime is

multifractal or only multiscale. We should also mention some early studies of field theories

on fractal sets [107–109]; by construction, these spacetimes are fractal but they are not

multifractal (there is no change of spacetime dimensionality), hence they are not physical

models.3 On the other hand, Nottale’s scale relativity [111, 112, 114] is multiscale and

presumably also multifractal. A proposal for “fractal manifolds” [113] is multifractal but,

like scale relativity, it is a principle rather than a physical theory, since the field dynamics

is not defined systematically for matter sectors and gravity. Table 2 summarizes the cases.

3 Motivations

04 What are the motivations of multifractional theories?

There are at least four motivations to consider these theories. We call them the quantum-

gravity-candidate argument, the flow-versus-finiteness argument, the uniqueness argument,

and the phenomenology argument.

3A yet older attempt [110] defines a spacetime with fixed noninteger dimension but we do not know

whether this can be considered a fractal.
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(i) Quantum-gravity candidate. Multifractional spacetimes were originally proposed as a

class of theories where the renormalization properties of perturbative quantum field

theory (QFT) could be improved, including in the gravity sector. The objective

of obtaining a renormalizable quantum gravity was supported by a power-counting

argument calculating the superficial degree of diverge of Feynman graphs for fields

living on a multiscale geometry [42]. Later on, it was shown that the theory T1
with ordinary derivatives is only a toy model4 due to the lack of a direct definition

of a self-adjoint momentum operator [47] (in other words, one has to prescribe an

operator ordering in the field action [50]) and to issues with microcausality [42].

Also, explicit loop calculations and the general scaling of the Green function showed

that renormalizability is not improved in the theories Tv and Tq with, respectively,

weighted and q-derivatives [52]. However, the theory Tγ with fractional derivatives

is likely to fulfill the original expectations (to see why, check question 50 ), but its

study involves a number of technical challenges. Nevertheless, massive evidence has

been collected that all multifractional models share very similar properties [42, 46, 53,

56, 59], especially Tq and Tγ (questions 13 and 36 ). In preparation of dealing with

the theory with fractional derivatives and to orient future research on the subject,

it is important to understand in the simplest cases what type of phenomenology

one has on a multiscale spacetime. In particular, Tv and Tq are simple enough to

allow for a fully analytic treatment of the physical observables, while having all the

features of multiscale geometries. Therefore, they are the ideal testing ground for

these explorations. A better knowledge about the typical phenomenology occurring

in multifractional spacetimes will be of great guidance for the study of the case with

fractional derivatives.

(ii) Flow versus finiteness. As soon as dimensional flow was recognized as a universal

property of effective spacetimes emerging in quantum gravity [75], the possibility

was considered that such property is related to the UV finiteness of a theory. This

suspicion was mainly fueled by the fact that ds ≃ 2 in the UV of many different mod-

els: having two effective dimensions would imply that two-point correlation functions

(propagators, potentials, and so on) diverge logarithmically with the distance rather

than as an inverse power law in the UV. Multifractional spacetimes are a class of

theories where dimensional flow is under complete analytic control and where one

can test the conjecture that multiscale geometries are related to UV finiteness. The

counterexamples offered by the multifractional paradigm [52], regardless of the value

of the spectral dimension in the UV, disproved this conjecture and reappraised the

relative importance of dimensional flow with respect to UV finiteness. In parallel, the

supposed universality of the magic number ds = 2 was later recognized as fictitious

because based on a poor statistics; many models, supposedly UV finite, were in fact

found where ds 6= 2 at short scales, including some already considered in the past

(such as CDT [85]).

4Here and there in the text, we will make a small abuse of terminology and call T1 a “theory.”
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(iii) Uniqueness. Although renormalizability is a strongly model-dependent feature, it

remains to understand why dimensional flow is so similar in so different and so many

theories. A recent theorem explains why [61]. Let dimensional flow of spacetime in

the Hausdorff or spectral dimension d = dh, ds be described by a continuous scale

parameter ℓ (this is always the case, as stated in 01 ). Let also effective spacetime be

noncompact, so that d ≃ D in the IR and there are no undesired topology effects. As

a further very general requirement, we also ask that dimensional flow is slow at large

scales, meaning that the dimension d forms a plateau in the IR (figure 1). Since the

IR limit ℓ → +∞ is asymptotic, this flatness of d(ℓ) in the IR is always guaranteed.

IR flatness can be encoded perturbatively by requiring that d ≃ dIR approximately

at large scales. The accuracy of the approximation is governed by an order-by-order

estimate of the logarithmic derivatives of d with respect to the scale ℓ, via the linear

flow equation

n
∑

j=0

cj
dj

(d ln ℓ)j

[

d(n)(ℓ)− d(n−1)(ℓ)
]

= 0 , d(0) := dIR , (3.1)

where cj are constants. Then, given the three assumptions above (obeyed by all

known quantum gravities) and eq. (3.1), we can completely determine the profile d(ℓ)

at large and mesoscopic scales once we also specify the symmetries of the measures

in position and momentum space. The first flow-equation theorem states that, if such

measures are Lorentz invariant in the continuum limit, then

d(ℓ) ≃ D + b

(

ℓ∗
ℓ

)c

+ (log oscillations), (3.2)

where b and c are constants fixed by the dynamics of the specific theory, ℓ∗ is the

largest characteristic scale of the geometry, and the omitted part is a combination of

logarithmic oscillations in ℓ. Using eqs. (3.2) and (2.1), for d = dh (Lorentz invariance

in position space) one can specify the scaling of spacetime volumes V(ℓ) with their

linear size ℓ, while for d = ds (Lorentz invariance in momentum space) one can derive

the return probability P(ℓ) from (2.3). The proof of (3.2) is independent of the dy-

namics of the theory and of the geometrical background, except for the requirement

that dimensional flow exists [obviously, this implies that spacetime geometry is char-

acterized by a hierarchy of fundamental scales (2.8)]. The dynamics, and thus the

details of the theory, determines the numerical value of the constants b and c and the

identification of ℓ∗ within the scale hierarchy of the theory. Many quantum-gravity

examples are given in question 48 .

Now, if the measures in position and momentum space are not Lorentz invariant but

factorizable, and if the Laplace-Beltrami operator is also factorizable, we hit precisely

the case of multifractional theories. Then, eq. (3.2) ceases to be valid. In its stead,

one has D copies of it with D = 1, one for each spacetime direction:

d(ℓ) ≃
D−1
∑

µ=0

dµ(ℓ) :=
D−1
∑

µ=0

[

1 + bµ

(

ℓµ∗
ℓ

)cµ

+ (log oscillations)

]

, (3.3)
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Figure 1. The central hypothesis of the theorems on dimensional flow described in the text.

where bµ and cµ are constant. This is the second flow-equation theorem. Since a

factorizable measure in position space can be written as eq. (2.9) for D independent

profiles qµ(xµ) (called geometric coordinates), in multifractional spacetimes volumes

(of same linear size ℓ in all directions) are of the form V(ℓ) ∼
´

vol d
Dq(x) =

∏

µ q
µ(ℓ).

Plugging this expression into eq. (2.1) and integrating using eq. (3.3), we get an

approximate qµ(ℓ) for each direction. The theorem determines the profiles qµ(xµ)

exactly. In this paragraph, we focus our attention on real solutions to the flow equa-

tion (3.1), postponing the case of complex solutions to question 16 . At leading order

in the perturbative expansion (3.1) of d(ℓ) centered at the IR point, one has

qµ(xµ) ≃ xµ +
ℓµ∗
αµ

sgn(xµ)

∣

∣

∣

∣

xµ

ℓµ∗

∣

∣

∣

∣

αµ

Fω(x
µ) , (3.4)

where

Fω(x
µ) = 1 +Aµ cos

(

ωµ ln

∣

∣

∣

∣

xµ

ℓµ∞

∣

∣

∣

∣

)

+Bµ sin

(

ωµ ln

∣

∣

∣

∣

xµ

ℓµ∞

∣

∣

∣

∣

)

, (3.5)

all indices µ are inert (there is no Einstein summation convention), the first factor 1

in (3.5) is optional [61], ℓµ∗ and ℓµ∞ are D +D length scales, and αµ, Aµ, Bµ, and ωµ

are D +D +D +D real constants. Going beyond leading order in the perturbative

expansion of the dimension at the IR, one gets the even more general form, valid at

all scales,

qµ(xµ) = xµ +
+∞
∑

n=1

ℓµn
αµ,n

sgn(xµ)

∣

∣

∣

∣

xµ

ℓµn

∣

∣

∣

∣

αµ,n

Fn(x
µ) , (3.6)

where Fn(x
µ) is Fω(x

µ) with all real constants ℓµ∞, αµ, Aµ, Bµ, ωµ labeled by the sum

index n. Equation (3.6) describes the most general real-valued multifractional geom-

etry along the direction µ, characterized by an infinite hierarchy of scales {ℓµn, ℓµ∞,n}.
Remarkably, exactly the same form of the geometric coordinates (3.6) can be ob-

tained in a totally independent way by asking a priori that the measure (2.9) on

the continuum represent the integration measure on a multifractal [42]. For each
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direction, one first considers a deterministic fractal set5 living on a line and obtains

the typical (power law)×(log oscillations) structure [115–117]; summing over different

scales, one obtains the multifractal profile (3.6). The independence of this derivation

of the measure is important because it yields information not apparently available in

the flow-equation theorems (see question 08 ). In this review, we will not insist too

much upon the beautiful formalism of fractal geometry implemented into multifrac-

tional spacetimes; a concise presentation can be found in refs. [42, sections 3.2, 5.1,

and 5.2] and [57].

To summarize, the measure (3.6) used in multifractional theories is the most general

one when spacetime geometry is multiscale and factorizable [61]. It also happens to

coincide with the integration measure of a multifractal [42].6 Thus, multifractional

theories are the most general factorizable framework wherein to study the phenomenon

of dimensional flow. This can (and did) help to better understand the flow properties

of other quantum gravities (even despite their nonfactorizability), either by recasting

the dynamics of such theories as a multifractional effective model [43, 48, 60] or by

employing the same mathematical tools endemic in multifractional theories [45, 66,

78, 80]. The geometrical and physical reason beyond the existence of the flow-equation

theorems and of a unique (in the sense of being described by the same multiparametric

function) dimensional flow in all quantum gravities is the fact that the IR is reached

as an asymptote where the dimension varies slowly. There is also a perhaps deeper

physical reason, more delicate to track, that also sheds light into the flow-versus-

5A deterministic fractal F =
⋃

i Si(F) is the union of the image of some maps Si which take the set F and

produce smaller copies of it (possibly deformed, if the Si are affinities). Not all fractals are deterministic.

Sets with similarity ratios randomized at each iteration are called random fractals. Cantor sets are popular

examples of deterministic and random fractals. Let S1(x) = a1x+b1 and S2(x) = a2x+b2 be two similarity

maps, where a1,2 (called similarity ratios) and b1,2 (called shift parameters) are real constants and x ∈ I is

a point in the unit interval I = [0, 1]. The image Si(A) of a subset A ⊂ I is the set of all points S1(x) where

x ∈ A. A Cantor set or Cantor dust C is given by the union of the image of itself under the two similarity

maps, C = S1(C) ∪ S2(C). For instance, the ternary (or middle-third) Cantor set C3 has a1 = 1/3 = a2,

b1 = 2/3, and b2 = 0: S1(x) =
1

3
x + 2

3
, S2(x) =

1

3
x. At the first iteration, the interval [0, 1] is rescaled by

1/3 and duplicated in two copies: one copy (corresponding to the image of S2) at the leftmost side of the

unit interval and the other one (corresponding to S1) at the rightmost side. In other words, one removes the

middle third of the interval I. In the second iteration, each small copy of I is again contracted by 1/3 and

duplicated, i.e., one removes the middle third of each copy thus producing four copies 9 times smaller than

the original; and so on. Iterating infinitely many times, one obtains C3, a dust of points sprinkling the line.

The set is self-similar inasmuch as, if we zoom in by a multiple of 3, we observe exactly the same structure.

It is easy to determine the dimensionality of the Cantor set C. Since this dust does not cover the whole

line, it has less than one dimension. Naively, one might expect that the dimension of C is zero, since it is

the collection of disconnected points (which are zero-dimensional). However, there are “too many” points of

C on I and, as it turns out, the dimension of the set is a real number between 0 and 1. In particular, given

N similarity maps all with ratio a, the similarity dimension or capacity of the set is dc(C) := − lnN/ ln a, a

formula valid for an exactly self-similar set made of N copies of itself, each of size a. Note that a = N−1/dc :

the smaller the size a, the smaller the copies at each iteration and the smaller the dimensionality of the set.

In the case of the middle-third Cantor set, N = 2 and a = 1/3, so that dc = ln 2/ ln 3 ≈ 0.63.
6This is not inconsistent with what said in question 02 . Even if the measure is multifractal, the geometry

of spacetime may be nonmultifractal, depending on the symmetries enforced on the dynamics (i.e., type of

derivatives).
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finiteness issue. It consists in the fact that dimensional flow is the typical outcome of

the combination of general relativity with quantum mechanics [62, 63].

(iv) Phenomenology. The search for experimental constraints on fractal spacetimes dates

back to the 1980s [118–121]. Since early proposals of fractal spacetimes were quite

difficult to handle [107–110], toy models of dimensional regularization were used and

several bounds on the deviation ǫ = D − 4 of the spacetime dimension from 4 were

obtained. However, these models were not backed by any theoretical framework and

they were not even multiscale. Multifractional theories are genuine realizations of

multiscale geometries based on much more solid foundations, i.e., all the sectors one

would possibly like to investigate are under theoretical control (classical and quan-

tum mechanics, classical and quantum field theory, gravity, cosmology, and so on)

and they give rise to well-defined physical predictions that can be (and actually have

been) tested experimentally. Most notably, all the phenomenology extracted from

multifractional scenarios comes directly from the full theory, with very few or no ap-

proximations. We will always use the term “phenomenology” in this sense, in contrast

with its other use as a synonym of “heuristic” (i.e., inspired by a theory rather than

derived from it rigorously) in some literature of quantum gravity. The questions left

unanswered by the dimensional-regularization toy models can now receive proper at-

tention; see section 9. In the same section, we will see that multifractional theories

make it possible to explore observable consequences of dimensional flow, which is not

just a mathematical property.

05 I understand that spacetimes endowed with a structure of weighted deriva-

tives or q-derivatives are analyzed more in detail because they are simpler

than the theory with fractional derivatives, which is most promising espe-

cially as far as renormalization is concerned. However, what is the physical

reason why such extensions Tv and Tq should be of interest and relevance

to particle-physics phenomenology? They are only distant relatives of a

theory supposed to describe geometry (dimensional flow) and quantum

gravity, with no connection to the Standard Model.

A first answer is given by the quantum-gravity-candidate argument of 04 . All multifrac-

tional theories share similar phenomenology, as far as we can see. In the context of particle

physics, it was shown that the scale hierarchy of Tv is quite similar to the scale hierar-

chy of Tq, even if individual experiments may be sensitive to such scales in different ways

[for instance, variations of the fine-structure constant in quantum electrodynamics (QED)

are detectable only in the case with q-derivatives but not in the other] [55, 56]. In ques-

tions 08 , 13 , and 36 , we will find a striking similarity between Tq and Tγ when γ = α, based

on the dimensionality of the Laplace-Beltrami operator [42], on the form of the propagator

in the UV, and on approximations of the integrodifferential calculi of the theories. Because

of this approximate but crucial matching

Tγ=α
∼= Tq , (3.7)
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we expect the phenomenology with q-derivatives to be very similar to that with fractional

derivatives. Thus, it is useful to understand what type of experiments would be capable of

constraining Tγ .

Apart from this goal, it is important to recognize the impact of dimensional flow on

physical observables. The quest for an observable imprint of quantum gravity is more

feverish than ever and it is natural to look at possible effects of the most evident feature

all these competitors have in common. The theories Tv and Tq are not mere toy models

of a “better” theory: they represent autonomous realizations of physics on a geometry

with dimensional flow. Even if their renormalizability is not better than in standard field

theories, they display a full set of testable physical observables from particle and atomic

physics to cosmology. Since the geometry described by the multifractional measures (3.4)

and (3.6) is the most general factorizable one if dh varies with the scale, the constraints on

the scale hierarchy obtained in multifractional theories possibly have a much wider scope

of validity, being somewhat prototypical of the whole class of multiscale theories; thus,

including quantum gravities.

06 These theories have been developed mainly by the author himself and

hence their impact on the community at large might be limited. Will this

line of research illuminate anything about quantum gravity?

Yes, mainly for the reason spelled out in 05 . Multifractional theories did receive attention

by the quantum-gravity community and have been actively studied not just by the author

but also by researchers working in different fields such as quantum field theory [49, 50, 52, 55,

56], noncommutative spacetimes [43, 60], quantum cosmology and supergravity [43], group

field theory [43], classical cosmology [51, 59], and numerical relativity [59]. As mentioned

in 04 , interest has not been limited to multifractional theories per se, but extended to the

possibility to use their machinery in different, quantum-gravity-related contexts [66, 78, 80].

However, despite the ongoing collaborative effort, the limited number of people involved

is sometimes perceived as a signal that multifractional theories are not as interesting and

useful as advertized.

There were two causes that led to this opinion. The first is the type of development

that multifractional theories have undergone since the beginning [77]. Many of their as-

pects have evolved slowly and heterogeneously from paper to paper and this has hindered

a coherent exposition of the main ideas from the start. The present manifesto, with its

overview and active integration of different elements, should help to clarify the context,

advantages, and status of these theories. The second cause is that multifractional theo-

ries had to talk with a number of communities widely different from one another. On one

hand, the original proposal was directed to the quantum-gravity sector, which is not at all

annoyed by the breaking of Lorentz symmetries but is fragmented into, and busy with, a

number of independent and very strong agendæ based on elegant mathematical structures

and convincing evidence (or proofs) of UV finiteness. Since there are hints that it is possible

to quantize multifractional gravity but there is no proof yet, the present proposal is un-

derstandably regarded as unripe. On the other hand, the study of the multiscale Standard

Models left gravity aside and was of more interest for the traditional QFT community, for
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which Lorentz invariance is a cornerstone and dimensional flow is an unnecessary concept.

Consequently, the main motivation of the theories was lost (question 32 ).

The intrinsic difficulty in changing spacetime paradigm (a change of measure is rela-

tively alien to “usual” quantum-gravity scenarios, with the exception of noncommutative

spacetimes) and the lack of contact with observations have partially limited the reception

of this proposal until now. However, the important conceptual clarifications and simplifi-

cations carried out in the last year (mainly in refs. [56, 57, 61]) and the obtainment of the

first observational constraints ever on the theory [55, 56, 58, 59] are already contributing

to boost its visibility. It may also be relevant to recall that, contrary to popular quantum-

gravity candidates, the case with q-derivatives is the first and only known example of a

theory of exotic geometry that is efficiently constrained by gravitational waves alone [58].

In this respect, as far as gravity waves are concerned, and until further notice, multifrac-

tional theories are proving themselves to be observationally as competitive as the usual

quantum-gravity scenarios. This is the type of result one might like to find in the context

of quantum gravity at the interface between theory and experiment. This and other results

on phenomenology, together with the universality traits described in 04 , make the multi-

fractional paradigm not only a useful and general tool of comparison of different features

in the landscape of quantum gravity, but also an independent theory that is legitimate to

study separately. In this sense, it is not strictly subordinate to the problem of quantum

gravity at large.

It is also relevant to recall that the idea underlying multifractional theories is not a

prerogative of this framework. In other proposals [107–114], an Ansatz for geometry and

symmetries was made but no field-theory action thereon was given. The multifractional

paradigm not only makes the “fractal spacetimes” idea systematic, but it also provides an

explicit form for the dynamics (questions 31 and 40 ). In particular, the “fractal coordinates”

of scale relativity correspond to our binomial geometric coordinates but written as a power-

law profile with a scale-dependent exponent, q ∼ xα(ℓ) with α(ℓ) = 1 + (α − 1)/[1 +

(ℓ/ℓ∗)
α−1] [42].

4 Geometry and symmetries

07 The choice of measure (2.9) with eq. (3.4) and

αµ = α0, α , ℓµ
∗
= t∗, ℓ∗ , ℓµ

∞
= t∞, ℓ∞ , (4.1)

so often used in multifractional models, is completely ad hoc. On one hand,

why should we limit our attention to factorizable measures (2.9)? On the

other hand, why should one choose the specific profile q(x) in eq. (3.4)?

A highly irregular geometry such as multidimensional fractals is generically described by

a nonfactorizable measure ̺(x0, x1, . . . , xD−1). There have been attempts to place a field

theory on such geometries in the past [107–109] and even recently [77, 105, 106] but, un-

fortunately, and regardless of their level of rigorousness, their range of applicability to

physical situations was severely restricted. This was due to purely technical reasons, which
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include, for instance, the difficulty in finding a self-adjoint momentum operator and a self-

adjoint Laplace-Beltrami operator compatible with the momentum transform. In order to

make progress, factorizable measures d̺(x0, x1, . . . , xD−1) =
∏

µ dq
µ(xµ) [eq. (2.9)] were

considered starting from ref. [41]. This choice has been successful in fully constructing a

whole class of theories, in extracting observational constraints thereon, and in connecting

efficiently with quantum-gravity frameworks. If we compare the 25-year stalling of non-

factorizable models with the 5-year advancement of factorizable models from theory to

experiments, the practical justification of (2.9) is evident. Also, from the point of view

of the phenomenology of dimensional flow, there is nothing wrong with factorizable mea-

sures: they have exactly the same scaling properties of nonfactorizable measures, which is

a necessary and sufficient condition to have the same change in dimensionality.

Of course, it may be that Nature, if multiscale, is not represented by factorizable geome-

tries, in which case we have to look into other proposals. As discussed in ref. [60], the natural

generalization of multifractional geometries to nonfactorizable measures are, arguably, non-

commutative spacetimes, which overcome the problems associated with nonfactorizability

with the introduction of a noncommutative product. The utility of factorizable multifrac-

tional theories is not exhausted even in that case because, although the mathematical and

practical language describing noncommutative systems is different from the one employed

in multiscale or fractal geometries, many contact points between these two frameworks are

possible nonetheless [43, 60].

Once accepted the use of factorizable measures, according to the second flow-equation

theorem the only possible choice is (3.6). We can walk the logical path (3.6)→(3.4)→(4.1)

as follows. Equation (3.6) is an IR expansion with D copies of an infinite number of free

parameters (fractional exponents αn,µ, frequencies ωn,µ, amplitudes, and the scales ℓµn and

ℓµ∞,n), which means that one can fit any wished profile when no dynamical input on the

values of such parameters is given (it is given in quantum gravities). The first step in

reducing this ambiguity in multifractional theories comes from the scale hierarchy itself,

which is divided in two sets. Omitting the index µ from now on, the first is the set of

scales {ℓn} = {ℓ1 > ℓ2 > . . . } characterizing regimes where the dimension of spacetime

takes different values (we will see which values in question 15 ); it is the scale hierarchy

par excellence, the one defining dimensional flow via the polynomials of (3.6). Superposed

to that is the set of scales {ℓ∞,n}, called harmonic structure in fractal geometry [42]. The

harmonic structure does not govern the main traits of dimensional flow but it modulates

it with a superposition of n patterns of logarithmic oscillations; such modulation affects

even scales much larger than ℓ∞, as cosmology shows [54, 59]. The scale hierarchies {ℓn}
and {ℓ∞,n} are mutually independent but, from the derivation of eq. (3.6), it is easy to

convince oneself that ℓn > ℓ∞,n for each n [61]. Thus, the long-range modulation of the

harmonic structure and the theoretical “coupling” ℓn ↔ ℓ∞,n leads to the conclusion that

the first multiscale effects we could observe in experiments would be at scales & ℓ∗ ≡ ℓ1,

possibly modulated by log oscillations with scale ℓ∞ ≡ ℓ∞,1. In other words, eq. (3.4) is the

approximation of (3.6) at scales & ℓ∗. But this is already sufficient to extract all relevant

phenomenology. Scales below ℓ∗ are too small to be constrained by experiments, and ℓ∗
acts as a sort of “screen” hiding the yet-unreachable microscopic structure of the measure
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at smaller scales. Whatever happens at smaller scales, no matter the number of transient

regimes with different dimensionalities from ℓ∗ down to Planck scales, from the point of

view of a macroscopic observer the first transition to an anomalous geometry will occur

near ℓ∗. Experiments constrain just this scale, the end of the multiscale hierarchy. Thus,

for all practical purposes there is no loss of generality in considering eq. (3.4) instead of the

too formal (3.6). The further simplification from (3.4) to (4.1) is an isotropization of the

scale hierarchies and dimensions to all spatial directions, while the time direction is left free

to evolve independently. Full isotropization is achieved when α0 = α, but this is almost

never needed in calculations. If one wishes to consider geometries which are multiscale

only in the time or space directions, it is sufficient to set α0 6= 1, α = 1 or α0 = 1, α 6= 1,

respectively. Having an isotropic spatial hierarchy (one scale ℓi∗ = ℓ∗ for all directions)

partially compensates for the restrictions of factorizability and makes observables easier to

compute. One can even invoke this choice as a symmetry principle defining the theory,

since there is no reason a priori to have a strongly different dimensional flow along different

spatial directions. One can consider this as part of a multiscale version of the principle of

special relativity.

08 What is the parameter space of these theories?

There are severe theoretical priors on (αµ, t∗, ℓ∗, t∞, ℓ∞, A,B, ω).

– The fractional exponents α0 and α are taken within the interval

0 6 αµ 6 1 . (4.2)

The lower bound αµ > 0 guarantees that the UV Hausdorff dimension αµ of each

direction in spacetime be non-negative, a minimal requirement if we want to be able

to probe the geometry with conventional rules. The upper bound αµ 6 1 guarantees

that the dimension in the UV is always smaller than the topological dimension D.

Neither bound can be easily extended in the theories T1, Tv, and Tq. The lower limit

αµ > 0 can be replaced by
∑

αµ > 0 (e.g., ref. [52]); in general, not all αµ can be

negative, lest dh ≃
∑

µ αµ < 0 [see eq. (4.52)]. However, this would lead to a negative-

definite dimension either of time or of spatial slices, and it is not clear whether such a

configuration would make sense physically. On the other hand, if we took the upper

limit arbitrarily large, we would get a dimensionally larger UV geometry that has very

few examples in quantum gravity; still, there exist a minority of cases where ds > D

in the UV, as in κ-Minkowski spacetime [93, 95] o near a black hole [103]. However,

multiscale corrections of physical observables are always of the form

vµ(x
µ) := ∂µq

µ(xµ) = 1 +O(|xµ/ℓ∗|αµ−1). (4.3)

Therefore, an αµ > 1 always leads to a wrong IR limit, which is defined by the largest

fractional charge αµ,n in eq. (3.6). By definition, this is equal to 1 (nonanomalous

scaling of the coordinates). The special value

αµ =
1

2
(4.4)
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at the center of the interval (4.2) plays a unique role, not only because it is the average

representative of this class of geometries (it is typical and instructive to compare ex-

perimental constraints with αµ ≪ 1, αµ = 1/2, and the standard geometry αµ = 1),

but also because it signals a phase transition across a critical point in the theory [42].

Take, for instance, a scalar field in flat multifractional Minkowski space:

Sφ =

ˆ

dDq(x)

[

1

2
φKφ− V (φ)

]

, (4.5)

where the signature of the Minkowski metric is ηµν = (−,+, · · · ,+)µν and K is the

Laplace-Beltrami operator. The engineering (scaling) dimension of the scalar field is

[φ] =
dh − [K]

2
, (4.6)

where dh is the scaling of the coordinate-dependent part of the measure dDq.7 From

eq. (4.53) (αµ = α for all µ), it follows that φ becomes dimensionless when α = [K]/D.

In the model T1 and in the theory Tv, the Laplace-Beltrami operator is

T1 : K = � , Tv : K = DµDµ =
1√
v
�
(√
v ·
)

, Dµ :=
1√
v
∂µ
(√
v ·
)

, (4.7)

where

v = v(x) := v0(x
0) v1(x

1) · · · vD−1(x
D−1) > 0 . (4.8)

Thus, [K] = 2 at all scales and the critical value of the isotropic fractional expo-

nent is α = 2/D. This is precisely 1/2 in D = 4 dimensions. Thus, in T1 and Tv
the value (4.4) is somewhat preferred because the critical point is interpreted (as in

Hořava-Lifshitz gravity) as a UV fixed point.

In the theories Tq and Tγ on Minkowski spacetime, the Laplace-Beltrami operator is

(Einstein’s sum convention is used) [42, 46]

Tq : K = �q = ηµν
∂

∂qµ
∂

∂qν
, Tγ : K = Kγ , (4.9)

where Kγ is composed by the operators ∞∂
2γ and ∞∂̄

2γ , respectively, the Liouville

and Weyl fractional derivative of order 2γ [41, 122] (see question 13 for the explicit

expression). The varying part of the Laplacian scales as [�q] ≃ 2α and [Kγ ] ≃ 2γ (in

the UV) for the isotropic choices αµ = α and γµ = γ, and the scalar field scales as

[φ] = (Dα− 2γ)/2. For α = γ, there is no UV critical point but the behaviour of Tq
and Tγ is quite similar.

