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Abstract. Multifrequency Electrical Impedance Tomography (MFEIT) reconstructs the 

distribution of conductivity by exploiting the dependence of tissue conductivity on frequency. 

MFEIT can be performed on a single instance of data, making it promising for applications 

such as stroke and cancer imaging, where it is not possible to obtain a ‘baseline’ measurement 
of healthy tissue. A nonlinear MFEIT algorithm able to reconstruct the volume fraction 

distribution of tissue rather than conductivities has been developed previously. For each 

volume, the fraction of a certain tissue should be either 1 or 0; this implies that the sharp 

changes of the fractions, representing the boundaries of tissue, contain all the relevant 

information However, these boundaries are blurred by traditional regularisation methods 

employing 2l norm. The Total Variation (TV) regularisation can overcome this problem, but it 

is difficult to solve due to its non-differentiability. As the fraction must be between 0 and 1, 
this imposes a constraint on the MFEIT method based on the fraction model. Therefore, a 
constrained optimisation method capable of dealing with non-differentiable problems is 
required. We propose a new constrained TV regularised method, to solve the fraction 
reconstruction problem, based on the Primal and Dual Interior Point Method (PDIPM) method.  
The noise performance of the new MFEIT method is analysed using simulations on a 2D 
cylindrical mesh. Convergence performance is also analysed, through experiments using a 
cylindrical tank. Finally, simulations on an anatomically realistic head-shaped mesh are 
demonstrated. The proposed MFEIT method with TV regularisation shows higher spatial 
resolution, particularly at the edges of the perturbation, and stronger noise robustness, and its 
image noise and shape error are 20% to 30% lower than the traditional fraction method.  
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1.  Introduction 

1.1.  Background 



 

 

 

 

 

 

MFEIT (Multifrequency Electrical Impedance Tomography) reconstructs the frequency dependent 

conductivity distribution within a body by measuring the surface voltages at different frequencies. 

Conventional EIT is typically the time difference application, where a baseline dataset is recorded and 

compared with a subsequent dataset recorded in the presence of some perturbations (Lionheart, 2003). 

However, this is not appropriate for a number of medical applications, such as acute stroke, brain 

injury and breast cancer (Holder, 2004), since patients are admitted after disease onset and therefore 

the baseline measurements of healthy tissue are unavailable (Romsauerova et al., 2006). As such, 

MFEIT offers a potential solution, as images can be produced from data collected at a single given 

point in time. However, MFEIT application is more challenging due to the high sensitivity of its 

solution to modelling and instrumentation errors (Kolehmainen et al., 1997; McEwan et al., 2007; 

Malone et al., 2014b) . 

1.1.1.   MFEIT Methods.  The absolute imaging method (Yerworth et al., 2004), simple frequency-

difference method  and WFD method (Weighted Frequency Difference)  (Ahn et al., 2011) have 

previously been proposed as solutions to the inverse problem of MFEIT. Absolute imaging is 

theoretically possible, but is computationally intensive and very sensitive to errors resulting from 

inaccurate boundary geometry, electrode positions and other sources of systematic artefacts in 

measured data (McEwan et al., 2007; Seo et al., 2008). The simple frequency-difference method, 

which reconstructs the EIT images from relative data referred to a certain frequency using a linear 

method, was proven that it can work in a homogeneous and frequency invariant background (Packham 

et al., 2012).  WFD has been proven that it can reconstruct a perturbation in a frequency variant 

background (Seo et al., 2008, Jun et al., 2009a, Ahn et al., 2011), but as a linear algorithm its 

application is restricted by the availability of linearised approximation (Jun et al., 2009). For example, 

WFD cannot reconstruct proper images if the area of perturbation is too large (Malone et al., 2014b). 

A method for performing MFEIT using Spectral Constraints (MFEITSC) was proposed by Malone et 

al., (2014b, 2014a). The inverse problem was modified by substituting the conductivity with the 

volume fraction of each tissue in each voxel, describing the physical distribution of tissues in the 

domain. The newly reconstructed parameter, referred to ‘fraction’ in this paper, is independent of 

frequency, so the data acquired at all frequencies can be processed simultaneously, and frequency 

independent modelling errors can be significantly reduced (Malone et al., 2014b). This method allows 
for the quantitative recovery of tissue fraction values by a non-linear reconstruction method. This 
approach differs significantly from linear techniques, and does not require frequency weighting such 
as that employed in WFD imaging (Malone et al., 2014b). 

