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Abstract Antimicrobial peptides have emerged as promis-
ing agents against antibiotic-resistant pathogens. They
represent essential components of the innate immunity
and permit humans to resist infection by microbes. These
gene-encoded peptides are found mainly in phagocytes and
epithelial cells, showing a direct activity against a wide
range of microorganisms. Their role has now broadened
from that of simply endogenous antibiotics to multifunc-
tional mediators, and their antimicrobial activity is probably
not the only primary function. Although antimicrobial
peptide deficiency, dysregulation, or overproduction is not
known to be a direct cause of any single human disease,
numerous studies have now provided compelling evidence
for their involvement in the complex network of immune
responses and inflammatory diseases, thereby influencing
diverse processes including cytokine release, chemotaxis,
angiogenesis, wound repair, and adaptive immune induc-
tion. The purpose of this review is to highlight recent
literature, showing that antimicrobial peptides are associat-
ed with several human conditions including infectious and
inflammatory diseases, and to discuss current clinical
development of peptide-based therapeutics for future use.
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Introduction

Antimicrobial peptides (AMPs), also known as genetically
encoded antibiotic peptides, are conserved components of the
innate immune response [1, 2]. They are produced in many
organisms including bacteria, insects, plants, and vertebrates,
where they represent a defense system [3–5]. In mammals,
these peptides function mainly in phagocytic cells of the
immune system to kill engulfed or invasive bacteria and in
mucosal epithelial cells to prevent colonization of host
tissues by pathogens [1, 6]. In the past two decades,
numerous antimicrobial peptide families from many living
organisms have been described. In humans, three distinct
groups were characterized, including defensins, cathelicidins,
and histatins. Additional peptides that have been identified
include RNase 7, granulysin, hepcidin, dermacidin, and
lactoferrin. As of 2006, the inventory of AMPs comprises
about 900 peptides of different origins, and these peptides
have been listed in a database in Trieste (http://www.bbcm.
univ.trieste.it/~tossi/pag1.htm). Additional information with
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regard to these peptides is also available from another
website: http://aps.unmc.edu/AP/main.htm. Medline data-
base search using the PubMed interface with “antimicrobial
peptides” as key word also shows more than 7,000
references with new references added every week.

AMPs have potent activities against a broad range of
microorganisms that covers gram-positive and -negative
bacteria, fungi, parasites, and enveloped viruses [7, 8].
Several excellent review articles have examined the role of
these peptides in the protection of a variety of human
tissues [9–11]. The precise details of their mechanism of
action remain unknown. However, it is generally accepted
that the positively charged peptides act directly on the
negatively charged cellular membranes of bacterial cells,
causing an increase in membrane permeability, which then
leads to rapid cell death [12, 13]. Other mechanisms of
action, including activity on intracellular targets after
membrane permeabilization, have been proposed. Exam-
ples of intracellular activity include the activation of
autolytic enzymes and the inhibition of DNA and protein
synthesis [13, 14]. Buforin II has been shown to enter the
cell and accumulates in the bacterial cytoplasm where it
inhibits cellular functions by binding to DNA and RNA
[15]. Attacins block the synthesis of integral membrane
proteins [16]. PR-39 was reported to inhibit DNA synthesis
[17]. Interestingly, pyrrhocoricin, an insect peptide, was
demonstrated to kill bacteria by binding to a protein target
called DnaK [18], thereby preventing it from performing its
protein-repair function, leading to death of the bacteria.
Recently, a different mechanism has been proposed for the
θ-defensin, retrocyclin 2, which blocks influenza virus
infection by cross-linking and immobilizing surface glyco-
proteins, resulting in the inhibition of viral entry into the
cell [19]. Together, these data make AMPs a very attractive
target for clinical development to treat conditions where
traditional antibiotics are becoming less effective. As AMP
research has proliferated, the repertoire of biological roles
of AMPs has expanded to a number of other functions
(Fig. 1). These include (1) endotoxin neutralization, a
property that allows detoxification of LPS [20], (2) chemo-
kine-like activity, based on chemokine structural motif
similarity that allows AMPs such as β-defensins to interact
with certain chemokine receptors [21], and (3) immuno-
modulatory activities linking innate to adaptive immune
responses [22, 23].

