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Abstract We consider the problem of segmenting multiple

rigid-body motions from point correspondences in multiple

affine views. We cast this problem as a subspace cluster-

ing problem in which point trajectories associated with each

motion live in a linear subspace of dimension two, three or

four. Our algorithm involves projecting all point trajectories

onto a 5-dimensional subspace using the SVD, the Power-

Factorization method, or RANSAC, and fitting multiple lin-

ear subspaces representing different rigid-body motions to

the points in R
5 using GPCA. Unlike previous work, our

approach does not restrict the motion subspaces to be four-

dimensional and independent. Instead, it deals gracefully

with all the spectrum of possible affine motions: from two-

dimensional and partially dependent to four-dimensional

and fully independent. Our algorithm can handle the case

of missing data, meaning that point tracks do not have to

be visible in all images, by using the PowerFactorization

method to project the data. In addition, our method can han-

dle outlying trajectories by using RANSAC to perform the

projection. We compare our approach to other methods on

a database of 167 motion sequences with full motions, in-

dependent motions, degenerate motions, partially dependent
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motions, missing data, outliers, etc. On motion sequences

with complete data our method achieves a misclassification

error of less that 5% for two motions and 29% for three mo-

tions.
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1 Introduction

The past few decades have witnessed significant advances

on the understanding of the geometry and reconstruction of

static scenes observed by a moving camera. More recently,

there has been an increasing interest on developing geomet-

rical and statistical models for the understanding of dynamic

scenes, i.e. scenes in which both the camera and multiple ob-

jects move. This is a challenging problem in visual motion

analysis, because it requires the simultaneous estimation of

an unknown number of motion models, without knowing

which measurements correspond to which model.

Motion segmentation from multiple views has been stud-

ied mostly in the case of affine cameras, because in this case

the trajectories associated with each motion live in a linear

subspace of dimension four or less (Boult and Brown 1991;

Tomasi and Kanade 1992) (see Sect. 2.1). This subspace

constraint was used by Boult and Brown (1991) to propose

a multiframe 3-D motion segmentation algorithm based on

thresholding the leading singular vector of the matrix of

point trajectories W. Costeira and Kanade (CK) (Costeira

and Kanade 1998) extended this approach by thresholding

the entries of the so-called shape interaction matrix Q. This

matrix is built from the singular value decomposition (SVD)
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of W and has the property that Qij = 0 when points i and

j correspond to independent motions, as we will see in

Sect. 2.3.

With noisy data the equation Qij = 0 holds only approx-

imately. In this case, CK’s algorithm obtains the segmenta-

tion by maximizing the sum of squared entries of Q in differ-

ent groups. However, this thresholding process is very sen-

sitive to noise (Gear 1998; Kanatani 2001; Wu et al. 2001).

Wu et al. (2001) reduce the effect of noise by building a

similarity matrix from the distances among the subspaces

obtained by CK’s algorithm. Kanatani scales the entries of Q

using the geometric Akaike’s information criterion for linear

(Kanatani 2001) and affine (Kanatani and Matsunaga 2002)

subspaces. Ichimura (1999) finds the groups by thresholding

the most discriminant rows of Q. Gear (1998) uses bipar-

tite graph matching to threshold the entries of the row ech-

elon canonical form of W. Gruber and Weiss (2004) formu-

late the problem as a mixture of factor analysis problem and

derive an expectation-maximization (EM) based maximum-

likelihood algorithm that also deals with missing data.

Another disadvantage of CK’s method and its extensions

is that the equation Qij = 0 holds only when the motion sub-

spaces are linearly independent (Kanatani 2001). That is, the

algorithm is not provably correct for most practical motion

sequences which usually exhibit partially dependent mo-

tions, such as when two objects have the same rotational but

different translational motion relative to the camera (Sug-

aya and Kanatani 2004), or for articulated motions (Yan and

Pollefeys 2005), as we will see in Sect. 2.2. This problem

motivated the work of Zelnik-Manor and Irani (2003) who

use the singular vectors of a normalized shape interaction

matrix to build a similarity matrix from which the cluster-

ing of the features is obtained using spectral clustering tech-

niques (see Weiss 1999 and references therein). This solu-

tion is based on the expectation that on the average the an-

gular displacement of trajectories corresponding to the same

motion is smaller than the one of trajectories corresponding

to different motions. This assumption is, however, not prov-

ably correct. Sugaya and Kanatani (2004) has also studied

the case of partially dependent (degenerate) motions under

the assumption that the type of degeneracy is known, e.g., 2-

D similarity motion or pure translation. Once an initial clus-

tering of the correspondences is obtained, the motion mod-

els are estimated using an iterative process that alternates

between feature clustering and motion estimation, similarly

to the EM algorithm. Yan and Pollefeys (2006) deal with

dependent motions by locally fitting a subspace around each

point trajectory. The data are segmented by applying spec-

tral clustering to a similarity matrix built from the subspace

angles among pairs of subspaces. Since the subspaces are

estimated locally, the method cannot deal with transparent

motions. To the best of our knowledge, the work of Fan et al.

(2006) is the only one that can deal with partially dependent

motions without making strong assumptions. The method

associates a subspace descriptor with each point trajectory,

and clusters these descriptors using a robust voting scheme.

The method, however, cannot deal with missing data.

This paper proposes an approach that works for all the

spectrum of affine motions: from two-dimensional and par-

tially dependent to four-dimensional and fully independent.

This is achieved by a combination of SVD or PowerFactor-

ization or RANSAC, and Generalized Principal Component

Analysis (GPCA) that leads to the following purely geo-

metric solution to the multiframe 3-D motion segmentation

problem:

1. Project the trajectories onto a five-dimensional subspace

using the SVD (complete data), the PowerFactorization

method (missing data), or RANSAC (data with outliers).

2. Fit a collection of subspaces to the projected trajectories

using Spectral GPCA. Specifically:

(a) Fit a homogeneous polynomial representing all mo-

tion subspaces to the projected data.

(b) Obtain a basis for each motion subspace from the

derivatives of this polynomial.

(c) Apply spectral clustering to a similarity built from

the subspace angles to cluster the data.

We test our approach on a database of 167 motion se-

quences with full motions, independent motions, degener-

ate motions, dependent motions, missing data, outliers, etc.

On motion sequences with complete data our algorithm

achieves a misclassification error of less than 5% for two

motions and 29% for three motions.

2 Multiframe Motion Segmentation Problem

In this section, we review the geometry of the 3-D mo-

tion segmentation problem from multiple affine views. We

first show that the problem is equivalent to clustering multi-

ple low-dimensional linear subspaces of a high-dimensional

space. We then review Costeira and Kanade’s multibody fac-

torization algorithm (Costeira and Kanade 1998) for inde-

pendent motion subspaces, and show that it fails when the

motion subspaces are not independent.

2.1 Motion Subspace of a Single Rigid-Body Motion

Let {xfp ∈ R
2}

f =1,...,F

p=1,...,P be the projections in F frames of P

3-D points {Xp ∈ P
3}Pp=1 lying on an object moving rigidly

with respect to a rigidly moving camera. Here and hence-

forth, Xp denotes the homogeneous coordinate representa-

tion of the point as a 4-vector with final coordinate equal

to 1. On the other hand, xfp is a 2-vector representing the

point in non-homogeneous coordinates.
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Since only the motion of the object relative to the camera

is important, we may assume for simplicity that the camera

is stationary and develop our theory based on this assump-

tion. From the evidence of image measurements alone, it is

impossible to distinguish this situation from one in which

the camera itself is moving.

Under the affine projection model, which generalizes or-

thographic, weak perspective, and paraperspective projec-

tion (Poelman and Kanade 1997), the images satisfy the

equation

xfp = Af Xp, (1)

where

Af = Kf

⎡
⎣

1 0 0 0

0 1 0 0

0 0 0 1

⎤
⎦

[
Rf tf

0⊤ 1

]
(2)

is the affine camera matrix at frame f , which depends on

the camera calibration parameters Kf ∈ R
2×3 and the object

pose relative to the camera (Rf , tf ) ∈ SE(3). Note also that

the rows of each Af involve linear combinations of the first

two rows of the rotation matrix Rf , hence Af is a 2 × 4

matrix of rank 2.

Let W1 ∈ R
2F×P be the matrix whose P columns are the

image point trajectories {xfp}Pp=1. We call the span of the

columns of W1 the motion subspace for the rigid-body mo-

tion. It is a fundamental observation that this motion sub-

space is of dimension no greater than 4. To see this, notice

from (1) that W1 can be decomposed into a motion matrix

M1 ∈ R
2F×4 and a structure matrix S1 ∈ R

P×4 as

W1 = M1S
⊤
1 ,

(3)

⎡
⎢⎣

x11 · · ·x1P

...
...

xF1 · · ·xFP

⎤
⎥⎦

2F×P

=

⎡
⎢⎣
A1

...

AF

⎤
⎥⎦

2F×4

[
X1 · · ·XP

]
4×P

.

Therefore, rank(W1) ≤ 4 and rank(W1) ≥ rank(Af ) = 2, and

so there are three possible values for rank(W1).