1.1.2.  Motivation. In addition to the property of frequency-independence, the fractions have another 

significant characteristic, which has not yet been properly and appropriately considered. In theory, for 

a sufficiently fine mesh, the fraction in each voxel should be either zero or one, regardless of the 

conductivity contrast between the background and perturbation. Thus, the boundaries of the fraction 

reconstructions have high contrast (0 for background and 1 for perturbations). Even for a coarse mesh, 

the voxels with fraction values between 0 and 1 are few, since the range of the physical boundaries is 

usually small, so the property of high contrast is retained. Existing implementations of the fraction 

model using MRF (Markov Random Field) regularisation (Malone et al., 2014b) blur the boundaries, 

as they adopt the 2l norm to smooth sharp changes. The commonly used Tikhonov regularisation 

techniques also produce a smooth solution, due to the inclusion of the 2l norm. This smoothing effect, 

which can be mitigated by the 1l  regularisation technique, leads to further deterioration in the 

inherently low spatial resolution of EIT. The values of the fractions are restricted between 0 and 1, 

which transforms the corresponding inverse problem into a constrained optimisation problem. 

Consequently, a novel method that can solve the constrained optimisation while preserving sharp 

changes would be advantageous. 



 

 

 

 

 

 

1.1.3.  Introduction to regularisation with Total Variation. One regularisation technique that does not 

cause smoothing of boundaries is the total variation (TV) regularisation technique. TV is a popular 

regularisation method; it has been applied to different imaging modalities and can preserve sharp 

discontinuities in an image while removing noise and other unwanted details (Rudin et al., 1992;Chan 

&Wong, 1998; Vogel & Oman, 1996; 1998). The ability of TV to preserve edges in reconstructed 

images is due to its usage of the 1l  norm penalty term, which is not differentiable at every point. This 

differentiability means that traditional derivative-based methods usually used for solving regularised 

problems are not available.  

Only a small number of publications have considered using the TV technique for EIT (Borsic et al., 

2010; Chung et al., 2005; Jung & Yun, 2014). Borsic et al. (2010) used the Primal Dual Interior Point 

Method (PDIPM) to solve the TV regularised problem of time difference EIT. They showed that the 

algorithm works well in simulations and for in vivo experimental lung ventilation data. Recently, Jung 

and Yun (2014) proposed a first-order TV method, Linearised Alternating Direction Method of 

Multipliers (LADMM), and demonstrated that it has a similar resolution to PDIPM in small meshes. 

LADMM requires many more iterations to converge in comparison with PDIPM, due to the exclusion 

of second order derivative (Jung & Yun 2014). Thus, the methodology is not suitable for nonlinear 

applications, because the nonlinear inverse problem requires calculations of the Jacobian matrix and 

line search for each iteration, which are computationally intensive.  

1.2.  Purpose 

The purpose of this paper is to propose a new MFEIT algorithm based on TV regularisation, which 

combines a novel constrained TV regularised algorithm and the fraction model. Its performance in 

respect to resolution, noise robustness and convergence rate will be evaluated. Specifically, the 

following questions will be explored: 

(1) What are the advantages and disadvantages of this novel algorithm? 

(2) Is this novel algorithm promising for MFEIT application to brain function imaging? 

1.3.  Experimental design 

Experiments were undertaken using two algorithms:  the existing fraction algorithm (Malone et al., 

2014b), and the aforementioned novel TV regularised fraction algorithm. First, a simulation using a 

cylindrical model was considered, using different noise levels to test the noise performance of the 

algorithms. Then, experiments in a cylindrical tank were carried out to verify that the new algorithm 

works in relation to real data. Last, an anatomically realistic head-shaped model, including skull and 

scalp, was used to evaluate the potential of the algorithm on EIT of brain function.  

 

2.  Methods 

2.1.  General considerations 

2.1.1.  Forward problem 

The forward problem involves the determination of boundary voltages, given the internal conductivity 

distribution of the object and the Neumann boundary conditions. The forward problem can be solved 

analytically only in cases of very simple geometries. Therefore the finite element method was 

employed to solve the forward problem. The discretisation for Finite Element Method (FEM) was 

performed in custom written software (Aristovich et al., 2014). All considered meshes were quality-

checked in accordance with the Joe-Liu quality measure (Liu & Joe 1994), with the quality parameter 

being >0.9 for 99.99% voxels.  