In the case with fractional derivatives Tγ=α, the range (4.2) is further shrunk to

1/2 6 αµ 6 1 by requiring multifractional spacetime to be normed (that is, distances

obey the triangle inequality) [41].8 Then, the value αµ = 1/2 is even more special

7Note that [dDq] = −D for the measure given by (2.9), (3.4), and (4.1) (or in the general case (3.6))

because all elements in the sum scale in the same way. However, what matters here is the scaling of the

nonconstant terms of the measure, which is −αµ for each direction.
8There is no such restriction in Tq, which has a well-defined norm for any positive value of α [54].

– 18 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

being it the lowest possible in the theory. Equation (4.4) is also supported indepen-

dently by a recent connection with a heuristic estimate of quantum-gravity effects on

measurement uncertainties [62, 63]. A parallel estimate, however, selects

αµ =
1

3
(4.10)

as an alternative preferred value [62, 63]. This lies in the region of parameter space

where Tγ=α is not normed, but in questions 29 and 50 we will reconsider the restric-

tion (4.2). Last, the arguments of [62, 63] also fix the fractional exponents to the fully

isotropic configuration

α0 = α , (4.11)

although in general we will not enforce this relation.

– There is no prior on t∗, ℓ∗, t∞, and ℓ∞, except that they are positive; there are also

other free parameters E∗, k∗, E∞, and k∞ in the momentum-space measure. One

can reduce the number of free parameters by relating time and length scales by a

unit conversion. In a standard setting, one would make such conversion using Planck

units. Here, the most fundamental scale of the system is the one appearing in the full

measure with logarithmic oscillations, denoted above as ℓ∞. For the time direction

one has a scale t∞, while in the measure in momentum space the fundamental energy

E∞ and momentum p∞ appear. Then, one may postulate that the scales ℓ∗ > ℓ∞,

t∗ > t∞ and E∗ 6 E∞ are related by

E∗ =
t∞E∞

t∗
, t∗ =

t∞ℓ∗
ℓ∞

, (4.12)

and so on with momenta. The origin of these formulæ was left unexplained in [55, 56],

but we can understand them better by a simple observation [62, 63]. The origin of ℓµ∞
is a partition of the scales in fractional complex measures. As we will see in 16 , the

general real-valued leading-order solution of the flow equation has terms of the form

|xµ/ℓµ∗ |α+iω ± |xµ/ℓµ∗ |α−iω. Splitting |xµ/ℓµ∗ |α±iω = λ(µ)|xµ/ℓµ∗ |α|xµ/ℓµ∞|±iω, where

λ(µ) = (ℓµ∞/ℓ
µ
∗ )

±iω is purely imaginary and ℓµ∞ is an arbitrary length, we get the log-

oscillating measure (3.4). If λ(µ) = λ for all µ (same partition in all directions) and

a space-isotropic hierarchy, we get (t∗/t∞)±iω = λ(0) = λ(i) = (ℓ∗/ℓ∞)±iω, hence the

second equation in (4.12). On the other hand, the scales kµ∗ and kµ∞ in momentum

space are conjugate to ℓµ∗ and ℓµ∞, in the sense that kµ∗ ∝ 1/ℓµ∗ and kµ∞ ∝ 1/ℓµ∞ with

the same proportionality coefficient. This is clear from dimensional arguments but it

is made especially rigorous in Tq, where the momentum measure (2.10) is completely

determined by asking that the geometric momentum coordinate pµ(kµ) be conjugate

to qµ(xµ). For each direction, one has

pµ(kµ) =
1

qµ(1/kµ)
, (4.13)

where all scales ℓµn in (3.6) are replaced by energy-momentum scales kµn [54, 59].

Therefore, in the case of a binomial space-isotropic measure we have kµ∗ ℓ
µ
∗ = kµ∞ℓ

µ
∞,

which reduces to the first equation in (4.12) for µ = 0.
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Having understood eq. (4.12), one recalls that log-oscillating measures provide an

elegant extension of noncommutative κ-Minkowski spacetime and explain why the

Planck scale does not appear in the effective measure thereon [43] (see also ques-

tion 48 ). In turn, this connection suggests that the fundamental scales in the log

oscillations coincide with the Planck scales:

t∞ = tPl , ℓ∞ = ℓPl , E∞ = k∞ = EPl = mPlc
2 . (4.14)

In four dimensions, tPl =
√

~G/c3 ≈ 5.3912 × 10−44 s, ℓPl =
√

~G/c5 ≈ 1.6163 ×
10−35 m, and mPl =

√

~c/G ≈ 1.2209 × 1019 GeVc−2. Remarkably, eq. (4.14) con-

nects, via Newton constant, the prefixed multiscale structure of the measure with

the otherwise independent dynamical part of the geometry. Also, it makes the log-

oscillating part of multiscale measures “intrinsically quantum” in the sense that Planck

constant ~ = h/(2π) appears in the geometry. An interesting follow-up of this concept

will be seen in 29 .

With eqs. (4.12) and (4.14), one reduces the number of free scales of the binomial

measure (3.4) with (4.1) to one: t∗ or ℓ∗ or E∗.

– The real amplitudes A and B can be set to be non-negative, since they multiply

trigonometric functions. Also, they must be no greater than 1 in order to avoid

negative distances [57]. Therefore,

0 6 A,B 6 1 . (4.15)

– The frequency ω stands out with respect to the other parameters because it takes a

discrete set of values. As mentioned in 04 , the measures (3.6) and (3.4) can be derived

from a pure calculation in fractal geometry. The geometry of the measure without

log oscillations is a random fractal, namely, a fractal endowed with symmetries whose

parameters are randomized each time they are applied over the set [42, 116]. On the

other hand, the measure with logarithmic oscillations corresponds to a deterministic

fractal where the symmetry parameters are fixed (see footnote 5). For the binomial

measure (3.4) with (4.1), α0 = α, and only one frequency ω > 0, the underlying frac-

tal F = ⊗µFµ is given, for each direction, by the union of N copies of itself rescaled

by a factor λω = exp(−2π/ω) at each iteration. Since the capacity of Fµ is equal

to the Hausdorff dimension and reads dc = − lnN/ lnλω = dh = α, the number of

copies is N = exp(−α lnλω) = exp(2πα/ω). N is a positive integer, so that ω can

only take the irrational values9

ω = ωN :=
2πα

lnN
. (4.16)

For α = 1/2 and N = 2, 3, . . ., we have λω = 1/N2 and ω2 ≈ 4.53 > ω3 ≈ 2.86 > . . . .

The case N = 1 is not a fractal [eq. (4.16) is ill defined then], while for each N one

9Here we discover that, for consistency, we can have ωµ = ω for all µ only if the measure (3.4) is isotropic,

αµ = α for all µ. This piece of information has never been used in the literature but it does not affect

observations much.
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has a different fractal in the same class [57]. Overall, the prior on ω is

0 < ω < ω2 =
2πα

ln 2
, (4.17)

with irrational values picked in between.

09 Are theories on multifractional spacetimes predictive and falsifiable? The

reason of this concern is the presence of a largely arbitrary element, the

measure profiles qµ(xµ). Their choice is dictated only by mathematics (in

particular, by multifractal geometry) and by very general properties of

dimensional flow, but not by physics and physical observations or exper-

iments. In most papers of the subject, the simplest form (3.4) with (4.1)

of the measure is chosen, but still mathematically infinitely many other

measures are possible which satisfy criteria of fractal geometry. The am-

biguity in the selection of the measure is equivalent to having infinitely

many parameters of the theory and this renders the theory nonpredictive.

Nothing prevents one from using polynomial distributions or multiple log-

arithmic oscillations, such as in the measure (3.6). The criterion of sub-

jective simplicity should never be used to substitute the requirement of

physical predictability. Since the measure q(x) is part of the definition

of multifractional spacetimes, it cannot be verified and tested physically.

Or, in other words, it can always be fine-tuned to correctly reproduce any

phenomenological data. This means that these theories are not falsifiable.

We already answered to this in 07 . Theories with the binomial measure (3.4) are repre-

sentative for the derivation of phenomenological consequences of the whole class of theories

on multifractional spacetimes. No matter what the detailed behaviour of the most general

measure (3.6) is, the physical consequences are universal and the theory is back-predictive.

Furthermore, the ranges (4.2), (4.15), and (4.17) of the values of the free parameters

in (3.4) with (4.1) is so limited that it is extremely easy to falsify the theory and exclude

large portions of the parameter space (α0, α, t∗, ℓ∗, t∞, ℓ∞, A,B, ω), as done by observations

of gravitational waves [58] and of the cosmic microwave background (CMB) [59].

10 What is the physical motivation of the choice of measure? I agree that,

once the measure is chosen, the theory is fully predictive and experimental

consequences can be derived. The problem, however, is how to predict such

measure in the first place, based on physical considerations. If a measure

q(x) is fixed, then predictability and falsifiability are recovered, but then

the new question is to physically motivate the choice of q(x). I view its

lack as the big drawback of this class of theories.

This type of remark, redundant with 07 and 09 , used to arise before the formulation of the

flow-equation theorems [61]. It is true that general theories of multifractional spacetimes

with measure q(x) unspecified lack predictability and falsifiability, but the same could be

said about the general framework of “quantum field theory” with arbitrary interactions as
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opposed to the very concrete Standard Model. In our case, the measure q(x) is given by (3.6)

or its approximation (3.4), which is the general factorizable solution of eq. (3.1). Any other

measure corresponds to different regimes of the general expression (3.6). The physical

mechanism which determines the measure is precisely this flow equation (almost constant

dimension in the IR) and it agrees completely with the arguments and calculations in fractal

geometry invoked in early papers. We say “physical” rather than “geometric” because the

geometry expressed by dimensional flow has a direct impact on physical observables.

11 You said that the binomial measure captures all the main properties of a

multifractal geometry. Can you illustrate that in a pedagogical way?

Consider the theory Tq with binomial measure (3.4) with Fω = 1. From eq. (4.13), we get

the measure in momentum space

pµ(kµ) = kµ

[

1 +
1

αµ

∣

∣

∣

∣

kµ

kµ∗

∣

∣

∣

∣

1−αµ
]−1

. (4.18)

The eigenvalue equation of the Laplace-Beltrami operator �q in eq. (4.9) is �qe(k, x) =

−p2(k) e(k, x), where e(k, x) = exp[iqµ(xµ)p
µ(kµ)] and p2 = pµp

µ. In one dimension, this

means that the spectrum of −∂2q follows the distribution

p2(k) = k2

[

1 +
1

α

∣

∣

∣

∣

k

k∗

∣

∣

∣

∣

1−α
]−2

. (4.19)

(Including log oscillations, we would get the same spectrum but with a periodic modulation.)

We can compare this distribution with the ordinary spectrum k2 and with the distribution

|k|2α of a purely fractional measure (obtained by removing the factor 1 in eq. (4.19) or

by taking a fractional Laplacian [46]). As one can appreciate from figure 2, the binomial

profile (4.19) interpolates between the fractional and the integer spectra.

The spectral distribution (4.19) plotted in the figure is an idealization (but a faithful

one) of what is found in actual experiments or observations involving multifractals, not

only in physics, but also in fields of research as diverse as geology, etology, and human

cognition [123, 124]. Adding an extra power law to the binomial measure (i.e., considering

a trinomial measure with two scales ℓ1 > ℓ2), one would bend the right part of the solid

curve in the figure towards a different asymptote. And so on.

12 Are multifractional theories Lorentz invariant?

No, they are not because factorizable measures (2.9) explicitly break rotation and boost

invariance. They are not Poincaré invariant either, because they also break translations.

An early nonfactorizable version T̃1 of multifractal theories proposed a Lorentz-invariant

measure, working on the assumption that keeping as many Lorentz symmetries as possible

would lead to viable phenomenology [77, 105, 106]. However, problems in finding an invert-

ible Fourier transform associated with a self-adjoint momentum operator soon paved the
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Figure 2. The binomial distribution (4.19) of the Laplacian eigenvalues (solid curve) corresponding

to a bifractal, compared with the ordinary distribution k2 (usual Laplacian, standard geometry,

dotted line) and with the fractional distribution −|k|2α corresponding to a monofractal (dashed

line). Here k∗ = 1 and α = 1/2.

way to the factorizable Ansatz (2.9), as described in 07 . As a consequence, the Poincaré

symmetries

x′
µ
= Λ µ

ν x
ν + bµ (4.20)

of standard field theory on Minkowski spacetime are not enjoyed by multifractional field

theories.

13 Then, what are their local symmetries?

The symmetries of the dynamics depend on the structure of the action. Consider first the

case without gravity (gravity will be included in question 14 ). All multifractional theories

have the same measure dDq(x) invariant under the nonlinear q-Poincaré transformations

dDq(x) → dDq(x′), where for each individual qµ(xµ)

qµ(x′
µ
) = Λ µ

ν q
ν(xν) + aµ , (4.21)

Λ µ
ν are the usual Lorentz matrices, and aµ is a constant vector. Seen as a change on the

geometric coordinates qµ, this looks like a standard Poincaré transformation. Seen as a

transformation on the coordinates xµ, it is highly nonlinear and, in general, noninvertible.

Looking at eq. (3.6), we cannot write xµ(qµ) explicitly, unless we ignore log oscillations.

The q-Poincaré transformations (4.21) are a symmetry of the measure but, in general,

not of the dynamics. Multifractional theories may still be invariant under other types of

symmetries, which typically are a deformation of classical Poincaré and diffeomorphism

symmetries. Before discussing that, it is useful to recall a few basic facts on symmetry

algebras.

Ordinary Poincaré symmetries are defined in three mutually consistent manners: as

coordinate transformations, as an algebra of operators on a vector space, and as an algebra

of field operators. Meant as coordinate transformations, they are defined by eq. (4.20).
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At the level of operators on a vector space, they are defined by an infinite-dimensional

representation of operators P̂µ = p̂ and Ĵ = ̂ satisfying the undeformed Poincaré algebra

[P̂µ, P̂ν ] = 0 , (4.22a)

[P̂µ, Ĵνρ] = i(ηµρP̂ν − ηµνP̂ρ) , (4.22b)

[Ĵµν , Ĵσρ] = i(ηµρĴνσ − ηνρĴµσ + ηνσĴµρ − ηµσĴνρ) . (4.22c)

Ordinary time and spatial translations are generated by p̂µ := −i∂µ, while ordinary rota-

tions and boosts are generated by ̂µν := xµp̂ν − xν p̂µ. The mass and spin of a particle

field can be defined by finding first a vector space where the operators P̂ and Ĵ act upon,

and then the eigenstates of P̂ 2 and Ŵ 2 (where Ŵµ = ǫµνρσP̂ν Ĵρσ/2 is the Pauli-Lubanski

pseudovector). For a local relativistic theory, there is the further requirement that such

vector space be invariant under representations of P̂ and Ĵ . At the level of field operators,

ordinary Poincaré symmetries are encoded in some operators (without hat) Pµ = Pµ[φ
i]

and Jµν = Jµν [φ
i] obeying the algebra (4.22) where commutators [ · , · ] are replaced by

Poisson brackets { · , · }:

{Pµ, P̂ν} = 0 , (4.23a)

{Pµ, Ĵνρ} = i(ηµρPν − ηµνPρ) , (4.23b)

{Jµν , Ĵσρ} = i(ηµρJνσ − ηνρJµσ + ηνσJµρ − ηµσJνρ) . (4.23c)

In quantum gravity (including noncommutative spacetimes) and in multifractional clas-

sical theories, quantum and/or multiscale effects (in quantum gravity, multiscale effects are

quantum by definition) can deform the above algebra of generators Ai = p̂µ, ̂µν in two

ways. One is by deforming the generators Ai → A′
i, which corresponds to a deformation

of classical symmetries. For instance, one can have a momentum operator A′
i = P̂µ which

generates a symmetry xµ → f(xµ) analogous to the usual spatial and time translations

xµ → xµ + bµ generated by p̂µ, such that f(xi) ≃ xi + bi when quantum corrections are

negligible. In this case, one regards P̂µ as the generator of “deformed translations.” The

other way in which an algebra is deformed is by a change in its structure. For instance,

given an algebra {Ai, Aj} = fkijAk in ordinary spacetime or in a classical gravitational the-

ory, one might end up with an algebra {A′
i, A

′
j} = F (A′

k) in a multifractional or quantum

theory, which can be written also in terms of the generators of the classical symmetries,

{Ai, Aj} = G(Ak), for some G 6= F . Depending on the specific multifractional theory, we

can have no symmetry algebra at all (case T1), a symmetry algebra with deformed opera-

tors and deformed structure (case Tv), or a symmetry algebra with deformed operators but

undeformed structure (case Tq). Question 49 retakes the topic of deformed algebras in the

context of gravity.

Let φi be a generic family of matter fields (scalars, gauge vectors, bosons, and so on)

and let S[weight, derivatives, φi] be the action of the theory with a specific choice of measure

weight (4.8) and of derivatives in kinetic terms.

– In the model T1 with ordinary derivatives, the Lagrangian is defined exactly as the

usual one, for a scalar, for the Standard Model, and so on. As an example, for a
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scalar field the action

S1[v, ∂, φ
i] =

ˆ

dDx v(x)L1[∂, φ
i] (4.24)

is eq. (4.5) with K = �. Therefore, the Lagrangian L1 is invariant under ordinary

Lorentz transformations but the action S1 is not. Since the profiles qµ(xµ) are given a

priori by the flow equation (or by fractal geometry), the dynamics will not enjoy any

symmetry at all. In other words, the structure of the geometric coordinates qµ(xµ) is

irreconcilable with that of the differential operators ∂µ. Said in a more formal way,

the operator p̂µ generating ordinary translations is not self-adjoint [50] with respect

to the natural inner product on the space of test functions defined on multifractional

Minkowski space:

(f1, p̂µf2) :=

ˆ +∞

−∞

dDq(x) f1(x) p̂µ f2(x) 6= (p̂µf1, f2) . (4.25)

Consequently, the system is not translation invariant and ordinary momentum is not

conserved. The proof for rotations and boosts is similar. This absence of symmetries

is clearly a problem of this theory. Notice that one can define a self-adjoint momentum

operator

P̂µ := − i

2

[

∂µ +
1

v
∂µ(v · )

]

= −i
(

∂µ +
∂µv

2v

)

, (4.26)

but this is equivalent to the momentum operator in Tv. As a matter of fact, Tv was

born as the “upgrade” of T1 and we should talk about three multifractional theories

(Tv, Tq, and Tγ) rather than four. For this reason, we regard T1 only as a phenomeno-

logical model, in the sense of being inspired by the multiscale principle without the

pretension of being a rigorous theoretical construct.

– In the theory Tv with weighted derivatives, field Lagrangians are defined by replacing

standard operators ∂µ with the weighted derivatives defined in eq. (4.7):

Sv[v,D, φi] =
ˆ

dDx v(x)Lv[D, φi] . (4.27)

The scalar-field example is eq. (4.5) with K = DµDµ. The action of the Standard

Model of electroweak and strong interactions can be found in ref. [56] and in ques-

tion 31 . Just like in the case with ordinary derivatives, the symmetry structure of the

measure and of the operators Dµ is different and Sv is not invariant under standard

Poincaré symmetries. However, contrary to T1, the theory Tv is invariant under new

symmetries encoded in deformed Poincaré transformations, but only in the absence of

nonlinear interactions of third or higher order in at least one field. Let us explain. The

weighted derivative defines the operator P̂µ := −iDµ [clearly equivalent to eq. (4.26)],
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which is self-adjoint:

(f1, P̂µf2) := −i
ˆ +∞

−∞

dDq f1Dµ f2 = −i
ˆ +∞

−∞

dDx v f1Dµ f2

= −i
ˆ +∞

−∞

dDx
√
v f1 ∂µ(

√
vf2) = i

ˆ +∞

−∞

dDx
√
v ∂µ(

√
vf1) f2

= (P̂µf1, f2) . (4.28)

This operator generates “fractional” translations rather than ordinary ones. The trans-

formation law of fields can be worked out explicitly [49, 56], but here suffice it to note

that a field redefinition

ϕi :=
√
v φi (4.29)

permits to write fractional expressions as ordinary ones, e.g., P̂µφ
i = v−1/2p̂µϕ

i. The

same holds for the generators of rotations and boosts. Thus, it is possible for the the-

ory to be invariant under weighted Poincaré transformations (deformed translations,

rotations, and boosts) generated by

Tv : P̂µ := −iDµ =
1√
v
p̂µ

√
v , Ĵνρ := xνP̂ρ − xρP̂ν =

1√
v
̂νρ

√
v , (4.30)

which satisfy the undeformed algebra (4.22) or its field-operator equivalent (4.23),

but only if the action has no third- or higher-order terms in one or more fields. If it

does, then the algebraic structure (4.22) and (4.23) is deformed. In the scalar-field

example, it is easy to show that, given the Hamiltonian and spatial momentum (here

i = 1, . . . , D − 1 are spatial directions)

H := P 0 =

ˆ

dD−1x v(x)

[

1

2
(Dtφ)

2 +
1

2
DiφDiφ+ V (φ)

]

, (4.31a)

P i = −
ˆ

dD−1x v(x)DtφDiφ , (4.31b)

one has [49]

{P i, H} =

ˆ

dD−1x ∂iv(x)

[

1

2
φV,φ(φ)− V (φ)

]

, (4.32)

which vanishes only if V ∝ φ2. Therefore, eq. (4.23a) is violated and the Poincaré

algebra is deformed not only in the form of the generators, but also in its structure.

Similar violations occur in eqs. (4.23b) and (4.23c).

It is important to distinguish between the symmetries of a generic field theory with

weighted derivatives and the specific field theory describing natural phenomena. In

the second case, the theory Tv is invariant under weighted Poincaré transformations.

The SU(3) ⊗ SU(2) ⊗ U(1) Standard Model of electroweak and strong interactions

has been constructed in ref. [56] for the theory Tv. The only nonlinear terms arising

are those of gauge derivatives and in the Higgs potential. The first type is of the

form ψ̄Aµγ
µψ, linear in gauge vectors and quadratic in fermions (see 31 ), so that all

spacetime dependence can be reabsorbed in field and couplings redefinitions. Since
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there is no O[(φi)3] or higher-order term, the structure of the Poincaré algebra is

undeformed (although the generators are). The Higgs potential does have third- and

fourth-order terms (again, see 31 ), but their measure dependence is reabsorbed in

the fields and in the couplings. The crucial point here, which solves the apparent

contradiction with eq. (4.32), is that not only fields can be redefined, but also the

physical couplings [56].

– In the theory Tq with q-derivatives, the action is defined by taking the ordinary

action (of a scalar field, of the Standard Model, of gravity, and so on) and replacing

all coordinates xµ therein with the geometric coordinates qµ(xµ):

Sq[v, ∂q, φ
i] =

ˆ

dDx v(x)Lq[∂q(x), φ
i] = S[v, v−1∂x, φ

i] . (4.33)

Clearly, the theory is invariant under the q-Poincaré transformations (4.21). The

symmetry algebra is undeformed, eq. (4.22) with (obviously, no Einstein summation)

Tq : P̂µ := −i∂qµ =
1

vµ
p̂µ , Ĵνρ := xνP̂ρ − xρP̂ν , (4.34)

where ∂qµ = ∂/∂qµ(xµ) = [vµ(x
µ)]−1∂µ. These operators are quite different from

the Tv case (4.30) but, just like that, they describe deformed translations, rotations,

and boosts.

– In the theory Tγ with fractional derivatives, the action sports fractional derivatives (or

differintegrals) “∂γ ,” for which there are many available definitions in the literature

(see [41] for a review and [122] for a textbook on the subject). For example, in

refs. [41, 42] the left and right Caputo derivatives were preferred among other choices

to define Tγ=α, because of the possibility to define geometric coordinates such that

∂αµq
ν = δνµ; later on, the Liouville and Weyl derivatives were chosen in the second

definition of eq. (4.9), since they are one the adjoint of the other [46]. Omitting the

µ index everywhere, along the µ direction the Liouville and Weyl derivatives are

∞∂
α
x f(x) :=

1

Γ(1− α)

ˆ +∞

−∞

dx′
θ(x− x′)

(x− x′)α
∂x′f(x′) , 0 6 α < 1 , (4.35a)

∞∂̄
α
x f(x) :=

1

Γ(1− α)

ˆ +∞

−∞

dx′
θ(x′ − x)

(x′ − x)α
∂x′f(x′) , 0 6 α < 1 , (4.35b)

where θ is the Heaviside step function. In particular, one can consider the

combination

D̃α
x :=

1

2
(∞∂

α
x + ∞∂̄

α
x ) =

1

2Γ(1− α)

ˆ +∞

−∞

dx′
[

θ(x− x′)

(x− x′)α
+
θ(x′ − x)

(x′ − x)α

]

∂x′

=
1

2Γ(1− α)

ˆ +∞

−∞

dx′

|x− x′|α∂x′ . (4.36)

Since the definition of ∞∂
α = I1−α∂ is inspired by the Cauchy formula for the n-

repeated integration In, when α → 1 one obtains the ordinary derivative ∂x in both
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the Liouville and Weyl case; this explains the prefactor 1/2 in eq. (4.36), D̃1
x = ∂x.

Caputo left and right derivatives are defined as in eq. (4.35) but with integration

domains (0,+∞) and (−∞, 0), respectively.

The theory Tγ is invariant under q-Lorentz transformations [eq. (4.21) with aµ = 0]

but, contrary to the Tq case, only up to boundary terms and only at individual

plateaux in dimensional flow (i.e., in the toy-model limit of no-scale fractional geome-

tries, pure power-law measure q ∝ |x|α [41, 42]). Therefore, q-Lorentz invariance is

exact in Tq (and extendable to q-Poincaré invariance) but approximate in Tγ , and the

phenomenology of the two theories is thus expected to be more similar than between

Tγ and Tv or T1. To show this, one must first extend the definition of fractional

derivatives to multiscale geometries. This can be done in two ways, which we will

explore in greater detail in the future. One is to implement multiscaling “externally”

with respect to the definition of fractional derivatives. In this case, one defines a

superposition of fractional derivatives (indices µ inert, as usual)

D̃µ :=
∑

n

gµ,nD̃αµ,n
µ , (4.37)

where the scale hierarchy appears in the coefficients gµ,n(ℓ
µ
n). This definition of multi-

fractional derivative is self-adjoint in the scalar product with integration dxµ. To have

it self-adjoint with integration measure dqµ = dxµvµ(x
µ), it is sufficient to decorate

eq. (4.37) with weight factors, so that the operator Kγ in eq. (4.9) becomes

Kγ =
1√
v
D̃µD̃µ

(√
v ·
)

. (4.38)

Expression (4.37) is similar to the so-called distributed-order fractional derivatives

D [125–132], where an integration over the parameter α is performed instead of the

sum: D :=
´ 1
0 dαm(α) ∂α, where m(α) is a distribution on the interval [0, 1]. We

do not know whether a continuous distribution would be more convenient that the

discrete sum (4.37). In either case, a global notion of q-Lorentz invariance does

not exist, and one can only count on a forcefully approximated “local” version of

the symmetries (4.21). It may be that other “fractional Poincaré” symmetries are

enforced, but we have not checked it yet.

The other possibility is to have an “internal” notion of multiscaling, that is, we can

modify the definition of fractional derivatives so that to include the scale hierarchy

within. To generalize eq. (4.36) to multiscale profiles such as (3.6) or (3.4), we define

(index µ restored and not summed over)

qDµ :=

ˆ +∞

−∞

dx′µ

qµ(xµ − x′µ)

∂

∂x′µ
. (4.39)

This expression is strikingly similar to a not much known proposal for so-called

variable-order fractional derivatives [130]. The main difference is that, for us, the

distribution q(x− x′) is determined from the start by the second flow-equation theo-

rem. At plateaux in dimensional flow, eq. (4.39) reduces to the mixed Liouville-Weyl
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derivative (4.36) and there is a manageable fractional calculus in all regions of inter-

est, i.e., in the deep UV, in the IR, and in whatever intermediate region the dimension

of spacetime is approximately constant (we expect dimension gradients to be difficult

or even impossible to detect). Equation (4.39) should be further explored to clarify

the role of boundary terms and discontinuities.10 In particular, one will have to show

that qDµq
µ ≃ 1 at least at each plateau in dimensional flow. The constant coefficients

inside qµ should be chosen so that qD → ∂ at large scales (roughly speaking, in the

q → 1 limit) and qD ≃ D̃αn at the n-th plateau.

Weight factors can appear to the left and to the right of (4.39) to guarantee self-

adjointness with respect to the measure dDq(x) [46]. An alternative to eq. (4.38)

is thus

Kγ =
1√
v

qDµ qDµ
(√
v ·
)

, (4.40)

and the general action of the theory Tγ in the absence of gravity is

Sγ [v, qD, φi] =
ˆ

dDq(x)Lγ [qD, φi] , (4.41)

which has no integer picture associated. A tentative proposal for the Lagrangian of a

scalar field is, modulo weight factors, Lγ [φ] = −(1/2)qDµφqDµφ − V (φ). Fractional

derivatives, either of fixed order as eq. (4.36) or multiscale as in eqs. (4.37) and (4.39),

have a technical complication which is one of the reasons why the dynamics of Tγ has

not been studied adequately so far: the Leibniz rule ∂γ(fg) = (∂γf)g + f(∂γg) + . . .

is rather messy in the “. . . ” part and it complicates the equations of motion (after

integrating by parts to calculate the field variations). Therefore, the kinetic term

−(qDφ)2/2 is not equivalent to φKγφ/2. This issue will be tackled in a separate

publication.