1. The case rank(W1) = 2 occurs when the 3-D points lie in

a line, because rank(S1) = 2.

2. The case rank(W1) = 3 occurs when the 3-D points lie in

a plane, because rank(S1) = 3, or with a purely rotating

camera, with Kf = [I 0] and tf = 0, because the last

column of M1 is zero. It also occurs when all the rotation

matrices have the same third row, namely [0 0 1]Rf = r ,

because then [r 0]⊤ is in the (right) null space of each

Af and hence of M1. This occurs, for example with a

purely translating object or camera, for which Rf = I;

more generally it occurs for an object translating and ro-

tating with respect to a fixed camera, where the rotational

part of the motion is about the projection direction of the

camera.

3. The case rank(W1) = 4 is the generic case, and requires

the 3-D points to be in general position in R
3 and the

motion of the object relative to the camera to be arbitrary.

In summary, under the affine projection model, the 2-D

trajectories of 3-D points on a rigidly moving object (the

columns of W1) live in a subspace of R
2F of dimension

d1 = rank(W1) = 2, 3 or 4. When d1 = 4, one can use the

SVD to factor W1 as W1 = M̂1Ŝ
⊤
1 , where both M̂1 and Ŝ1 have

4 columns. For orthographic cameras, one can compute M1

and S1 linearly from M̂1 and Ŝ1 (Tomasi and Kanade 1992).

Extensions to weak perspective and paraperspective cameras

can be found in (Poelman and Kanade 1997). When d1 < 4,

W1 still factors as W1 = M̂1Ŝ
⊤
1 , but M̂1 and Ŝ1 have less than 4

columns, hence M1 and S1 cannot be obtained directly from

M̂1 and Ŝ1. Specific methods for d1 = 3 and d1 = 2 can be

found in (Vidal and Oliensis 2002) and (Oliensis and Genc

2001), respectively.

As we will see in short, a precise knowledge of the mo-

tion and structure matrices M1 and S1 in (3) is not necessary

for motion segmentation purposes. All what matters is that

the measurement matrix W1 is of rank d1 = 2, 3, or 4, thus it

factors as W1 = M̂1Ŝ
⊤
1 , where M̂1 and Ŝ1 have d1 columns.

2.2 Segmentation of Multiple Rigid-Body Motions

Assume now that the P trajectories {xfp}Pp=1 correspond

to n objects undergoing n different rigid-body motions rela-

tive to the camera. The 3-D motion segmentation problem

is the task of clustering these P trajectories according to

the n moving objects. Since the trajectories associated with

each object span a linear subspace of R
2F of dimension di ,

i = 1, . . . , n, the 3-D motion segmentation problem is equiv-

alent to clustering a set of points into n subspaces of R
2F of

unknown dimensions di ∈ {2,3,4}, where i = 1, . . . , n.

We quickly give the notation relevant to this n-body seg-

mentation problem. As discussed earlier, it is most conve-

nient (though not essential) to think of the camera as defin-

ing the world coordinate system and express the motion of

the rigid bodies relative to the position of the camera. The

camera can then be represented by a projection matrix of the

form

Kf

⎡
⎣

1 0 0 0

0 1 0 0

0 0 0 1

⎤
⎦ . (4)

The ith rigid body motion is represented by transformation

[
Rif t if

0⊤ 1

]
(5)
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which defines the position of the ith body during frame f .

The 2 × 4 projection matrix is then given by

Aif = Kf

⎡
⎣

1 0 0 0

0 1 0 0

0 0 0 1

⎤
⎦

[
Rif t if

0⊤ 1

]
. (6)

A point Xp belonging to the ith rigid motion is projected to

the point xfp = Aif Xp .

Now, the data matrix consisting of the trajectories of all

points can be written as

W=
[
W1,W2, . . . ,Wn

]
Ŵ ∈ R

2F×P , (7)

where the columns of Wi ∈ R
2F×Pi are the trajectories of the

Pi points belonging to the ith moving object, P =
∑n

i=1 Pi ,

and Ŵ ∈ R
P×P is an unknown permutation matrix that spec-

ifies the segmentation of the points into separately moving

objects. As in the single motion case, the ith data matrix Wi

can be factorized as

Wi = M̂i Ŝ
⊤
i , i = 1, . . . , n, (8)

where M̂i ∈ R
2F×di and Ŝi ∈ R

Pi×di . Consequently, the data

matrix associated with all the objects can be factorized as

W= [W1 W2 . . . Wn] Ŵ

=
[
M̂1, M̂2, . . . , M̂n

]

⎡
⎢⎢⎢⎢⎣

Ŝ
⊤
1

Ŝ
⊤
2

. . .

Ŝ
⊤
n

⎤
⎥⎥⎥⎥⎦

Ŵ

= MS
⊤Ŵ, (9)

where M ∈ R
2F×

∑n
i=1 di and S ∈ R

P×
∑n

i=1 di .

It follows that one possible way of solving the motion

segmentation problem is to find a permutation matrix Ŵ such

that WŴ⊤ = MS
⊤ can be decomposed into a matrix M and

a block diagonal matrix S. This idea is the basis for Gear’s

algorithm (Gear 1998) and also for CK’s algorithm (Costeira

and Kanade 1998), which find the permutation matrix from

the row echelon canonical form of W and from the SVD of

W, respectively.

However, the motion subspaces need not satisfy the con-

straint rank(W) =
∑n

i=1 di , thus we may not be able to fac-

torize W as in (9). Trivially, if one subspace is contained in

another, then the two subspaces cannot be separated. In gen-

eral the factorizability of W according to (9) depends on how

the individual motion subspaces are arranged relative to each

other. The following subsections study the motion segmen-

tation problem under the assumption that the subspaces are

independent (see Definition 1) or partially dependent (see

Definition 2).

Definition 1 (Independent Subspaces) A set of n linear sub-

spaces {Wi ⊂ R
2F }ni=1 are said to be independent if for all

i �= j = 1, . . . , n

dim(Wi ∩Wj ) = 0. (10)

As a consequence, dim(
⊕n

i=1 Wi) =
∑i

i=1 di , where di =

dim(Wi) and ⊕ is the direct sum operator.

Definition 2 (Partially Dependent Subspaces) A set of n lin-

ear subspaces {Wi ⊂ R
2F }ni=1 of dimensions {di}

n
i=1 are

said to be partially dependent if there exist i, j ∈ {1, . . . , n}

such that

0 < dim(Wi ∩Wj ) < min{di, dj }. (11)

2.3 Segmentation of Independent Motions

Let D be the rank of the data matrix W. We denote the mo-

tion subspace corresponding to the ith motion by Wi . Recall

that this is the vector space spanned by the columns of the

matrix Wi . If the motion subspaces {Wi}
n
i=1 are independent,

then D =
∑n

i=1 di , where di is the rank of Wi . In this case,

the matrix W can be factorized as in (9) and the motion seg-

mentation problem can be solved by looking at the entries of

the so-called shape interaction matrix (Costeira and Kanade

1998), which we will now define.

Let W = U�V⊤ be the singular value decomposition of

the data matrix. Since W has rank D, the matrix � has D

non-zero diagonal entries. We assume that these diagonal

entries are ordered with the non-zero entries coming first.

The matrix V may then be subdivided as V= [V1 V2] where

V1 consists of the first D columns of V and V2 consists of the

remaining columns. Thus, the rows of the matrix V
⊤
1 form

an orthonormal basis for the row space of W and the columns

of V2 form an orthonormal basis for the right null space of

W. The shape interaction matrix is now defined to be

Q= V1V
⊤
1 . (12)

Note that Q has dimension P ×P , where P is the total num-

ber of point trajectories. As proved in (Kanatani 2001) this

matrix has the following property

Qij = 0 if points i and j correspond

to different motions. (13)

To see this, let Ni ∈ R
Pi×(Pi−di ) be a matrix whose columns

form an orthonormal basis for the null space of Wi , that is
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WiNi = 0 and N⊤
i Ni = I. Consider now the matrix

N= Ŵ⊤

⎡
⎢⎢⎢⎢⎣

N1 0 · · · 0

0 N2

...
...

. . . 0

0 · · · 0 Nn

⎤
⎥⎥⎥⎥⎦

∈ R
P×(P−D). (14)

It is clear that the P − D columns of this matrix are ortho-

normal and lie in the null space of W. On the other hand, the

columns of the matrix V2 defined before form a basis for the

right null space of W. Since V2 and N have the same dimen-

sion, it follows that the columns of N also form a basis for

the right null space of W. Thus, there exists an orthogonal

matrix O such that V2 = NO. Combining this with the fact

that VV⊤ = I we have

VV
⊤ = V1V

⊤
1 + V2V

⊤
2 = Q+ NN

⊤ = I. (15)

From this it follows that

ŴQŴ⊤ = I− (ŴN)(ŴN)⊤, (16)

which is block-diagonal. This means that Qij = 0 if i and j

correspond to different motions, as required.