2.1.2.  Inverse solution  



 

 

 

 

 

 

The inverse problem determines the internal conductivity distribution of an object from a set of 

measured boundary voltages for a given injected current. As the inverse problem of EIT applications is 

severely ill-posed, a penalty term, based on prior knowledge, is always introduced: 
2min (|| ( ) || || ( ) ||)A R 

σ
V σ σ   (1) 

where V  represents the boundary voltages, σ  denotes the conductivities, A is the forward operator,   

represents the regularisation parameter, ( )R σ  is the regularisation term. The regularisation matrix is 

commonly of the form of an identity matrix, partial differentiable matrix or diagonal matrix.  

2.1.3.  Fraction model 

The existing fraction MFEIT algorithm implements spectral constraints (Malone et al., 2014b), which 

means that the conductivities of each tissue must be known for all measurement frequencies. 

Therefore, for all frequencies {
i ; i=1 , … , M} and tissues { jt ; j=1 , … , T}, we have  

( )jt

ij i    (2) 

where ij  is the conductivity of tissue jt  on the frequency 
i .  

The conductivity ( )n i   of the nth voxel at a certain frequency 
i can be modelled as the linear 

combination of the conductivities of individual tissue fractions: 

1

( )
T

n i nj ij

j

f  


  (3) 

where njf denotes the fraction of the tissue jt in the nth voxel. The fractions, independent of frequency, 

represent the physical distribution of tissues for each voxel, so it meets the following constraints: 
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The objective minimisation problem consists of both inequality constraints 0 1njf  , j=1 , … , T 

and equality constraints 
1

1
T

nj

j

f


  as (4), which can be further simplified. The equality constraints 
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1
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nj
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f


  are enforced by substituting 1
2

1
T

n nj

j

f f


  . Therefore, the constraints in (4) are equivalent 

to the inequality constraints 0 1njf  , j=2 , … , T, and the remaining fraction is cacluated by

1
2

1
T

n nj

j

f f


  . 

The minimisation problem of EIT (1) is expressed in terms of the fractions by substituting the 

conductivities with (3): 

2

1

min(|| ( ) ( ) || || ( ) ||)
T

i j ij

j

A G  


 
f

V f F  (5) 

where jf ={ njf ;  n=1 , … , N }, F={ jf ;  j=1 , … , T }and N denotes the number of voxels, G  is the 

regularisation term for F. 

In order to remove the frequency independent modelling error and additive noise, relative data, 

referred to the data of a frequency 0 , is processed. The minimisation problem for relative data is 

shown as: 

2
0 0

1 1

( ) min(|| ( ( ) ( )) ( ( ) ( )) || || ( ) ||)
T T

i j ij j j
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where 0 j  is the conductivity value of tissue jt  on the frequency 0 . The fractions are reconstructed 

simultaneously for all tissues at all frequencies, and the constraints of the fractions 0 1njf  , 

j=2 , … , T,  are imposed so that it becomes a constrained minimisation problem. 

The Jacobian matrix ( )
i jJ f  for the fractions of the freqeuncy 

i is obtained by using the chain 

rule, 

( ) ( )
( ) ( )

i

i i i

j i ij

j i j

A A
 

  
  

  
σ σ σ

J f J σ
f σ f

 (7) 

2.1.4.  Total variation regularisation term 

The 2l  norm is commonly used in the regularisation term, but this biases the solution to the 

minimisation problem towards a smoother solution. The total variation regularisation adopts the 1l

norm, which does not penalise image discontinuities. Consequently, the TV regularisation technique is 

particularly attractive for reconstructing sharp transitions. For a differentiable function on a domain 
the total variation is (Rudin et al., 1992; Holder, 2004) 

( ) | |TV  σ σ  (8) 

The introduction of the 1l norm makes the inverse problem non-differentiable, so the traditional 

gradient class inversion algorithms are not available.  

2.1.5.  PDIPM for EIT 

PDIPM, an unconstrained optimisation method, has been proposed to address the EIT inverse problem 

with TV regularisation (Borsic et al., 2010). The basic idea underlying PDIPM is the conversion of 

non-differentiable problems into equivalent differentiable problems by introducing dual variables and 

the corresponding dual problem (Borsic et al,. 2010; Borsic & Adler, 2012; Fan & Wang, 2010; 

Mamatjan et al., 2013).  

The original minimisation problem with the TV regularisation term (8) is labelled the ‘primal’ 
problem. Dual variables χ , a vector of scalar auxiliary variables, are introduced to the primal problem 

according to the Cauchy-Schwartz inequality. 
2

| | 1
max min(|| ( ) || )T

A 


 
σχ

V σ χ Lσ  (9) 

where L denotes the TV regularisation matrix and   represents the regularisation parameter. This 

constrained maximisation problem, called the dual problem, is differentiable but still difficult to solve, 

due to the box constraints of the dual variables. 