More recently, there has been growing interest in the role
of these peptides in several inflammatory conditions
including psoriasis, arthritis, respiratory diseases, athero-
sclerosis, and wound repair. These novel findings will be
summarized in this review. It is hoped that a better
understanding of how AMPs contribute to these diseases
will provide important clues to the “patho-etiologies” of
many of these complex conditions that have often been

labeled as idiopathic when no cause is known. These
researches would pave the way for the development of
novel therapeutic drugs.

Antimicrobial peptides against infectious diseases

Why AMPs? Although the discovery and the development
of antibiotics during the mid-twentieth century provided
potent antimicrobial drugs with high specificity, increasing
antibiotic resistance in microorganisms and new emerging
pathogens have become a major problem in our society
[24]. Several human pathogens are now becoming resistant
to a number of clinically significant antibiotics, causing a
crisis in the treatment and management of infectious
diseases. Strains of Mycobacterium tuberculosis, Entero-
coccus faecium, and Pseudomonas aeruginosa are no
longer easily treated with antibiotics, and increased resis-
tance is observed in other important human pathogens such
as Staphylococcus aureus and Streptococcus pneumoniae.
The resistance phenomenon has been attributed to the
overuse of antibiotics and the increasing number of
immunocompromised patients who have alterations in
phagocytic, cellular, or humoral immunity. The diminished
effectiveness of current therapies and the widespread
resistance has prompted interest in the search for new
antibiotics as alternative treatments. A developing area of
study using natural peptides with antimicrobial activity may
offer the solution for the encountered resistance and hold
promise for development of new therapeutic agents.

Evidences for antimicrobial activity of natural peptides

A growing body of evidence has demonstrated that AMPs
work as antibiotics. Data from in vitro as well as from in vivo
models have provided compelling evidence that these
peptides protect against a range of microorganisms including
bacteria, enveloped viruses, fungi, and even certain parasites.

AMPs against bacteria Direct antibacterial activity of
AMPs has been demonstrated by a number of studies.
Depleted levels of antibiotic peptides have been shown to
be associated with several pathologic conditions. For
instance, in humans, patients with a specific granule
deficiency syndrome lack α-defensins and suffer from
severe and frequent bacterial infections [25]. Others with
a condition known as morbus Kostmann suffer from
frequent oral bacterial infections and severe periodontal
disease, which correlates with a deficiency in the human
cathelicidin peptide LL-37 and human neutrophil peptides
(HNP1-3) [26]. Low expression of LL-37, human β-
defensin (hBD)-2, and hBD-3 in skin lesions caused by
atopic dermatitis coincides with enhanced susceptibility to
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skin infections [27]. In rodent models, cathelicidins can
control bacterial load and prevent mortality when adminis-
tered after bacterial challenge [28, 29]. β-defensin-1 and
CRAMP (cnlp) gene in knockout mice are more susceptible
to and fail to clear infections [30, 31]. Conversely,
overexpression of human defensins protected mice against
enteric salmonellosis [32]. Systemic administration of nisin,
a lanthionine-containing peptide from Lactococcus lactis,
protected mice against S. pneumoniae infection [33]. The
antibiotic nature of AMPs was also confirmed by a recent
study demonstrating that in transgenic mice, overexpression
of the porcine cathelicidin PR-39 enhanced resistance and
protection of these animals against group A Streptococcus
[34]. Lately, a fungal peptide named plectasin, belonging to
the family of defensins, has shown antibacterial activity
particularly against S. pneumoniae, including strains resis-
tant to conventional antibiotics [35].

Although genetically modified mice contribute signifi-
cantly to the studies of AMPs in vivo, evaluation of how
specific peptides contribute to the host response after
pathogenic challenge is complicated by a number of issues

including (a) presence of large peptide families including
22 alpha-defensins in mice or 35 beta-defensins in humans
may lead to functional redundancy, (b) other proteins such
as lysozyme and lactoferrin also contribute to host defense,
and (c) many AMPs have overlapping antimicrobial activity
against gram-positive and gram-negative bacteria. There-
fore, to identify the unique contribution of each AMP to
disease, specific AMPs in knockout mice and relevant
disease models will need to be studied.