Equation (13) has been used by CK’s algorithm and its

variations to compute the unknown permutation Ŵ⊤ that per-

mutes the columns of W according to the n motions. How-

ever,

1. The construction of Q requires knowledge of the rank of

W. As reported in (Gear 1998), using the wrong rank in

CK’s algorithm leads to very poor results.

2. Equation (13) is valid only when W is noise free. While

several approaches to thresholding noisy entries of Q

have been proposed (see Sect. 1), none of them seems

to be effective in practice.

3. Equation (13) does not hold when the motion subspaces

are not independent of each other, as we will show in the

next subsection.

2.4 Segmentation of Partially Dependent Motions

In practice, not all video sequences are such that the mo-

tion subspaces associated with the different moving objects

are independent. We consider cases in which this may hap-

pen. In the following examples, we suppose that each in-

dividual motion has full rank di = 4. Therefore, for each

i, j = 1, . . . , n, the data matrices Wi and Wj factor into mo-

tion and structure matrices of the form given in (3). Exam-

ples of situations where the independence assumption is vi-

olated are now given.

1. Common translation: when two objects i and j move

with the same translation but different rotation relative

to the camera, the fourth columns of their motion matri-

ces Mi and Mj are equal. Therefore, dim(Wi ∩ Wj ) ≥ 1

and rank([WiWj ]) ≤ di + dj − 1.

2. Common rotation: when two objects i and j move with

the same rotation but different translation relative to the

camera, the first three columns of Mi and Mj are common.

Therefore, rank([Wi Wj ]) ≤ 5.

3. Pure translation: when objects i and j do not ro-

tate relative to the camera, i.e. Rf = I, the first two

columns of Mi and Mj are common and the third columns

are zero. Therefore, rank(Mi) ≤ 3, rank(Mj ) ≤ 3 and

rank([Wi Wj ]) = 4. This particular degeneracy was stud-

ied in (Sugaya and Kanatani 2004) under the name of

parallel 2-D plane degeneracy.

4. Articulated motions: the work of (Yan and Pollefeys

2005) studied the motion subspaces of articulated objects

consisting of two rigid objects connected by a link. When

the link is a joint, the objects have a common translation,

and so rank([WiWj ]) = di + dj − 1. When the joint is

an axis, then the objects not only have common transla-

tion, but also their rotation matrices are related by a ro-

tation about the joint axis. As shown in (Yan and Polle-

feys 2005), this causes an additional rank drop, so that

rank([WiWj ]) = di + dj − 2.

5. Small number of frames: it could be the case that the

two motions are fully independent, yet their motion sub-

spaces are partially dependent. For instance, with n = 2

four-dimensional motions and F = 3 frames we have

rank(W) ≤ 6 < 4 + 4 = 8.

Unfortunately, when the motions subspaces are not inde-

pendent, the result in (13) no longer holds. The main reason

for this is that the null space of W can no longer be decom-

posed as the direct sum of the null spaces of the individual

data matrices Wi as in (14). This is a consequence of the fol-

lowing facts:

1. When the subspaces are partially dependent, the equation

W= MS
⊤Ŵ in (9) with M ∈ R

2F×
∑

di and S ∈ R
P×

∑
di is

still valid. However, given W we cannot recover the ma-

trices M and S in (9) using the SVD or any other matrix

factorization technique, because rank(W) = D <
∑

di .

Instead, we recover factors M̂ ∈ R
2F×D and Ŝ ∈ R

P×D ,

where M̂ and Ŝ have fewer columns than M and S respec-

tively.

2. We may as usual build the shape interaction matrix Q

from the first D columns of V in the SVD of W= U�V⊤.

However, (13) no longer holds, as we shall see. Let

Ni ∈ R
Pi×(Pi−di ) be a matrix whose columns form an

orthonormal basis for the null space of Wi . For sim-

plicity, we consider the case where the first two mo-

tion subspaces W1 and W2 are partially dependent, but

the others are independent. Let dim(W1 ∩ W2) = d12.

Then 0 < d12 < min(d1, d2), and so there exist matrices
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N
1
12 ∈ R

P1×d12 and N
2
12 ∈ R

P2×d12 of rank d12 such that

the columns of

N12 =

[
N

1
12 N1 0

N
2
12 0 N2

]
, (17)

where N12 ∈ R
(P1+P2)×(P1+P2−d1−d2+d12), form an ortho-

normal basis for the null space of [W1W2]. The columns

of

N= Ŵ⊤diag(N12,N3, . . . ,Nn) (18)

therefore form an orthonormal basis for the null space of

W. However,

N12N
⊤
12 =

[
N

1
12N

1 ⊤
12 + N1N

⊤
1 N

1
12N

2⊤
12

N
2
12N

1 ⊤
12 N

2
12N

2 ⊤
12 + N2N

⊤
2

]
(19)

is not block diagonal, so neither is ŴN(ŴN)⊤. In general,

whenever motion subspaces Wi and Wj are partially de-

pendent, the matrix ŴN(ŴN)⊤ will contain non-zero fill-

in in the off-diagonal blocks belonging to the pair of mo-

tions i and j . Referring back to (16) we see that

ŴQŴ⊤ = I− (ŴN)(ŴN)⊤ (20)

is not block-diagonal and so entries in Q corresponding

to points from different motions will not be zero.

As discussed in Sect. 1, two main approaches have been

proposed for dealing with partially dependent motions. The

work of (Sugaya and Kanatani 2004) assumes the parallel

2-D plane degeneracy discussed in the previous subsection,

and solves the motion segmentation problem for this partic-

ular case. The work of (Zelnik-Manor and Irani 2003) ap-

plies spectral clustering using the angles between the rows

of V1 as a similarity measure. However, this method is not

provably correct for partially dependent motions.

The goal of this paper is to find an algorithm that is prov-

ably correct both for independent and partially dependent

motions. Our algorithm consists of two steps:

1. Projecting the 2-D point trajectories onto a 5-dimensional

subspace of R
2F .

2. Fitting a polynomial to the projected trajectories and ob-

taining a basis for the projected subspaces by applying

spectral clustering to a similarity matrix built from the

derivatives of the polynomial.

The next two sections describe each one of these two steps

in detail.

3 Projection onto a 5-Dimensional Subspace

The first step of our algorithm is to project the point trajec-

tories (columns of W) from R
2F to R

5. At a first sight, it may

seem counter-intuitive to perform this projection. For in-

stance, if we have F = 4 frames of n = 2 independent four-

dimensional motions, then we can readily apply CK’s algo-

rithm, because we are in a non-degenerate situation. How-

ever, if we first project onto R
5, the motions subspaces be-

come partially dependent, because the rank of the projected

data matrix is at most 5 < 4 + 4 = 8.

What is the reason for projecting then? The reason is that

the segmentation of data lying in multiple subspaces is pre-

served by a generic linear projection. For instance, if one is

given data lying in two lines in R
3 through the origin, then

one can project the lines onto a plane in general position1

and then cluster the data inside that plane. More generally

the principle is (Vidal et al. 2005):

Theorem 1 (Segmentation-Preserving Projections) If the

vectors {wj } lie in n subspaces of dimensions {di}
n
i=1 in

R
D , and if πP is a linear projection from R

D onto a sub-

space P of dimension D′, then the points {πP (wj )} lie in

n′ ≤ n linear subspaces of P of dimensions {d ′
i ≤ di}

n
i=1.

Furthermore, if D > D′ > maxi=1,...,n{di}, then there is an

open and dense set of projections that preserve the number

and dimensions of the subspaces, i.e. n′ = n and d ′
i = di for

i = 1, . . . , n.

The same principle applies to the motion segmentation

problem. Since we know that the maximum dimension of

each motion subspace is four, then projecting onto a generic

five-dimensional subspace preserves the clustering of the

motion subspaces. Loosely speaking, in order for two mo-

tion subspaces to be distinguishable from each other, it is

enough for them to be different along one dimension, i.e.

we do not really need them to be different in all four dimen-

sions. It is this key observation the one that enables us to

treat all partially dependent motions as well as all indepen-

dent motions in the same framework: clustering subspaces

of dimension two, three or four living in R
5.

Another advantage of projecting the data onto a 5-

dimensional space is that, except for the projection itself,

the complexity of the motion segmentation algorithm we

are about to present becomes independent of the number of

frames. Indeed, our algorithm requires a minimum of only

three frames for any number of independent motions.2 In

addition, the projection step enables us to handle complete

data (Sect. 3.1), missing data (Sect. 3.2), and data corrupted

with outliers (Sect. 3.3), as we will see in the following three

subsections.

1Notice that the plane must be in a generic position. For instance, a

plane perpendicular to any of the lines or perpendicular to the plane

containing the lines would fail.

2Previous work required the image points to be visible in 2n views for

n independent motions, as we will see in the next section.
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3.1 Projection Using the SVD for Complete Data

Let us first consider the case in which all the feature points

are visible in all frames, so that all the entries of the data

matrix W ∈ R
2F×P are known. The goal is to find a ma-

trix P ∈ R
5×2F that projects the columns of W onto a 5-

dimensional subspace of R
2F and preserves the segmenta-

tion of the data.