The primal and dual problems have the same optimal solution, which can be found by nulling the 

difference between the primal and dual problems.  The primal-dual gap problem is: 

|| || T Lσ χ Lσ 0  (10) 

A smoothness parameter 0   is introduced to (10) to obtain differentiability by replacing || ||Lσ

with 2|| || Lσ . 

The PDIPM framework is constructed by combining the dual problem and the primal-dual gap 

problem, and solve these using a multi-variable Guass Newton method. The final form is: 
1 1 1[ ] [ ( ( )) ]T T T T

A         σ J J L E KL J V σ L E Lσ  

2 1( | | ) ( )i i idiag diag    E L σ K I E L σ  

1 1     χ χ E Lσ E KL σ  

(11) 

where 
iL  is the i row of L, and 

i is the ith element of the dual variables χ . 



 

 

 

 

 

 

Typically, the primal variables σ are updated using a precise gradient-based algorithm, and the dual 

variables χ are updated typically using a simple, computationally easier, method, such as the scaling 

rule (Anderson et al., 1998). 

2.2.  A constrained total variation algorithm for EIT 

The constrained total variation algorithm method, MFEIT using Total Variation (MFEITTV),  is made 

up of two steps (Nocedal et al., 1999). The first step is to optimise the objective function (6) in the 

bounded constraints 0 1njf  , j=2 , … , T; n=1, … , N,  and the second step is to apply unconstrained 

optimisation. The optimisation solution of the first step is called Cauchy point, which is obtained using 

the steepest descent method in the feasible region.  

We convert the matrix njf , j=2 , … , T; n=1, … , N, to vector 
lf , l=1, … , ( 1)N T  , for the 

convenience of the calculation. 

2.2.1.  Finding the Cauchy point 

In order to find the Cauchy point, we first search along the negative gradient direction from the initial 

point. When an upper or lower bound is met, the search direction is projected onto the constraint. The 

Cauchy point is obtained by examing each of the line segments that make up
lf , l=1, … , ( 1)N T  ,. 

To perform this search, the values of step sizes 
*
ls , l=1, … , ( 1)N T  , where the corners of the 

search path occur, require to be determined: 

*

( 1) / 0

( 0) / 0
l l l

l l l l

f g if g

s f g if g

otherwise

 
  
 

 (12) 

where {
lg ; l=1, … , ( 1)N T  } denotes the gradient direction. After removing the duplicate values 

and zero values of 
*
ls , we sort the remaining values into an ordered sequence and examine the 

intervals [0, 1s ], [ 2s , 3s ] … in turn. Assuming the step size s of the minimiser is in the interval of [
ks , 

1ks  ], we have: 

1

,

,

[0, ],

k k

k

k k

s

s s s

s s s

  

  

  

 

f f p

p g

 (13) 

where g = {
lg ; l=1, … , ( 1)N T  } denotes the gradient direction. For other intervals such as [ 1ks  , 

ks ], f is updated by 
k k ks f f p  after we find 1[0, ]k ks s s    . s  is calculated by substituting f

with
k ks f p , and then objective function is converted to the quadratic form

' '' 2( )k k kM M s M s     

along each straight section of the search path, after expanding and grouping the coefficients 
kM , 

'
kM  

and 
''
kM  of 1, s ,

2( )s .  The minimum of the quadratic function is obtained by differentiating with 

repsect to s . If 1' [0, )k ks s s    and 
'' 0kM  , the minimiser, called the Cauchy point, is identified 

at 'ks s s  . Otherwise, the Cauchy point is at 
ks s when 

' 0kM  . 

2.2.2.  Updating the primal variable 

 

For those voxels beyond the boundaries of the constrained area, they are marked and will not be 

involved into the following process. The Newton-Krylov method (Horesh et al., 2007) is employed to 

find the search direction of updating the primal variables with the initial point of the Cauchy point. 

The step size is determined using the Brent line-search method with a gold-section bracketing loop 



 

 

 

 

 

 

(Brent, 1973; Ziegel et al., 2007). The values of all optimal fractions cannot be guaranteed to satisfy 

the box constraints, as the solution is found by using unconstrained optimisation. Thus, the constraints 

must be enforced using 

0 0

1 1
l

l l

l

if f

f if f

f otherwise


 



 (14) 

2.2.3.  Updating the dual variable 

According to (11), the dual variable is updated thus: 
1 1     χ χ E Lσ E KL f

 
(15) 

The scaling length rule (Andersen et al., 1999), as shown in (16), is introduced to find the step size 

of the dual variables, as a traditional line search approach is not guaranteed to reveal an ascent 

direction for the dual objective function (11) (Borsic et al., 2010). 
*

1

*

min(1, )

sup{ :| | 1}

p p

p



  
  

  

χ χ χ

χ χ
 (16) 

where pχ are the dual variables of the pth iteration. 