Another, more formal way to get a multifractional derivative is via the differentials of

the theory. In Tγ , the exterior derivative d can be replaced by a new definition d which

was proposed in ref. [41] for a fractional measure q ∝ |x|α. Instead of repeating that

discussion, we extend it directly to multiscale geometries and define d implicitly by

dqµ(xµ) = qµ(dxµ) , (4.42)

so that dq ∼ dx + dxα + . . . = dx + (dx)α + . . . . The line element in geometric

notation is

dq(s) =
√

gµνdqµ(xµ)⊗ dqν(xν) , (4.43)

or, in fractional notation with ordinary differential,

q(ds) =
√

gµνqµ(dxµ)⊗ qν(dxν) . (4.44)

The most natural multifractional derivative in this formalism is

Dµ :=
d

dqµ
. (4.45)

The Tγ=α
∼= Tq approximation corresponds to d ≃ d and Dµ ≃ d/dqµ(xµ).

10The junction of the left and right derivatives in eq. (4.36) masks a potentially tricky point at x = 0 [41].
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In the case of eq. (4.45), there is no need to insert weight factors and the Laplace-

Beltrami operator in flat space is

Kγ = DµD
µ . (4.46)

The general action in the absence of gravity is

Sγ [v,D, φ
i] =

ˆ

dDq(x)Lγ [D, φ
i] , (4.47)

where for a scalar field Lγ [φ]=−(1/2)DµφDµφ−V (φ) or Lγ [φ]=−(1/2)φKγφ−V (φ);

operator ordering issues will have to be studied carefully. The integral
´

can be

replaced by a multiscale “geometric” integral
ffl

generalizing the fractional operator

of [41, eq. (3.17)], so that
´

dDq(x) =
ffl

dDq(x) and one can completely recast the

system in geometric notation.

Part of future work will also be to see if we can identify qDµ with eq. (4.45) at the

plateaux of dimensional flow, but we anticipate a positive answer provided qD ≃ D̃αn

at the n-th plateau. In fact, there one has dq ≃ (dx)αn , so that D ≃ d/(dx)αn = D̃αn

is the fractional derivative (4.36) of αn-th order. Moreover, notice the invariance of

definitions (4.39) and (4.45) under translations,

qDx−x̄ = qDx , Dx−x̄ = Dx , (4.48)

for which the integration domain on the whole real line in (4.39) is crucial. Equa-

tions (4.39)–(4.48) are given here for the first time.

To summarize, with the derivative (4.39) the Lagrangian is invariant under q-Lorentz

transformation, but clearly not under q-Poincaré (4.21): qDx is invariant under a

translation in x but not under a translation in q. On the other hand, a preliminary

inspection seems to find that Dx is q-Poincaré invariant.

Poincaré (in the absence of gravity) or local Lorentz symmetry (with gravity, in inertial

frames) are restored at large scales and late times, where qµ(xµ) ≃ xµ and the geometry

measure becomes the standard Lebesgue measure on a smooth manifold. Whether a residual

violation of Lorentz invariance is observable and what constraints on it are, will be the

subject of section 9.

Other local symmetries of multifractional theories are the gauge symmetries of QFT,

which are deformations of the usual gauge invariance in ordinary Minkowski spacetime.

These are discussed in ref. [56].

14 Is diffeomorphism invariance respected in multifractional theories?

No, except in Tv in the absence of matter and in Tq. The reason is that the measure

weight (4.8) is not a scalar field but a fixed coordinate profile. Therefore, any coordinate

transformation would change v(x), which is not allowed by the flow equation (3.1) if the

measure is imposed to be factorizable. The lack of diffeomorphism invariance in most mul-

tifractional theories is not in contradiction with the fact that all of them are covariant. The
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reason is that covariance and diffeomorphism (in short, diffeo) invariance can be confused

without damage in the absence of a nondynamical structure, while they are clearly separated

concepts in the presence of such a structure (the measure, in the multifractional case).11

To answer in more detail, we have to turn gravity on and consider a curved embedding

manifold (so far in this review, we have discussed only field theories on flat Minkowski

spacetime). For instance, the multifractional action of gravity with a minimally coupled

matter scalar field is of the form

S = S[g] +

ˆ

dDx v
√−gL[φ] , (4.49)

where S[g] is the action for the metric (which can be found in ref. [54] and in question 40

for T1, Tv, and Tq), g is the determinant of the metric, L[φ] is the Lagrangian in (4.5) of

the scalar and, everywhere in the total action, indices are contracted with the metric gµν .

In T1 and Tv, there is no field or metric redefinition absorbing completely the dependence

on the trivial measure. Even if one can do so in a Standard-Model matter sector, measure

factors pop back in the gravitational action and in any non-Standard-Model matter sector

with nonlinear interactions [54]. Still, in the case of Tv we can identify the matter sector as

the responsible for violating diffeo invariance: in the absence of matter, the algebra of the

canonical constraints of gravity is preserved (see 49 ) [60].

On the other hand, one immediately recognizes that the theory Tq is diffeo invariant

under active diffeomorphisms with respect to the geometric coordinates qµ(xµ), but only

in the absence in Sq[g] of geometric Lagrangian terms made purely by the measure weight

(question 49 ). The gravitational sector of the theory Tγ has not been built yet, and presently

we cannot comment on that. However, by analogy with the theory with q-derivatives

and encouraged by the Tγ=α
∼= Tq approximation, it should be possible to generalize the

notion of diffeo invariance, at least approximately at the scales corresponding to plateaux

in dimensional flow.

15 What is the dimension of multifractional spacetimes?

It is not difficult to compute the dimensions dh, ds, and dw [42, 46, 50]. The volume

of a D-hypercube of size ℓ oriented along the Cartesian axes with a corner at xµ = 0 is

V(ℓ) ∝
∏

µ q
µ(ℓ). Centering the hypercube elsewhere, with a corner at xµ = x̄µ would

only bring the change qµ(ℓ) → qµ(ℓ− x̄µ)− qµ(x̄µ), which does not change the ℓ scaling of

V . Using a D-ball instead of the cube would lead (up to immaterial centering effects) to

V(ℓ) ∝
√

∑

µ[q
µ(ℓ)]2, again with no new impact on the overall scaling. Writing eq. (3.6)

11To illustrate the point, we report the general discussion made in ref. [54] and inspired by [133]. Let

M be a manifold endowed with some nondynamical structure Σ, and obeying the equations of motion

F [φi,Σ] = 0. Covariance determines that, under a diffeomorphism f , the transformed fields f · φi obey

equations of motions with transformed nondynamical structure: F [φi,Σ] = 0 = F [f · φi, f · Σ]. On the

other hand, diffeomorphism invariance limits the amount of nondynamical structure: it requires that the

same equation of motion be satisfied by the fields and their transforms, F [φi,Σ] = 0 = F [f · φi,Σ] (active

diffeomorphism), or, equivalently, that any solution φi of the equations of motion is also solution of a different

set of equations parametrized by a transformed nondynamical structure, F [φi,Σ] = 0 = F [φi, f ·Σ] (passive

diffeomorphism).

– 31 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

evaluated at xµ = ℓ for all µ as qµ(ℓ) = ℓ[1 +
∑

n bµ,n(ℓ/ℓ
µ
n)αµ,n−1Fn(ℓ)], the Hausdorff

dimension (2.1) is (no index contraction, of course)

dh(ℓ) =
∑

µ

1 +
∑

n bµ,n(ℓ/ℓ
µ
n)αµ,n−1[αµ,n + F ′

n(ℓ)]

1 +
∑

n bµ,n(ℓ/ℓ
µ
n)αµ,n−1Fn(ℓ)

, (4.50)

where F ′
n = dFn(ℓ)/d ln ℓ. This result is independent of the dynamics and is therefore valid

for all multifractional theories. It is easy to convince oneself that this expression has all

the properties we would expect in dimensional flow. In the IR, dh ≃ D, while at the n-th

plateau dh ≃
∑

µ αµ,n. Taking only n = 1 and one scale ℓ1 = ℓ∗ for all directions [binomial

measure (3.4) with (4.1)], we have

dh(ℓ) =
∑

µ

1 + bµ(ℓ/ℓ∗)
αµ−1[αµ + F ′

ω(ℓ)]

1 + bµ(ℓ/ℓ∗)αµ−1Fω(ℓ)
. (4.51)

Near the IR, an expansion of (4.51) for ℓ/ℓ∗ ≫ 1 yields eq. (3.3) with cµ = 1 − αµ. Thus,

dh ≃ D at large spacetime scales. Near the UV (ℓ/ℓ∗ ≪ 1),

dh
UV≃
∑

µ

αµ + F ′
ω(ℓ)

Fω(ℓ)
≃
∑

µ

αµ + (log oscillations) . (4.52)

Ignoring logarithmic oscillations, the spacetime UV Hausdorff dimension is dh ≃∑µ αµ, as

anticipated in 08 . For an isotropic measure,

dh
UV≃ Dα . (4.53)

The spectral dimension is calculated from the diffusion equation and the latter can be

derived from the microscopic stochastic dynamics of the diffusing particle, governed by the

Langevin equation [50]. If the Laplacian K̄ appearing in the diffusion equation is not self-

adjoint (as it may happen in transport phenomena), then it does not necessarily coincide

with the Laplace-Beltrami operator K of theory. This is the case of the theories T1 and Tv,

whose diffusion equations are one the adjoint of the other. In both cases, one can show that

T1, Tv : ds = D
d lnL2(σ)

d lnσ
, L2(σ) :=

ˆ σ dσ′

v(σ′)
, (4.54)

where σ is the diffusion scale and, if it is anomalous, it is weighted by a distribution v(σ).

In the diffusion interpretation, there is no guiding principle telling us what v(σ) should be,

but assuming that it behaves like the multifractional measure weight of spacetime, we can

take the profile v(σ) = 1 +
∑

n b̃n(σ/σn)
βn−1Fn(σ). At the n-th plateau of dimensional

flow, ds ≃ D(2− βn), while for a binomial profile and 0 < β ≡ β1 < 1 one obtains [50]

T1, Tv : ds
IR≃ D , ds

UV≃ D(2− β) . (4.55)

A fact gone unnoticed in previous works is that the QFT interpretation of the spectral

dimension [31] does not have any of the ambiguities of the diffusion interpretation and

fixes ds for this class of theories. Both T1 and Tv have standard propagator in position

– 32 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

space and, for a massless scalar particle, G̃(k2) = −1/K̃(k) = −1/k2 [42, 49, 56]. From

the Schwinger representation (2.2) of this expression, one derives the running equation in

momentum space (∂L2 + k2)P̃ (k2, ℓ) = 0. Seeing L just as in integration parameter of the

Schwinger representation, there is no reason to give it a nontrivial measure weight. Then,

β = 1 and ds = D > dh at all scales and eq. (2.12) is violated: these geometries are not

multifractal. Changing the initial condition of the solution of the diffusion equation, one

can even produce dimensional flows from 0 to D.

The diffusion equation for the theory Tq is straightforward: [∂L2(ℓ)−∇2
q(x)]P (x, x

′; ℓ)=0.

Both in the diffusion and QFT interpretation, one considers the multiscale version of dif-

fusion time or Schwinger parameter and a profile L(ℓ). In the QFT interpretation of the

running equation, L is a length or a time, whose inverse gives the spatial and temporal res-

olution of the measurement. In these geometries, L is not the scale ℓ directly measured but

it is related to that by a scale-dependent relation L(ℓ) = ℓ[1+
∑

n bn(ℓ/ℓn)
βn−1Fn(ℓ)]. If we

chose L to be on a specific space or time direction, we would have βn = αi,n or βn = α0,n,

and the spectral dimension at the n-th plateau would be insensitive to the geometry of

the other directions. Therefore, it is more sensible to identify βn with the average n-th

fractional charge of the measure,

βn =

∑

µ αµ,n

D
, (4.56)

which corresponds to βn = αn in the isotropic case. The spectral dimension in the theory

Tγ is more difficult to calculate than for Tq [46] but, at the end of the day, both cases agree:

Tq, Tγ : ds = D
1 +

∑

n bn(ℓ/ℓn)
βn−1[βn + F ′

n(ℓ)]

1 +
∑

n bn(ℓ/ℓn)
βn−1Fn(ℓ)

. (4.57)

In the IR and ignoring log oscillations, ds ≃ D, while at the n-th plateau ds ≃ Dβn. In the

binomial case,

Tq, Tγ : ds
IR≃ D , ds

UV≃ Dβ . (4.58)

Taking eq. (4.56),

ds = dh (4.59)

at all scales. This is the first case to our knowledge that agreement between the two

interpretations of ds (diffusive or QFT) fixes a free parameter in one of them (β in the

diffusion case).

Finally, the walk dimension (2.4) of spacetime in T1 and Tv is dw = 2D/ds (confirming

that this is not a multifractal), while in Tq it is dw = 2dh/ds, independently of the use

of (4.56) [50]. We have not calculated yet dw for Tγ .
12

16 Can the dimension of spacetime become complex or imaginary?

Yes it can, in multiscale setups such as quantum gravities [61, 69, 134], in multifractional

theories [61], and in fractal geometry [135–137].

12In [46], the definition of dw was naively assumed to be eq. (2.12) rather than eq. (2.4).
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In multiscale theories (including quantum gravity at large), the flow-equation theorems

establish that the most general iterative solution of eq. (3.1) at infinite order is the dimension

(Hausdorff and/or spectral) d(ℓ) := limn→+∞ d(n), where [61]

d(n)(ℓ)− d(n−1)(ℓ) =
n−1
∑

i=0

bi,n ℓ
αi,n+iωi,n ,

n
∑

j=0

cj(αi,n + iωi,n)
j = 0 . (4.60)

The complex exponents αi,n + iωi,n satisfy a characteristic equation for all i. All quantum

gravities have dimensional flow but, formally, all dimensional flows follow the same universal

profile, which can vary from case to case depending on how the dynamics determines the

free parameters bi,n, αi,n, ωi,n, and cj within. Some quantum gravities may just have real-

valued dimensions either because ωi,n = 0 for all i and n or because conjugate powers ±iωi,n

combine to give the log oscillations we discussed so far. Other quantum gravities, however,

can display complex dimensionalities

d(ℓ) ∈ C (4.61)

because conjugate powers do not combine. The question now is whether this feature is

only an abstract mathematical property of the solution (4.60) or is realized in concrete

scenarios. There is evidence that such is indeed the case in spin foams [69, 134]. In contrast

with kinematical states, spin-foam sums of dynamical states generically contain degenerate

geometries (i.e., some component of the tetrad eIµ vanish identically), where the volume

operator is not densely defined and has 0 as an eigenvalue. Preliminary calculations of

the spectral dimension on small combinatorial complexes, using the graviton propagator

in (2 + 1)-dimensional spin foams, show that the heat kernel P acquires an imaginary

part, from which it stems that also the return probability P and the spectral dimension

ds are complex-valued. These results were reported in ref. [69] without giving the details;

work in progress [134] on a recent model of spin foams on a hypercubic lattice [138] finds

similar results.

The general solution (4.60) of the flow equation affects also multifractional theories;

therefore, they too can have complex dimensions. However, since the beginning [40] and to

date, attention has been limited to real-valued measures (i.e., with log oscillations rather

than imaginary powers). As a further guarantee of avoiding “unphysical” situations with

negative dimensions due to large oscillation amplitudes, the spacetime dimensions dh and

ds have also been defined to be calculated after averaging out log oscillations, which is

easily done by replacing V and P in eqs. (2.1) and (2.3) with their log average [42]. These

conditions are sufficient to have dh, ds > 0 but, after a few years of investigation, they

might turn out to be too restrictive inasmuch as they exclude geometries that are physical

despite their highly unconventional features. Abandoning the averaging procedure (as done

here) is not particularly dangerous: in practice, and in all known examples, log oscillations

have a very small amplitude [59, 137] and they reduce to tiny ripples around the average.

Relaxing also the reality condition, we get access to complex dimensions (4.60) and have

to face the task of interpreting the ensuing spacetimes.

The spin-foam results mentioned above could shed some light on this interesting subject

and hint to an association between complex dimensions and degenerate geometries, for
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which the metric gµν = ηIJe
I
µe

J
ν has some ill-defined components. We argue here that fractal

geometry supports this view and, therefore, that we might be on the right track. Given the

Laplacian K on a deterministic fractal, one can compute the Mellin-Laplace transform of

the associated heat kernel P , which is a function ζK(s) of the Laplace momentum s called

spectral zeta function (usually proportional to the Riemann ζ function). The spectral zeta

function is given by

ζK(s) =
∑

j

λ−s
j , (4.62)

where λj are the nonzero eigenvalues of K. The poles of ζK(s) are complex-valued and of

the form

sm =
1

2
(ds + idcs,m) , m ∈ Z , (4.63)

where dcs,m ∝ 4πm are called complex spectral dimensions [135, 136] and accompany the

usual spectral dimension, which is the real-valued pole of ζK(s). The complex poles (4.63)

are a typical feature of fractals (even of popular examples such as the Sierpiński gasket,

the Julia sets, diamond fractals, and the Cantor string, the complement of the middle-

third Cantor set [136, 137]; see also [72, 73]), and their “physical” origin can be understood

from eq. (4.62). The infinite number of poles m is due to the presence of an exponentially

large degeneracy of some special eigenvalues of the Laplacian called iterated (in contrast, in

ordinary manifolds this degeneracy factor is power-law) [137]. In turn, nonmetric geometries

or labels on combinatorial graphs have spectral features that could easily lead to exponential

degeneracies in the Laplacian eigenvalues, and hence could acquire complex dimensions.

This was briefly commented upon in ref. [137] and agrees intriguingly with what found later

in ref. [69]. The relation between metric degeneracy and Laplacian eigenvalue degeneracy

has not been clarified to date, but these few fragments we collected here are suggestive of

a coherent picture awaiting further study.

17 Do multifractional theories really have dimensional flow? Regardless of

the choice of derivatives, the measure (2.9) is mathematically equivalent

to the standard Lebesgue measure dDx, where one uses the symbol “q”

instead of “x.” If we compute the volume of a hypercube or of a D-ball,

we find

V ∼
ˆ ℓ

0

dDq(x) =

ˆ L

0

dDq = LD,

where L = q(ℓ) (here we are ignoring µ indices for simplicity) is the edge

size of the hypercube or the radius of the ball. Then, the Hausdorff di-

mension coincides with the topological dimension:

dh(L) =
∂ lnV
∂ lnL

= D . (4.64)

One could make a similar calculation for the spectral dimension and show

that ds = D.

The above calculation is mathematically correct but it neglects the physics. The step

x→ q(x) is not a coordinate transformation in multifractional theories, which break Lorentz
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invariance (see question 24 ). An absolutely indispensable ingredient of the multifractional

recipe is the establishing of measurement units or, in other words, of a coordinate frame

where all physical measurements must be carried out. This step is necessary because the

profiles qµ(xµ) are noninvariant under coordinate transformations, and one must fix the

frame where the form (3.6) is valid. By definition from the onset, the coordinates xµ have

the scaling dimension of lengths and time,

[xµ] = −1 , (4.65)

and are called fractional coordinates. The frame {xµ} is called fractional frame or picture.

The geometric coordinates qµ, which define the integer frame or picture in the theory with

q-derivatives, also have the dimension of lengths and time, [qµ] = −1 exactly, but their

x-dependent part does not. At the n-th plateau in dimensional flow, i.e., at distances or

times ∼ ℓµn, this varying part scales as

[|qµ|] x∼ℓn∼ [|xµ|αµ,n ] = −αµ,n 6= −1 . (4.66)

This is what is meant in the literature by anomalous scaling.

The physical meaning of eqs. (4.65) and (4.66) is that, in the fractional picture con-

stituted by the fractional coordinates xµ, measurements are taken by clocks and rods that

do not change with the probed scale [there is no scale dependence in (4.65)], while in the

integer picture made of the geometric coordinates qµ measurements are taken by clocks and

rods that adapt with the probed scale (there is a scale dependence in (4.66)). By definition,

physical measurements in multifractional theories are performed in the fractional picture:

clocks and rods are nonadaptive, rigid, not multiscale.13 The reason beyond this choice

instead of its complementary is simple. Measurement apparatus created by humans are

local objects with definite size probing length, time, or energy scales in a definite range.

Rods measuring the length of a goldfish are the same rods measuring a whale, only shorter.

When we probe lengths at very different scales, such as of goldfish or atomic or elementary-

particle size, we do not have one general “rod” marking centimeters and Compton lengths:

we have to construct new “rods” for each scale, based on different principles.

Having thus established nonadaptive rods (i.e., the fractional picture) as the measuring

tool of physics, it is clear that the radius of the ball we measure is ℓ, not L, so that its volume

scales as ℓdh , not as Ldh . Consequently, the Hausdorff dimension is (4.50), not (4.64). A

similar reasoning holds for ds.

18 Is prescribing measurement units in this way scientific? We all know that

any theory of physics is based upon some principles or axioms, but we

could obtain everything just by changing well-established axioms or by

replacing them by something else, as you do in multifractional theories.

And as done in scalar-tensor theories [139, 140] or in varying-speed-of-light (VSL) mod-

els [141, 142]. The selection of special frames where physical observables are measured is

13In asymptotic safety, precisely the opposite holds and physical rods are adaptive [48]. We will comment

on this in question 48 .
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not a novelty. There is nothing wrong in modifying well-established axioms, as long as the

resulting theory is motivated from above, internally consistent, and testable by experiments.

In scalar-tensor theories, the change from the Jordan to the Einstein frame corresponds

to a change of measurement units. In VSL theories, we are dealing with units adapted with

the scales in the dynamics and, in particular, chosen such that the speed of light c(x)

varies in space and time. Time and space units are redefined so that the differentials

scale as dt → [f(x)]adt, dxi → [f(x)]bdxi, where f is a function, a and b are constants,

and local Lorentz invariance of the line element requires c(x) ∝ [f(x)]b−a. We recognize

here a particular form of anisotropic multiscaling (one that distinguishes between space

and time variables). In particular, when b = 0 one formally reabsorbs c in the coordinate

x0 =
´

dt c(t), which scales as a length. With this coordinate, all equations can be made

formally identical to the usual ones provided some conditions are met. Models where the

electric charge e or the speed of light c varies can be recast in new units such that, re-

spectively, the electric charge and the speed of light become constant, but in both cases

the dynamics can become substantially more complicated. This criterion of simplicity is

not the only one which attaches one label or the other (varying-e or varying-c) to these

models: experiments are able to distinguish between them. The change of units at the base

of scalar-tensor theories, VSL models, and varying-electric-charge models all map in one

way or another [51] to the Manichaean notion of “adapting” versus “nonadapting” rods in

multifractional models [48, 57]. Furthermore, the multifractional paradigm can be discrim-

inated from scalar-tensor, VSL, and other changing-unit proposals both by experiments

and by their theoretical structure. Despite the striking similarity of the Einstein equations

of scalar-tensor theories [54], the measure weight is not a Lorentz scalar and it heavily

affects the gravitational dynamics (for instance in cosmology) in a way irreproducible by

scalar-tensor models. The presence of a nontrivial measure consistently affects the defini-

tion of functional variations, Poisson brackets and Dirac distribution, in turn leading to a

deformation of the Poincaré symmetries (see 13 ) not realized in varying-e and varying-c

scenarios. In question 51 , we will see an example of how one can measure departure from

a standard space in a multiscale geometry.

19 Is the volume density
√−g from the metric implemented consistently?

Therein, I do not see any change of anomalous geometry with the scale.

This somewhat vague question arises because in the majority of papers gravity is ignored

and the measure is dDq(x) (with trivial volume density factor
√−η = 1), while when

gravity is triggered the volume measure is dDq(x)
√−g [54]. This creates confusion because

no show of dimensional flow seems to emanate from the volume density. The point is that

the calculus structure and the metric structure are totally independent at the level of the

action. On one hand, there is the calculus structure embodied by the integral measure

dDq(x) and the choice of derivatives. On the other hand, there is the metric structure

expressed by the volume density
√−g, curvature terms, and covariant derivatives. When

the calculus structure reduces to the usual one and qµ ≃ xµ, then standard general relativity

is recovered (by construction). This limit is independent of the curvature of spacetime, so

that to preserve covariance and diffeo invariance in the IR the factor
√−g must be there.
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The mutual independence of the integrodifferential and the metric structures does

not imply that they do not talk to each other. The multiscaling of the geometric co-

ordinates qµ(xµ) strongly affects the dynamics and, hence, the solutions to the Einstein

equations. In particular, the background metric gµν(x) solving the dynamical equations is

multiscale [54, 59].

20 Is geometry discrete at the smallest scales?

Yes, it is. Take for simplicity the binomial measure (3.4) in one dimension: q(x) = x +

(ℓ∗/α)sgn(x)|x/ℓ∗|αFω(x), where Fω(x) = 1 + A cos(ω ln |x/ℓ∞|) +B sin(ω ln |x/ℓ∞|). The

distribution Fω is invariant under the discrete scale invariance (DSI)

x → λnωx , λω := exp

(

−2π

ω

)

, n ∈ Z . (4.67)

This symmetry, often found in chaotic systems [143–145], is a dilation transformation under

integer powers of a prefixed scaling ratio λω. Although Fω(λωx) = Fω(x), the measure q(x)

is not invariant (up to an overall constant factor), since

q(λωx) = λαωq(x) + (λω − λαω)x . (4.68)

The last term never vanishes. However, at scales . ℓ∗ the overall scaling is determined

by α and the dominant piece of the measure is DSInvariant. In the IR, the usual dilation

symmetry x → λx with arbitrary λ is recovered, while a natural discrete-to-continuum

transition happens at intermediate scales (for a detailed description, see [40, 42]). At one

extremum of this transition, UV spacetime is effectively discrete and described by a lattice

of size λωℓ∞, even if the full integration measure is defined on a continuum.14

21 Is D = 4 assumed or predicted?

In general, it is assumed, just like in any other theory except string theory. However, in

question 08 we mentioned that there is a phase transition in the theories T1 and Tv for the

special value α = 2/D of the fractional exponent in the measure, so that dh ≃ Dα = 2

in the UV. Only in D = 4 does this exponent α = 1/2 lie at the middle of the allowed

interval (4.2). Intriguingly, the value of the Hausdorff dimension in the UV (dh ≃ 2) and in

the IR (dh ≃ 4) are mutually related rather than being independent as in many multiscale

quantum gravities. Thus, D = 4 is special among any other possibility, but only in T1 and

Tv and only in relation with the UV value: in this sense, the above argument is circular

and does not allow to make separate claims about the uniqueness of the UV and the IR

dimension separately. In Tv, however, there is an independent argument selecting D = 4

as the only case where the gravitational action simplifies (see question 40 ) and the metric

gµν has the natural structure of a bilinear field with measure weight −1 [54].

14Discreteness of a geometry can be encoded either in continuum models
´

lattice
dx v(x)L(x) with discrete

integration domain (integrals in a continuous embedding weighted by measures with discrete support), or

by a setting with discrete calculus,
∑

n L(x1, . . . , xn). Multifractional theories adopt the first option, while

CDT (as an artifact), GFT, LQG, and spin foams realize the second.

– 38 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

In the theory Tq, there is no phase transition relating the UV and the IR dimensions.

In the theory Tγ , there is a stronger argument to select α = 1/2 (it is the lowest possible

value to have a normed space), but it is not related to the IR dimension. In these cases,

we are not aware of any robust argument to select D = 4.

5 Frames and physics

22 The theory with weighted derivatives is trivial. Consider for instance the

scalar-field action (4.5) with polynomial interactions:

Sφ = −
ˆ

dDx v

(

1

2
DµφDµφ +

N
∑

n=2

σn

n
φn

)

. (5.1)

After the field redefinition (4.29), ϕ =
√
v φ, the action becomes

Sφ = −
ˆ

dDx

(

1

2
∂µϕ∂

µϕ +
∑

n

σ̃n

n
ϕn

)

, σ̃n = σnv
1−

n

2 . (5.2)

If we also assume that, originally, the σn were spacetime dependent and

such that σn(x) ∝ [v(x)]n/2−1 for all n, then the couplings σ̃n are constant

(the mass σ2 = m2 is constant also in the fractional picture) and eq. (5.2) is

the usual action in standard Minkowski spacetime. In [49, 52], the σn were

assumed to be constant, but in the case of the Standard Model [51, 56] all

the effective couplings λ̃i after the field transformation (4.29) were found

to be constant. Nevertheless, it was concluded that the theory was non-

trivial. I do not see how, since the actions (5.1) and (5.2) are equivalent.

As in the case of Tq, Tv can be written in two different ways or frames (question 17 ). The

one defining the theory, and where physical measurements have to take place, is called the

fractional picture or fractional frame and corresponds to eq. (5.1) and to the general action

on flat space (4.27). After the field redefinition (4.29), the theory is simplified and takes

exactly the form of a field theory on ordinary Minkowski space, provided all couplings λ in

the fractional picture have a spacetime dependence such that the couplings λ̃ in the integer

frame or integer picture are constant.15 In general and in the absence of gravity, the two

frames are related by

Sv[v,D, φi, λi] = S1[1, ∂, ϕ
i, λ̃i] , v(x) in the left-hand side fixed. (5.3)

The claim in the question is that the right-hand side is the standard action of a QFT on

Minkowski spacetime, hence the theory is trivial. However, there are three elements that

should be taken into account: a general remark about the physical frame, information from

non-QFT physics, and inclusion of gravity.