From Theorem 1, we know that there is an open and

dense set of linear projections that preserves the segmen-

tation. Therefore, one possible approach is to chose one or

more projections at random. This approach will work well

with perfect point correspondences. With noisy data, how-

ever, each random projection could result in a different seg-

mentation. In fact, it is clear that some projections are better

than others for the purpose of segmentation. For instance, if

we are given data lying in two lines in R
3, projecting onto

the plane containing the lines would maintain the lines as

separated as possible. Unfortunately, for data lying on sub-

spaces in general configuration, there is no general method-

ology for finding a linear projection that keeps the individual

subspaces as separated as possible.

An alternative approach is to choose a projection that

minimizes the error between the original and the projected

data. The optimal solution is to project onto a dominant

eigensubspace, which we can do simply by computing the

SVD of W = U�V⊤, and then defining a new data matrix Ŵ

to consist of the first 5 rows of V⊤ (assuming that the sin-

gular values are in descending order on the diagonal of �).

Unfortunately, the projection given by the SVD may not be

segmentation preserving. For instance, if we are given points

in R
3 distributed symmetrically along the x, y, and z axes,

then the principal directions are the main axes. Thus, if we

choose the two principal directions to be the x and y axis,

then all points in the z axis are projected to the origin, and

the segmentation of the data is not preserved.

In practice, however, degenerate cases in which the SVD-

based projection fails to preserve the segmentation are rare.

In fact, the SVD-based projection works quite well, as we

will see in Sect. 6.

3.2 Projection Using the PowerFactorization Method for

Incomplete Data

As an alternative to using the SVD to do the projection, we

can use the technique of PowerFactorization (Hartley 2003),

which in some cases may be more rapid. In addition, it al-

lows us deal with the case in which some entries of the data

matrix W ∈ R
2F×P are missing, a fairly common occurrence

in feature tracking due to occlusions or points disappearing

from the field of view. In this case, we need a way to project

such point trajectories onto R
5 in the same way as with com-

plete trajectories. Clearly this cannot be done using SVD, as

detailed in the previous section.

We use a method adapted for incomplete data, based on

an analysis of the “power method” for computation of eigen-

values of a matrix. The method known as PowerFactoriza-

tion gives a rapid method for approximating low rank matri-

ces. The PowerFactorization algorithm is discussed in some

detail in (Hartley 2003).

Complete Data Case We begin by describing PowerFac-

torization in the complete data case. Let W be a matrix of

dimension N × P that we want to approximate by some

matrix of rank r . We start with a random matrix A0 of di-

mension N × r , and then carry out the following steps for

k = 1,2, . . . until convergence of the product AkB
⊤
k .

1. Let Bk = W
⊤
Ak−1.

2. Orthonormalize the columns of Bk by (for instance) the

Gram-Schmidt algorithm. This is sometimes called QR

algorithm, since it is equivalent to replacing Bk by a ma-

trix B
′
k such that Bk = B

′
kNk , where B′

k has orthonormal

columns, and Nk is upper-triangular.

3. Let Ak = WB
′
k .

It was indicated in (Hartley 2003) that the sequence AkB
⊤
k

converges rapidly to the rank-r matrix closest to W in Frobe-

nius norm, provided that W is close to having rank r . Specif-

ically, the rate of convergence is proportional to (sr+1/sr)
k ,

where si is the ith largest singular value of W. Observe that

this algorithm is very simple, requiring only matrix multi-

plications and Gram-Schmidt normalization.

In the case of motion segmentation, the subject of this pa-

per, we wish to replace W by a matrix obtained by projecting

its columns onto a 5-dimensional subspace. If AB⊤ is the

nearest rank-5 factorization to W, then Ŵ= B
⊤ is the matrix

that we require.

Missing Data Case In the case where some of the entries

of W are not known, we cannot carry out SVD or matrix

multiplication either. However, the goal remains the same—

to find matrices A and B such that AB⊤ is as close to W as

possible. The measure of closeness is

∑

(i,j)∈I

(Wij − (AB⊤)ij )
2, (21)

where I is the set of pairs (i, j) for which Wij is known.

In the case of missing data, PowerFactorization takes a

slightly different form. Starting as before with a random ma-

trix A0, we alternate the following steps until convergence of

AkB
⊤
k .

1. Given Ak−1, find the P × r matrix Bk that minimizes∑
(i,j)∈I |Wij − (Ak−1B

⊤
k )ij |

2.

2. Orthonormalize the columns of Bk by replacing it by a

matrix B
′
k such that Bk = B

′
kNk , where B′

k has orthonor-

mal columns, and Nk is upper-triangular.
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3. Given Bk , find the matrix Ak that minimizes∑
(i,j)∈I |Wij − (AkB

⊤
k )ij |

2.

In this algorithm, the computation of each Bk and Ak pro-

ceeds just one column at a time, and consists of finding the

least-squares solution to a set of linear equations.

It was pointed out in (Hartley 2003) that if W has no miss-

ing entries, then this algorithm gives precisely the same se-

quence of products as the version of the algorithm involving

matrix multiplications. Consequently, it is provably rapidly

convergent to the optimal solution. In the case of moder-

ate amounts of missing data, we cannot strongly assert this,

though the theoretical result for complete data gives us a

strong expectation that this will be so; this expectation is

borne out by practical experience. PowerFactorization fails

to converge to the global minimum only in rare cases, such

as with strongly banded data (that is a long image sequence

with only short point-tracks).

Essentially this algorithm alternates between computing

Ak and Bk using least-squares. Similar (not identical) alter-

nation algorithms have been proposed in (Shum et al. 1995;

De la Torre and Black 2001; Buchanan and Fitzgibbon

2000). As mentioned, (Hartley 2003) gives theoretical jus-

tification for this algorithm.

3.3 Projection Using RANSAC for Data with Outliers

Feature point trajectories from real sequences are affected

not only by noise and missing data, but also by outliers. Out-

liers occur when feature points in two image frames are in-

correctly matched, thus the trajectory passing through these

feature points does not belong to any of the motion sub-

spaces. It is well known that the existence of outliers can

severely affect the performance of motion segmentation al-

gorithms, particularly when linear least-squares estimation

methods are used (Sugaya and Kanatani 2002). Therefore, it

is important that outliers be detected before segmentation.

Since the first step of our algorithm is to project the 2F -

dimensional trajectories onto a 5-dimensional subspace, one

way to deal with outliers is to perform this projection in a

robust fashion. A method that is particularly suited for this

task is RANdom SAmple Consensus (RANSAC) (Fischler

and Bolles 1981). RANSAC is a statistical method for fit-

ting a model to a cloud of points corrupted with outliers in

a statistically robust way. More specifically, if d is the min-

imum number of points required to fit a model to the data,

RANSAC proceeds by

1. Randomly sampling d points from the data.

2. Fitting a model to these d points.

3. Computing the residual of each data point to the current

model.

4. Choosing the points whose residual is below a threshold

as the inliers.

These four steps are then repeated for another d sample

points, until the number of inliers is above a threshold, or

enough samples have been drawn. The outputs of the algo-

rithm are the parameters of the model (subspace basis) and

the labeling of inliers and outliers.

In our case, we wish to fit a 5-dimensional subspace to

the 2F -dimensional trajectories. Therefore, in each iteration

of RANSAC we use the SVD with complete data or Power-

Factorization with missing data to find a basis for the sub-

space spanned by the d = 5 randomly chosen points. Then,

the residuals are given by the distance of each point to the

current subspace. Once the trajectories have been projected

onto R
5, we can simply apply GPCA to segment the pro-

jected trajectories, as we describe in the next section.

4 Fitting Motion Subspaces Using GPCA

We have reduced the motion segmentation problem to find-

ing a set of linear subspaces in R
5, each of dimension at

most 4, which contain the data points (or come close to

them). The points in question, {wp}Pp=1, are the columns

of the projected data matrix Ŵ =
[
w1 · · ·wP

]
∈ R

5×P . We

solve this problem by fitting and differentiating polynomials

using GPCA (Vidal et al. 2005).

4.1 Multiple Subspaces as Algebraic Varieties

It serves our purposes to fit a slightly more general model to

the points, fitting them by an algebraic variety. In essence,

notice that the n motion subspaces can be represented as

the zero-set of m polynomials of degree n in 5 variables,

{qnℓ(w)}mℓ=1, where w ∈ R
5. That is, a union of linear sub-

spaces forms an algebraic variety in R
5. Our task is to find

the algebraic variety that best fits the set of points in R
5. The

fact that a union of linear subspaces forms an algebraic va-

riety (in simple terms, can be expressed as the zero set of a

collection of polynomials) is simple enough. If all the sub-

spaces are hyperplanes (having dimension 4) in R
5, then a

single polynomial of degree n suffices. This is because a sin-

gle plane is represented by a single linear polynomial, just

as a plane in R
3 is represented by a linear polynomial equa-

tion ax + by + cz = 0. Similarly, a set of n hyperplanes is

represented by the product of n linear polynomials, one for

each plane, e.g., (ax + by + cz)(dx + ey + f z) = 0 for two

planes.