The iteration stop criterion is checked after updaing the dual variable. The overall procedure is 

demonstrated in the flow chart shown in figure 1. 

2.2.4.  Newton-Krylov method 

The commonly used Gaussian Newton method, with the form of 
1( )T

V
  σ J J J , is not suitable for 

the large-scale problems, because the matrix 
1( )T 

J J  with size N N , where N denotes the number of 

voxels of the mesh, is impractical for storing or processing when N is very large. Consequently, the 

Krylov subspace method is introduced, with the form of )(T
V  J J σ J . This iterative method has 

been proven to have a short calculation time even for a large mesh, as the mesh ( )T
J J  with size 

N N does not appear during calculation (Horesh et al., 2007).  

2.2.5.  Iteration stop criterion 

An iteration-terminating criterion was adopted based on the relative decrease of the objective function, 

and the iterative algorithms were stopped when the relative decrease of this function was less than 1%. 

1( )
[ 1] 0.01

( )

p

p

H

H

  
f

f
 (17) 

where ( )
p

H f is the value of the objective function of the pth iteration as shown in (6). 
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Figure 1. The flow chart of the proposed algorithm. 

2.2.6.  Parameter selection 

The performance of the inverse problem algorithm is affected by the regularisation parameter, and 

some regularisation parameter selection methods, such as the cross-validation, L curve and 

discrepancy method, have been used in EIT. In this instance, the nonlinear L curve method (Hansen & 

O’Leary, 1993) is adopted to compare the proposed fraction algorithm and the conventional fraction 

algorithm, as the cross-validation method is computationally intensive and the prior knowledge of a 

noise model is not known. 

The smoothness parameter, transforming the original non-differentiable problem to a differentiable 

approximation, should be a small value. However, the algorithm may diverge if this parameter is too 

small. In the present study, the initial value of this parameter was set as 1e-4, and divided by 2 for 

each iteration. 

2.3.  Experimental setup 

2.3.1.  Cylindrical simulated model and tank 

Simulations were made in a cylindrical mesh, with a diameter of 19 cm and height of 10 cm, with 

62784 voxels and a ring of 32 electrodes, 1 cm in diameter, evenly placed at a height of 5 cm, and a 

33rd ground electrode on the base of the mesh in the centre.  A current of peak amplitude 133 A at 

640 Hz, 654 kHz, 1.024 MHz and 1.3 MHz was injected through polar electrodes. The voltages on all 

adjacent pairs of electrodes not involved in delivering the current were recorded, for a total of 448 

measurements per frequency. A simulated potato perturbation with a diameter of 4cm was placed in (-

4 cm 0 cm 0 cm), where the origin was the centre of mesh (figure 2).  To study the noise performance, 
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Gaussian white noise was added to the simulated boundary voltage, with a Signal to Noise Ratio 

(SNR) of 60 dB, 40 dB and 30 dB. 

Experimental recordings were made in a cylindrical Perspex tank with the same dimensions and 
design as the mesh above. Electrodes were made of stainless steel. The boundary voltages of four 

output frequencies were measured using the UCLH Mk 2.5 system (McEwan et al., 2006) and 

averaged over 10 frames. A potato cylinder with diameter 4.6 cm and length 10 cm was placed into a 

suspension of carrot cubes, approximately 4mm along each edge, in 0.1% NaCl saline at two 

locations, 4cm either side of the centre. The tank experiments were undertaken at room temperture. 

2.3.2.  Anatomically realistic 3D head-shaped model 

An anatomically realistic 3D head-shaped model with three layers, corresponding to the scalp, skull 

and brain, was used, with 32 electrodes of diameter 10mm. The dimensions of the model were: height 

16 cm; width 14 cm; depth 20 cm; and circumference 54 cm. The amplitude of the simulated injecting 

current was 140 A  and 12 frequencies were selected in the range of 5Hz - 5kHz, as suggested by 

Malone et al. (2014a). A fine mesh with 5 million voxels was used to simulate the boundary voltages, 

and a coarse mesh with 180 thousand voxels was used for reconstruction. 

A spherical perturbation of diameter 3 cm was placed in posterior and lateral positions of brain, as 

shown in figures 8(a) (c), and the conductivity of the perturbation was set to match the reported values 

for ischaemic stroke (Malone et al., 2014a).  