The general fact is that, by definition, physical observables must be evaluated in the

fractional picture, which is the frame where physical measurements take place. This was

15Note that the integer picture in the theory Tq is defined differently and does not involve field transfor-

mations (see 17 ).
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stated in 17 . The integer picture is a frame where the theory is simplified in such a way that

all calculations in QFT can be carried out easily, that is, with standard perturbative QFT

techniques. These techniques are not applicable in the fractional picture: the field theory

described by (5.1) or (4.27) has spacetime-dependent kinetic terms and couplings, which

make Feynman rules difficult or practically impossible [52, 56]. The QFT in the integer

picture is the usual one and we can calculate effective observables easily. However, the

effective observables in the integer picture must be converted into the physical observables

in the fractional picture, which are those to be compared with experiments. Therefore, the

integer picture is only a convenient way to recast the theory and make calculations, but it is

not physically equivalent to the fractional picture. Several observables have been computed

and constrained experimentally which illustrate the point [51, 56, 59]. A similar situation

happens in scalar-tensor theories, although in that case the frame dilemma is shifted to the

quantum level (see question 28 ).

Another general argument [56] is that QFT is only part of the whole story. The QFT

couplings in the theory Tv are constant in the integer picture not only for necessity (masses

are constant to allow for a manageable quantum perturbative treatment), but also as a

requirement of gauge invariance [56]. Such restrictions do not exist in the realm of statistical

and particle mechanics. Examples are the random motion of a molecule [50], the dynamics

of a relativistic particle [53], and the black-body radiation spectrum [59], all processes

with a characteristic energy much smaller than that in the center of mass of subatomic

scattering events. On one hand, the form of the couplings in QFT is constrained by the

way we are able to deal with interacting quantum fields. On the other hand, statistical and

particle mechanics are intrinsically nonlinear, either through the stochastic interaction of

a degree of freedom with the environment (as in the multifractional Brownian motion of a

particle [50]), or by definition of the action (as for the relativistic particle [53]), or via the

collective description of microscopic degrees of freedom (as in the frequency distribution of

a thermal bath of photons [59]). These systems yield nontrivial predictions because they

are not subject to requirements as severe as those we imposed on a quantum field theory.

Therefore, one should not identify the theory Tv with QFT alone, just like standard QFT

cannot describe all possible systems of physics.

A third consideration to make is about gravity. On a curved background, the equiv-

alence of frames after field and metric redefinitions is broken. In the integer picture, the

theory Tv is not general relativity with minimally coupled matter, and one can never trivial-

ize the theory to the ordinary one as in the flat case [54]. The gravitational dynamics of the

theory with weighted derivatives was studied in ref. [54]. The metric is not covariantly con-

served and the geometry corresponds to a Weyl-integrable spacetime. The total action reads

Sv[g, φ
i] =

1

2κ2

ˆ

dDx v
√−g [R− ωDµvDµv − U(v)] + Sv[φ

i] , (5.4)

where R is the Ricci scalar constructed with weighted derivatives of different weight [54] (see

question 40 ), ω and U are functions of the weight v, and in Sv[φ
i] the metric is minimally

coupled. Absorbing weight factors into the matter fields φi with the picture change (4.29)

requires a redefinition of the metric gµν → g̃µν . Indeed, one can go to the integer picture
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(Einstein frame) where the gravitational action is ∝
´

dDx
√−g̃ R̃ but not without intro-

ducing nontrivial measure-dependent terms. These terms affect the cosmic evolution. Thus,

a change of picture does not lead to standard general relativity plus matter and the dynam-

ics is different from (and much more constrained than) that of scalar-tensor scenarios in

both frames. In general, one should be careful about the issue of the physical inequivalence

between the fractional and the integer picture. As for scalar-tensor models, from a simple

visual inspection of the actions one cannot conclude that the Jordan and Einstein frames

define different physics. What matters are the physical observables. The homogeneous

classical cosmology of multifractional theories is physically distinguishable from the usual

one even in the integer picture (Einstein frame), since ω̃ 6= 0 6= Ũ .

23 In the so-called fractional picture, the theory with weighted derivatives ap-

pears to violate Poincaré invariance explicitly, as also stated in 12 and 13 .

But if Poincaré violations can be eliminated by redefining the fields (in the

so-called integer picture), then where is the new physics? Fields are auxil-

iary concepts and redefining them should not change the physical content

(for instance, the S-matrix) of the theory.

The fractional and integer pictures are not related only by the field redefinition (4.29)

(together with redefinitions of couplings [56]). When an observable is computed (for con-

venience) in the integer picture, it must be mapped back to the measurement units of the

fractional pictures, which is the frame where physical measurements take place with non-

adaptive clocks, rods, and particle detectors. For instance, the observed electron charge

ẽ = e0 is constant in the integer picture, but it is a time-dependent quantity Q(t) in

the fractional picture [51].16 This means than all the phenomenology associated with the

fine-structure constant will be standard in the integer picture but time-dependent in the

fractional picture. What we constrain by observations is the second.

In general, the symmetries enjoyed in the integer frame (such as Poincaré invariance)

can be violated in the physical frame, and observables are affected consequently. We post-

pone to question 28 a discussion on the S-matrix.

24 The theory with q-derivatives is trivial. Consider for instance the scalar-

field action (4.5) with a mass term and a higher-order interaction:

Sφ = −
ˆ

dDx v

[

1

2
ηµν ∂φ

∂qµ(xµ)

∂φ

∂qν(xν)
+

N
∑

n=2

σn

n
φn

]

. (5.5)

Here there is no field redefinition available but one can consider

xµ → qµ(xµ) (5.6)

simply as a change of coordinates. Since the physics should be invariant

under such coordinate transformations, then the theory is equivalent to

the usual one.

16This property tells the electric charge apart from all other gauge couplings of the Standard Model [56].

See question 33 .
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In general, the mapping between the fractional and the integer picture is

Sq[v, v
−1∂x, φ

i, λi] = Sq[1, ∂q, φ
i, λi] , v(x) in the left-hand side fixed. (5.7)

The fractional picture is the frame where the x-dependence of the composite coordinates

q(x) is manifest [left-hand side of (5.7)], while the integer picture is the frame described by

the geometric coordinates q [right-hand side of (5.7)]. Contrary to the mapping (5.3) for

the theory Tv, there is no redefinition of the couplings. As in the theory Tv, the difference

between the fractional and the integer picture is in the way geometry is perceived by the

dynamical degrees of freedom: as standard Minkowski spacetime in the integer picture, as

an anomalous geometry with a fixed integrodifferential structure in the fractional picture.

The presence of this predetermined structure does affect the physics because it prescribes

the existence of a preferred frame where physical observables should be compared with

experiments. As we already said, by definition of the theory, this frame is the fractional

picture. This is an important conceptual novelty with respect to theories with an ordinary

integrodifferential structure: a choice of frame is a mandatory step in the definition of

multifractional spacetimes.

In the case with q-derivatives, time intervals, lengths and energies are physically mea-

sured in the fractional picture where coordinate transformations are described by the non-

linear law (4.21). We stress that eq. (5.6) is not a coordinate transformation. It governs

the formal passage between the fractional picture described by the composite coordinates

qµ(xµ) and the integer picture described by coordinates qµ. The integer picture is a conve-

nient frame for calculations, but it is no more than that, since eq. (5.6) is not even invertible

except in the simple case of a binomial measure without oscillations.

To illustrate in what sense the integer frame is “convenient,” we write down eq. (5.5)

in D = 1 + 1 dimensions:

Sφ =

ˆ

d2q

{

1

2
[∂q0(t)φ]

2 − 1

2
[∂q1(x)φ]

2 −
∑

n

σn
n
φn

}

=

ˆ

d2x

[

v1(x)

2v0(t)
φ̇2 − v0(t)

2v1(x)
(∂xφ)

2 −
∑

n

v0(t)v1(x)σn
n

φn

]

. (5.8)

Since we do not know how to define a quantum field theory with varying couplings and

nonhomogeneous kinetic terms, it is necessary to perform all calculations in geometric

coordinates. Therefore, we transform to the integer picture via (5.6) where the theory

looks trivial and one can borrow all the known calculations in standard QFT. Any “time”

or “spatial” interval or “energy” predicted in the integer picture are not a physical time or

spatial interval or energy, since they are measured with q-clocks, q-rods, or q-detectors. The

results must be reconverted to the fractional picture in order to interpret them correctly.

QFT examples of this inequivalence of observables are the muon decay rate, the Lamb shift,

and the variation of the fine-structure constant [55, 56], while cosmological and astrophysical

examples are given in refs. [58, 59].
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25 I am still not convinced, so let me rephrase my criticism. The theory

Tq tries to incorporate the effects of new fundamental energy, time and

length scales at a microscopic scales while getting the standard physics at

mesoscopic distances. This is done through a particular replacement of

coordinates. As it is, it is unclear what this replacement actually is. I see

two possibilities, it is either a change in the description or a change in the

physical behavior. I will argue against any of these possibilities. Let us

first assume that the replacement (5.6) is a change of the description. This

corresponds to a coordinate change but, as we know, the theory of relativ-

ity is built in such a way that a change of coordinates does not change the

physics. The new effects claimed to be found are spurious and unphysical

because the coordinate change is ill defined, since it is not invertible in

general. To avoid the problems associated with invertibility, one would

need to focus on a single chart where the qµ(xµ) were invertible, but this

restriction is not considered. In fact, this omission is the root of the DSI

of the function Fω, and ultimately of the supposed “fractal” nature of the

theory. Therefore, this is not a valid mechanism to introduce new scales.

The theory of general relativity is built in such a way that a change of coordinates does not

change the physics, but multifractional theories are not. It is a mistake to impose the prin-

ciples of Einstein gravity to a multiscale geometry. Noninvertibility, which is a consequence

of the flow-equation theorems having nothing to do with ill-defined coordinate changes, is

rather one of the reasons why eq. (5.6) cannot be regarded as a coordinate transformation;

the other reason is that different frames correspond to different measurement units and one

must make a choice (see 17 and 24 ). Making a frame/unit choice is not particularly exotic,

as recalled in 18 .

26 The change of coordinates (5.6) is badly implemented inasmuch as the vol-

ume form is not corrected with the square root of the metric determinant√−g, nor is the inverse metric corrected in the kinetic term of the scalar

field. Again, if these issues were considered, no new physics would arise.

We just argued against the interpretation of eq. (5.6) as a change of coordinates. Letting

aside this abuse of terminology, the volume density
√−g does appear in the theory as

soon as gravity is switched on, and derivatives are made covariant accordingly [54]. New

physics does arise in that case [58, 59], simply because the dichotomy between fractional

and integer frame persists also when the embedding manifold is curved. We can even say

more: the theory in the integer frame is invariant under a change of geometric coordinates

qµ → q′µ [54], as stated in 14 . This is not a symmetry of physical observables, since it is

broken in the fractional picture where the form of the geometric coordinates is given by the

second flow-equation theorem.
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27 Let me give you a third argument against the interpretation of eq. (5.6)

as a change of description. In order to get a dispersion relation for a

particle, the physical meaning for the x coordinates should be specified.

Interpreting them as the position of a particle (i.e., its worldline in an

arbitrary parametrization), one immediately notes that the profile q0(t)

must be monotonic in time, something that is not fulfilled by eqs. (3.4)

or (3.6). Hence, in terms of the composite coordinates q particles do not

follow proper worldlines. This should be enough to understand that no

new physics can be obtained in the q-theory, outside a single chart.

The profile q0(t) is not monotonic due to log oscillations, but this does not mean that time t

for the particle goes back and forth. Again, here one is confusing geometric coordinates with

physical ones. Moreover, worldlines in a multiscale spacetimes are certainly not expected to

behave as usual and, in fact, they do not, as was shown in the theory Tv for a nonrelativistic

and a relativistic particle [47, 53]. The case of the point particle in Tq is straightforward;

in this theory, the physical inequivalence of the fractional and integer pictures is further

shown by the fact that dispersion relations are modified (question 58 ).

28 Even granting that the measure (2.9) with (3.6) comes from some different

paradigm we are not accustomed to in general relativity, it breaks Poincaré

invariance and, as any theory with Lorentz violation, fixes a preferred

frame. While in general relativity frames are equivalent at least at the

classical level, here one must make a frame choice. With what criteria?

What exactly is the preferred frame in physical terms?

We already answered in 17 , 18 , 22–24 . Here we make a couple of remarks on the similar

problem of choice between the Einstein and the Jordan frame in scalar-tensor theories. After

several years of debate, it has by now become accepted that the two frames are physically

equivalent both classically [146, 147] and at the quantum level to first order in perturbation

theory (both in a QFT and a cosmological sense), but they differ in a nonlinear quantum

regime [148–151]. At that point, a choice of frame is necessary according to some criterion.

For instance, one might regard the Jordan frame as the fundamental one because it is the

frame where matter follows the geodesics. A choice of frame is a choice of measurement

units [139]. In the case of the VSL models mentioned in 18 , the criterion for the choice

of units is simplicity of the dynamics. In the case of multifractional theories, it is to have

nonanomalous clocks and rods at all scales in a multiscale spacetime (see 17 ).

A small caveat about quantum inequivalence of frames will conclude the discussion. Let

us recall an argument by Duff against having quantum fields on a classical gravitational

background [152]. Consider an ordinary (nonmultiscale) spacetime and an action S[g, φi]

dependent on the metric and on some matter fields. Consider also a suitably regular field re-

definition ḡµν = ḡµν(gµν , φ
i), φ̄i = φ̄(gµν , φ

i), so that the actions S̄[ḡ, φ̄i] = S[g, φi] describe

the same physics at the classical level. At the quantum level, if all fields (including gµν)

are quantized, then the two theories are equivalent on shell order by order in perturbation

theory, although they differ as far as individual Feynman diagrams and off-shell S-matrix

elements are concerned. This is because the on-shell S-matrix is invariant under field re-
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definitions. However, if gravity is purely classical only matter fields are quantized and the

two theories are physically inequivalent. The intuitive reason is that internal graviton lines,

which are essential to maintain the on-shell equivalence, are now absent. An example is the

minimally-coupled massless scalar field theory

S[g, φ] =

ˆ

d4x
√−g

(

R

2κ2
− 1

2
gµν∂µφ∂νφ

)

. (5.9)

At the one-loop level, UV divergences are removed if one adds a certain counterterm

∆S [153]. The classical theory (5.9) is equivalent to the nonminimal action

S̄[ḡ, φ̄] =

ˆ

d4x
√−ḡ

[

R̄

(

1

2κ2
− φ̄2

12

)

− 1

2
ḡµν∂µφ̄∂ν φ̄

]

(5.10)

via a conformal transformation. One-loop finiteness of this theory requires a counterterm

∆S̄. When graviton internal lines are taken into account, on shell we have ∆S = ∆S̄.

However, when only the scalar field is quantized one finds that ∆S 6= ∆S̄ [152]. Therefore,

the same classical theory could be written in infinitely many different ways and one would

have to invoke a criterion selecting one frame among all the others. This may be problem-

atic, but the existence of such a criterion is not altogether unreasonable: for instance, one

could impose positivity of energy and choose the Einstein frame ḡµν as the frame where the

fundamental theory is defined [154].

Duff’s example illustrates why two classically equivalent frames can differ at the quan-

tum level and a frame choice must be made. In multifractional theories, the situation is

different because in the fractional frame we do not know how to deal with the quantum

theory [52, 56] (see 22 and 24 ). In the multifractional case, the choice where to do QFT

is somewhat mandatory: we move to the integer frame to do all intermediate QFT cal-

culations before getting physical observables. The latter are obtained in the end in the

fractional frame, which was selected as preferred already at the classical level. This marks

a difference with respect to the scalar-tensor case, where the frame choice dictated by some

principle is necessary only at the quantum level.

29 Even accepting that it is part of the definition of these theories to establish

a frame choice, what is the meaning of the point x = 0 in eqs. (3.4)

and (3.6)? If we write the measure in one direction as dq(x) = dx v(x),

then the measure weight v(x) ∼ 1+ |x/ℓ∗|α−1 is singular at x = 0 because

α < 1. So where are we with respect to this singularity? What are the

physical consequences of having this uniquely special spacetime point?

This question hits one of the most peculiar aspects of multifractional theories, known as

the presentation problem. Let us explain it in detail for the theory with q-derivatives,

following [57] up to some point but greatly improving on the interpretation and on the

physics thanks to the second flow-equation theorem. The model T1 and the theory Tv face

a similar issue, while the theory Tγ is a separate case.

Suppose we wish to measure the distance ∆x of two points A and B on a sheet of

paper. If the paper is charted by a Cartesian system, then the distance is given by the two-

dimensional Euclidean norm ∆x :=
√

|x1B − x1A|2 + |x2B − x2A|2. Then we make a coordinate
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transformation xi → x′i such that ∆x = F (x′A
i, x′B

i) is a function of the new coordinates.

For instance, going to polar coordinates {x1, x2} → {̺, θ} conveniently centered at xA, one

has ∆x = r. The observed value of the distance is insensitive to the coordinates we choose

to represent ∆x with. In the theory Tq, we can try to do the same in the fractional picture,

which is one of the coordinate frames {x1, x2} where the distance ∆x is calculated. However,

to each of these fractional frames we must associate an integer frame described by geometric

coordinates. Thus, the Cartesian fractional frame {x1, x2} is mapped into the integer frame

{q1(x1), q2(x2)} and, after inverting to xi = xi(qi) (assuming it possible, which is not always

the case) the Euclidean norm ∆x is mapped into some complicated expression ∆x(qiA, q
i
B)

differing from the geometric Euclidean norm ∆q :=
√

∑2
i=1 |qiB − qiA|2 by correction terms

X and T we will calculate below. If we redo the mapping to geometric coordinates starting

from polar fractional coordinates, we get another integer frame {qr(r), qθ(θ)}, where the

relations between qr and the qi are q1 = qr cos qθ and q2 = qr sin qθ. Thus, on which chart

is eq. (3.4) or (3.6) represented? In the example of the paper sheet, is eq. (3.4) the form

of q in the integer frame {q1(x1), q2(x2)} based on Cartesian coordinates {x1, x2} or the

form of q in the integer frame {q1(r), q2(θ)} based on polar coordinates {r, θ} [so that

q1(r) = r + (ℓ∗/α)(r/ℓ∗)
α], or something else? Ordinary Poincaré invariance is violated by

factorizable measures (2.9). A change of presentation such as a translation, a rotation of

the coordinates or an ordinary Lorentz transformation modifies the size of the multiscale

corrections to the measure. One realizes that different choices of the fractional frame lead

to different theories in the integer frame. Clearly, q1(r) 6=
√

[q1(x1)]2 + [q2(x2)]2 due to the

nonlinear terms in the geometric coordinates.

In factorizable measures (2.9), coordinates never mix together due to the absence of

rotation and boost invariance. The only transformations preserving this structure are trans-

lations, which encode the ambiguity of presentation:

qµ(xµ) → q̄µ(xµ) = qµ(xµ − x̄µ) . (5.11)

Given an interval ∆xµ = |xµB−xµA| between two points A and B lying on the µ-th direction,

its geometric analogue ∆q̄µ = |q̄(xµB)− q̄(xµA)| for a binomial measure is

∆q̄µ = ∆xµ|1±X µ| , (5.12)

where

X µ := ± 1

αµ

ℓµ∗
∆xµ

[∣

∣

∣

∣

xµB − x̄µ

ℓµ∗

∣

∣

∣

∣

αµ

Fω(x
µ
B − x̄µ)−

∣

∣

∣

∣

xµA − x̄µ

ℓµ∗

∣

∣

∣

∣

αµ

Fω(x
µ
A − x̄µ)

]

.

We define four different presentations characterized by special values of x̄µ: null presen-

tation x̄µ = 0, initial-point presentation x̄µ = xµA, final-point presentation x̄µ = xµB, and

symmetrized presentation x̄µ = (xµB + xµA)/2. At a first sight, one might want to discard

all but the null presentation, which is the only one where the x̄µ do not depend on the

“beginning” or “end” of the experiment (the measure of the geometry should be the same

for all experiments). However, we now show that the most natural choice is quite the con-

trary, the initial- and final-point presentations! The origin of the multiscale measure of the

theory has been recently clarified by the second flow-equation theorem and it reveals an
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important omission in eqs. (3.4) and (3.6), which we correct here for the first time. There,

we interpreted qµ(ℓµ) as the integral (indices µ inert)

qµ(ℓµ) =

ˆ qµ(ℓµ)

0
dqµ(xµ)

?
=

ˆ ℓµ

0
dxµ vµ(x

µ) ∀µ , (5.13)

but the following alternative is equally valid and based on the fact that the scales ℓµ =

|xµB − xµA| are distances:

qµ(ℓµ) =

ˆ xµ
B

xµ
A

dxµ vµ(x
µ − x̄µ) ∀µ , x̄µ = xµA, x

µ
B . (5.14)

Equation (5.13) corresponds to the null presentation or, in other words, the null presentation

is the choice of integration interval [0, ℓµ]. With posterior wisdom, it is almost obvious that

this choice is not particularly happy. On one hand, it takes both coordinate extrema xµA and

xµB on the upper limit of the integral, which should already sound an alarm bell because it

fixes the edge origin. On the other hand, it eventually leads to corrections X µ(xA, xB) that

depend on the initial and final coordinate separately. The symmetrized presentation relies

on an even more unnatural choice of integration domain and it leads to a trivial theory

with X µ = 0. In contrast, eq. (5.14) is valid both in the initial-point presentation [its right-

hand side is qµ(ℓµ) − qµ(0) = qµ(ℓµ), since qµ(0) = 0] and in the final-point presentation

[the right-hand side is qµ(0) − qµ(−ℓµ) = qµ(ℓµ), since the qµ are odd in their argument].

The integration domain is now the natural one [xµA, x
µ
B] and the corrections X µ(xµB − xµA)

now depend only on the spatial distance or time interval, but not on the initial and final

coordinates separately. The desirability of this feature for physical predictions is evident and

it was implicitly used in all phenomenology-oriented papers [51, 55, 56, 58, 59].17 Therefore,

we supersede the discussion of [57] and rule out the null and symmetrized presentations

from the game, leaving only the initial- and final-point presentations. The correction in

eq. (5.12) reads

X µ =
1

αµ

∣

∣

∣

∣

ℓµ∗
ℓµ

∣

∣

∣

∣

1−αµ

Fω(ℓ
µ). (5.15)

The sign in eq. (5.12) depends on the choice between initial-point presentation (+) and

final-point presentation (−). Thus, the presentation (i.e., the value of x̄µ) affects the out-

put of physical measurements via the sign in front of multiscale corrections. But how can we

reconcile the initial- and final-point presentations with the requirement that the constant

x̄µ, fixed in the measure of geometry, be the same for all observers? In Minkowski space-

time for the theories T1, Tv, and Tq, we cannot because the weights v(x− x̄) appearing in

the derivatives in the equations of motion break translation invariance. On a curved back-

ground, however, the chart where the measure q(x−x̄) is defined is the local inertial frame of

17Although incorrectly associated with a measure in null presentation. In particle-physics experiments,

one regards the point t̄ as the beginning of the observation or the moment when a certain collision occurs

or a certain particle is created, while t∗ is the time, measured from t̄, before which multiscale effects are

important [56]. In cosmology, t̄ is the discriminator between “early” times ∆t = t− t̄ . t∗ and “late” times

∆t ≫ t∗; ∆t represents the moment when a cosmological phenomenon takes place with respect to some

special instant t̄ in the history of the universe, which may be the big bang [51, 54, 59]. And so on.
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an observer, and the multiscale version of such frames exists for Tv and Tq (we do not know

about T1 and Tγ , but they probably exist at least for Tγ). Thus, a local observer is at liberty

to choose x̄ in such a way that it coincides with xA or xB. We will stress on this point also in

question 30 . In the theory with multifractional derivatives (4.39) or (4.45), the problem is

solved [if eq. (4.39) satisfies a set of requirements yet to be checked] without invoking gravity,

already in the case of a Minkowski embedding: the derivatives appearing in the equations

of motion are translation invariant [eq. (4.48)], independently of the choice of q(x− x′).

This is the presentation problem. We differentiate between two possible views of it.

One, which we dub “deterministic,” has been advocated consistently from [41] until the

appearance of [62, 63]. The other, which we call “stochastic,” has been proposed in refs. [62,

63]. Although the deterministic view works, the stochastic view may work even better

because it solves the presentation problem not by the brute force of Aristotelian logic (either

one presentation or the other, tertium non datur), but by accepting both presentations at

the same time.

– Deterministic view. The tenet of this view is that a change of presentation changes

the theory, i.e., the sign and magnitude of the corrections X µ. Due to the small-

ness of these corrections, all qualitative features are unaffected [57]. It is well known

that inequivalent presentations leave the anomalous scaling of the measure and the

dimension of spacetime untouched [41, 42], basically for the same scaling argument by

which the volume of a hypercube or of a D-ball scale in the same way (question 15 ).

Therefore, multifractional scenarios are robust across different presentations, includ-

ing those that we disfavoured above. Picking a presentation corresponds to defining

the theory and allows us to make predictions which will change in another presenta-

tion (i.e., another theory connected to the first by a one-parameter transformation),

but not by much.

– Stochastic view. Instead of making a choice between two inequivalent but equally

valid theories, we can can try to have both theories coexist. Since it is impossible to

choose between the initial- and final-point presentation without an external input, we

conceive a “macrotheory” with an intrinsic uncertainty in the presentation, so that

the term ±χµ in eq. (5.12) is interpreted as an irresoluble uncertainty in distance and

time measurements [62, 63]. The mechanism to do so is not quantum mechanics but a

stochastic reinterpretation of the coordinates of multifractional spacetimes [57, 62, 63].

The stochastic view could be realized in two ways, which are still under study. One is

by using log oscillations as a direct source of fluctuations, mimicking a stochastic effect

when they average to zero [62, 63]; this possibility applies exactly to all multifractional

theories. The other way, which we will consider here, goes through the integration and

differential structure as a whole [57], in which case this view is naturally implemented

in Tγ (where the restriction to having a normed space is naturally lifted [62, 63]),

while it is “superposed” to the structure of T1, Tv, and Tq. Since the theory closer to

Tγ is Tq, we can apply this view successfully only in these two cases, the second being

an approximation. For T1 and Tv, we have to adopt the usual deterministic view, so

that the presentation problem persists in the absence of gravity and is reduced to two

presentations (determining the maximal uncertainty) in its presence.
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Whenever we can choose either the initial- or the final-point presentation, in both views

there is no reference to any special point in the coordinate chart {xµ} defining the fractional

frame. Geometry becomes a pure relativity of scales. To summarize:

– Tγ : the number of allowed presentations is two (initial- and final-point) in both flat

and curved space. The deterministic view holds and the two presentations define

inequivalent theories that, in principle, can be discriminated by experiments sensitive

enough to detect a deviation from standard physics. In alternative, the stochastic

view holds exactly and the presentation problem is replaced by an uncertainty on

distance and time measurements.

– Tq: the number of allowed presentations is infinite (a one-parameter family) in flat

space and is reduced to two in the presence of gravity. The deterministic view holds

and the two presentations define inequivalent theories. However, one can also adopt

the stochastic view as an approximation and regard the two presentations as an in-

trinsic uncertainty effect.

– Tv: the number of allowed presentations is infinite in flat space and is reduced to two

in the presence of gravity. The deterministic view holds and the two presentations

define inequivalent theories. There is no stochastic view.

– T1: the number of allowed presentations could be reduced to two only in the presence

of gravity, provided multiscale local inertial frames existed. The deterministic view

holds and different presentations (two or infinitely many) define inequivalent theories.

There is no stochastic view.

30 To show that the presentation problem signals an inconsistency, let us just

confine ourselves to classical physics. The fundamental principle governing

classical dynamics is that the classical trajectories minimize a quantity that

we call the action. While, as we go from one frame to another, the action

may look different written in terms of the fields, it is the same quantity

that we must calculate in every frame. In other words, once we decide

that the action looks a certain way in a given frame, in any other frame

its functional form must completely be determined via the usual Lorentz

field transformations. This property just follows from the requirement of

the invariance of the action. This functional form will not be preserved in

multifractional theories, as the nonscalar v(x) changes from one frame to

another. So, in essence, one has only one opportunity to choose a unique

spacetime point in the universe, and once chosen one does not have the

luxury to keep changing it to suit one’s needs just because one is con-

ducting different experiments. That would mean that one is changing the

action depending upon what experiment one is doing, when and where

one is doing. Also, from the point of view of plain diffeomorphisms, the

zeros or the singularities of v(x) are special points which have an indepen-

dent meaning, contrary to diffeo-invariant theories where a point acquires

meaning only in relation to the happening of a physical event.
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Tensor fields in multifractional spacetimes transform with different laws with respect to the

standard case [49, 56], and such laws replace usual Poincaré transformations as detailed

in 13 . Advocating arguments based on symmetries that cannot be valid for actions with

factorizable measures can only mislead to dead ends. Moreover, when gravity is turned on

the singularity point x̄ in the measure is no longer a unique point in the universe. Rather,

it is replicated at every local inertial frame (which exist both in Tv and Tq), each with its

own measure weight v(x) attached. This realizes the intuitive characteristic of self-similar

fractals that geometry is anomalous at any point of the set and with the same scaling law

everywhere [54, 57].

Although these arguments suffice, the core of this criticism affects the just-old version

of multiscale theories where there was no superselection criterion for the choice of one of

the four available presentations. The justification then was that such a choice is simply

part of the definition of the theory. In [57], it was also suggested that the theory with

fractional derivatives could realize a local notion of anomalous geometry even in the absence

of gravity. In that case, fractional calculus is shown to introduce a probabilistic character

to spacetime: spacetime points x become stochastic processes X; different presentations

would simply amount to inequivalent prescriptions of integrodifferential calculus and, in

turn, of stochastic integration.