Another method used to demonstrate the antibiotic
properties of these peptides consisted of gene therapy
approach in which mice were inoculated with an adenovirus
vector containing the DNA for the human peptide LL-37
[36]. Success of this approach was corroborated by
demonstration that overexpression of porcine PR-39 or
human LL-37 in keratinocytes transduced with a recombi-
nant lentivirus enhanced bacterial killing [34, 37]. AMP
cutaneous gene therapy has also been successfully used in
infected wounds and burns [38, 39]. However, although the
concept of developing AMPs as antibiotics appears prom-
ising, concerns about bacterial resistance to these peptides
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have been raised. Experimental analysis has identified a
number of mechanisms of bacterial resistance to AMPs
including altered cell surface charge, active efflux, produc-
tion of proteases or trapping proteins, and modification of
host cellular processes (reviewed in [40, 41]). Therefore,
knowledge of the molecular basis of bacterial resistance to
AMPs may provide clues on how to circumvent potential
resistance problems. This research will build a basis for the
development of AMPs as an alternative therapy to
conventional antibiotic agents for the treatment of drug-
resistant pathogens.

AMPs against viruses Apart from the antibacterial activity,
AMPs such as defensins also possess antiviral activity.
Based on the pattern of cysteine connectivity, mammalian
defensins are classified into alpha and beta families.
Recently, a circular form of AMPs called θ-defensin has
been characterized in macaques, whereas in humans, the
gene coding this peptide had been silenced by mutation
[42]. Different studies have reported that defensins inhibit
viral replication [43, 44]. For example, the α-defensins
target the human immunodeficiency virus (HIV) activity by
directly inactivating viral particles and affecting the ability
of the virus to replicate within CD4 cells [45]. Human α-
defensins HNP-1 to -3 and HD-5 have been shown to block
papillomavirus infection [46]. Retrocyclin 2, a synthetic θ-
defensin peptide that humans do not synthesize due to a
mutation in the corresponding human gene, has the capacity
to block influenza virus infection [19]. Human β-defensins
can also block HIV-1 replication, and interestingly, a single-
nucleotide polymorphism in a β-defensin gene has been
associated with clinical manifestation of HIV-1 infection,
suggesting that the human β-defensins play an important
role in host defense against HIV [47]. Cathelicidins, in
contrast, have an inhibitory effect on lentiviral replication in
vitro [48], and LL-37 appears capable of interfering with
vaccinia virus replication in vitro and in mice [49].
Dermaseptin S4, a 28-residue AMP isolated from frog
skin, attenuates HIV infection in vitro [50]. Other AMPs
from frog skin including caerin 1.1, caerin 1.9, and
maculatin 1.1 have also demonstrated inhibition of HIV in
vitro [48].

How AMPs inhibit viral entry into cells? HIV entry into a
target cell is facilitated by its gp120/gp41 glycoprotein (env)
interaction with CD14 [51] and a coreceptor, usually CCR5
or CXCR4 [52]. Generally, defensins inhibit HIV entry into
the cell by inhibiting one of these mechanisms. For instance,
θ-defensin has been shown to prevent HIV-1 env-mediated
fusion by binding gp41 and blocking its 6-helix bundle
formation [53]. hBD-3 has been reported to inhibit HIV
infection by competing with stromal-derived factor, the
natural ligand for CXCR4 [54]. Therefore, AMPs, in

particular defensins, have clear anti-HIV-1 activity, and their
broader anti-viral functions await further exploration.

AMPs against fungi The increasing incidence and severity
of invasive mycoses and the resistance of fungal pathogens
to currently available antifungal drugs have led scientists to
explore the antifungal properties of AMPs. To date,
approximately 100 peptides have been investigated for
their capacity to counteract fungal infections, particularly
those caused by Candida spp. [55]. Candida spp. have
emerged as the fourth most common cause of bloodstream
infections in the USA. Human HNP-1 and HNP-2 have
shown fungicidal activity against Candida albicans and
inhibited significantly the growth of Cryptococcus neofor-
mans [56]. Rabbit NP-1, NP-2, and NP-3 also demonstrated
good efficacy against C. albicans [57]. Histatins are another
family of peptides with antifungal activity that are
selectively secreted by the human parotid and submandib-
ular glands. Among these peptides, histatins 1, 3 and 5 have
been identified and characterized earlier, and their differ-
ential fungicidal activity against C. albicans has been
determined [58]. Additional evidence for the role of AMPs
in the protection against fungi has come from a study
showing that low levels of histatins from saliva in a group
of HIV patients correlated with higher incidence of oral
candidiasis [59]. Interestingly, not all strains of Candida are
sensitive to the action of naturally occurring AMPs. A
recent study reported that Candida glabrata shows resis-
tance to histatins as well as to magainins [60]. The major
mechanism(s) of action by which these peptides inhibit
fungi is not clear yet. However, several modes of action
have been proposed including binding to and disruption of
the outer membrane [61], resulting in leakage of important
intracellular contents, and interaction with specific internal
targets once they penetrate the cell [62]. Together, these
studies have provided evidence that cationic peptides and
particularly histatins may represent a new generation of
compounds for the treatment of oral fungal infections.