2.3.3.  Tissue impedance spectra 

Spectral information of the test tissues is required for the MFEIT algorithms of fractions. The 

biological test objects with frequency dependent conductivities were selected to simulate live tissues 

in cylindrical simulations and experiments. A mixture of carrot cubes of approximately 4 mm each 

side and a 0.1% concentration NaCl solution was used as the background medium. A potato cylinder 

with a diameter of 4.6 cm was placed in the carrot-saline mixture as a perturbation. In order to obtain 

the spectral values of the background and perturbation medium, the conductivities at 640 Hz, 654 kHz, 

1.024 MHz and 1.3 MHz were measured, using a Hewlett-Packard 42847A impedance analyser 

(Hewlett-Packard, CA, USA) and Ag-AgCl electrodes, as the conductivity spectra of the two tissues in 

this range are distinctly different (Malone et al., 2014b) and correspond to the measurement 

frequencies of the UCLH MK 2.5 system. The carrot-saline and potato samples were measured using 

Perspex tubes of fixed diameter and two lengths. The electrode resistance was removed by plotting 

resistance against length and evaluating the offset of the line passing through the measurement points.  

For the simulations of the human head, the conductivity spectra of the tissues (scalp, skull, brain, 

ischaemic, brain and blood) were taken from Romsauerova et al. (2006). Four frequencies were 

adopted in the range of 20 Hz - 3 kHz, as the conductivities in this range have the largest changes 

across frequencies (Malone et al., 2014a). 

2.3.4.  Image quantification 

Image quality was assessed quantitatively according to three metrics (Fabrizi et al., 2009). The 

information of the real perturbation is required to be known before quantifying images. The 

reconstructed perturbation is identified as the fractions of those voxels are larger than 0.3. 

Image noise: inverse of the contrast-to-noise ratio between the perturbation P and background B 

( )

| |

B

P B

std
 



f

f f

 (18) 

where 
P



f  and 
B



f are the mean intensities of the perturbation and background and std is the standard 

deviation. 



 

 

 

 

 

 

Localisation error: ratio between the norm of the x-y-z displacement of the centre of mass of the 

reconstructed perturbation P from the actual position ( , , )x y z , and the norm of the dimensions of the 

mesh ( , , )
x y z

d d d . 

|| ( , , ) ( , , ) ||

|| ( , , ) ||

n P n n n n

x y z

x y z x y z

d d d

  f
 (19) 

 

where ( , , )
n n n

x y z  denotes the position of the centre of the nth voxel.  

Shape error: mean ratio of the difference between the dimensions of the simulated and 

reconstructed perturbations, respectively ( , , )
x y z

l l l and ' ' '( , , )
x y z

l l l    

'' '| || | | |1
( )

3

y yx x z z

x y z

l ll l l l

d d d

 
   (20) 

3.  Results  

3.1.  Simulation 

 
Figure 2. 2D simulation slice at z= 5 cm. 

In the 2D simulation, across all noise levels, the MFEITTV correctly reconstructed the perturbation, 

while the MFEITSC did not produce an identifiable reconstruction when the SNR was at 30 dB (figure 

3). It is shown that there are three distinct layers for reconstructed images of perturbations, with 

different colours from inside to out: white, yellow and orange for MFEITSC reconstructions of 60 dB 

and 40 dB, implying that the conductivity changes. In contrast, the reconstructed perturbations of 

MFEITTV have much thinner layers, which are difficult to identify. Therefore, the boundaries of all 

reconstructions for TV regularisation can be distinguished. The profiles in Figure 3(e) of 60dB and 

40dB are close to the profile shown in Figure 3(c), though the interior boundaries of the image of SNR 

30dB exhibit some blurring. As shown in Figure 3(d), the transient ranges representing the fraction 

decreases from 1 to 0 of MFEITSC are around 3 cm for 60dB and 40dB, while the transient ranges of 

MFEITTV are approximately 2 cm.  Furthermore, the decreasing spatial slew rate of MFEITTV 

between fraction 1 and 0.2 is roughly five times larger than MFEITSC for 60dB and 40dB. For 30dB 

the MFEITSC’s transient range of the inner side is larger than the radius of the mesh, 10cm, while 
MFEITTV has transient range smaller than 4cm. The MFEITTV profile in 30dB clearly demonstrates 

that the transient range is larger than in lower noise conditions, and the spatial slew rate of the inner 

side is slower than the outer side. The artefacts, representing the apparent conductivity changes 

unrelated to the perturbations, in the 40dB image of MFEITTV are fewer than in the image of 

MFEITSC. However, as illustrated in Figure 4(a), the new algorithm required 1~3 more iterations to 

converge compared with the traditional algorithm, across all noise levels. Convergence will be 

discussed further in the next section. Figure 4(b) demonstrated that MFEITTV has distinct lower 

image noises and shape errors than MFEITSC. 