With the advances made in 29 , where we restricted the number of choices to two and

removed any reference to a preferred point, we went a long way in giving a more satisfactory

answer. The arbitrariness in the presentation has been reduced to only two options, and

what was previously interpreted as an integrable singularity of the measure, to be found

somewhere in the universe, corresponds in fact to local measurements with no spatial or

time extension, ℓµ = 0. This is the physical interpretation we were looking for.

6 Field theory

31 What is the action of the multifractional Standard Model?

Let SSM =
´

dDq(x)LSM be the Standard-Model action, where we split the Lagrangian into

an electroweak bosonic, an electroweak leptonic, a quark, a Yukawa, and a Higgs sector:

LSM = Lew-bos + Lew-lep + Lquark + LYuk + LΦ. The Standard Model Lagrangian with

ordinary derivatives is

Lew-bos = −1

4
F a
µνF

µν
a − 1

4
BµνB

µν , (6.1a)

Lew-lep = ieRγ
µ∇µeR + iLγµ∇µL , (6.1b)

Lquark = iq†αiσ̄µ(∇µq)αi + iū†ασ̄
µ(∇µū)

α + id̄†ασ̄
µ(∇µd̄)

α + L[t, b, c, s] , (6.1c)

LYuk = −GeLΦ eR + y′ǫijΦiqαj ū
α − y′′Φ†iqαid̄

α + H.c. , (6.1d)

LΦ = − (∇µΦ)
† (∇µΦ) + V (Φ) , (6.1e)

V (Φ) =
λ

4

(

Φ†Φ− 1

2
w2

)2

, (6.1f)

– 50 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

where the field strengths of the SU(2) and U(1) gauge fields Aa
µ and Bµ are

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g′ǫabcA

b
µA

c
ν , (6.1g)

Bµν = ∂µBν − ∂νBµ , (6.1h)

the gauge covariant derivatives are

∇µL =

(

∂µ +
i

2
g′σaA

a
µ +

i

2
gBµ

)

L , (6.1i)

∇µeR = (∂µ + igBµ)eR , (6.1j)

(∇µq)αi = ∂µqαi + igsC
a
µ(λ

a) β
α qβi +

i

2
g′Aa

µ(σa)
j
i qαj +

i

6
gBµqαi , (6.1k)

(∇µū)
α = ∂µū

α + igsC
a
µ(λ

a)αβū
β − 2i

3
gBµū

α , (6.1l)

(∇µd̄)
α = ∂µd̄

α + igsC
a
µ(λ

a)αβ d̄
β +

i

3
gBµd̄

α , (6.1m)

∇µΦ = same as ∇µL , (6.1n)

the σa are the 2 × 2 Pauli matrices [generators of SU(2)], γµ are the Dirac matrices, λa,

a = 1, . . . , 8, are the 3×3 Gell-Mann matrices [generators of SU(3)], σ̄µ = (1,−σa), Ca
µ are

the color gauge potentials, L =

(

νe
eL

)

is the left weak isospin doublet, eR is the right isospin

singlet, in Lquark we wrote only the first quark family (u, d), qi, i = 1, 2 = u, d is a left-

handed Weyl spinor under SU(2), ū and d̄ are antiquarks [singlets under SU(2)], L[t, b, c, s]
is the Lagrangian for the other quarks, “H.c.” means Hermitian conjugate, Φ is the Higgs

doublet, and V (Φ) is its potential. In standard Minkowski spacetime, SSM =
´

dDxLSM.

– The Lagrangian LSM in T1 is the usual one (6.1). The couplings g, g′, gs, Ge, y
′, y′′,

λ, and w are all constant.

– In Tv [56], we have eqs. (6.1) with ∂µ replaced by Dµ everywhere. The couplings g,

g′, gs, Ge, y
′, y′′, λ, and w are all measure dependent with the following form:

C(x) =
√

v(x)C0 , C = g, g′, gs, Ge, y
′, y′′ , C0 = g0, g

′
0, gs0, Ge0, y

′
0, y

′′
0 = const ,

(6.2)

λ(x) = v(x)λ0 , w(x) =
w0

√

v(x)
, λ0, w0 = const . (6.3)

– In Tq [55, 56], we have eqs. (6.1) with ∂µ replaced by ∂/∂qµ(xµ) everywhere. The

couplings g, g′, gs, Ge, y
′, y′′, λ, and w are all constant.

– The Standard Model in Tγ has never been written down since it requires more study

of the fundamentals of the theory. We do not know whether it can be defined simply

by replacing ∂µ in (6.1) with qDµ or Dµ everywhere.
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32 Why to extend a so well functioning Standard Model with a multiscale

version of it?

As discussed in point 04 , the main motivation of multifractional theories is not phenomeno-

logical, it is to address two fundamental problems of quantum gravity: the physical meaning

and consequences of dimensional flow and whether it is possible to carry the quantization

program in a perturbative framework. Once dimensional flow is implemented via the second

flow-equation theorem in the measure of the theory, it affects virtually all sectors of physics,

including that of fundamental quantum interactions. Then, in order to assess the viability

of multifractional theories, it is mandatory to explore all such sectors, in particular the

consequences of a multiscale spacetime on the theoretical and observational characteristics

of QFT. The extension of the Standard Model is not an objective per se; certainly, it is

an occasion to place strong constraints on the free parameters of the measure, hence our

interest in it.

33 In the theory with weighted derivatives, constants are promoted to fields,

sometimes only time-dependent (for instance, the electric charge men-

tioned in question 23), sometimes not. What is the rationale behind these

choices?

There are four specifications to make from the start. First, all the couplings in gauge

covariant derivatives and field interactions in the fractional-picture action of the Standard

Model depend on the measure weight (4.8), which is a fixed profile of spacetime coordinates.

Thus, according to eqs. (6.2) and (6.3), they depend on both time and space. Second,

constants are not promoted to fields because the measure weight (4.8) is not a scalar field.

Third, the spacetime-dependent couplings (6.2) and (6.3) are not ad hoc but originate from

gauge invariance and the requirement of being able to do free field theory. Fourth, one must

distinguish between the couplings in the Lagrangian and observable couplings.

Let us clarify the origin of eqs. (6.2) and (6.3). Consider a generic Yang-Mills theory S =
´

dDx vL with a gauge bosonic vector field Aa
µ (Abelian in the case of electromagnetism,

non-Abelian in general) and fermionic matter Ψ [56]:

L = −1

2
tr(FµνFµν) + iΨγµ∇µΨ−mΨΨ , (6.4)

where Fµν := Fa
µνta, F

a
µν = g−1[∂µ(gA

a
ν) − ∂ν(gA

a
µ)] − gfabcA

b
µA

c
ν is the field strength of

A, g = g(x) is the gauge coupling, and ta are the matrix representations of the Lie algebra

[ta, tb] = ifabct
c associated with the gauge group. The covariant derivative in (6.4) is

∇µ = Dµ + igAa
µta , (6.5)

where Dµ is defined in (4.7). A priori, the coupling g(x) can be spacetime dependent; to see

what this dependence is, one defines the gauge-invariant matter current Jµ
a := −gΨγµtaΨ,

which is covariantly conserved:

∇µJ
µ
a = 0 . (6.6)

Also, the Lagrangian density (6.4) is invariant under a U(1) symmetry whose Noether

current obeys the generalized conservation law Ďµ(Ψγ
µΨ) = 0, where Ďµ = v−1∂µ(v · )
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(in the theory Tv, this type of derivative appears often in some conservation laws and in

gravity [54, 56]). Since ∇µJ
µ
a = 0 and Ďµ(Ψγ

µΨ) = 0 must agree when fabc = 0, this implies

g(x) =
√

v(x)g0 , (6.7)

where g0 is a constant. Therefore, all couplings in the fractional picture have the space-

time dependence given by eq. (6.7), where v(x) is determined by the second flow-equation

theorem. In particular, the U(1) charge of electromagnetism in the fractional picture is

e(x) =
√

v(x)e0. The same dependence is found in Yukawa interactions. In the Higgs

sector, the scalar potential is (6.1f), which gives a nonzero vacuum expectation value to the

Higgs doublet. To obtain a Standard Model whose free sector is stable in the integer picture

(a necessary requirement, if we want to have a manageable perturbation theory), both λ and

w must acquire a specific dependence on the measure weight v(x), given by eq. (6.3) [56].

Then, the Higgs mass is the same in both the fractional and the integer picture.

None of the above couplings is a physical observable. In the case of weak interactions,

all observable couplings (for example, the Fermi constant or the masses of the W and Z

gauge bosons) are a combination of Lagrangian couplings, and it turns out that the measure

dependence cancels out in such combinations [56]. As a consequence, no exotic signatures

are predicted in the weak sector alone. The electromagnetic sector is more interesting. The

deformed conservation law for U(1) is a special case of eq. (6.6), DµJ
µ = 0, which leads to

the nonconservation equation of the electric charge [51]

Q(t) :=

ˆ

dD−1x v(x) J0(t,x) ≃ e0
√

v0(t)
, (6.8)

where v(x) is the spatial part of (4.8) and the last approximated expression was found in

ref. [51]. Therefore, this particular observable coupling is only time-dependent because it

comes from the usual definition of Noether charges. All the other Lagrangian couplings (6.2)

in the strong and weak sectors are spacetime-dependent but this property is not seen in the

observable couplings of strong and weak interactions.

In the other multifractional theories where the Standard Model is obvious (T1) or

has been constructed (Tq [55, 56]), there is no effective definition of spacetime-dependent

couplings and they are all constant. The particle phenomenology is different from the case

Tv; in particular, the weak sector of Tq is nontrivial observationally.

34 Can multiscale effects be mimicked by more traditional extensions of the

Standard Model such as effective field theories? There may be a strong

call, from particle physicists, for some simplified exposition of the main

ideas of multifractional theories. For instance, effective field theories speak

the language in which most extensions of the Standard Model are usually

formulated. It would be of big value to derive which higher-dimensional

operators should be added to the Standard-Model Lagrangian to mimic

multiscale effects.

To explain the QFT results in Tv intuitively to a bigger circle of phenomenologists, it may

be useful to make a link with more familiar formulations of physics beyond the Standard
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Model (this answer is taken from [56]). What discussed in 33 can be summarized by saying

that the presence of an underlying multiscale geometry affects field theory in such a way

that interaction terms (in gauge derivatives or in nonlinear potentials) acquire an explicit

spacetime dependence of the form

[1 + f(x)]φiφj · · · , (6.9)

where f(x) = f [v(x)] depends on the measure weight v(x) and φi are some generic fields.

Terms such as (6.9) have a naive interpretation of “having promoted coupling constants to

fields” and, in some sense, some of the physical effects we encounter are similar to those in

models with varying couplings. Another possibility to mimic effects of the form (6.9) is to

add higher-dimensional operators to a traditional Lagrangian. For instance, in a scalar-field

theory one would have

V (φ) → [1 + f(x)]V (φ) ∼ [1 + φm + φn + · · · ]V (φ)

for some exponents m and n, and one would fall into the context of effective field theories.

These are only superficial analogies not capturing the real nature of the multiscale

paradigm. The most evident departure is that v(x) is not a scalar field and none of the

above interpretations based on ordinary field theories has any such premade, nontrivial

integrodifferential structure. Since v(x) [hence f(x)] is fixed by the geometry, it cannot be

interpreted as a field and the higher-order-operators comparison dies as soon as one writes

down the classical or quantum dynamics [classically, one does not vary with respect to v(x);

at the quantum level, v(x) does not propagate]. The varying-coupling analogy is also of

limited utility in the long run, since it does not explain why only certain couplings, but not

others, depend on spacetime.

35 Is field theory unitary?

No, it is not, but it does not lead to problems. To accept this paradoxical answer, we should

examine its grounds. In a general multiscale geometry, the usual symmetries are deformed

and Noether currents are modified accordingly. In the theory Tv, these currents obey

conservation laws such as (6.6), where the gradient operator encodes the multiscale nature of

the geometry. In the theory Tq, one has conservation laws with q-derivatives, ∇qµ(xµ)J
µ
a = 0.

Thus, once written according to the differential structure typical of the theory, there is

a notion of current conservation that implies unitarity. More precisely, both Tv and Tq
admit an integer picture where we have a standard unitary QFT, which is necessary and

sufficient to compute the QFT observables of the theory. On the other hand, however,

the conservation laws with nonstandard derivatives are equivalent, in Tv and Tq [51, 56],

to nonconservation laws with standard derivatives, which means that these theories in the

fractional picture, where the weighted and q-derivatives are written as standard derivatives

multiplied by measure factors, are classically dissipative, i.e., nonunitary at the quantum

level [42, 49]. Therefore, although the auxiliary QFT developed in the integer picture

is unitary, the QFT in the fractional picture is nonunitary. Also the study of quantum

mechanics indicate that unitarity is violated but in a controllable way [47].
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The model T1 has no integer picture and the system is manifestly nonconservative.

It was in this context, similar to the more general case of multiscale field theories with

nonfactorizable measures, that violation of unitarity was first predicted [105]. However,

even if field theory can never be trivialized, nonconservation laws can be interpreted as

governing an exchange of probability densities between the multiscale world and its D-

dimensional topological bulk [105]. Again, nonunitarity is there but under check.

Presumably, in the theory Tγ there will be conservation laws of the form “∂αµJ
µ = 0,”

where the gradient is made of multifractional derivatives such as (4.37), (4.39), or (4.45).

Then, conservation in terms of first-order ordinary gradients will appear only in the IR

asymptotic regime (it cannot be exact: fractional derivatives reduce to ordinary ones only

asymptotically). Or, nonconservation equations as in the T1 case could appear.

36 What is the propagator in multifractional theories?

We give the example of a real massive scalar in flat space, which captures all the main

features of propagators. Also, we omit the causal prescription of the propagator and consider

a generic Green function solving (Kx −m2)G(x, x′) = δq(x, x
′), where m is the mass of the

scalar and δq(x, x
′) is the equivalent of the Dirac distribution in a multifractional geometry.

In general, the structure of the Green function is

G(x, x′) =

ˆ

dDp(k)

(2π)D
e(k, x)e∗(k, x′) G̃(k) , G̃(k) = − 1

−K̃(k) +m2
, (6.10)

where dDp(k) =
∏

µ dp
µ(kµ) =: dDk w(k) is the measure in momentum space [w(k) =

∏

µwµ(k
µ) is the measure weight], kµ are the momentum coordinates in the fractional

frame, and e(k, x) are the “plane waves” of the theory, i.e., the eigenfunctions of the Laplace-

Beltrami operator K: Kxe(k, x) = K̃(k) e(k, x).

– In T1, the fact that K† 6= K = � implies that the action (4.5) is physically inequivalent

to an action with kinetic term −(1/2)∂µφ∂
µφ. In the first case, the Green function

in momentum space is

G̃1(k) = − 1

k2 +m2
, (6.11)

where k2 = kµk
µ = −(k0)2 + |k|2. There are two poles at Rek0 = ±

√

m2 + |k|2
and the usual interpretation of fields as particles. In the case of the kinetic term

−(1/2)∂µφ∂
µφ, the structure of G̃(k) is completely different and branch cuts may

arise for α = 2/D (this conclusion is reached by adapting the findings of ref. [105] for

T̃1 to the factorizable measure of T1). These problems disappear in Tv, the natural

upgrade of T1.

– In Tv, the Dirac distribution is δq(x, x
′) = δ(x − x′)/

√

v(x)v(x′), the plane waves

are the weighted phases e(k, x) = exp(ixµk
µ)/
√

w(k)v(x) [44], K̃(k) = −k2, and the

Green function in momentum space is eq. (6.11) [42, 49]. Again, we have two mass

poles and fields are associated with particles.
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– In Tq, the momentum measure is eq. (4.13). The delta distribution is δq(x, x
′) =

δ[q(x)− q(x′)], plane waves are e(k, x) = exp[iqµ(xµ)p
µ(kµ)], and the Green function

is attractively simple in geometric coordinates:

G̃q(k) = − 1

p2(k) +m2
, p2(k) :=

∑

µ

[pµ(kµ)]2 = k2 + . . . . (6.12)

The usual poles are replaced by branch points, which cannot be determined analyti-

cally in general.

– In Tγ , we have not calculated the full multiscale propagator yet, but we can guess

its general structure at any plateau of dh, where (up to weight factors) Kγ ∼ ∂2γ

is a fractional derivative and Kγe(k, x) ∼ |k|2γe(k, x) for each direction and up to a

constant (to be determined by the type of derivative [41, 46]) [41, 42, 46]. Then, the

Green function is something of the form (mass term rescaled) [42]

G̃γ(k) ∼ − 1

F 2γ(k) +m2γ
, F 2γ(k) :=

∑

µ

|kµ|2γ , (6.13)

which, for 2γ 6∈ N, has a branch point at Rek0 = ±(m2γ +
∑

i |ki|2γ)1/(2γ) and a

branch cut corresponding to a continuum of modes of rest mass > m.

37 The multiscale idea is quite exotic because it involves a nonstandard alge-

bra of derivatives, and it may be difficult to understand its consequences

for a field theory. What is the physics behind perturbation theory?

This question is difficult to answer because QFT is yet unknown in Tγ (and in the less

interesting case T1), while in Tv and Tq it is under full control only in the integer picture.

We do not know much about the physical interpretation, i.e., about what happens in the

fractional picture. The following descriptions are an orientative start.

– The absence of symmetries and of a self-adjoint Laplacian has fatally stalled progress

in the case of T1. An example of the problems one may incur into is in the form of

the propagator, which changes with the prescription made on the kinetic term (see

the previous question). Therefore, we directly move to its upgrade Tv.

– In the theory with weighted derivatives Tv, we have point particles but a perturbative

treatment of their interactions does not follow conventional Feynman rules. The main

problem is that ordinary momentum is not conserved, as remarked in 13 and 35 . Ver-

tices in anomalous geometries do not combine like delta distributions as in ordinary

QFT, since the Dirac delta is smeared to a sort of landscape of volcanoes [one for each

term n in eq. (3.6)]. Each external momentum brings a distribution ∼ |k|−β (where

β depends on αn) which does not combine into a vertex distribution ∼ |ktot|−β .

– In the theory with q-derivatives Tq, we do not even have a notion of particle in the

fractional picture, due to the form of (6.12). Once recast the system into the integer

picture both in position and in momentum space, we have effective particle fields in
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an effective ordinary QFT [mass poles at p2 = −m2 in eq. (6.12)], and everything

goes through smoothly. But in the physical frame, none of that holds. As in the

case of Tv, it seems that quantum interactions are heavily altered by taking place in

a multiscale anomalous geometry, which dissipates energy and momentum into the

embedding bulk. In other words, quantum physics cannot be described by the non-

adaptive measurements units of the fractional picture but, as soon as we consider

adaptive units [i.e., multiscale coordinates q(x)] and move to the integer picture, a

standard QFT emerges. The resulting “observables” must be reconverted to nonadap-

tive measurements, which is all we have in the real world. The surprising thing is that

this procedure works and the final physical observables are well defined. It may be

that some deep mechanism is in action such that the scale hierarchy of the geometry

and the measurement of quantum phenomena by a macroscopic apparatus of size s

affect each other in some yet poorly understood way. In some still mysterious sense,

the presence of yet another scale s≫ ℓ in the system, determined by the measurement

apparatus and represented by the final conversion from the integer to the fractional

picture, alters the multiscale hierarchy in quantum interactions and tames it to a

finite result. The appearance of such a scale in a recent comparison of the multifrac-

tional paradigm (with αµ = 1/2) with quantum-gravity uncertainties [62, 63] may be

especially informative.

– In the case of the theory Tγ , the branch cut in eq. (6.13) signals the presence of an

infinite number of unstable quasiparticles for which we do not have a representation

by Feynman diagrams. We hereby recast the propagator (6.13) explicitly as such a

superposition of pseudoparticle modes. Ignoring the index µ everywhere and taking

k > 0, we have

− 1

k2γ +m2γ
= −
ˆ k

0
dκ

f(κ)

κ2 +m2
, f(κ) = 2γκ2γ−1 κ2 +m2

(κ2γ +m2γ)2
. (6.14)

This continuum of quasiparticles of mass > m is equivalent to the superposition

of massive particle modes of momenta κ smaller than k, weighted by the distribu-

tion f(κ). The momentum distribution is plotted in figure 3 for some values of

1/2 6 γ < 1. For γ = 1/2 and m 6= 0, f(0) = 1 and f(κ) tends to 1 asymptotically

at large κ; at κ = m, there is a global minimum. This case does not correspond to

a continuum of quasiparticles since the propagator has a simple pole at k = −m in

this case. For 1/2 < γ < 1, f(κ) vanishes both at κ = 0 and asymptotically at large

κ, with in between a local maximum at some 0 < κ < m and a minimum at κ = m.

As γ increases, the maximum gets closer to the minimum until the latter disappears

at some critical value γ = γ∗; for γ > γ∗, the distribution has a global maximum at

κ = m. In the massless limit for 1/2 < γ < 1, the monotonic profile f(κ) = 2γκ1−2γ

diverges at κ = 0 and vanishes asymptotically at large κ. Therefore, for massless fields

the main contribution in f(κ) comes from the κ = k mode, while for massive fields it

comes from the branch point κ = m for sufficiently large fractional exponent γ.
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Figure 3. The distribution f(κ) in eq. (6.14) for m = 1 and some values of γ: with increasing

thickness, γ = 0.5, 0.6, 0.8. The dashed curve is the m = 0 case for γ = 0.6.

This rewriting of the fractional Green function in terms of a superposition of ordinary

propagators clarifies the physical interpretation of field theory in Tγ and it could help

in the construction of perturbative QFT therein.

38 Does Lorentz violation lead to a fine tuning in loop corrections, as predicted

by the general argument of Collins et al. [155, 156]?

In scenarios with modified dispersion relations breaking Lorentz symmetry, the extra terms

lead to large fine tunings at the quantum level [155, 156]. More precisely, loop corrections

to the propagator generally lead to Lorentz violations several orders of magnitude larger

than the tree-level estimate, unless the bare parameters of the model are fine-tuned. Thus,

even if one starts with a classical theory with tiny Lorentz-symmetry violations, one may

end up with an observationally unacceptable enhancement of order of percent.

Usually, this happens in models where the dispersion relation acquires terms which

dominate at small scales, as for instance in Lifshitz-type field theories [157] and, presumably,

in Hořava-Lifshitz gravity. There may exist quantum-gravity models which can bypass that

argument [158] (but see ref. [159]), and it was checked in ref. [52] that also the multifractional

theories Tv and Tq avoid this problem. T1 and Tγ have not been explored.

In both Tv and Tq, the key reason is the existence of an integer frame hosting an

ordinary, formally Lorentz invariant field theory. After field and coupling redefinitions

(in Tv) or after moving to geometric coordinates (in Tq), loop calculations in the integer

frame disclose no bad news. In the case of Tv, there also is an explicit calculation in

the integer frame with nontrivial measure-dependent interactions [52]. The Dyson series

for the full quantum propagator G̃ of a scalar field in momentum space can be formally

resummed to G̃ = G̃1+AG̃1+A(AG̃1)+ · · · = [1−A]−1G̃1, where G̃1 is given by eq. (6.11),

A := G̃1∂
2(Π̃∂2 · ), and Π̃(k2) ∼ (k2 +m2) ln(k2/m2) is the self-energy function for large

|k2|. In a coupling expansion up to quadratic order and keeping only the first two terms

of the Dyson series, In the large-k limit one has G̃ ∼ 1/(k2 − C ln k2/k2), where C is a

constant. Thus, in the ultraviolet (k → ∞) the correction term is subdominant with respect
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to the usual one, and the fine-tuning problem is avoided [155, 156]. These modifications to

the propagator are not introduced by hand, they are derived from the theory. Thus, they

also bypass some other general arguments related to Collins et al.’s Lorentz violations [159].

39 What about CPT symmetry?

Having discussed the transformation properties of the fields and the violation of lo-

cal Poincaré symmetries in 13 , we consider discrete Lorentz transformations: charge

conjugation C, parity P, and time reversal T. The requirement of having a positive-

semidefinite measure weight implies that the geometric coordinates are odd under reflection

qµ(−xµ) = −qµ(xµ). Since the measure weight (4.8) is even in the coordinates, classical

multifractional theories are invariant under parity and time-reversal transformations PT

(see [42] for Tγ and [56] for Tv and Tq; the case of T1 is obvious). The presence of measure

weights in the action does not affect the charge properties of spinors [56], so that also C is

preserved classically.

Since QFT is performed in the integer picture, where Tv and Tq look the same as the

ordinary Standard Model, the fate of CPT symmetry at the quantum level is the same as in

the usual case, although differences in quantitative predictions may arise by the mechanisms

detailed in 34 .

7 Classical gravity and cosmology

40 What is the gravitational action?

– In T1, the action of gravity is [54, 105]

S1[g, φ
i] =

1

2κ2

ˆ

dDx v
√−g [R− ω(v)∂µv∂

µv − U(v)] + S1[φ
i] , (7.1)

where ω and U are functions of the weight v, R is the ordinary Ricci scalar and

S[v, φi] is the matter contribution minimally coupled with the metric. Apart from

the dependence on the measure, the system is nonautonomous (i.e., the Lagrangian

depends explicitly on the coordinates) unless ω = 0 = U . Even setting ω = 0 = U , the

gravitational sector is not the Einstein-Hilbert action, due to the presence of v in the

measure. The equations of motion are different from those in an ordinary scalar-tensor

theory, since v is not a scalar field and the action is not varied with respect to it.

– In Tv, the weighted derivatives in eq. (4.7) are not the only ones appearing in the

action of this theory. Derivatives with more general weights

βD :=
1

vβ
∂(vβ · ) (7.2)

are necessary when tensor fields of rank greater than 1 enter the dynamics. In the

case of gravity, eq. (7.2) is used to define the metric connection

βΓρ
µν :=

1

2
gρσ (βDµgνσ + βDνgµσ − βDσgµν) . (7.3)
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It turns out that the only nontrivial covariant derivative among several consistent pos-

sibilities is ∇−
σ gµν := ∂σgµν−βΓτ

σµgτν−βΓτ
σνgµτ . Covariant conservation ∇−

σ gµν=0 of

the metric translates into the Weyl-integrable condition ∇σgµν = (β∂σ ln v) gµν with

respect to the standard covariant derivative. Defining the fractional Riemann tensor

Rρ
µσν := ∂σ

βΓρ
µν − ∂ν

βΓρ
µσ + βΓτ

µν
βΓρ

στ − βΓτ
µσ

βΓρ
ντ (7.4)

and the curvature invariants Rµν := Rρ
µρν and R := gµνRµν , the gravitational action

is eq. (5.4) [54]. For β = 0, one recovers the case (7.1). In general, one can obtain

a relatively simple integer frame (not equivalent to standard general relativity) only

when the gauge invariance of Weyl-integrable spacetimes is implemented (exactly

if ω = 0 = U , approximately if ω or U are nonvanishing), which results in fixing

β = 2/(D−2). In D = 4, β = 1 and the metric is a bilinear field density of weight −1.

– In Tq, the metric connection and the Riemann tensor are defined from the ordinary

expressions, with the replacement (5.6):

qΓρ
µν :=

1

2
gρσ

(

1

vµ
∂µgνσ +

1

vν
∂νgµσ − 1

vσ
∂σgµν

)

, (7.5)

qRρ
µσν :=

1

vσ
∂σ

qΓρ
µν −

1

vν
∂ν

qΓρ
µσ + qΓτ

µν
qΓρ

στ − qΓτ
µσ

qΓρ
ντ , (7.6)

plus the curvature invariants qRµν := qRρ
µρν and qR := gµνqRµν . The action of

gravity and matter is

Sq[g, φ
i] =

1

2κ2

ˆ

dDx v
√−g (qR− 2Λ) + Sq[φ

i] , (7.7)

where in Sq[φ
i] the metric is minimally coupled.

– Gravity with multifractional derivatives is still under construction.

41 What are the main features of cosmological dynamics in multifractional

spacetimes?

Despite the full dynamical equations having been laid down already, cosmological solutions

have not been discussed in detail. The little we know shows signs of an exotic evolution.

Here we write only the D = 4 Friedmann equations (00 component of Einstein equations

and the trace equation) for a homogeneous and isotropic background evolving with scale

factor a(t) and Hubble parameter H = ȧ/a. These expressions were derived in ref. [54]

from the full Einstein equations of the theories (7.1), (5.4), and (7.7).

– In T1, the Friedmann equations with curvature k = 0,±1 and a perfect fluid with

energy density ρ and pressure P are

H2 =
κ2

3
ρ− k

a2
−H

v̇

v
+ f1(v, v̇) , (7.8)

ä

a
= H2 + Ḣ = −κ

2

6
(ρ+ 3P ) +H

v̇

v
+ f2(v, v̇) , (7.9)
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where possible measure-dependent terms have been collected into two contributions

f1 and f2. The dynamics of this model has not been studied beyond a preliminary

inspection [105].18

– In Tv, one has a non-Riemannian geometry (gµν not conserved) that strongly resem-

bles a Weyl-integrable spacetime. With some manipulation, the action (5.4) looks like

that of a scalar-tensor theory, with the difference that the scalar field is here replaced

by a function of the measure weight v. After a conformal transformation to a frame

(the integer picture) where the metric is conserved, the Friedmann equations read

H2 =
κ2

3
ρ+

Ω

2

v̇2

v2
+
U(v)

6v
− k

a2
, (7.10)

ä

a
= −κ

2

6
(ρ+ 3P ) +

U(v)

6v
, (7.11)

where U(v) is a “potential” term for v determined by the geometry (in general, solu-

tions require U 6= 0) and Ω = −3/2 + f(v), where f is a function of v that, just like

f1,2 in eqs. (7.8) and (7.9), is not necessary usually and can be set to zero.