A linear subspace of codimension greater than one (that

is, dimension less than 4 in R
5) is not represented by a sin-

gle equation. Instead, it may be expressed as the intersec-

tion of a set of hyperplanes. Equivalently, the points on the

subspace simultaneously satisfy the equations of each of the

intersecting hyperplanes—thus, a subspace of codimension

c is the common zero-set of c distinct linear polynomials.
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Finally, points on a collection of n linear subspaces will sat-

isfy any polynomial formed as the product of linear polyno-

mials, where each linear polynomial represents a hyperplane

plane through one of the subspaces. Thus, the collection of

n subspaces forms the zero set of a collection of degree n

polynomials, as claimed.

Although by the above argument each of the polynomi-

als factors into linear factors, we will not use this condition,

since it is not preserved in the presence of slight perturba-

tions (noise) applied to the points. The polynomials that we

find will not exactly factor, hence their zero set (the alge-

braic variety) will not precisely consist of a set of linear sub-

spaces. We will deal with this difficulty in Sect. 4.3. Before

that, we will turn to the question of estimating these polyno-

mials from data.

4.2 Fitting Polynomials to Projected Trajectories

Although in the case of degenerate motions, the data points

(namely the columns of Ŵ) could lie in subspaces of R
5 of

dimension less than 4, for the present we will assume that

the subspaces are 4-dimensional. Consequently, we limit the

discussion to fitting the points to a codimension-1 variety.

This means that we need only find a single polynomial that

fits the points. The case of degenerate subspaces will be dis-

cussed in Sect. 4.4.

In an abstract context, we are given a set of points {wi}

in R
5 and we wish to find a homogeneous polynomial of

degree n (in 5 variables) that fits the points. Recall that n

is the expected number of independent motions. To con-

sider a more familiar problem, suppose we want to fit a

homogeneous polynomial of degree n in three variables to

a set of points. For simplicity, let n = 2. The general ho-

mogeneous polynomial of degree 2 in three variables is

ax2 +by2 +cz2 +dxy +exz+fyz. This is in fact the equa-

tion of a conic in the projective plane P2. Now, suppose that

a point (xi, yi, zi) lies on this curve. We substitute into this

polynomial and equate to zero to obtain a linear equation in

the six unknowns a, . . . , f . It does not matter that the poly-

nomial is non-linear in the variables x, y and z; it is linear in

the coefficients that we need to determine. Given sufficiently

many points (in this case 5) on the curve we may solve a set

of linear equations to determine the coefficients a, . . . , f .

With more than 5 points we find a least-squares fit. This is

a common procedure of algebraic fitting of a conic to data

points.

The process extends naturally to fitting any number of

points in any space R
K with a curve of degree n. The process

consists of generating all the possible Mn =
(
n+K−1

n

)
mono-

mials of degree n in the K entries of w, i.e. w
n1

1 w
n2

2 · · ·w
nK

K ,

which we can stack into a vector w̃ ∈ R
Mn . A general ho-

mogeneous polynomial of degree n is a combination of

these monomials with certain coefficients c ∈ R
Mn , i.e.

∑
cn1,...,nK

w
n1

1 w
n2

2 · · ·w
nK

K = c
⊤
w̃. Each point required to

satisfy the polynomial will lead to a linear equation in c,

and sufficiently many points will allow us to determine c as

the least-squares solution of

W̃
⊤
c = 0, (22)

where the columns of W̃= [w̃1 · · · w̃P ] ∈ R
Mn×P contain all

the monomials of degree n generated by the columns of Ŵ=

[w1 · · ·wP ] ∈ R
K×P .

As an alternative to least-squares, one may use robust

techniques for estimating the null space of W̃ in the presence

of outlying feature points. In particular, we can compute c

by minimizing the cost function

P∑

p=1

ρ(w̃p
⊤
c, σ ) (23)

subject to ‖c‖ = 1, where ρ(x) = x2

x2+σ 2 is a robust er-

ror function and σ is scaling parameter. This minimiza-

tion problem can be solved using iterative re-weighted least

squares, or gradient descent.

4.3 Segmenting Motion Subspaces by Polynomial

Differentiation

At this stage, we have a homogeneous degree-n polynomial

q in 5 variables fitting a set of points {wi}. Ideally, the poly-

nomial q factors into n linear factors, each one correspond-

ing to a hyperplane in R
5. The present task is to partition

the points {wi} according to which of these hyperplanes

they lie in (or near). With inexact measurements, the poly-

nomial q will not exactly factor into linear factors. However,

the variety it defines (its zero-set) will approximate a set of

codimension-one subspaces, or hyperplanes.

We consider the derivative of q . This is a 5-vector

∇q(w) = (∂q/∂w1, . . . , ∂q/∂w5) , (24)

where q is a polynomial in the variables wk . The key ob-

servation is that this derivative, when evaluated at a point w

lying in the variety defined by q , yields the normal vector to

the variety at that point.

Considering still the ideal case, if two points wi and wj

lie in the same hyperplane, then ∇q(wi) and ∇q(wj ) will

be vectors in the same direction, whereas if they lie in dif-

ferent hyperplanes, these direction vectors will be different.

In fact, since q is a homogeneous polynomial, the hyper-

planes in question will be linear codimension-1 subspaces

passing through the origin. Therefore, two such hyperplanes

are identical if and only if they have the same unit normal

vector. Therefore two data points wi and wj will lie in the

same hyperplane if and only if the angle between ∇q(wi)

and ∇q(wj ) is zero (or 180◦).
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This suggests a procedure for partitioning the points wi .

When q does not factor into linear factors, the normal vec-

tors ∇q(wi) and ∇q(wj ) will not be exactly the same. Nev-

ertheless, we may define a similarity measure for two such

points, as follows

Sij = cos2(θij ), (25)

where θij is the angle between the two vectors ∇q(wi)

and ∇q(wj ). Then Sij ≈ 1 if points wi and wj are from

the same motion (and so belong to the same hyperplane),

whereas Sij < 1 if they belong to different motions. Given

the so-defined similarity matrix S ∈ R
P×P , one can apply

any spectral clustering technique to obtain the segmentation

of the feature points, e.g., (Weiss 1999; Ng et al. 2001).

Once the features have been clustered, one can estimate the

motion and structure of each moving object using the stan-

dard factorization approach for affine cameras, e.g., (Tomasi

and Kanade 1992). We therefore have the following algo-

rithm (Algorithm 1) for motion estimation and segmentation

from multiple affine views.

Algorithm 1 (Multiframe motion segmentation by Pow-

erFactorization and Spectral GPCA)

Given a matrix W ∈ R
2F×P containing P feature points in F

frames (possibly with missing data)

1: Projection: Project the columns of W onto a five-

dimensional subspace using the SVD (complete data)

or PowerFactorization (incomplete data) or RANSAC

(data with outliers) to obtain a (complete) data matrix

Ŵ= [w1, . . . ,wP ] ∈ R
5×P .

2: Multibody motion estimation via polynomial fitting: Ob-

tain a polynomial q representing the n motion sub-

spaces by computing its vector of coefficients c ∈ R
Mn

as the singular vector of the embedded data matrix

W̃= [w̃1, . . . , w̃P ] ∈ R
Mn×P corresponding to its small-

est singular value.

3: Feature clustering via polynomial differentiation: Clus-

ter the feature points by applying spectral clustering

to the similarity matrix Sij = cos2(θij ), where θij is

the angle between the vectors ∇q(wi) and ∇q(wj ) for

i, j = 1, . . . ,P .

4: Motion Estimation: apply the standard factorization ap-

proach for affine cameras to each one of the n group of

features to obtain motion and structure parameters.

4.4 Dealing with Degenerate and Partially Dependent

Motions

Since our method is particularly intended to handle degener-

ate and partially dependent motions, in which the different

linear subspaces have smaller dimension than 4, or inter-

sect non-trivially, we need to understand why the proposed

method based on fitting 4-dimensional subspaces works in

these cases.

In the case of partially dependent (but fully-dimensional)

motions, the hyperplane subspaces will have dimension 4 in

R
5, as usual. Two such subspaces will have distinct normals,

even if they intersect in some non-zero subspace. Since the

normals are different, our method will work effectively.

In the case of degenerate motions, some of the subspaces

may have smaller dimension than the expected dimension 4.

Such a subspace may be defined as the intersection of more

than one hyperplane. By choosing a single polynomial q to

fit all subspaces, we effectively choose a single one of these

hyperplanes containing the low-dimensional subspace.3 As

long as this hyperplane does not correspond with the hy-

perplane defining one of the other motions, there will be no

problem with using such a hyperplane to segment the degen-

erate motion. Generally this favorable condition will apply.

Modeling Low-Dimension Subspaces Explicitly We refer

the reader to (Vidal et al. 2005) for an extension of the afore-

mentioned techniques to modeling low-dimensional sub-

spaces explicitly. To do this, instead of fitting the data to

a single polynomial, we need to compute a set of indepen-

dent polynomials {qk} that fit the points. Derivatives of these

polynomials give a set of vectors generating a normal sub-

space, rather than a single normal. The similarity measure

defined in (25) may be generalized to measure the largest

principal angle between the normal subspaces correspond-

ing to different points.