 

 

 

 

 

 

 

 

  
(a)MFEITSC       60dB    40dB          30dB 

 
(b)MFEITTV      60dB       40dB           30dB 

       
(c) Profile of simulation plots at y=0 

cm 
 (d)MFEITSC (e)MFEITTV 

Figure 3. Illustrations of the noise performance of the MFEITSC and MFEITTV of SNR 60dB, 40dB 

and 30dB: (a) 2D slices at z= 5cm of the MFEITSC, (b) 2D slices at z= 5cm of the MFEITTV, (c) 

profile at y= 0cm of the simulation, (d) profiles at y= 0cm of the MFEITSC, (e) profiles at y= 0cm of 

the MFEITTV. 
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                    (a) (b) 

Figure 4. (a) Image error (sum of image noise, localisation error and shape error) changes as 

iterations(SC: MFEITSC; TV: MFEITTV),  (b) image error for each algorithm (SC: MFEITSC; TV: 

MFEITTV) at all noise levels. 

3.2.  Cylindrical phantom study 

For both locations of the perturbations of potato, the two methods can reconstruct the fraction 

distributions (Figure 5 & 6). The MFEITSC converged after three iterations, while the MFEITTV 

converged after five, as shown in Figure 5(c) (d) and Figure 6(c) (d). The new algorithm converged 

near to the minimum, after just two iterations; further iterations served to sharpen the boundary of the 

object, in iterations three to five, as shown in Figures 7(a). The relative decrease of objective function 

was 13% and 6% for iteration 1 to iteration 3, and iteration 3 to iteration 5 of MFEITTV, shown in 

Figure 5(d), and 14% and 6% in Figure 6(d). The image errors of the experiments were consistent with 

the simulations of noise robustness (Figure 7(b)). 

 

 
(a)MFEITSC    Iteration 1     Iteration 2   Iteration 3 

 

 



 

 

 

 

 

 

(b)MFEITTV   Iteration 1 Iteration 3 Iteration 5 

 

   
(c)MFEITSC (d)MFEITTV 

Figure 5. Illustration of the reconstructions of the MFEITSC and MFEITTV for the cylindrical tank 

data of position 1. (a) 2D slice at z= 5cm for the MFEITSC, (b) 2D slice at z= 5cm for the MFEITTV 

(c) profile plots at y= 0cm for the MFEITSC, (d) profile plots at y= 0cm for the MFEITTV. 

 

 

 
(a)MFEITSC     Iteration 1        Iteration 2     Iteration 3 

 
(b)MFEITTV   Iteration 1       Iteration 3     Iteration 5 
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(c)MFEITSC (d)MFEITTV 

Figure 6. Illustration of the reconstructions of the MFEITSC and MFEITTV for the cylindrical tank 

data of position 2. (a) 2D slice at z= 5cm for the MFEITSC, (b) 2D slice at z= 5cm for the MFEITTV 

(c) profile plots at y= 0cm for the MFEITSC, (d) profile plots at y= 0cm for the MFEITTV. 

 

 

 
                      (a)                                        (b) 

Figure 7. (a) Image error (sum of image noise, localisation error and shape error) changes as iterations 

(SC: MFEITSC; TV: MFEITTV), (b) image error for each algorithm (SC: MFEITSC; TV: MFEITTV; 

pos: perturbation position) at all noise levels. 

3.3.  Anatomical head-shaped model simulation 

The conductivity images reconstructed by MFEITTV, shown in Figure 8, demonstrate higher contrast, 

which is in agreement with the previous experiments and simulations. However, it is evident that 

neither algorithm can correctly reconstruct the shape of the perturbation. Additionally, more artefacts 

were generated in simulations of the human head than for previous cases. The image noises of 

MFEITTV were still lower than MFEITSC, but the shape error of MFEITTV of the lateral case was 

higher than corresponding reconstruction of MFEITSC (Figure 9).  
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(a)    Posterior (b)        MFEITSC                                         MFEITTV  

 
(c)    Lateral (d)         MFEITSC                                         MFEITTV  

 

 
(e)Posterior  MFEITSC                             MFEITTV (f)Lateral    MFEITSC                                MFEITTV 

Figure 8. Reconstructions of the MFEITSC and MFEITTV for the head shaped mesh: (a) simulated 

posterior stroke; (b) 2D slice of the posterior stroke; (c) simulated lateral stroke; (d) 2D slice of the 

lateral stroke; (e) profile of the y axis direction for the posterior stroke; (f) profile of the x axis 

direction for the lateral stroke.  
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Figure 9. Image error (sum of image noise, localisation error and shape error), for head-shaped model 

simulations (SC: MFEITSC; TV: MFEITTV; Post: posterior; Late: lateral). 