– In Tq, the dynamics is

H2

v2
=
κ2

3
ρ− k

a2
, (7.12)

ä

a
= −κ

2

6
v2(ρ+ 3P ) +H

v̇

v
. (7.13)

A simple power-law solution a(t) = [q0(t)]p with a binomial measure illustrates the

typical evolution [54]. The log oscillations of the measure give rise to a cyclic universe

characterized by epochs of contraction and expansion, which progressively evolve to

a monotonic scale factor at times t ≫ t∗. The average or coarse-grained scale factor

is given by the zero-mode contribution only, i.e., setting Fω = 1 in the measure. At

early times t . t∗, the coarse-grained particle horizon expands faster than in stan-

dard cosmology. In this theory, we also know what happens when inhomogeneities

are included [59] (see question 43 ).

– The cosmology of Tγ is unknown.

In none of the theories the evolution in the presence of radiation and dust matter has been

considered yet and it would be important to check whether multifractional cosmologies are

realistic. The extreme rigidity of the dynamics, where the evolution of curvature is governed

by that of the measure, should make all these cosmological models easily verifiable.

42 Can you get acceleration from geometry without slow-rolling fields?

Yes, you can. In T1, the term Hv̇/v + f2 in the right-hand side of eq. (7.9) can give a

positive contribution (averaging over log oscillations). In Tv, the term ∝ Ω(v̇/v)2 < 0 in

18The homogenous cosmology of T̃1 is the same of T1, since the two models have the same type of

derivatives and they differ only in the factorizability of the measure.
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the right-hand side of eq. (7.10) acts like the kinetic term of a phantom field (without having

the theoretical problems associated with it), while the term ∝ U/v is like a potential or a

time-varying cosmological constant and, since U > 0 for self-consistency of the solutions

(it is not imposed by hand [54]), it gives a positive contribution to the right-hand side of

eq. (7.11). Phantoms typically trigger super-acceleration; the bouncing vacuum solution

found in ref. [54] confirms this expectation.

The theory Tq is less transparent. Since v ≃ 1 + |t/t∗|α−1, for an expanding universe

one has Hv̇/v ∝ v̇ ∝ (α − 1)|t/t∗|α−2 < 0 and the right-hand side of eq. (7.13) can vanish

for an equation of state w = P/ρ < −1/3. Thus, it would seem that one needs a strong

slow roll to get acceleration. However, measure factors 1/v2 < 1 are hidden in ρ and P ,

inside the kinetic term of fields, and they suppress it. By this mechanism, potentials can

dominate even if fields are not in very-slow roll.

43 Can you explain inflation with this mechanism?

Not in Tq, because the flatness problem is not solved [54]. However, the slow-roll condition is

relaxed. In standard inflation, the primordial spectrum of scalar and tensor perturbations is

described, as a first approximation, by the power spectrum Ps,t = As,t(k/k0)
n, where k = |k|

is the comoving wavenumber, k0 is an experiment-dependent pivot scale and n = ns− 1, nt
are, respectively, the scalar and tensor spectral index. In the theory Tq with a binomial

measure, this power law is deformed by the multifractional geometry according to the

following expression [59]:

Ps,t(k) ≃ As,t







k

k0

α+
∣

∣

∣

k0
k∗

∣

∣

∣

1−α

α+
∣

∣

∣

k
k∗

∣

∣

∣

1−α







n
[

1 +An cos

(

ω ln
k∞
k

)

+Bn sin

(

ω ln
k∞
k

)

−An cos

(

ω ln
k∞
k0

)

−Bn sin

(

ω ln
k∞
k0

)]

. (7.14)

In the limit k∗ ≪ k < k∞ and averaging on log oscillations, one gets an effective power

law Ps,t(k) ∼ (k/k0)
neff , where neff = αn. In particular, the effective spectral index of the

primordial scalar spectrum is

neff − 1 ≃ α(ns − 1) (7.15)

asymptotically. If α is sufficiently small, one can soften the slow-roll condition [54] and get

viable inflation, even when ns deviates from 1 by more than 10% [59]. One can see this

intuitively by noting that the factor 1/v2 in the left-hand side of eq. (7.12) can match a non-

trivial time evolution of the right-hand side even when H is approximately constant, while in

standard cosmology a quasi-de Sitter evolution requires a matter energy density ρ > −3P .

However, one still needs a scalar field in slow roll in order to have a shrinking horizon

during acceleration. For the cosmological toy model T1 and the theory Tv, the Friedmann

equations are known [54] but they have not been studied, nor have cosmological perturba-

tions been considered. Nothing is known about the cosmology of Tγ .
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44 Can you explain dark energy with this mechanism?

We do not know, but work is in progress and preliminary results are encouraging. A

cosmological constant term of purely geometric origin arises in Tv, both in homogeneous

cosmological solutions [54] and in black holes [64]; however, it is not clear whether it can

act as dark energy in a fully realistic evolution of the universe.

45 Are the big-bang and black-hole singularities resolved?

The answer depends on the theory. We do not know in the case of T1 and Tγ , but there are

some results for the other two theories.

In Tv, the vacuum solution a(t) of the dynamics (7.10)–(7.11) with k = 0 is a bouncing

universe that tends to de Sitter asymptotically in the future [54]. If one could show that

general stable solutions with ρ 6= 0 have the same feature, there would be a concrete possi-

bility to solve the big-bang problem in this theory. Regarding black holes, it was recently

shown that spherically-symmetric solutions to the Einstein equations are of Schwarzschild-

de Sitter type, hence the pointwise singularity at the center persists [64]. Thus, the fate of

singularities in Tv is not clear.

In Tq, an original reinterpretation of the big-bang problem was proposed [54]. Since a

shift qµ(xµ) → qµ(xµ)+xµbb does not change the measure, an arbitrary constant xµbb can be

added which would leave the gravitational action formally unchanged but would regularize

the scale factor a[q(t)] → a[q(t) + tbb] at t = 0. In the light of the second flow-equation

theorem [61], we can now exclude this shift: the constant vector xµbb can be assimilated

to the presentation label x̄µ, but we already have fixed that in the final- or initial-point

prescriptions in the deterministic view of the theory and in the Tγ=α
∼= Tq approximation

(see 29 ). Also, the arguments below eq. (5.14) clearly show that what is really special

is the null-distance configuration ℓµ = 0, not the coordinate point xµ = 0. Therefore,

the shift regularization cannot be implemented consistently in the theory. The same effect

could be achieved without any shift in the geometric coordinates, setting α = 0; then, the

constant term would come from the modulation factor in the measure q(t) = t+Fω(t) [54].

This geometric configuration has not been considered much in the past, since it does not

correspond to a traditional dimensional flow where the spacetime dimension changes at large

scale excursions ∆ℓ: in this case, the dimension is constant in average but it is modulated

by log oscillations. An alternative that capitalizes on the stochastic view of [62, 63] is that,

due to the intrinsic microscopic uncertainty in the geometry, we cannot probe the zero scale

of the big bang, which is thus screened by this most peculiar effect. Notice, however, that

this mechanism does not work in the case of black holes: the singularity oscillates between

a point and a ring topology (the two extrema of the initial- and final-point presentations)

without ever disappearing [64]. We leave all these possibilities open for future study.
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8 Quantum gravity

46 Is dimensional flow really so important in quantum gravity, where there

may not even be a notion of spacetime? The claim that one of the most

striking phenomena we come across the landscape of quantum-gravity

models is dimensional flow might be true in some abstract sense. How-

ever, some would say that the very concept of spacetime might not make

sense and thus the theory of multifractional spacetimes might not be of

any interest to them. Thus, multifractional models are addressed to a very

particular sub-community of the overall quantum-gravity community.

Some theories of quantum gravity do not admit a notion of spacetime at the fundamental

level. The most clear example of that is the group of GFT-spin foams-LQG, where geometry

emerges from a combinatorial structure (e.g., ref. [28]). Even in CDT, where the path

integral over geometries is regularized by a discretization procedure and the continuum

limit is eventually taken, a smooth spacetime arises only in the so-called phase C in the

phase diagram of the theory, while all the other phases correspond to non-Riemannian

geometries (mutually disconnected lumps of space in the branched-polymeric phase A, large-

volume configurations of vanishing time duration in phase B, and signature changes in

phase D = Cb [82, 160, 161]). Nevertheless, the Hausdorff, spectral, and walk dimensions

are indicators valid also in non-Riemannian geometries, as discussed in question 01 and

showed in refs. [66, 69] for the GFT-spin foams-LQG group of theories and in the typical

sets describing the non-Riemannian CDT phases [82, 86, 162–166]. Fractal geometry by

itself is proof that we do not need a smooth manifold to have dimensional flow [68].

Whether one sees them as independent theories of geometry or as effective models

describing the flow of other theories in certain regimes, multifractional spacetimes are not

addressed to a restricted audience. They do not lack personality since they are based

on a characteristic paradigm, they are a top-down approach from theory to experiments,

and they offer their own predictions about physical observables. More popular quantum-

gravity approaches on the market have better or clearer results about the UV finiteness,

but in some cases the phenomenology and contact with experiment is still underdeveloped

or even absent. The uniqueness argument in 04 guarantees that multifractional theories

have a certain degree of universality in dimensional flow, so that placing constraints on this

proposal can help to assess the phenomenology of other theories with dimensional flow. If

anything, one of the main messages of multifractional theories is that dimensional flow can

be a testable property of exotic geometries, rather than an abstract property disconnected

from physics.

47 Let me reformulate the question. Even accepting that dimensional flow

exists for all quantum gravities, are dimensions really measurable?

If dh, ds, and dw were not physical observables, dimensional flow would be only a mathe-

matical feature useful to classify multiscale spacetimes. Some believe that these dimensions

are not measurable and that they are just mathematical labels. Others recognize that the

Hausdorff dimension is measurable but they do not acknowledge the same status for the
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spectral dimension; consequently (but this has never been said explicitly), also the walk

dimension cannot be measured. Still others, like the author, are firm proponents of the

measurability of all three dimensions.

That the spatial Hausdorff dimension is an observable is made clear by the following

example [57]. Consider an observer in a space with dh = D − 1 at large scales ℓ ≫ ℓ∗ and

0 < dh < D − 1 at small scales ℓ≪ ℓ∗. They can make several balls of radius ℓ1 + δℓ close

to some average value ℓ1 ≫ ℓ∗ (where δℓ≪ ℓ∗), submerge each ball in a container of water

and measure the volume of displaced liquid, noting a distribution of volumes with average

ℓD−1
1 and width ∼ ℓD−2

1 δℓ. Making another set of balls of average radius δℓ < ℓ2 ≪ ℓ∗ with

the same fluctuation δℓ, they find an average volume ℓdh2 and (for D > 3 and dh > 1) a

narrower distribution, since 1 ≪ (ℓ1/ℓ∗)
D−2 > (ℓ2/ℓ∗)

dh−1 ≪ 1. The inequality may change

direction for dh < 1 but, in any case, by comparing these dimensionless observables the

experimenter realizes that they are living in a space with dimensional flow.

Ideally, the spectral and walk dimensions are measurable by placing a particle in a

spacetime and let it diffuse. Literally. In practice, this procedure does not work when the

scales we want to probe are much smaller than those covered by a molecule in Brownian

motion. For that reason, and also to solve the negative-probabilities problem in quantum

gravity, it may be better to adopt the QFT perspective that the diffusing probe is a quantum

particle in a scattering process [31]. However, it is not yet clear how this would help since ds
is the scaling of self-energy diagrams and, moreover, experiments with particle interactions

cannot reach quantum-gravity scales. This does not mean that the spectral dimension is

not a physical observable, since its relation (or even identification) with the dimension of

momentum space (see 01 ) opens up several possibilities of measurement [70].

When dealing with microscopic or very large scales, we cannot construct balls and

submerge them in a liquid, or have ideal particles diffuse in spacetime, but appropriate

experiments on high-energy physics or observations of cosmological scales can constrain

both dh and ds with their characteristic tools. In the case of multifractional theories, this

is illustrated by the many examples reported in section 9.

48 There are many approaches to quantum gravity, some of which were listed

in section 1. Can you compare multifractional theories with these other

scenarios?

We can make this comparison at five levels: (i) in the characteristics of dimensional flow,

(ii) in other characteristics of the geometry, (iii) in terms of the UV properties of renor-

malizability or finiteness, (iv) in the way the multifractional paradigm, seen as an effective

framework, captures the geometry of other theories, and (v) at the level of phenomenology

and observational constraints.

(i) The flow-equation theorems predict the general dimensional flow near the IR for any

quantum gravity with nonfactorizable Laplacians [eq. (3.2)] and for multifractional

theories where Laplacians are factorizable in the coordinates [eq. (3.3)]. The coeffi-

cients b and c in eq. (3.2) are determined by the dynamics of the theory, while bµ and

cµ = 1 − αµ in eq. (3.3) are free parameters with a restricted range (question 08 ).
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D bH cH bS cS

Asymptotic safety 4 0 — < 0 > 0

CDT 4 0 — < 0 2

Near black holes D 0 — D+1
2 2

Nonlocal gravity and string field theory D 0 — < 0 2

Fuzzy spacetimes D 0 — −D 2

Gravity with quantum particles 3 0 — −21
16 2

κ-Minkowski bicovariant ∇2, AN(3) 4 0 — −2 2

κ-Minkowski bicovariant ∇2, AN(2) 3 0 — −3
2 2

κ-Minkowski bicrossproduct ∇2 4 0 — 1 2

κ-Minkowski cyclic invariance (o.s.) D < 0 1 ? ?

Hořava-Lifshitz gravity D 0 — < 0 > 0

GFT, spin foams, LQG (o.s.) D(= 4) < 0 2 > 0 2

Table 3. Parameters of the IR Hausdorff and spectral dimension of spacetime (3.2) (subscript H

and S, respectively) in quantum gravities. “Only space” (o.s.) cases means that ℓ in eq. (3.2) is

a spatial scale (time dimension does not flow). Question marks indicate cases not studies in the

literature.

The spacetime dimensions in multifractional theories have been computed in 15 . We

compare the coefficients b and c in different theories of quantum gravity, expanding

on the discussion of [61]. The results are summarized in table 3.

The Hausdorff dimension dh is the easiest to discuss:

– Asymptotic safety [24, 79, 80], CDT [81–84], spacetimes near black holes [101–

103], fuzzy spacetimes [104], and string field theory and nonlocal gravity [34, 78]

all have trivial dimensional flow in the Hausdorff dimension (dh = D, where

D = 4 is some cases).

– Noncommutative spacetimes usually have dh = D [93–95], but in the case of

κ-Minkowski with cyclic-invariant action [167] b < 0 (dh increases from below)

and c = 1 [43, 60].

– Hořava-Lifshitz gravity has Lebesgue measure dt dD−1x but with a time coordi-

nate with anomalous scaling [t] = −z < −1. One can reabsorb this scaling into

the spatial gradients ∇2z of the theory, so that dh = D [48].

– States of LQG and GFT describing general discrete quantum geometries display

the kink profile of the binomial measure (3.4) without log oscillations [66, 67]

(see figure 6 of ref. [66]). In the analytic example of the lattice C∞ = ZD−1,

the Hausdorff dimension reads dh − 1 = ℓ[ψ(ℓ +D − 1) − ψ(ℓ)], where ψ is the

digamma function: dh = 2+O(ℓ) in the UV (ℓ is measured in units of the lattice

spacing), while in the IR dh = D − (D − 1)(D − 2)/(2ℓ) +O(ℓ−2), giving b < 0

and c = 1.
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Concerning the spectral dimension ds near the IR:

– In asymptotic safety, ℓ is the IR cutoff governing the renormalization-group equa-

tion of the metric [24, 79, 80]. The multiscale profile of the spectral dimension

is calculated analytically at each plateau and numerically in transition regions.

The author is unaware of any semianalytic approximation giving b and c in (3.2).

– In Hořava-Lifshitz gravity, ds ≃ 1+(D− 1)/z < D in the UV and ds ≃ D in the

IR [100], so that b < 0. No semianalytic profile connecting the UV to the IR has

been computed, so that we cannot say much about c apart that it is positive.

Using anomalous transport theory, it should be possible to find such profile with

the multiscale tools of [46].

– The rest of the models have c = 2, without exception. In CDT, b < 0 is found

numerically [81, 83, 84]. In a nonlocal field-theory model near a black hole,

b = (D + 1)/2 [103]. In fuzzy spacetimes, b = −D [104]. In nonlocal gravity

with e� operators as in string field theory, b < 0 (one can show that b = −36

in D = 4) [78]. In LQG and GFT, one can check numerically that b > 0 for all

the classes of states inspected, that is, dimensional flow occurs from a UV with

low dimensionality, reaches a local maximum > D, and then drops down to the

IR limit from above [66, 67]. Effective bottom-up approaches to LQG confirm

dimensional flow to an UV spectral dimension smaller than D, although they do

not make an analysis of quantum states [71, 168].

– To date, the spectral dimension for κ-Minkowski with cyclic-invariant measure

has not been calculated. The other noncommutative examples, all with c = 2,

are the following: in D = 3 Einstein gravity with quantized relativistic particles,

b = −21/16 [93]; in Euclidean κ-Minkowski space with bicovariant Laplacian

and AN(3) momentum group manifold, D = 4 and b = −2 [94, 95]; with AN(2)

momentum group manifold, D = 3 and b = −3/2 [95]; with bicrossproduct

Laplacian, D = 4 and b = 1 [95]. The bicovariant-Laplacian results are compati-

ble with an independent calculation in generic D, where b < 0 and c = 2 [96, 97].

In none of these cases, except hints in the GFT-spin foams-LQG group [69, 134],

complex dimensions preluding to log oscillations have been detected. In the cases with

discrete structures, this may be due to technical limitations in the way the spectral

dimension has been computed, while in asymptotic safety the cutoff identification or

the truncation of the action may play a role.

(ii) Asymptotic safety, phase C of CDT (after sending the triangulation size to zero), non-

local gravity, string theory, and Hořava-Lifshitz gravity are defined on a continuum

and spacetime, no matter how irregular it looks like at small scales due to quantum

effects, can be described by a fundamental or effective metric gµν . Phases A, B, and D

of CDT do not correspond to metric manifolds but they admit a continuum descrip-

tion. κ-Minkowski and other noncommutative spacetimes are defined in a continuous

embedding, but noncommutativity of the coordinates makes the spacetime structure
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highly non-Riemannian. GFT, spin foams, and LQG are all defined on pre-geometric

structures such as group manifolds and combinatorial graphs; a continuous-spacetime

approximation is reached in certain regimes (not only limited to the obvious semiclas-

sical limit). In LQG and spin foams, the continuum limit is subject to a number of

delicate technicalities, while in GFT its realization is perhaps more transparent [169–

171]. Multifractional spacetimes are fundamentally discrete in the sense that there is

a DSI at ultrasmall scales (see 20 ). This symmetry is not exact and at larger scales

it gives way to a continuum. This transition happens via a natural coarse-graining

procedure on the harmonic structure of the geometry [40, 42].

(iii) In nonperturbative approaches such as asymptotic safety, CDT, LQG, and spin foams,

UV finiteness is achieved by other means than perturbative renormalizability. In

asymptotic safety, via the functional renormalization approach [22, 23, 172, 173]. In

CDT [25, 29, 174, 175] and spin foams [15, 176–178], via the well-definiteness of the

path integral of (pre)geometries. In LQG, via canonical quantization of the gravita-

tional constraints on a Hilbert space of (pre)geometric states (the spin networks) [12–

14]. GFT includes spin foams and LQG but it is a Lagrangian field theory on a group

manifold; therefore, its renormalization properties can be tested either perturbatively

(which constrains the forms of the kinetic term allowed by renormalizability) [179–182]

or nonperturbatively via the functional renormalization approach [183–186]. Also the

other major theories discussed in this review are based on perturbative field-theory

renormalization, although in very different forms: examples are perturbative super-

string theory (genus-expansion series of Riemann surfaces) [187–197], noncommuta-

tive field theory (nonplanar graphs) [198–206], nonlocal gravity (traditional QFT but

with nonlocal operators) [32, 34, 38, 39], and Hořava-Lifshitz gravity (traditional QFT

but with higher-order Laplacians) [207].

In nonperturbative formulations, UV finiteness is achievable but subject to a number

of technical challenges or assumptions. For instance, in the functional renormalization

approach used in asymptotic safety and in GFT a truncation of the effective action

is performed. Still in GFT nonperturbative renormalization, all models considered so

far are “toy” in the sense that they are with an Abelian group and without simplicity

constraints (gravity requires a non-Abelian group and the implementation of simplic-

ity constraints). In perturbative formulations, renormalization has been proven only

at a finite order (as in perturbative string theory and Hořava-Lifshitz gravity), or at

all orders but for a scalar field or other toy models (such is the case of GFT and

noncommutative QFT), or modulo important technical or phenomenological issues

(as in nonlocal gravity and Hořava-Lifshitz gravity).

The case of multifractional theories will be discussed in question 50 .

(iv) Some quantum gravities have been connected directlywith multifractional spacetimes.

– The renormalization-group flow of asymptotic safety admits a complementary

description in terms of a multifractional geometry [48], based on the observation

that in the renormalization-group flow the physical momentum carries a scale
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dependence by the identification of the momenta pas with the cutoff scale L

of the renormalization-group flow. In the simplest case, pas(L) = 1/L. These

momenta are scale-dependent and, by requiring the same dimensional flow of

asymptotic safety, they can be matched by the geometric coordinates p(k) in the

momentum space of the theory Tq. Thus, in asymptotic safety physical rods are

adaptive and momenta are implicitly scale-dependent, while in multifractional

theories physical rods are nonadaptive and momenta are scale-independent, but

one establishes a mapping by using geometric coordinates in position and mo-

mentum space, corresponding to adaptive “mathematical” rods and explicitly

scale-dependent momenta. This direction-by-direction mapping is exact (Lapla-

cians are factorizable) and also explains the reason why these two theories predict

the same spectral dimension of spatial slices, dspaces ≃ 3/2 in the deep UV, when

D = 4 and α = 1/2. This should be contrasted with nonfactorizable theories

such as Hořava-Lifshitz gravity, for which dspaces ≃ 1 in the deep UV.

– The phase structure of CDT may find a counterpart in multifractional geome-

tries [42]. The branched polymers of phase A might be describable by a UV

multifractional regime at scales ℓ∞ < ℓ ≪ ℓ∗ where log oscillations modulate

a highly nontrivial dh ≃ 2 disconnected geometry. In phase B, the concepts of

dimension, metric and volume seem not to play a major role, since a phase-B

universe has no extension in the time direction and topology becomes important.

This is akin to the most extreme limit of the multifractional measure, the so-

called “boundary-effect” or “near-boundary” regime at scales ℓ ∼ ℓ∞, where the

binomial measure (3.4) (indices µ omitted here) is expanded at |x/ℓ∞| ∼ 1 and

becomes q(x) ∼ ln |x| [40, 42]. The name of this regime stems from its relation

with an approximation of fractional derivatives near the extrema of integration

in their definition and it signals a central role for topology, just like in phase

B. This correspondence has not been formalized anywhere but it should not be

hard to do so. It would be worth doing it not only for its simplicity, but also

for the payback it brings. In particular, it immediately explains why random

combs [86, 87, 166] cannot be associated with phase B: log oscillations are washed

away in random structures.

– The anomalous scaling of the coordinates in Hořava-Lifshitz gravity can be easily

interpreted in terms of binomial geometric coordinates [48]. In these anisotropic

critical systems [100, 207], coordinates scale as t→ λzt and x → λx for constant

λ, so that time and space directions have dimensions [t] = −z and [xi] = −1 in

momentum units. This UV scaling is reproduced by an anisotropic multifrac-

tional model with α0 = 1 and αi = 1/z = 1/(D − 1). In particular, in four

dimensions αi = 1/3, the special value (4.10) recently come to the fore [62, 63].

The correspondence of coordinates is q0(x0) = x0 = x0HL = t, qi(xi) = xiHL, and

physical momenta are defined consequently, p0(k0) = p0HL, pi(ki) ∼ piHL. To get

a multiscale geometry, one builds the total action with a hierarchy of differen-

tial Laplacian operators, from order 2z (UV) to 2 (IR). Of course, symmetries
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and action differ in these two theories: while in Hořava-Lifshitz gravity the UV

spectral dimension is anomalous due to the higher-order Laplacian, in multifrac-

tional theories it is so because of the nontrivial measure appearing in integrals

and derivatives.

– Noncommutative and multifractional spacetimes enjoy different symmetries and

are therefore physically inequivalent. Also, while we can devise noncommuta-

tive versions of multifractional theories and all noncommutative theories have

nontrivial multiscale measures, we cannot interpret commutative multifractional

theories as noncommutative theories. The ultimate cause of these discrepancies

is the fact that noncommutative theories have nonfactorizable measures, while

the measure of multifractional theories is factorizable [60]. Nevertheless, these

two classes of models have much in common, to the point where noncommuta-

tive geometry seems the natural candidate to generalize multifractional space-

times to nonfactorizable measures [60]. In particular, the spacetime algebra of

κ-Minkowski spacetime is obtained by a noncommutative q-theory where geomet-

ric coordinates obey the Heisenberg algebra [43, 60], with a measure weight v(x)

reproducing the nontrivial measure found in the cyclic-invariant action of field

theory on κ-Minkowski [43]. This correspondence is valid in the near-boundary

regime discussed above and it yields eq. (4.14) as an important bonus: one can

identify the scale in log oscillations with the Planck scale. Remarkably, the same

identification is supported by a completely independent argument on distance

uncertainties [62, 63], but only for α = 1/3.

– Motivated by the contact points between multifractional and noncommutative

spacetimes on one hand [43, 62, 63], and the compatibility between the de-

formed Poincaré symmetries of κ-Minkowski spacetime and those of the effective-

dynamics approach to LQG on the other hand [208], the constraint algebra of

gravity in the multifractional theories Tv and Tq has been compared [60] with

the deformed algebra of LQG models of effective dynamics [209–212]. Although

differences were expected for the reasons explained in the previous item, the

types of deformation have been discussed in some detail [60]. See question 49 .

– A comparison of multifractional theories with models beyond general relativ-

ity at the border with quantum gravity, such as varying-e models [213–215],

VSL models [141, 142, 216], doubly special relativity [217–221], and fuzzy space-

times [104] can be found in refs. [42, 51] (see references therein for a more ex-

haustive bibliography).

Another but less direct connection is that the spacetime dimensions in asymptotic

safety, Hořava-Lifshitz gravity, and GFT-spin foams-LQG have been reconsidered

or found anew with the tools of anomalous transport theory [66, 69, 80], which are

heavily used in multifractional theories and have been proposed as a sharp instrument

of analysis for quantum gravity in general [45, 46].

(v) See question 58 .
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49 Some quantum gravities predict a deformation of the algebra of gravi-

tational constraints. What is the constraint algebra for multifractional

gravities?

It should not come as a surprise that the only available results are, once again, for Tv and

Tq [60]. We limit our attention to the classical algebra.

In the case of Tv in D = 4, the super-Hamiltonian constraint in the integer frame and in

ADM variables can be written as H[N ] = H0[N ] +Hv[N ] =
´

d3xN(H0 +
√

h̃Hv), where

N is the lapse function, h̃ is the determinant of the spatial metric, H0 = πijπ
ij/
√

h̃ −
π2/(2

√

h̃) − (3)R̃
√

h̃ is only metric dependent, πij = δSv[g̃]/δ ˙̃g
ij , and the density Hv is

both metric and measure dependent. The diffeomorphism constraint is the usual one,

d[N i] = −2
´

d3xN ih̃ijdkπ
kj , where N i is the shift vector. Since there are no dynamical

degrees of freedom associated with v, there is no conjugate momentum πv. Also, the v-

dependent correction term Hv is not affected by diffeomorphisms. Overall,

{d[Mk], d[N j ]} = d[L ~MN
k],

{d[Nk], H[M ]} = {d[Nk], H0[M ]} = H0[L ~NM ], (8.1)

{H[N ], H[M ]} = {H0[N ], H0[M ]} = d[h̃jk(N∂jM −M∂jN)],

where L is the Lie derivative. As claimed in question 14 , standard diffeomorphism invari-

ance is preserved in the integer frame of Tv in the absence of matter; when interacting

matter fields are present, diffeomorphism invariance is broken.

In the case of Tq, the algebra of first-class constraints is

{dq[Mk], dq[N j ]} = dq
[

1

vj(xj)
(M j∂jN

k −N j∂jM
k)

]

,

{dq[Nk], Hq[M ]} = Hq

[

1

vj(xj)
N j∂jM

]

, (8.2)

{Hq[N ], Hq[M ]} = dq
[

hjk

vj(xj)
(N∂jM −M∂jN)

]

,

where the index of the deformed measure weight vj is inert as usual. The constraints

Hq[N ] and dq[Nk] generate time translations and spatial diffeomorphisms of the geometric

coordinates qµ(xµ), which means that these are not the usual time translation and diffeo-

morphisms.

A deformed constraint algebra appears in LQG when cancellation of quantum anomalies

is imposed [209–212]. The only constraint deformed is the bracket of the super-Hamiltonian,

{H[N ], H[M ]} = d[βhij(N∂iM −M∂jN)] , (8.3)

where β is a function; in general relativity and in other quantization schemes of

LQG [222, 223], β = +1. From eqs. (8.1) and (8.2), we can see that the constraint al-

gebra of LQG, independently of the quantization scheme, differs from the algebras of Tv
and Tq. In the case of Tv, {H,H} is untouched but deformations different from eq. (8.3)

appear when matter is turned on. In the case of Tq, both {d,H} and {d, d} are modified

– 71 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

(more precisely, the algebra is not deformed but the generators d→ dq and H → Hq are),

contrary to what happens in LQG. Also, we cannot naively identify the LQG deformation

function with β = 1/vi(x
i), since the left-hand side is a background-dependent function of

the phase-space variables that can change sign, while the right-hand side is always positive

and independent of the metric structure.