Using multiple polynomials to model degenerate sub-

spaces could in principle give better segmentation results

than using a single polynomial, because one can avoid

choosing a hyperplane containing two motion subspaces.

However, an important problem is that we do not know a pri-

ori how many polynomials to use, because we do not know a

priori if a sequence contains degenerate motions or not. Un-

der ideal noise free conditions the number of polynomials is

simply the dimension of the left null space of the matrix W̃.

With noise and outliers it is easy to overestimate the number

of polynomials, which will lead to an erroneous segmenta-

tion. Even if we could determine the rank of W̃ effectively,

recall that the rank also depends on the number of motions.

Determining both the number of polynomials and the num-

ber of motions from a noisy matrix W̃ is a difficult model

selection problem.

3It was shown in (Vidal et al. 2005) that even though for degenerate

motions the polynomial q may not be factorizable, its derivative at a

point in one of the motion subspaces still gives a normal vector to that

subspace. It is the hyperplane associated with this normal vector the

one we are referring to here, which exists for any q , factorizable or

not.
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5 Benchmark

In order to evaluate the performance of our algorithm on

real data, we collected a database consisting of 53 video se-

quences of indoor and outdoors scenes containing two or

three motions. The trajectories of each video sequence X

containing three motions were split into three motion se-

quences X_g12, X_g13 and X_g23 containing the points

from groups one and two, one and three, and two and three,

respectively. This gave a total of 167 motion sequences: 129

with two motions and 38 with three motions. Based on the

video content, the sequences can be categorized into four

groups:

Checkerboard Sequences This group consists of 104 se-

quences of indoor scenes taken with a handheld camera un-

der controlled conditions. The checkerboard pattern on the

objects is used to assure a large number of tracked points.

Most sequences contain full and independent motions. Se-

quences 1R2RC–2T3RTCR contain three motions: two ob-

jects (identified by the numbers 1 and 2, or 2 and 3) and the

camera itself (identified by the letter C). The type of mo-

tion of each object is indicated by a letter: R for rotation,

T for translation and RT for both rotation and translation. If

there is no letter after the C, then the camera is fixed. For ex-

ample, if a sequence is called 1R2TC it means that the first

object rotates, the second translates and the camera is fixed.

Sequence three-cars is taken from (Vidal et al. 2006) and

contains three motions of two toy cars and a box moving on

a plane (the table) taken by a fixed camera.

Traffic Sequences This group consists of 38 sequences of

outdoor traffic scenes taken by a moving handheld camera.

Sequences carsX–truckX have vehicles moving on a street.

Sequences kanatani1 and kanatani2 are taken from (Sugaya

and Kanatani 2004) and display a car moving in a parking

lot. Most scenes contain degenerate motions, particularly

linear and planar motions.

Articulated/Non-Rigid Sequences This group contains 13

sequences displaying motions constrained by joints, head

and face motions, people walking, etc. Sequences arm and

articulated contain checkerboard objects connected by arm

articulations and by strings, respectively. Sequences peo-

ple1 and people2 display people walking, thus one of the

two motions (the person walking) is partially non-rigid. Se-

quence kanatani3 is taken from (Sugaya and Kanatani 2004)

and contains a moving camera tracking a person moving his

head. Sequences head and two_cranes are taken from (Yan

and Pollefeys 2006) and contain two and three articulated

objects, respectively.

Table 1 Database average statistics

2 Groups 3 Groups

# Seq. Points Frames # Seq. Points Frames

Checkerboard 78 291 28 26 437 28

Traffic 31 241 30 7 332 31

Articulated 11 155 40 2 122 31

Missing data 9 396 35 3 594 35

All 129 275 30 38 414 29

Point Distrib. 35%–65% 20%–24%–56%

Missing Data Sequences This group consists of 12 chec-

kerboard sequences, oc1R2RCT _X, oc1R2RC_X and

oc2R3RCRT _X, which contain 4.48% to 35.57% of miss-

ing data.

Table 1 reports the number of sequences in each category.

It can be seen that most sequences are checkerboard se-

quences. Table 1 also reports the average number of tracked

points and frames for each category. For the sequences taken

from (Sugaya and Kanatani 2004; Vidal et al. 2006; Yan and

Pollefeys 2006), the point trajectories were provided in the

respective datasets. For the remaining sequences, the trajec-

tories were obtained in a semi-automatic manner. First, a

tool based on a tracking algorithm implemented in OpenCV

(2000) was used to extract feature points in the first frame

and track them in the following frames. Then an operator re-

moved obviously wrong trajectories, e.g., points disappear-

ing in the middle of the sequence due to an occlusion by an-

other object. Afterwards, the ground-truth segmentation was

obtained by manually assigning each point trajectory to its

corresponding cluster. The number of points per sequence

ranges from 39 to 556, and the number of frames ranges

from 15 to 100. Table 1 also contains the average distribu-

tion of points per moving object, with the last group corre-

sponding to the camera motion (motion of the background).

This statistic was computed on the original 53 videos only.

Notice that typically the number of points tracked in the

background is about twice as many as the number of points

tracked in a moving object.

Table 2 categorizes the sequences with complete data ac-

cording to the types of motions present in the scene: full

and independent motions, full and partially dependent mo-

tions, degenerate and independent motions, or degenerate

and partially dependent motions. The types of motions were

obtained from the dimensions of the individual motion sub-

spaces as well as the dimensions of their unions. How-

ever, determining the dimension of a motion subspace is not

straightforward, because it involves computing the rank of

a noisy matrix. For this purpose, we adapted the method of

Kanatani and Matsunaga (2002), which is based on the min-

imum description length (MDL). More specifically, for each

motion group within each sequence, we computed the rank
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Table 2 Number of motion sequences of different types of motion

2 Groups 3 Groups Total

Full & Independent 83 17 100

Full & Dependent 31 16 47

Degenerate & Independent 3 0 3

Degenerate & Dependent 3 2 5

Total 120 35 155

ri of the (noisy) data matrix Wi in (3) using the method de-

scribed in Kanatani and Matsunaga (2002) with a minimum

rank of rmin = 2 and a maximum rank rmax = 4. A similar

method was then used to compute the ranks ri∪j of the data

matrices associated with the union of two motion groups i

and j using the individual ranks ri and rj computed in the

previous step. In this case the minimum and maximum ranks

were chosen as rmin = max{ri, rj } + 1 and rmax = ri + rj .

It is then possible to compute the dimension of the intersec-

tion between the two subspaces as ri∩j = ri + rj − ri∪j . For

sequences with three motions, we computed the rank ri∪j∪k

of the union of three motion subspaces using of the union of

three motion subspaces using again the method described in

Kanatani and Matsunaga (2002). The minimum and maxi-

mum ranks were obtained using the formula

ri∪j∪k = ri + rj + rk − ri∩j − ri∩k − rj∩k + ri∩j∩k (26)

where ri∩j∩k is constrained to be

max{(ri∩j + ri∩k − ri), (ri∩j + rj∩k − rj ),

(ri∩k + rj∩k − rk),0}

≤ ri∩j∩k ≤ min{ri∩j , ri∩k, rj∩k}. (27)

By looking at the numbers in Table 2, it can be seen that

most sequences with complete data contain full and inde-

pendent motions. This is expected, because most of the se-

quences are checkerboard sequences with generic motions.

To assess if the motion sequences in the database are well

approximated by the affine projection model, a rank-4 ap-

proximation Ŵi of the data matrix Wi associated with the ith

motion group of each video sequence was computed. The

squared reprojection error for a video sequence is then given

by 1
2FPn

∑n
i=1 ‖Ŵi − Wi‖

2
F . Figure 1 shows the number of

sequences achieving a certain reprojection error. It can be

seen that more than 95% of the sequences have a reprojec-

tion error of less than 1 pixel, showing that the affine model

is appropriate for the sequences in the database.

To summarize the amount of motion present in all the se-

quences, we computed the rotation and translation between

all pairs of consecutive frames for each motion in each se-

quence using the standard factorization method (Tomasi and

Kanade 1992). This information was used to produce the

Fig. 1 Histogram of reprojection error (per sequence) for the se-

quences with complete data

Fig. 2 Histograms with the amount of rotation and translation between

two consecutive frames for the sequences with complete data

histograms shown in Fig. 2. Notice that the inter-frame rota-

tion is between 0 and 5 degrees, and the inter-frame transla-

tion is between 0 and 0.1.