4.  Discussion  

4.1.  Summary of results 

The findings are that the MFEITTV algorithm reconstructed the boundaries of perturbations better 

than the MFEITSC algorithm, for all noise levels. In MFEITSC images, the boundaries of 

perturbations were graded and presented gradually altered conductivity. The MFEITTV algorithm was 

superior in terms of noise robustness. The reconstructed image was unidentifiable for MFEITSC for 

30dB SNR, and MFEITTV typically reconstructed fewer artefacts, clearly shown for 40dB SNR.  

      MFEITTV converged more slowly than MFEITSC in all conditions. MFEITTV required one more 

iteration for SNR of 60dB and three more for 30dB SNR. In the cylindrical phantom study and head 

simulations, however, MFEITTV demonstrated a slower convergence rate.  

      The tests in a cylindrical phantom and realistic head simulation revealed that MFEITTV is better 

able to preserve the boundaries of perturbations than is MFEITSC. The reconstructions of head 

simulations were less accurate and with more artefacts, due to the additional complexity of the skull 

and scalp.   

4.2.  Technical issues 

During the study, the smoothness parameter was selected heuristically; however, superior results 

might be obtained by using a more optimised selection method, such as the cross-validation method. 

This is a substantial project, which is currently being undertaken, but is beyond the scope of this paper. 

In addition, the noise pattern added should be modified in future studies to simulate more realistic 

noise distribution. The performance of the proposed algorithm should also be considered in relation to 

errors of electrode position, contact impedance and mesh shape.  

4.3.  Assessment of the MFEITTV algorithm 

The results reveal that the proposed TV algorithm yields improved spatial resolution, particularly in 

the reconstructions of the boundaries of the perturbation, obtained by the application of the 1l  norm. 

This advantage helps to determine the shapes and define the locations of perturbations, and is 

optimised when TV regularisation is applied to the reconstruction of fractions. A higher noise 

robustness of MFEITTV than MFEITSC is also demonstrated (figures 3 and 4(b)), and the transient 

range of high noise is wider than lower noise.   

      The convergence rate of the new method is slower than the traditional one (figures 4(a) and 7(a)). 

It is noted that PDIPM is iterative, even for linear applications, because it aims to solve the 

approximation rather than the real, non-differentiable problem (Borsic et al., 2010). Consequently, it is 



 

 

 

 

 

 

likely that this iterative approach contributes to the slower convergence rate. Furthermore, the 

parameter selection becomes more complicated due to the introduction of the smoothness parameter, 

which is typically explored using the heuristic method.  

      The proposed algorithm is promising in relation to possible MFEIT application of imaging brain 

function. While the convergence rate is slower, the improvements in spatial resolution and noise 

robustness are significant enough to warrant its use. 

5.  Conclusions 

In conclusion, a constrained TV inversion algorithm MFEITTV is proposed as the reconstruction 

method for the MFEIT problem using fraction model. The novel algorithm has better spatial 

resolution, particularly for the boundaries of perturbations, and superior noise robustness compared to 

the traditional algorithm. However, as stated, the convergence rate of MFEITTV is slower and the 

introduction of smoothness parameter complicates the parameter selection. Nevertheless, on balance, 

this algorithm is proven to be very promising for MFEIT of brain function.  

        Future work is required to investigate the automatic parameter selection method for MFEITTV 

method. The effect of the error of the conductivity spectral to the proposed algorithm’s performance 
will be studied. We are also interested to research how to select the optimal frequency data as the 

reference. The proposed algorithm is planned to test in rat brain experiment.   

 

  Abbreviations 

MFEIT: Multifrequency Electrical Impedance Tomography; TV: Total Variation; WFD: Weighted Frequency Difference; 

MFEITSC:  MFEIT using Spectral Constraints; MRF: Markov Random Field; PDIPM: Primal Dual Interior Point Method; 

FEM: Finite Element Method; SNR: Signal to Noise Ratio; MFEITTV: MFEIT using Total Variation.   
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