50 Are multifractional field theories renormalizable?

This question is general but its implicit target is quantum gravity. A power-counting

argument [42, 77] was at the origin of the multiscale paradigm. According to eq. (4.6),

a scalar theory becomes super-renormalizable if [K] = dh, that is to say, if the Laplace-

Beltrami operator K scales as a momentum to the power of the Hausdorff dimension of

spacetime. For a polynomial potential V =
∑N

n=0 σnφ
n, the coupling σN of the highest

power has engineering dimension [σN ] = dh − N(dh − [K])/2 and the theory is power-

counting renormalizable if [σN ] > 0, i.e.,

N 6
2dh

dh − [K]
if [K] < dh , (8.4)

N 6 +∞ if [K] > dh . (8.5)

When [K] > dh, the theory is super-renormalizable. Concentrating on eq. (8.5), if dh =

D, we need higher-order derivative operators, which introduce ghosts (Stelle gravity is a

masterpiece example of this [224, 225]). If dh ≃ Dα in the UV, then we need either a

second-order K for α = 2/D (as in the original multiscale proposal T̃1 [77, 105, 106], in

T1, and in Tv) or a K with anomalous scaling for general α < 1 (as in Tq and Tγ). In the

second case, however, if γ = α one has [�q] = 2α = [Kα] in the UV and, from eq. (8.4), one

obtains the usual condition N 6 2D/(D − 2). Therefore, the theories Tq and Tγ=α are not

more renormalizable than in standard spacetime. If γ 6= α, we have [K] > dh only if

γ >
Dα

2
. (8.6)

The limiting case is α = 2/D, where γ = 1 and one recovers either T1 or Tv. In D = 4,

having γ < 1 and asking for power-counting renormalizability corresponds to having a

non-normed spacetime. However, the condition for a norm was found in the absence of

log oscillations [41] and the latter disrupt the standard properties of spacetime anyway.

Moreover, the presence of an intrinsic distance uncertainty in the deep UV of Tγ (ques-

tion 29 ) further indicates that having a norm is bound to become, sooner or later in the

UV, an obsolete requirement. Cognitive estrangement is thus generally expected in the ex-

treme regimes of multifractional spacetimes. The question is whether it is due to physically

acceptable mechanisms.

Therefore, the power-counting argument gives good news for T1 and Tv, bad news for

Tq, and unclear news for Tγ . To check whether renormalizability is actually improved (or

not) on a multifractional spacetime, one must go beyond the power-counting argument and

employ either perturbative or nonperturbative QFT techniques. The only clear results we

have so far are perturbative and only for Tv and Tq in the deterministic view. Here we
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review them and provide a new insight in Tq and Tγ . The bottom line is that we have no

news for T1 (but, as we said, we do not care too much about that, since the upgrade of

T1 is Tv), bad news for Tv (against the power-counting argument), bad news for Tq in the

deterministic view (in line with the power-counting argument), and intriguing news both

for Tq in the stochastic view and for Tγ in either view.

In the theory with weighted derivatives, the degree of divergence of Feynman graphs

in a scalar field theory does not improve with respect to standard QFT [52]. An easy

argument showing that the renormalizability of this theory is basically the same as that of

the standard theory is the following. In the fractional frame, the measure in the momentum

integration in loops is dDk w(k), where the weight w(k) is such that the scaling dimension

of the measure is smaller than D. However, when coupled with the full expression with two

fractional phases e(k, x) = eik·x/
√

w(k)v(x) (such as in propagators), the latter include two

factors w−1/2, which cancel the weight in the measure. Thus, the degree of divergence of

momentum integrals remains the same as in the integer field theory. The actual degree of

divergence of some diagrams differ with respect to the power-counting argument [52] but

essentially agrees with its main conclusion. Yet another, more intuitive way to understand

this point is to notice that the free multifractional propagator in position space is of the form

Gv(x, y) =
G1(y − x)

√

v(y − x̄)v(x− x̄)
(8.7)

for any factorizable positive semidefinite measure v in presentation x̄ [49] (see question 36 ).

Therefore, the divergence of Gv(x, y) at coincident points x ∼ y is solely determined by the

usual propagator G1(x− y) and not by the prefactor ∼ 1/v(y).

The theory with q-derivatives in the deterministic view does not work, either. Its basic

renormalization properties can be inferred from position space, according to the following

scaling argument. In the rest of the answer, we omit spacetime indices and also avoid

cumbersome expressions in geometric polar coordinates; a rigorous calculation could easily

fill the gaps in this heuristic reasoning without major surprises. The free propagator is

Gq(x, y) = G1[q(y) − q(x)] and its behaviour at x ∼ y is the same as the standard theory.

For instance, in the massless case

Gq(x, y) ∼
1

|q(y)− q(x)|D−2
∼ 1

|v(y − x̄)(y − x)|D−2
(8.8)

upon Taylor expanding around x = y, and at coincident points inverse powers of q(x)−q(y)
diverge as inverse powers of x− y. Here |q(y)− q(x)| =

√

∑

µ[q
µ(yµ)− qµ(xµ)]2.

The only points where these arguments fail are those corresponding to the measure

singularity at y = x̄ = x, where the above expressions vanish. The main conclusion is not

modified in the deterministic view, but something interesting may happen in the stochastic

view. As said in 29 , we can adopt this view in Tq when regarded as an approximation of

Tγ=α. We can see here how by computing the Green function both in Tγ and in Tq; for

Tγ , we only sketch a back-of-the-envelope calculation. The second flow-equation theorem

selects the initial-point and the final-point presentation as special among all the others, and

in Tγ one can always choose either presentation thanks to translation invariance. Therefore,

– 73 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

the propagator will be of the form Gγ(x, y) = Gγ(y − x). Calling r = |y − x|, recall that

the Fourier transform F of a power law rβ is proportional to k−(β+1). In D-dimensional

Euclidean space, in polar coordinates we have k−2 ∝ F [r] = F [rD−1r2−D]. The factor

rD−1 is the Jacobian in polar coordinates, which leads to G1(r) ∼ r2−D as the Green

function in position space. Similarly, from the propagator (6.13) we get k−2γ ∝ F [r2γ−1] =

F [rDα−1r2γ−Dα], and identifying rDα−1 with the Jacobian in a space with UV Hausdorff

dimension dh ≃ Dα, we get the free propagator Gγ(r) ∼ r2γ−Dα in the theory Tγ at the

plateau dh ≃ α, which can be generalized to the whole dimensional flow and to the presence

of log oscillation. When γ = α,

Gα(x− y) ∼ 1

|q(y − x)|D−2

UV∼ 1

|y − x|α(D−2)FD−2
ω (y − x)

, (8.9)

where we have taken an isotropic binomial measure to illustrate the typical UV behaviour.

On the other hand, we cannot use the initial- or final-point presentations in Tq because we

cannot conveniently fix x̄ case by case. However, if we did, from eq. (8.8) we would obtain

exactly the same behaviour as in Tγ=α:

Gq(x, y) ≃ G1[q(y − x)− q(0)] ≃ Gα(x− y) . (8.10)

Thus, eq. (8.9) is the typical Green function of the theory Tγ with fractional derivatives

of order α, approximated by the theory Tq with q-derivatives. Let us discuss its main

properties, beginning with the deterministic view. For Fω = 1 (coarse-grained or no log

oscillations), the singularity of the propagator (or of the Newtonian potential, to cite another

example) is softened but, in accordance with the power-counting argument, not removed.

Nevertheless, in the limit α → 0, we reach the α = 0 geometric configuration already met

in 45 and the propagator (or the potential) tends to a constant. This phenomenon is very

similar to what found in nonlocal theories and is related to asymptotic freedom [226, 227]. It

signals the possibility that interactions, including gravity, become weak in the deep UV. The

limit αµ → 0 cannot be reached in Tγ if we require spacetime to be normed (question 08 ),

but if we regard α in the Hausdorff dimension in eq. (4.6) as the average fractional charge

we can get α = 0 by setting some of the charges αµ to negative values. As said in 08 , these

geometries are strange (or even unphysical) because they have no norm along some or all

directions [41] and, in general, the dimension of time or of spatial slices become negative.

However, this is not the end of the story. If Fω 6= 1 is nontrivial, then at scales ∼ ℓ∞ the

divergence becomes of the form ∼ (ln 1)2−D for any α, since q(y−x) ∼ ln(y−x) in that case;

this is the near-boundary regime described in 48 . Going at even smaller scales, Gγ diverges

periodically at the zeros of Fω(y − x). This behaviour, induced by the discreteness of the

geometry at these scales, is totally different from what we would expect in a traditional

resolution of singularities or in a renormalization scheme in a continuum. In the absence

of a better name and of an explanation, we call this a DSI divergence or DSI singularity.19

Notice that this possibility is realized only if the amplitudes of the log oscillations are

19In [54], the DSI approach to the big bang was compared at first sight to the BKL singularity. A

quantitative comparison is still missing.
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large enough. The most negative contribution to Fω is given by an angle of 5π/4, where

Fω = 1−
√
2(A+B). Assuming A = B, Fω vanishes for as small an amplitude as

A = B =
1

2
√
2
≈ 0.35 , (8.11)

which is not excluded by CMB observations [59] (see question 52 ).

In the stochastic view, the propagator is

Gα ∼ Gq
UV∼ 1

|r(1±X )|D−2
, (8.12)

where X ∼ |ℓ∗/r|1−α is an adaptation to polar coordinates of the correction (5.15). The

DSI oscillations are just a blurring out of spacetime below the intrinsic uncertainty X ,

which grows as we approach the singular point r = 0. This stochastic noise is the authentic

texture of spacetime at these scales and it screens the observer from singularities: the point

r = 0 cannot be reached physically. Since we cannot measure lengths smaller than rX , the

existence of a norm at these scales is irrelevant and we can contemplate exponents α < 1/2.

So, are infinities tamed in Tγ or not? We do not know, but the quest for an answer

promises to be stimulating both in the deterministic view (where we have the mysterious DSI

singularity or a very exotic non-normed geometry) and in the stochastic view just described.

9 Observations

51 Can a multifractal observer be aware of being in a multifractal spacetime?

Yes, they can. An observer can recognize whether the underlying geometry is standard

or multiscale (in particular, multifractal or multifractional) by measuring dimensionless

quantities such as the ratio of two observables of the same kind [57]. We saw an example

of this procedure in question 47 for the measurement of volumes. Another instance is the

following. Consider Tq in D = 1+1 dimensions and suppose that two nonrelativistic objects

a and b of very different size move with velocities Vx,a = ∆xa/∆t and Vx,b = ∆xb/∆t in

the fractional picture. In the integer picture, one can compute the geometric velocity

Vq =
∆q(x)

∆q(t)
=

∆x|1±X|
∆t|1±X 0| = Vx

∣

∣

∣

∣

1±X
1±X 0

∣

∣

∣

∣

, (9.1)

where we used eq. (5.12). Clearly, the ratio of the velocities of a and b will be different in a

multifractional spacetime with respect to an ordinary spacetime, Vx,a/Vx,b 6= Vq,a/Vq,b, and

a discrimination between the two spaces is possible when we measure the ratios of several

objects, or when a and b are related to each other and some physical law predicts the value

of such ratio.

This naive example is obviously inapplicable to the real world where, if multiscale

geometry were true, one would find exotic effects at the scales of relativistic quantum physics

or smaller. However, the main mechanism can be adapted to more realistic experiments.
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Tv (α0, α≪ 1/2) t∗ (s) ℓ∗ (m) E∗ (GeV) A,B source

Muon lifetime — — — — [56]

Lamb shift < 10−23 < 10−14 > 10−2 — [56]

Measurements of αqed < 10−26 < 10−18 > 101 — [56]

∆αqed/αqed quasars < 1011 < 1020 > 10−37 — [59]

Gravitational waves — — — — [58]

Cherenkov radiation — — — — this paper

GRBs — — — — [58]

CMB black-body spectrum —

CMB primordial spectra

Table 4. Absolute bounds on the hierarchy of multifractional spacetimes with weighted derivatives

(obtained for α0, α ≪ 1). All figures are rounded. Items “—” are cases where the theory gives

the standard result or where the experiments listed in the table are unable to place significant

constraints. Empty cells are cases not explored yet.

52 Have these theories been constrained by observations? What are the

constraints?

Yes. The multifractional theories Tv and Tq with a binomial measure have been confronted

with experiments and observations, and bounds have been placed on the scale ℓ∗, on the

fractional exponents αµ = α0, α, and on the amplitudes A and B of log oscillations. The first

datum that was considered was the variation of the fine-structure constant αqed in quasars,

but the bound on Tv thus found was poor [51]. The construction of the multifractional

Standard Model permitted to use known constraints on electroweak interactions, including

the estimate of the muon lifetime and of αqed, and the Lamb shift [55, 56]. Astrophysi-

cal processes such as the first black-hole merger observed by LIGO and gamma-ray bursts

(GRB) from distant objects placed the strongest bounds on ℓ∗ [58], while the main contri-

bution of cosmology comes from the CMB black-body and inflationary spectra [59]. The

latter do not constrain ℓ∗ efficiently but do allow to constrain the fractional charge (hence,

the dimension of spacetime) and the log oscillations. Tables 4–7 summarize these results.20

The results of [61] stimulates us to review these bounds critically. They all arise from

the binomial measure (3.4) with (4.1), with or without log oscillations. However, the second

flow-equation theorem does not really fix the coefficient ℓ∗/αµ but, rather, it treats it as

an arbitrary constant ℓ∗uµ not necessarily αµ-dependent. The original motivation for the

coefficient ℓ∗/αµ is that the equations of motion and the physical observables in the theory

Tv depend only on the measure weight v(x) = 1+ |x/ℓ∗|α−1 (log modulation is ignored), not

on q(x). The anomalous correction in v(x) depends on the arbitrary scale ℓ∗ and there is no

need to introduce a new parameter uµ. However, in the theory Tq having an α-dependent

or α-independent constant uµ can weaken some of the bounds in tables 6 and 7. These new

20In the line “CMB black-body spectrum” in table 5, we correct a typo of table 2 of ref. [59]; compare

eq. (3.17) therein.
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Tv (α0 = 1/2 = α) t∗ (s) ℓ∗ (m) E∗ (GeV) A,B source

Muon lifetime — — — — [56]

Lamb shift < 10−29 < 10−20 > 104 — [56]

Measurements of αqed < 10−36 < 10−28 > 1011 — [56]

∆αqed/αqed quasars < 106 < 1015 > 10−32 — [51]

Gravitational waves — — — — [58]

Cherenkov radiation — — — — this paper

GRBs — — — — [58]

CMB black-body spectrum < 10−21 < 10−12 > 10−4 — [59]

CMB primordial spectra

Table 5. Bounds on the hierarchy of multifractional spacetimes with weighted derivatives for

α0 = 1/2 = α.

Tq (α0, α≪ 1/2) t∗ (s) ℓ∗ (m) E∗ (GeV) A,B source

Muon lifetime < 10−13 < 10−5 > 10−12 — [55]

Lamb shift < 10−23 < 10−15 > 10−2 — [55]

Measurements of αqed — — — — [56]

∆αqed/αqed quasars — — — — [51]

Gravitational waves (pseudo) < 10−25 < 10−17 > 100 — [58]

Cherenkov radiation < 10−60 < 10−52 > 1036 — this paper

GRBs —

CMB black-body spectrum —

CMB primordial spectra < 1012 < 1020 > 10−36 — [59]

Table 6. Absolute bounds on the hierarchy of multifractional spacetimes with q-derivatives (ob-

tained for α0, α ≪ 1 in all cases but for the last one, where a likelihood analysis has been used).

“Pseudo” indicates bounds obtainable in the stochastic view, where Tq is regarded as an approxi-

mation of Tγ=α.

bounds with (index or label µ omitted everywhere)

q(x) = x+ ℓ∗u

∣

∣

∣

∣

x

ℓ∗

∣

∣

∣

∣

α

, u = O(1) , (9.2)

are shown in table 8 and commented upon in 67 . We will compute one of them explic-

itly in 58 . As one can see by comparing tables 6–7 and 8, the new bounds are slightly

weaker than the previous ones, except that from the CMB black-body spectrum which is

almost unchanged.
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Tq (α0 = 1/2 = α) t∗ (s) ℓ∗ (m) E∗ (GeV) A,B source

Muon lifetime < 10−18 < 10−9 > 10−7 — [55]

Lamb shift < 10−27 < 10−19 > 102 — [55]

Measurements of αqed — — — — [56]

∆αqed/αqed quasars — — — — [51]

Gravitational waves (pseudo) < 10−44 < 10−35 > 1019 — [58]

Cherenkov radiation < 10−81 < 10−73 > 1057 — this paper

GRBs —

CMB black-body spectrum < 10−26 < 10−18 > 1011 — [59]

CMB primordial spectra — — — < 0.4 [59]

Table 7. Bounds on the hierarchy of multifractional spacetimes with q-derivatives for α0 = 1/2 = α.

“Pseudo” indicates bounds obtainable in the stochastic view, where Tq is regarded as an approxi-

mation of Tγ=α.

Tq (α0, α≪ 1/2) t∗ (s) ℓ∗ (m) E∗ (GeV) source

Muon lifetime < 10−11 < 10−3 > 10−13 this paper

Lamb shift < 10−21 < 10−13 > 10−4 this paper

Gravitational waves (pseudo) < 10−22 < 10−14 > 10−2 this paper

Cherenkov radiation < 10−57 < 10−49 > 1033 this paper

GRBs < 10−39 < 10−30 > 1014 [58]

CMB black-body spectrum

Tq (α0 = 1/2 = α) t∗ (s) ℓ∗ (m) E∗ (GeV) source

muon lifetime < 10−17 < 10−8 > 10−8 this paper

Lamb shift < 10−26 < 10−18 > 101 this paper

Gravitational waves (pseudo) < 10−42 < 10−33 > 1017 this paper

Cherenkov radiation < 10−79 < 10−71 > 1055 this paper

GRBs (pseudo) < 10−57 < 10−48 > 1032 [58]

CMB black-body spectrum < 10−26 < 10−18 > 1010 this paper

Table 8. Absolute bounds (obtained for α0, α ≪ 1, upper part) and bounds for α0 = 1/2 = α

(lower part) on the hierarchy of multifractional spacetimes with q-derivatives with measure (9.2).

The key formulæ used to compute the constraints in the table are: for the muon lifetime, t∗ <

(uδτ/τα0

0 )1/(1−α0) replacing eq. (139) of [56], with u = 1; for the Lamb shift, E∗ > {uδE/[(2 −
α0)∆E]}1/(α0−1)|E2S | replacing eq. (142) of [56], with u = 2−α0; for gravitational waves, eq. (9.7)

with uµ ∝ Cµ/(3 − αµ) and 2Cµ = 1; for GRBs, eq. (9.9) [u = O(1)]; for Cherenkov radiation,

eq. (9.11) with 2Cµ = 1 [u = O(1)]; for the CMB black-body spectrum, a data fit with eq. (3.5)

of [59] with the factor 1/α0 in the denominator replaced by u = 1. “Pseudo” indicates bounds

obtainable in the stochastic view, where Tq is regarded as an approximation of Tγ=α.

– 78 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
8

53 Measurements of the anomalous magnetic moment of the electron tests

QED to a much higher level of accuracy than the Lamb shift or the muon

lifetime. Why not to use this datum?

Indeed, the g − 2 factor can constrain Tv efficiently [56]. From the triangular vertex in

the integer picture, at one loop it is known that g − 2 = α̃qed/π. The fine-structure

constant is measured with an accuracy of δαqed/αqed ∼ 10−10. Since, from eq. (6.8),

the measured fine-structure constant in the fractional picture is (in c = 1 = ~ units)

αqed(t) ≃ Q2(t) = α̃qed/v0(t), for the binomial measure (3.4) with (4.1) the difference

between the integer and fractional constant is ∆αqed = αqed(t)|t∗/t|1−α0 . Demanding

∆αqed < δαqed and setting t = tqed = 10−16 s, one obtains t∗ < 10−16−10/(1−α0) s. The

bounds from αqed are reported in tables 4 and 5, and they are several orders of magnitude

stronger than the Lamb-shift bounds.

The theory Tq is immune to similar constraints because it predicts the same g − 2 factor

and fine-structure constant as in the ordinary Standard Model. It is easy to understand

why. The way the q-theory conveys multiscale effects to physical observables is via a tran-

sition from adaptive measurement units (integer picture) to nonadaptive ones (fractional

picture). In the case of the Lamb shift, one borrows the standard QED result for the shift

in the energy levels and applies it to the difference ∆p(E) between geometric energies; then,

from ∆p(E) one extracts the actual Lamb shift ∆E and proceeds with the comparison with

experiments [55, 56]. One could do essentially the same thing by looking at the hydrogen

spectrum on a photographic plate, measuring the separation between two spectral lines; in

either case, we are measuring dimensionful quantities. However, dimensionless quantities

such as αqed and g − 2 are unaffected by having worked with composite momentum or

position coordinates in the integer picture. Therefore, these fundamental21 dimensionless

observables remain the same in both frames of Tq. Curiously, this situation is complemen-

tary to the one for the muon lifetime, where Tq is sensitive to changes in the geometry while

Tv is not [56].

54 What are the motivations and the gains of the bounds found for the mul-

tifractional Standard Models? None of the exotic realizations of the Stan-

dard Model contains any virtue with respect to the ordinary Standard

Model. The constraints on the energy and length obtained appear to be

irrelevant in view of the same quantities in renormalized QFT.

This criticism echoes question 32 and we can only answer in the same way: the motivations

of multifractional theories lie in quantum gravity (section 3), not in the desire of modifying

the celebrated Standard Model. If changing spacetime geometry carries consequences also

for the fundamental particle interactions, then it becomes both interesting and necessary

to verify whether these changes are compatible with extant experimental constraints.

21By fundamental, we mean that they are not obtained from the composition of other directly measurable

quantities; see ref. [57] and question 51 for examples of nonfundamental observables that can discriminate

the theory.
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55 Setting experimental limits on an ad hoc proposal is not interesting. Set-

ting limits on effective higher-dimensional operators is more systematic

and model-independent, but it has already been done in the past.

Sections 3 and 8 (questions 04–06 , 46–48 , and 50 ) bring a number of arguments on the

fact that the multifractional proposal is neither ad hoc nor sterile in its theoretical and

phenomenological structure. On top of that, in 34 we saw that expansions in higher-

dimensional operators can mimic, and not even fully reproduce, only some aspects of the

multifractional QFT phenomenology.

56 Even granting that these theories are not ill defined and have some physi-

cal motivation, it is not possible to reach any conclusion about their phe-

nomenology because they have not been developed rigorously. In particu-

lar, there is no top-down construction of a quantum field theory, let alone

that of a Standard Model of electroweak and strong interactions.

We hope that this review, and in particular section 6 (questions 31–39 ), has convinced

the reader that a top-down construction exists for the multifractional Standard Model in

Tv and Tq [56], hence the phenomenology of these two theories comes directly from their

foundations. We have not yet constructed the Standard Model for Tγ , but the resemblance

of Tq with Tγ=α (questions 13 , 36 , and 50 ) justifies the hope that the phenomenology of

Tγ be very similar to that found for Tq in refs. [55, 58].

57 Is it true that, in these theories, and despite the fact that the spacetime

structure itself has been changed, it is assumed that only gravity is altered

while the electromagnetic field is the usual one? What is the justification

behind that?

No, it is not true. The multiscale geometry of these spacetimes affect all fundamental

interactions [51, 56], including electromagnetism. The speed of light is modified accordingly

in the theory Tq [57], while in Tv it is the usual c = 1. See 31 and 33 . Amusingly, this

question is somewhat “complementary” to 26 .

58 Since, as claimed in 12 and 13 , multifractional theories lead to violations

of Lorentz symmetries, then what are the constraints?

In general, all constraints coming from the Standard Model explicitly limit deviations from

Lorentz invariance, but the strongest bounds to date are based on classical deformed dis-

persion relations (at the quantum level, we avoid problems; see 38 ). The theory Tγ has not

been tested with these observations, due to its underdevelopment. We will not fill this gap

here. The theory Tv and the model T1 have standard dispersion relations [see eqs. (6.11)

and (8.7)] and do not predict any change in the propagation speed of particles. The re-

maining case is the theory Tq, for which constraints have been obtained from gravitational

waves and GRBs [58]. Let us begin with a general analysis of dispersion relations in Tq.

From eq. (6.12), one finds the massive dispersion relation [p0(E)]2 = |p|2 + m2 =
∑

i[p
i(ki)]2 +m2, where E = k0. This expression, valid for a scalar field, may be regarded
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as the general representative of dispersion relations for this theory. From now on, we drop

the mass term, which plays no role in the main argument. Also, we approximate the dis-

persion relation for small multifractional corrections and combining the spatial momentum

components into the absolute value k = |k|. The latter approximation can be done in differ-

ent ways that all give very similar results, modulo a prefactor Cµ in front of the correction

which is always O(1). Taking the binomial measure (4.18) with isotropic spatial hierarchy

(which is all we need, according to 07 ), setting ki ≃ k/
√
3 and defining E∗ = k∗ [energy

scale E∗ identified with the inverse of the time and length scales t∗ and ℓ∗ = 1/k∗ in Planck

units, eqs. (4.12) and (4.14)], we get the full dispersion relation

E2 ≃ k2 + 2E2
∗

[

1

α0

(

k

E∗

)3−α0

Fω(k)−
3

α

(

k√
3E∗

)3−α

Fω

(

k√
3

)

]

. (9.3)

This expression is simplified to

E2 ≃ k2 +
2E2

∗Cµ

3− αµ

(

k

E∗

)3−αµ

, (9.4)

when log oscillations are averaged or absent (Fω = 1). For timelike fractal geometries

(µ = 0, trivial measure in spatial directions) with p = k, one has C0 = (3 − α0)/α0; the

correction is positive. For spacelike fractal geometries (µ = i, trivial measure in the time-

energy direction) with p0 = E, one has Ci = −(3 − α)/[3(1−α)/2α] and the correction is

negative. Generic configurations with multifractional time and space directions can produce

corrections of either sign, periodically suppressed by the log oscillations. The timelike

and spacelike cases without oscillations are extreme representatives of this spectrum of

possibilities, both corresponding to corrections with a unique sign and maximal amplitude.

Given a dispersion relation E2 = E2(k), the velocity of propagation of a wave front for

a particle p is given by the group velocity

Vp :=
dE

dk
. (9.5)

In this and the next question, we reserve the symbol V for velocities and the reader

should not confuse it with potentials. For the usual Lorentz-invariant dispersion relation

E2 = k2 +m2, in the small-mass limit one gets the difference ∆V := Vp − 1 ≃ −m2/(2E2)

between the propagation speed of the particle and the speed of light. Plugging the timelike

or spacelike approximations of eq. (9.3) into (9.5) and replacing k → E in the right-hand

side consistently with the small-correction approximation, we get ∆V ≃ Cµ(E/E∗)
1−αµ .

This correction is less suppressed than those in usual modified dispersion relations in quan-

tum gravity [228, 229], where 0 < 1 − αµ < 1 is replaced by some exponent n > 1. This

determines a stronger and more sensitive bound on the characteristic energy E∗, via

E∗ =

∣

∣

∣

∣

∆V

Cµ

∣

∣

∣

∣

− 1

1−αµ

E . (9.6)

We pause for a moment and highlight a caveat. The propagation speed (9.5) does not depend

on the species of the particle. This is clear from eq. (9.3), which is derived from the pole
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structure of a generic propagator in the massless limit, regardless of its tensorial structure.

The effect of multiscale geometry on the propagation of particles is, thus, universal and

the difference ∆V12 = V1 − V2 between the velocity of two species 1 and 2 is theoretically

zero. In particular, the dispersion relation of photons acquire the same corrections (9.3) as

any other particle and the speed of light is not c = 1 [57]. Therefore, in the deterministic

view gravitons propagate at the speed of light and ∆V12 = 0. However, in the stochastic

view the correction in the right-hand side of (9.3) represents a fluctuation of the geometry.

Maximizing this fluctuation one finds eq. (9.4) and, taking opposite signs for particles 1

and 2, one obtains eq. (9.6) with ∆V → ∆V12/2:

E∗ =

∣

∣

∣

∣

∆V12
2Cµ

∣

∣

∣

∣

− 1

1−αµ

E . (9.7)

Little or nothing changes for phenomenology because the extra factor 1/2 can modify the

order of magnitude of E∗ at most by one.22 If ignored, this delicate point may trigger

question 57 , since in eq. (9.6) ∆V is the difference between the particle propagation velocity

and a constant speed of light c = 1.

From eq. (9.7) and similar others, one usually extracts two types of bounds, an “ab-

solute” one giving the most conservative estimate of multifractional effects (typically ob-

tained for α0, α ≪ 1/2 or zero) and one for a specific choice of α0 or α, as in tables 6–8.