6 Experiments on Real Images

In this section, we compare three variations of our algorithm

against several multi-view affine algorithms on our bench-

mark of 167 motion sequences. More specifically, we com-

pare the following methods:

1. Costeira & Kanade (CK): this method (Costeira and

Kanade 1998) builds a shape interaction matrix Q from

the SVD of the data matrix. The data is segmented by



Int J Comput Vis (2008) 79: 85–105 97

Fig. 3 Motion segmentation results for the Kanatani sequences. The

first and second columns show respectively the first and last frames of

the sequence with point correspondences superimposed. The third col-

umn shows the displacement of the correspondences in pixels between

the first and last frames. The fourth column shows the segmentation

results given by our algorithm: the x-axis is the index for each point

and the y-axis is the group 1 or 2

Table 3 Classification errors of various subspace clustering algo-

rithms on the Kanatani sequences (Sugaya and Kanatani 2004)

Sequence kanatani1 kanatani2 kanatani3

# of points P 136 63 73

# of frames F 30 17 100

CK (Costeira and Kanade 1998) 39.7% 28.7% 41.2%

Ichimura (Ichimura 1999) 7.4% 19.9% 31.7%

SS (Kanatani 2001) 70.7% 0.5% 1.1%

ASS (Kanatani and Matsunaga 2002) 18.2% 0.3% 32.5%

MSL (Sugaya and Kanatani 2004) 0.0% 0.0% 0.0%

RANSAC 35.0% 6.1% 17.6%

SVD+GPCA 0.0% 0.0% 0.0%

thresholding the entries of Q, which is done by maximiz-

ing the sum of squared entries of Q in different groups.

Table 4 Computation times for MSL, RANSAC and SVD+GPCA on

the Kanatani sequences

Sequence MSL RANSAC SVD+GPCA

kanatani1 80.76s 0.379s 0.001s

kanatani2 1.99s 0.598s 0.097s

kanatani3 4.16s 0.326s 0.114s

2. Ichimura: this method (Ichimura 1999) finds the kth mo-

tion subspace by thresholding the kth most discriminant

row of Q.

3. Subspace Separation (SS): this method (Kanatani 2001)

applies CK’s algorithm to a matrix obtained by scaling

the entries of Q using the geometric Akaike’s information

criteria (GAIC) for linear subspaces.

4. Affine Subspace Separation (ASS): this method

(Kanatani and Matsunaga 2002) is the same as SS, ex-

cept that it weights the entries of Q using the GAIC for

affine subspaces.
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Fig. 4 Motion segmentation results on sequences with complete data.

The first column shows the first frame of each sequence. The second

column shows the displacement of the correspondences between the

first and the last frames. The third-fifth columns show the clustering of

the correspondences given by our algorithm for groups 1-2, 1-3 and

2-3. The x-axis is the index for each point and the y-axis is the group

1 or 2
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Fig. 5 Histograms with the percentage of sequences in which each method achieves a certain classification error

5. Multistage Stage Learning (MSL): this method (Sug-

aya and Kanatani 2004) obtains an initial segmentation

by using the CK’s method adapted to the 2-D plane de-

generacy. This initial segmentation is then refined using a

multi-stage learning technique that applies EM for mul-

tiple degenerate subspaces, followed by EM for multiple

affine subspaces, followed by EM for multiple linear sub-

spaces.

6. SVD+GPCA: This is the algorithm proposed in this pa-

per for complete data with no outliers.

7. PF+GPCA: This is the algorithm proposed in this paper

for missing data with no outliers.

8. RANSAC+GPCA: This is the algorithm proposed in this

paper for data with outliers.

9. RANSAC: instead of using RANSAC to project the data

onto R
5, one can use it to fit multiple subspaces of di-

mension d = 4 directly. This can be done by applying

RANSAC recursively, thereby fitting one dominant sub-

space at a time. The first subspace is fit by applying

RANSAC to all the data, with points in other subspaces

considered as outliers. The remaining subspaces are ob-

tained in an analogous fashion, after removing the inliers

to the previously estimated subspaces.

These algorithms are compared using the following per-

formance measures

outlier detection rate =
# of correctly detected outliers

total # of outliers
,

(28)

classification error =
# of misclassified inliers

total # of inliers
. (29)

For data with no outliers, we compute only the classifica-

tion error, with all point trajectories considered as inliers. In

addition, we also we also compare the computation times

(CPU times) of a MATLAB® implementation of our algo-

rithm and of RANSAC, and a C++ implementation of MSL.

The reference machine used for all the experiments is an In-

tel Xeon MP with 8 processors at 3.66 GHz and 32 GB of

RAM (but for each simulation each algorithm exploits only

one processor, without any parallelism).

6.1 Comparison with Multi-frame Algorithms on the

Kanatani Sequences

We first test our algorithm on the three Kanatani sequences,

which are shown in Fig. 3. The kanatani1 and kanatani2 se-

quences are taken by a moving camera tracking a car mov-

ing, respectively, in front of a parking lot and a building.

These sequences contain degenerate and partially dependent

motions. The kanatani3 sequence is taken by a moving cam-

era looking at a person moving his head. This sequence con-

tains full and independent motions.

Table 3 compares the segmentation results reported in

(Sugaya and Kanatani 2004) for the CK, Ichimura, SS,

ASS, and MSL algorithms against the results given by

SVD+GPCA and RANSAC. Notice that CK, Ichimura, SS,

ASS and RANSAC fail to give the correct segmentation,



100 Int J Comput Vis (2008) 79: 85–105

Fig. 6 Motion segmentation results on sequences with missing data.

The first column shows the first frame of each sequence. The second

column shows the displacement of the correspondences between the

first and the last frames. The third-fifth columns show the clustering of

the correspondences given by our algorithm for groups 1-2, 1-3 and

2-3, respectively. The x-axis is the index for each point and the y-axis

is the group 1 or 2

while SVD+GPCA and MSL achieve perfect classification

for all three sequences. The comparison is somewhat un-

fair, because CK, Ichimura, SS and ASS cannot handle

partially dependent motions, while SVD+GPCA, MSL and

RANSAC can. On the other hand, our algorithm is purely

algebraic, while the others use iterative refinement to deal

with noise. Nevertheless, the only algorithm that has a per-

formance comparable to ours is MSL, which is based on

solving a series of EM-like iterative optimization problems,

at the expense of a significant increase in computation. As

shown in Table 4, SVD+GPCA takes about 0.1 seconds in

MATLAB® , while MSL takes from 2 to 80 seconds in C++.

6.2 Comparison with Multi-frame Affine Algorithms on

Sequences with Complete Data

We now compare SVD+GPCA against MSL and RANSAC

on the sequences with complete data. This database consists

of 155 sequences with complete data, which correspond to

the checkerboard, traffic and articulated sequences. Figure

4 shows some of the sequences. We compare our method

against MSL and RANSAC only, because they can handle

degenerate and partially dependent motions.

Tables 5, 6, 7, 8 show statistics with the classifica-

tion errors and computation times for the different types

of sequences. Figure 5 shows histograms with the num-

ber of sequences in which each algorithm achieved a cer-

tain classification error. More detailed statistics with the

classification errors and computation times of each algo-

rithm on each one of the 155 sequences can be found at

http://www.vision.jhu.edu.

Table 5 Performance statistics for two groups

Checkerboard SVD+GPCA MSL RANSAC

Average 6.09% 4.46% 13.70%

Median 1.03% 0.00% 8.18%

Traffic SVD+GPCA MSL RANSAC

Average 1.41% 2.23% 10.72%

Median 0.00% 0.00% 6.31%

Articulated SVD+GPCA MSL RANSAC

Average 2.88% 7.23% 9.05%

Median 0.00% 0.00% 1.77%

All SVD+GPCA MSL RANSAC

Average 4.59% 4.14% 12.50%

Median 0.38% 0.00% 8.05%

Table 6 Computation times averages for two groups

SVD+GPCA MSL RANSAC

Checkerboard 342ms 7h 4m 158ms

Traffic 286ms 21h 34m 212ms

Articulated 187ms 9h 47m 270ms

All 314ms 11h 4m 182ms

By looking at the results, we can draw the following con-

clusions about the performance of SVD+GPCA, MSL and

RANSAC on sequences with complete data.
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Table 7 Performance statistics for three groups

Checkerboard SVD+GPCA MSL RANSAC

Average 31.95% 10.38% 25.77%

Median 32.93% 4.61% 27.49%

Traffic SVD+GPCA MSL RANSAC

Average 19.83% 1.80% 22.64%

Median 19.55% 0.00% 21.11%

Articulated SVD+GPCA MSL RANSAC

Average 16.85% 2.71% 24.36%

Median 16.85% 2.71% 24.36%

All SVD+GPCA MSL RANSAC

Average 28.66% 8.23% 25.07%

Median 28.26% 1.76% 26.30%

Table 8 Computation times averages for three groups

SVD+GPCA MSL RANSAC

Checkerboard 820ms 2d 6h 1.067s

Traffic 539ms 1d 8h 1.295s

Articulated 125ms 1m 19.993s 2.169s

All 724ms 1d 23h 1.176s

SVD+GPCA For SVD+GPCA, we have to comment sepa-

rately the results for sequences with two and three motions.

For two motions, SVD+GPCA has a classification error of

4.59% with an average computation time of 324 ms. The

errors are higher on the checkerboard sequences (6.09%),

which constitute the majority of the database. However, for

the traffic and articulated sequences SVD+GPCA is the most

accurate method, with errors of 1.41% and 2.88%, respec-

tively.