Here we consider the bounds on the propagation speed of gravitational waves from the

LIGO observation of the black-hole merger GW150914 [4]. Following [230], we take the

gravitational-wave signal to peak at frequencies f = ω/(2π) ∼ 100Hz, corresponding to

ω ≈ 630Hz, an energy E = ~ω ≈ 4.1× 10−13 eV, and a velocity difference

|∆V12| < 4.2× 10−20 . (9.8)

The bounds for Cµ fixed as in the text below eq. (9.4) are shown in the line “Gravitational

waves (pseudo)” of tables 6 and 7 (there is no detectable difference between the timelike

and the spacelike cases), while for 2Cµ = 1 they are in table 8. Bounds on E∗ are converted

to bounds on t∗ and ℓ∗ via eqs. (4.12) and (4.14).

The bounds from photon time delays in GRBs are more severe but obtained in a more

heuristic way [58]. The difference in the velocities of two photons with different energies

emitted in a GRB at the same time is |∆V12| ∝ (E
1−αµ

2 −E1−αµ

1 )/E
1−αµ
∗ . Taking E2 ≫ E1

(highly-energetic photons), one gets eq. (9.4) with ∆V → ∆V12 (and no 1/2 factor). Letting

d be the luminosity distance between the source and us and ∆t = t1−t2 the time delay in the

arrival of the photons, we also have 1 ≫ ∆V12 ∼ d/t1 − d/t2 ≃ d∆t/t21 ≃ V 2
2 ∆t/d ∼ ∆t/d.

The observed sources of bright GRBs are in the range of redshift z = 0.16−3.37 (i.e., [231]),

corresponding to d ∼ 1025 − 1027m. For typical photon emissions, ∆t ∼ 10−2 − 10−1 s,

so that ∆V12 ∼ 10−20 − 10−18. Taking E2 ∼ 10−4GeV and the most conservative value

∆V12 ∼ 10−18, we get

E∗ > 10
−4+ 18

1−αµ GeV . (9.9)

22Compare tables 6 and 7 with the numbers found at the end of ref. [58] in the main body, where the factor

1/2 is absent. The values in the table in ref. [58] (also reported in ref. [59]) use a different frequency peak.
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This bound [58], shown in table 8, is much tighter with respect to the other constraints,

even discounting a few orders of magnitude with respect to a rigorous estimate.

59 But there are much stricter constraints in particle physics, for instance

those of refs. [232, 233]. One derives limits on coefficients of effective

operators, which are typically more stringent than those quoted above.

Even for Lorentz-invariant operators, current limits are mostly in the TeV

range or higher.

Good point. The constraints reviewed in ref. [232] are on the difference ∆V of the maximal

attainable velocity of (i) photons and electrons (from photon decay) [234], (ii) muons and

electrons (from muon decay) [235], (iii) muon and electron neutrinos (from neutrino oscil-

lations) [236], (iv) neutral kaons K-long and K-short [237], (v) photons and atoms [238],

and (vi) photons and cosmic-ray protons (via vacuum Cherenkov radiation) [234]. Lorentz-

violating effects combined with CPT violation were discussed in ref. [233].

Just like the propagation speed, the maximal attainable velocity of a particle is inde-

pendent of its species in multifractional theories at the classical level, but the constraints

(i)–(v) are calculated in quantum field theory and they are nontrivial also in Tv (only when

charged particles are involved, since the theory is nontrivial only in the QED sector [56])

and in the deterministic view of Tq and Tγ . Even at the classical level, the microscopic

stochastic fluctuations of geometry in Tq and Tγ can induce a relative excursion between

velocities which cannot exceed the experimental bounds. This mechanism is very different

from the Lorentz violation from CPT-even renormalizable rotationally invariant interactions

in ordinary spacetime [232].

The bound from Cherenkov radiation (vi) is stronger than the others but it requires

energies much greater than those accessible in colliders. To see whether we can use it to

constrain multifractional theories, let us first review its origin in ordinary spacetimes with

modified dynamics. Primary cosmic rays (i.e., originated outside the Solar System) are

made of protons and atomic nuclei; ultra-high-energy cosmic rays (UHECR) carry ener-

gies greater that 1018 eV. Cosmic rays with energies above 1019 eV have been observed

systematically [239, 240], but isolated events associated with primary protons of energy

EUHECR ≈ 1 − 3 × 1020 eV have also been detected [241–243]. Assume to be in a space-

time where the speed of light cx is smaller than the usual c (the reason of the symbol cx
will become clear soon). A proton travelling faster than light would rapidly release energy

via photon emission, p → p + γ, until its speed drops below luminal. While travelling

a distance Vpt with velocity Vp, the particle produces a shock wave of photons travel-

ling at speed cx. At time t, the electromagnetic wave produced at t = 0 has traveled a

distance cxt and the angle of the shock wave with respect to the proton trajectory has

| cos θ| = (cxt)/(Vpt) = cx/Vp 6 1. The threshold for the production of Cherenkov radia-

tion is thus reached when the particle travels at the same speed of the wave front, Vp = cx.

Therefore, restoring c = 1 units temporarily, from the special-relativistic energy of the pro-

ton E = mpc
2/
√

1− (Vp/c)2, where mpc
2 ≈ 938.28MeV is the proton rest mass, one gets

the threshold energy Emin = mpc
2/
√

1− (cx/c)2. Since superluminal UHECRs must have

become subluminal well before reaching us, their energy must be smaller than the threshold
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energy, EUHECR < Emin. Taking EUHECR ≈ 1011 GeV, one gets the bound (back to c = 1

units) [234]

1− c2x <

(

mp

EUHECR

)2

≈ 10−22 . (9.10)

Vacuum Cherenkov radiation can be realized in Lorentz-violating extensions of the

Standard Model [244–246] and we now ask whether it happens also in multifractional the-

ories. For Tv, the answer is negative. As in the case of gravitational waves examined in

question 58 , the theory Tv is left unscathed because the speed of light is cx/c = 1 there,

and the bound (9.10) has nothing to say. The case of Tq is more interesting. As pointed out

in ref. [57], in the fractional frame particles can travel at speed slightly higher than light,

and vacuum Cherenkov radiation can occur. We can make a crude estimate of the effect

from eq. (9.10). To measure the maximal departure ∆c = cq − cx of the speed of light cx
in the fractional frame from the standard speed of light cq = c = 1 (the geometric velocity

of photons in the integer frame), we combine eqs. (9.6) [not (9.7); see the discussion above]

and (9.10), noting that 1− c2x = (1 + cx)(1− cx) ≃ 2∆c when ∆c is small:

E∗ >

∣

∣

∣

∣

∣

1

2Cµ

(

mp

EUHECR

)2
∣

∣

∣

∣

∣

− 1

1−αµ

EUHECR . (9.11)

If we use the binomial measure (3.4) with α-dependent coefficients, then ∆c ∝ −Cµ > 0 in

a spacelike fractal geometry and Cµ = Ci = −(3−α)/[3(1−α)/2α]. For this choice, one finds

the absolute and α = 1/2 bounds of tables 6 and 7, respectively. For a generic 2Cµ = 1,

one gets

E∗ > 10
11+ 22

1−αµ GeV , (9.12)

and the weaker bounds reported in table 8. Comparing eq. (9.12) with (9.9), we see two

factors that improve the GRB bound. One is in the velocity difference (9.10), which is 4

orders of magnitude smaller than in the GRB case. The other, and most important, is the

reference energy EUHECR, 15 orders of magnitude larger than that of typical GRB photons.

It is no wonder that the values reported in the “Cherenkov radiation” line of tables 6–8 are

much tighter than those from GRBs.

60 Is the dispersion relation (9.4), which is claimed to affect the propagation

of gravitons, photons or other particles, physical? It was derived from

the propagator (6.12), which has the conventional form in terms of the p’s.

However, any dispersion relation in which one mixes momentum compo-

nents in two or more coordinates, or where one calls “p(k)” momentum p,

will take an unconventional form without having unconventional physics.

This is questions 17 , 18 , and 24–27 disguised in another form. Once we choose the time

and length units of our devices as the scaling units of the fractional coordinates xµ in

position space, we also automatically fix the momentum and energy units as the scaling

units of the fractional coordinates kµ in momentum space:

[kµ] = 1 . (9.13)
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In the case of the theory with q-derivatives, the measure (2.10) in momentum space is fixed

uniquely by eq. (4.13), so that the momentum-space analogue of eq. (5.6),

kµ → pµ(kµ) , (9.14)

is not a change of coordinates but a mapping from the fractional frame where observables

are computed and the integer frame where the theory looks simpler. In particular, the

propagator (6.12) is a highly nontrivial and rigid function of kµ, even if it has the usual

form in terms of p = p(k). All these properties are determined by the symmetries of the

theory. We can obtain any dispersion relation without unconventional physics only in a

theory admitting eq. (9.14) as a coordinate transformation leaving physical observables

invariant. This is not the case of Tq, as we discussed at length in section 5.

61 Even if the replacements x → q(x) and k → p(k) were somehow physical,

they are not done at the required level of rigor. In particular, one would

need to follow a first-principle approach where one starts with a field action

and performs the well-known procedure to get the Hamiltonian density.

Until such a rigorous analysis is done, it is not justified to assume that

the symbols that are used such as p, k, E, and so on, have the meaning of

momentum and energy.

A first-principle approach is followed. Quantum-gravity motivations aside, we have a space-

time measure dictated by the second flow-equation theorem (question 04 ) and a momentum

space measure determined by that automatically (question 08 ). We have a field action, both

for the Standard Model [55, 56] and for gravity [54] (questions 31 and 40 ; the general struc-

ture of field actions in Tq are discussed in 13 and 24 ). The Hamiltonian analysis could

not be easier than in Tq: it follows all the steps of the standard case with the replace-

ments x → q(x) and k → p(k), and it is not necessary to repeat it here in detail.23 The

example of a classical real scalar field in flat space will suffice. From the action (5.5), one

obtains the momentum Πφ = ∂L/∂q0(t) = ∂q(t)φ, the super-Hamiltonian density H, and

the supermomentum density Hi:

H = Πφ∂q(t)φ− L =
1

2
Π2

φ +
1

2

D−1
∑

i=1

[∂qi(xi)φ]
2 + V (φ) , Hi = Πφ∂qi(xi)φ . (9.15)

The Hamiltonian is H =
´

dD−1q(x)H, where one integrates only on spatial coordinates.

For V (φ) = m2φ2/2 and using the Fourier transform

φ(x) =

ˆ

dDp(k)

(2π)D
eiηµνpµ(kµ)qν(xν)φk , (9.16)

it is not difficult to quantize canonically and to identify H as the charge conserved under

fractional time translations. At the classical level, p0(E) is the geometric energy in the

integer picture and, hence, k0 = E is the energy in the fractional picture. All of this stems

from the fact that pµ(kµ) is Fourier conjugate to qµ(xµ).

23In [60], the algebra of first-class constraints of gravity plus matter for the theory with q-derivatives

has been written down (question 49 ). Instances of Hamiltonian analyses of T1, Tv, and other multiscale

theories can be found in refs. [47, 49, 53, 60, 105]. Equation (4.31) is an example in Tv.
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62 Granting that a given action describes this framework, it is a fact that

there would not be two types of momenta p and k for the same field (for

instance, gravity), as they appear in the modified dispersion relation (9.4).

Therefore, at the level in which the theory currently stands, it is impossible

to claim that one can make contact with experiments and observations.

As said in 60 , there is only one momentum for a field, which is kµ. The geometric momen-

tum pµ = pµ(kµ) is only a convenient tool to cast the theory Tq in the integer picture.

63 Experimental constraints of multifractional models are typically based on

equations which show an extreme sensitivity to the value chosen for the

parameters α0 or α. Does this indicate that the domain of validity of these

formulæ is limited and that a more refined analysis is required?

Tables 4–8 show that the bounds on the scales of the binomial measure can change by

a few orders of magnitude when varying the fractional exponents αµ in the range [0, 1);

the results for values close to zero and for αµ = 1/2 are compared. This sensitivity on a

fundamental parameter of the theory with a clear-cut geometric interpretation should not

be regarded as a drawback. In fact, this feature is an invaluable bonus: it guarantees that

these theories can be easily falsified. Already the estimates from GRBs are an example of

this: they exclude the values > 1/2 for Tq in the absence of log oscillations and they limit

the parameter space of this theory in an unprecedented way, the characteristic energy of

the momentum measure being pushed very close to grand-unification and Planck scales.

A key difference with respect to other quantum-gravity-inspired dispersion-relation

bounds [228, 229] is that our constraints are obtained directly from a full theory, without

invoking any generic assumption encoding uncontrolled effects in heuristic umbrella con-

stants. We do have free parameters but they are fundamental, intrinsic to the theory. In

this respect, our approach is less qualitative, more rigid and, therefore, more sensitive to

the strength of the observational constraints [58].

64 Are there constraints from tests of the equivalence principle?

Not yet, but it is an interesting question.

65 Are there constraints on the dimension of spacetime?

Yes, there are for the theory with q-derivatives. A likelihood analysis of the primordial

CMB scalar spectrum excludes portions in the parameter space of Tq, due to the fact that

CMB data disfavor the logarithmic oscillations of the spectrum (7.14). The marginalized

likelihood for the spatial fractional exponent α, when N in eq. (4.16) is fixed, indicates that

α . 10−1, 10−0.2, 10−0.25 at the 95% confidence level for, respectively, N = 2, 3, 4. From

eqs. (4.53) and (4.59),

N = 2 : d space
s = d space

h . 0.3 (UV) ,

N = 3 : d space
s = d space

h . 1.9 (UV) ,

N = 4 : d space
s = d space

h . 1.7 (UV) .

(9.17)
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Higher N should give similar constraints. This result is somewhat surprising, as it forces

an upper bound on the dimension of space in the UV. Therefore, the primordial universe

is very well described by the standard inflationary model in a smooth spacetime with four

topological dimensions but, as soon as one assumes that spacetime geometry undergoes

dimensional flow, this flow must be nontrivial to fit data. During this flow, the effective

dimension of space is reduced at least by 1 (N = 3 case) in the UV.

There are no analogous results for the other multifractional theories, although it is

possible that eq. (9.17) could apply also to the case with fractional derivatives thanks to

the Tγ=α
∼= Tq approximation.

66 If the length scales of these theories are so small, how is it possible to

test them at cosmological scales? Modifications to gravity are strongly

suppressed during inflation. The reason is that the ratio between the

inflationary energy density and Planck density (at which classical gravity

is believed to break down) is very small, ρinfl/ρPl ∼ (ℓPlH)2 ∼ 10−8,

where we estimated the typical energy scale during inflation to be about

the grand-unification scale, H ∼ 1015 GeV. Thus, quantum corrections

or corrections from exotic geometries are expected to be well below any

reasonable experimental sensitivity threshold.

This type of argument holds only when corrections to general relativity are limited to

higher-order curvature corrections. As is known in quantum gravity (and, in particular,

in string cosmology and in loop quantum cosmology), the effective dynamics of gravity in

the early universe can be modified by far more sophisticated mechanisms than curvature

corrections to the Einstein-Hilbert action.

The case of multifractional spacetimes illustrates the point in a rather unique fashion.

By definition of these theories, geometry is characterized by a hierarchy of fundamental

scales. The main features of this configuration are exemplified to the bone by the binomial

measure (3.4) with (4.1). Here, we have two characteristic length scales ℓ∞ 6 ℓ∗. At scales

above ℓ∗, spacetime looks smooth and the usual description of general relativity holds.

However, when inspected at scales . ℓ∗, in the deterministic view geometry changes prop-

erties smoothly and, in particular, the spacetime dimension decreases to some asymptotic

value smaller than 4. If one further zooms in, at scales ∼ ℓ∞ a discrete symmetry emerges

and the notion of smooth spacetime with well-defined dimensionality is lost. The length

ℓ∞ can be identified with the Planck length (see question 08 ), while ℓ∗ is constrained to be

at least as small as the grand unification scale (table 8). Therefore, it might seem difficult

that multifractional geometries could leave an observable imprint anywhere. However, pri-

mordial inflation expands Planckian scales to cosmological size. If geometry is modified at

Planck scales, then we can expect that multiscale effects are magnified by the early-universe

expansion up to the size of the visible sky. Such is indeed the case and CMB observations

are capable of placing strong constraints on multifractional geometries [59].

This cosmological mechanism is in action in most models of quantum gravity, but in

the case of multifractional spacetimes there is also a subtler effect. Log oscillations are

a manifestation of discrete UV symmetries and of the long-range correlations typical of
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complex systems, anomalous stochastic processes (see, e.g., ref. [124] for a pedagogical re-

view), and multifractals (via the so-called harmonic structure, reviewed in refs. [41, 42]).

This long-range effect is clearly visible both in theoretical cosmology (where the oscillatory

modulation of the scale factor dies out at scales much larger than ℓ∞ and larger even than

ℓ∗ [54]) and in observations, as we just remarked (see also 65 ). It is a most unusual phe-

nomenon from the point of view of standard QFT, because it entails a symmetry (discrete

scale invariance) that, despite being explicitly broken already near the UV, propagates to

the IR and governs the physics at large scales.

67 How would the discrete spacetime at scales ∼ ℓ∞ look like to an observer?

If spacetime is discrete at scales ∼ ℓ∞, then we could picture it as a totally disconnected

set of points. How would an observer therein perceive this geometry? Certainly not as

“holes” in the fabric of spacetime, since signals propagate only within the set; the holes

picture would best suit an ideal observer living outside our universe, in the D-dimensional

embedding space where the theory is defined. At the cosmological level, the visible effect

of this spacetime geometry is a long-range logarithmic modulation of the power spectrum

of primordial fluctuations [59] as we discussed in the previous question. At the microscopic

level, the stochastic view advanced here and in refs. [62, 63] predicts a fuzziness where

measurements cannot be performed with arbitrary precision, and that get worse when

trying to probe scales deeper in the UV.

68 Are multifractional theories ruled out?

A multifractional theory is ruled out observationally if the length scale ℓ∗ in the bino-

mial measure is much smaller than the Planck scale, ℓ∗ ≪ ℓPl. In momentum space, this

corresponds to E∗ ≫ EPl.

• The phenomenology of T1 has not been studied and we cannot say much about it.

The spectral dimension of T1 is the same as Tv because the diffusion equation in these

theories is one the adjoint of the other [50]. Therefore, the observable consequences

of their dimensional flow should be about the same. This is a non-issue, since T1 was

useful as a first exploration of the multifractional paradigm but nowadays it has been

replaced by the more rigorous Tv.

• The most conservative bounds on Tv (table 4) are very weak because the theory

bypasses all the strongest tests. The αµ = 1/2 case is better constrained and mea-

surements of the fine-structure constant require E∗ > 10−8EPl.

• Until now, the strongest bound on Tq came from a crude estimate of the arrival time

of photons with different energies emitted by GRBs [58]. For αµ ≪ 1/2, this bound

is E∗ > 10−5EPl, while for αµ = 1/2 the theory is ruled out, since E∗ > 1013EPl

(table 8). Inclusion of log oscillation could lead to an accidental erasure of corrections

to dispersion relations, but not without fine tuning [58]. The only chance to avoid the

GRB bound would be to disprove the estimate reported in 58 by a precise calculation.

However, the constraints from emission of Cherenkov radiation by cosmic rays, which
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are several orders of magnitude stronger, rely only on the multifractional modification

of special relativity, and they look much harder to evade. All these constraints are

valid in the deterministic view and could be avoided by invoking the stochastic view

and considering the possibility that stochastic fluctuations cancel out when integrated

along the photon or cosmic-ray paths [62, 63]. In fact, eq. (9.7) assumed that the two

particles for which one is measuring the velocity difference experience maximal and

opposite fluctuations. On the other hand, in average the effect could be just zero and

all constraints from gravitational waves, GRBs, and UHECRs would evaporate.

• Like in the case of T1, we do not have direct calculations of physical observables in

Tγ and we conjectured that the Tγ=α
∼= Tq approximation allows one to apply the

constraints found for Tq to Tγ . In that case, what said for Tq would hold also here: the

stochastic view bypasses all the strongest tests (gravitational waves, GRBs, and UHE-

CRs) only if stochastic fluctuations are averaged out, while the deterministic view is

constrained much more severely. There are three possible ways in which the theory Tγ
can be rescued: (i) giving up the deterministic view and adopting only the stochastic

view, which is more justified here than in Tq (where it is a juxtaposed approximation

when meant in the sense of [57]); (ii) finding that, despite their similarities, Tq and

Tγ are essentially different in some key physical consequences and that some bounds

do not apply after a closer scrutiny; (iii) finding that the fractional derivatives in Tγ
must or can be taken with an order γ smaller than the fractional exponent α in the

measure. Case (ii) is particularly interesting. As discussed in 08 , the value αµ = 1/2

is special according to some rigorous arguments advanced for Tγ , which is closely

similar to Tq when γ = α. However, these two theories are mathematically different

and arguments rigorously valid for Tγ can be taken only as suggestions in Tq, and

we do not expect that any theoretical argument in the future will fix αµ uniquely

for Tq (or Tv). Vice versa, the α-dependent observational constraints obtained for Tq
are robust for that theory, but only indicative for the yet-unexplored case of Tγ . In

particular, we cannot conclude that GRBs rule out Tγ just because they rule out Tq
for the range αµ > 1/2 for which Tγ is normed. However, the UHECR bound of Tq is

strong for all 0 6 αµ < 1 and it could be avoided in Tγ only with a radical departure

from Tq in special relativity. Again, the explicit construction of Tγ and calculations

of its predictions will settle the question.

10 Perspective

69 In a nutshell, what are the main virtues of multifractional theories?

– They are a novel paradigm because, contrary to many other effective models, what

one modifies here is not the dynamics but the integrodifferential structure describing

how we measure the geometry. Dynamics is modified as a byproduct of having a

spacetime that can be conveniently treated with multidisciplinary tools of fractal

geometry, anomalous transport theory, and complex systems. This framework is
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different from much of the mainstream in theoretical physics, quantum gravity, and

cosmology, and some researchers find this intellectually stimulating.

– They are simple without being simplistic. It is the first attempt to control the most

generic profile of dimensional flow in a purely analytic way. All the usual techniques

employed in quantum field theory and classical gravity can be adapted, with caution.

This allowed us to extract the first serious experimental constraints [55] not long since

the original proposal [40].

– Their phenomenology is rich and spreads across all scales, from elementary particle

interactions to cosmology. It is also rigid enough to allow to exclude large portions of

the parameter space.

– They have much potential yet untapped, especially regarding observational constraints

and major open issues in cosmology and quantum gravity (see question 72 ).

70 And their problems?

– The novelty of the paradigm carries some difficulties such as the breaking of sym-

metries (but the emergence of others . . . ) in the UV and the consequent need to

choose a frame in position space. This is unattractive for someone accustomed to

work in Lorentz-invariant theories, not only because Lorentz invariance is a powerful

theoretical asset making life simpler, but also because preferred frames are usually

more difficult to justify scientifically and epistemologically, and can be much trick-

ier when it comes to extract physical observables. These are not the first models of

gravity and matter breaking Lorentz invariance, and surely they will not be the last;

however, their foundations are so different with respect to other, more conventional

proposals that it is natural to find resistance. Many of the questions collected here

were actually raised during interactions between the author and colleagues. Some of

these questions had already been answered in the literature at the moment of their

formulation, while others triggered more thinking. One of the goals of this work was

to gather all these issues in one basket and address them in a unified systematic way.

– The most interesting among the proposals, the theory with multifractional derivatives,

has not been developed much. A top priority will be to make it progress.

71 What is the agenda for the future?

The recent proposal of the stochastic view [62, 63] confirms that dimensional flow is a

solid manifestation of quantum gravity, while the original motivation of the multifractional

paradigm was to quantize gravity successfully precisely because of dimensional flow [77].

This is the usual dualism of multifractional spacetimes viewed as effective models or as

fundamental theories. Both possibilities are viable and can be pursued in parallel and in

several distinct ways. In order of importance:

1. To complete the formulation of the theory with multifractional derivatives, starting

from a coherent and useful definition of multiscale fractional calculus (question 13 ),
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the construction of perturbative QFT thereon, the study of its renormalizability,

and the study of its cosmology. Quantizing gravity consistently will be one of the

main goals.

2. To verify the viability of the Tγ=α
∼= Tq approximation explicitly by extracting ex-

perimental constraints directly from Tγ . If these bounds turned out to be close to

those obtained in Tq, then the Tγ=α
∼= Tq approximation would be confirmed and one

could use the simple Tq setting to explore more features of Tγ in advance. If, on the

contrary, the direct bounds on Tγ departed from those on Tq, we would have to treat

these theories separately.

3. To study the late-time cosmology of all theories, in order to check whether we can

explain late-time acceleration with multiscale geometry (question 44 ).

4. To check whether the α = 0 configuration can help to address the big-bang problem

(question 45 ).

5. To study the role of complex dimensions and degenerate geometries, their theoretical

viability, and their physical consequences (question 16 ).

6. To investigate the relation between the near-boundary regime of multifractional space-

times and phase B of CDT [42] (question 48 ).

7. The multiscale model T̃1 of refs. [77, 105, 106] has a Lorentz-invariant measure

dDx v(s) but its Laplace-Beltrami operator is not self-adjoint. For this reason, it

was abandoned in favor of the multifractional paradigm [40]. However, T̃1 is an ex-

ample of geometry obeying the first flow-equation theorem that could be used for

phenomenology, without the ambition of defining a theory with a rigorous top-down

construction.

The status of each theory, together with the discontinued model T1, is summarized

in table 9.

72 To conclude with a motivational appeal, why would I want to work on

multifractional theories?

Because they are based on a guiding principle whose implementation is gradually improv-

ing in rigorousness, their UV geometry is extremely interesting and affects all sectors in

physics, they yield characteristic phenomenological predictions, they are rigid enough to be

easily falsifiable by experiments, and they may contribute to the big-bang, the cosmological

constant, and the quantum-gravity problems.

The guiding principle is the second flow-equation theorem [61], supported by multifrac-

tal geometry [40–42] and motivated by quantum gravity (section 3). In the UV, logarithmic

oscillations can give rise to some esoteric form of propagation of quantum degrees of free-

dom (questions 36 , 50 , and 66 ) or else melt away in a stochastic structure not allowing

for precise measurements (questions 29 and 50 ). The effects of the multiscale geometry of

these scenarios is not confined to the UV limit of gravity. On one hand, it propagates to
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T1 Tv Tq Tγ

Calculus ✓ ✓ ✓ ✓?

[42, 105, 106] [42] [42] [41, 42, 46], this paper

Momentum transform ✓ ✓ ✓ ✓?

derivable from ref. [105] [44] [54, 59]

Self-adjoint Laplacian ✗ ✓ ✓ ✓

and momentum operator [44, 47] [44] [54] [42, 46], this paper

Spectral dimension ✓ ✓ ✓ ✓?

[50] [50] [50] [46]

Classical mechanics ✓ ✓ ✓

[47] [53]

Quantum mechanics ✗ ✓ ✓

implicit in ref. [47] [47]

Scalar field theory ✓ ✓ ✓ ✓?

[105, 106] [49] [54] [42], this paper

Standard Model ✓ ✓ ✓

this paper [51, 56] [55, 56]

Power-counting ✓ ✓ ✗ depends on norm

renormalizability [77, 105], this paper this paper this paper this paper

Perturbative — ✗ depends on parameters and on view?

renormalizability [52], this paper this paper this paper

Gravity and cosmological ✓ ✓ ✓

equations [54] [54] [54]

Early-universe dynamics — ✓? ✓

[54] [54, 59]

Dark energy

Atomic and elementary — ✓ ✓

particle constraints [56] [55, 56]

Astrophysical constraints — ✗ ✓

[58], this paper [58], this paper

Cosmological constraints — ✓ ✓

[59] [59]

Ruled out? — No Yes (in deterministic view)

[56], this paper [58], this paper

Table 9. Status of the multifractional model T1 and of the three multifractional theories Tv,q,γ .

Empty cells correspond to topics not studied yet. Items with a question mark “?” indicate partial

results. If an nonempty item (with or without question mark) has no references given, the result

is either obvious (no question mark) or easily doable (with question mark). The items “—” for T1
are not of interest for the future since T1 is a toy model replaced by Tv; however, one could still do

some cosmological phenomenology with it.
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large scales via the long-range modulation of log oscillations [54, 59], which are a manifes-

tation of microscopic discrete scale invariance [42, 44] (question 66 ). On the other hand,

the nontrivial integrodifferential structure of multifractional theories modifies not just the

gravitational sector [sections 7 and 8; compare, in contrast, changes of the dynamics as in,

say, f(R) gravity] but also the Standard Model of particles (section 6), thus opening up the

possibility to constrain the theories with a great variety of experiments (section 9). The

wealth of bounds that have been obtained from atomic and particle physics, astrophysics,

and cosmology are sensitive to the free parameters of the measure, in particular to the

fractional exponents determining the dimension of spacetime. This property, together with

the rigid theoretical structure of each proposal (especially Tq and Tγ , the models with more

symmetries), make multifractional scenarios easily falsifiable. Much still needs to be done

in order to get control over Tγ and the new developments on the stochastic view, but it can

be done in a very reasonable time span.

Finally, throughout this review-plus-plus we stumbled across many unsolved problems

of modern theoretical physics, including the resolution of singularities such as the big bang

or in black holes (question 45 ), the cosmological constant problem or the nature of dark

energy (questions 42 and 44 ), the nature of inflation (questions 42 and 43 ), and the

problem of quantum gravity (questions 04 , 06 , and 50 ). We cannot and do not claim

that multifractional theories have the final answer to any of these topics, but they are

contributing to the debate in an alternative way and there is a lot of potential to be

uncovered from preliminary results.

We hope to report on, or to see news about, all this in the near future and, as para-

doxical as it may sound, to come back with more frequently asked questions than now.
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