For sequences with three motions the results are com-

pletely different: the increase of computation time is reason-

able (about 738 ms), but the segmentation error is signifi-

cantly higher (about 29%). This is expected, because of two

reasons. First, the number of coefficients fitted by GPCA

grows exponentially with the number of motions, while the

number of point trajectories stays on the same order of mag-

nitude. This causes the estimation of the coefficients of the

polynomial to be less accurate. Second, and most impor-

tantly, a linear estimation of the coefficients neglects nonlin-

ear constraints. The larger the number of motion, the more

nonlinear constraints are neglected, and so the estimation of

the coefficients is less and less accurate.

MSL If we look only at the average classification error, we

can see that MSL is the most accurate method. Furthermore,

its segmentation results remain consistent when going from

two to three motions. However, the MSL method has two

major drawbacks. First, the EM algorithm can get stuck in

a local minimum. This is reflected by high classification er-

rors for some sequences with small reprojection error. Sec-

ond, and more importantly, the complexity does not scale

favorably with the number of points and frames, as the com-

putation times grow in the order of minutes, hours and days,

while for SVD+GPCA the computation times remain in the

order of milliseconds. This may prevent the use of the MSL

algorithm in practice, even considering its excellent accu-

racy.

RANSAC The results for this purely statistic algorithm are

similar to what we found for SVD+GPCA. On sequences

with two motions, RANSAC gives relatively good results,

though it is clearly less accurate than GPCA+SVD and

MLS. Also, notice that RANSAC has the shortest compu-

tation times. For sequences with three motions the accuracy

of RANSAC is not satisfactory. This is expected, because as

the number of motions increases, the probability of drawing

a set of points from the same group reduces significantly.

That said, RANSAC scales better than SVD+GPCA when

going from two to three motions. In fact, RANSAC out-

performs SVD+GPCA in this case. Another drawback of

RANSAC is that its performance varies between two runs

on the same data. Our experiments present averaged results

over 1000 trials.

Overall, we conclude that SVD+GPCA is more accurate

on sequences with two degenerate and partially dependent

motions, while MSL is more accurate on sequences with full

and independent motions.

6.3 Performance of our Algorithm on Sequences with

Missing Data

We now test the performance of PF+GPCA on 11 sequences

with missing data. Some of the sequences are shown in

Fig. 6. The missing data are represented by image points that

go out of sight, because of rotating objects, one object oc-

cluding another, etc. The percentage of missing data ranges

from 4.48% to 35.57% for these sequences.

Tables 9 and 10 show the segmentation results for se-

quences with two and three motions, respectively. By look-

ing at the results, we can make the following observations.

Sequences oc1R2RCT_X and oc1R2RC_X For these 6 se-

quences, the amount of missing data varies between 4.48%

and 12.56%. PF+GPCA works quite well, giving a perfect

segmentation for one of the sequences and a maximum clas-

sification error of 5.21% for the remaining sequences.
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Table 9 Classification errors, percentage of missing data and number

of iterations for PF for sequences with missing data (2 groups)

Sequence P F n % M. D. PF+GPCA # it.

oc1R2RCT_g12 231 30 2 10.13% 4.33% 10

oc1R2RCT_g13 444 30 2 9.04% 3.15% 16

oc1R2RCT_g23 461 30 2 4.83% 5.21% 24

oc1R2RC_g12 316 40 2 12.56% 0.00% 14

oc1R2RC_g13 520 40 2 11.46% 1.92% 26

oc1R2RC_g23 536 40 2 4.48% 3.17% 14

oc2R3RCRT_g12 192 35 2 34.36% 43.75% 50

oc2R3RCRT_g13 447 35 2 21.02% 13.42% 40

oc2R3RCRT_g23 417 35 2 20.24% 14.63% 23

Average 396 35 2 14.23% 9.95% 24

Table 10 Classification errors, percentage of missing data and number

of iterations for PF for sequences with missing data (3 groups)

Sequence P F n % M. D. PF+GPCA # it.

oc1R2RC 686 40 3 8.98% 35.57 % 12

oc1R2RCT 568 30 3 7.55% 28.17 % 17

oc2R3RCRT 528 35 3 23.14% 25.95 % 30

Average 594 35 3 13.22% 29.89 % 20

Sequences oc2R3RCRT_g12, oc2R3RCRT_g13 and

oc2R3RCRT_g23 For these sequences the amount of miss-

ing data is relevant (above 20%) and PF+GPCA is not able

to give a good segmentation. This is because when the miss-

ing data are structured PF is more likely to converge to a

local minimum. In this case, most of the missing data are

concentrated in trajectories 440 to 550, as can be seen in

Fig. 7. Notice also that in general the number of iterations

required for convergence of PF is larger. In fact, the maxi-

mum of 50 iterations is achieved for one of the sequences.

Sequences with Three Motions For these sequences, PF+

GPCA does not give good results, similarly to what we have

already seen in the case of complete data.

6.4 Performance of Our Algorithm on Sequences with

Outliers

In order to test the performance of our algorithm as a

function of the percentage of outliers, we artificially added

0–25% of outliers to each motion sequence with complete

data in the following manner. For each frame of each video

sequence, we draw a percentage of outlying feature points

independently and identically distributed from a uniform

distribution in [1,w] × [1, h], where w and h are respec-

tively the width and height of the image. We then applied

RANSAC+GPCA and RANSAC to the point trajectories of

Fig. 7 Mask of missing data for the sequences oc1R2RC,

oc1R2RCT and oc2R3RCRT . The x-axis is the frame number and

the y-axis is the feature point number. The color is black when a data

point is missing, and zero otherwise

each one of the motion sequences augmented with the so

generated outlying trajectories.

Figure 8 shows the percentage of correctly detected out-

liers as a function of the percentage of outliers given by

RANSAC+GPCA and RANSAC. Notice that over 95% of

the outliers are correctly detected by either method. Notice

also that RANSAC+GPCA performs worse than RANSAC

for two motions, and almost identically for three motions.

Figure 9 shows the classification error as a function of

the percentage of outliers given by RANSAC+GPCA and

RANSAC. A first point to notice is that the classification

error without outliers higher than the errors reported in

Sect. 6.2. This is expected, because in Sect. 6.2 all points are

considered as inliers, while here inliers need to be detected.

Since the detection of inliers is not perfect, the classification

error increases, even with no true outliers in the data. No-

tice also that for two motions, RANSAC+GPCA performs
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(a) Sequences with two motions

(b) Sequences with three motions

Fig. 8 Percentage of correctly detected outliers versus percentage of

outliers

better than RANSAC, though the difference in performance

reduces as the percentage of outliers increases. For three

motions, however, RANSAC+GPCA performs better only

when the percentage of outliers is small. This further con-

firms that RANSAC+GPCA is very effective for two mo-

tions, but has difficulties with three or more motions.

(a) Sequences with two motions

(b) Sequences with three motions

Fig. 9 Classification error as a function of the percentage of outliers

Tuning Thresholds for Outlier Detection The results in

Figs. 8 and 9 are obtained with a fix value for the thresh-

olds used by RANSAC+GPCA and RANSAC to determine

if a point trajectory is an outlier or not. In order to set the val-

ues of these thresholds, we computed the percentage of false

negatives and false positives obtained by each algorithm on

the 155 sequences. These percentages are computed as fol-

lows. First, each motion sequence is contaminated with 15%
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Fig. 10 Percentage of false negatives versus percentage of false posi-

tives for outlier detection for 155 motion sequences with 15% of out-

liers

of outliers. Then, each algorithm is applied to all sequences

using several values for their respective thresholds. For each

threshold and each sequence, this gives the number of false

positives and false negatives. For each threshold, these num-

bers are then aggregated over all the sequences in order to

obtain the percentages of false negatives and false positives

shown in Fig. 10. From this figure, we chose the thresholds

for RANSAC+GPCA and RANSAC that give 3% of false

negatives. Notice from the figure that the performance of

RANSAC+GPCA is slightly better than that of RANSAC

in terms of false positives versus false negatives for outlier

detection.

7 Conclusions and Future Work

We have presented a geometric algorithm for 3-D motion

segmentation from multiple affine views, which deals with

complete and incomplete data, and independent, partially

dependent, full and degenerate motions. The algorithm uses

SVD (complete data), PowerFactorization (missing data), or

RANSAC (data with outliers) to project the data onto a five

dimensional space, and GPCA to cluster the projected sub-

spaces.

Experiments on a database of 120 motion sequences with

two motions and complete data showed that our method is

more accurate and robust than existing statistical methods.

However, the performance of our approach deteriorates dra-

matically on sequences with three motions. This is because

GPCA uses linear least squares to fit a large number of

nonlinearly related coefficients, and so the estimated coeffi-

cients are inaccurate when the data is corrupted by noise and

outliers. Our recent work (Tron and Vidal 2007) shows that

the method of Yan and Pollefeys (2005) can give improved

performance for sequences with two and three motions.

Open research avenues include improving the perfor-

mance of the algorithm with three or more motions. The de-

velopment of algorithms that exploit nonlinear constraints in

the estimation of the polynomial used by GPCA will likely

significantly reduce classification errors.
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