AMPs against protozoa Early studies have demonstrated
antiprotozoan activity of AMPs [63, 64]. Since then,
considerable research efforts have been directed toward
understanding the activities of these peptides against para-
sites transmitted by insect vectors. Recently, the potential
activities of defensins and cathelicidins against the African
trypanosome Trypanosoma brucei have been explored [65].
T. brucei is the vector-borne protozoan parasite that causes
sleeping sickness, a disease associated with significant
morbidity and mortality in both humans and animals. This
study clearly demonstrated the effectiveness of peptides
against parasites by disruption of their cell membrane
integrity. Further investigation has shown that administra-
tion of cathelicidin AMPs to mice with late-stage T. brucei
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infection rapidly improved parasitemia and prolonged
survival [65]. These studies provide evidence for the use
of AMPs in the treatment of parasitic diseases and invite
more research that examines the role of AMPs in the
control of parasitic infections.

Antimicrobial peptides and inflammatory diseases

A number of studies have suggested an association between
the activation of innate immune mechanisms and the
pathogenesis of inflammatory diseases. Recruitment of
inflammatory cells and accumulation of chemokines and
proinflammatory cytokines are hallmarks of an inflamma-
tory state. Immune cell infiltrates are the primary source of
host antimicrobial agents including AMPs, and released
AMPs serve to amplify inflammation. In this context,
different studies reported that AMPs including LL-37 may
be involved in the regulation of inflammation by activating
chemokine release from different cell types [66–68].

Apart from a central role in prevention and clearance of
infections, AMPs exhibit an array of ever-expanding
functions [69, 70]. The importance of AMPs in inflamma-
tory conditions has now been expanded to include the
following: psoriasis, respiratory disorder, inflammatory
lung disease, inflammatory bowel disease (IBD), rheuma-
toid arthritis, and atherosclerosis (Table 1). The potential
implication of a role of natural peptides in these diseases
will be the major focus of our next discussion.

AMPs and skin diseases

Psoriasis is a common immune-mediated chronic skin
disease that comes in different forms and differing levels of
severity. Study of psoriatic-scale extracts revealed the
presence of several AMPs including LL-37, human neutro-
phil defensin 1-3, RNase 7, and lysozyme (reviewed in [71,
72]). These peptides are believed to protect inflamed skin
from microbial infections, as evidenced by the fact that
patients who have psoriasis rarely suffer from skin
infections, whereas patients with atopic dermatitis have
increased skin infection rate with S. aureus [27]. In line
with this observation, there exists a good correlation
between atopic dermatitis and an impaired innate defense
of human skin [73]. High-level expression of AMPs is seen
in other pathologic conditions. For instance, hBD-2 and
HNP are abundant in lesions of superficial foliculitis, a
common skin disease characterized by inflammation of the
hair follicle and infection with S. aureus [74]. Furthermore,
human LL-37 has been shown to be induced in systemic
lupus erythematosus and contact dermatitis [75]. From
these diverse studies, it is becoming clear that AMPs are

involved in skin diseases. However, their role in patho-
physiology of inflamed skin tissues is not fully understood.
Therefore, future studies must focus on the purported dual
functions of AMPS, namely, its antimicrobial activity and
its modulation of inflammatory response.

Acne vulgaris is a chronic inflammatory disorder of the
pilosebaceous unit that widely affects adolescents and
young adults (reviewed in [76]). The main events in the
development of an inflammatory acne vulgaris lesion
involve Propionibacterium acnes colonization and prolifer-
ation, which has shown resistance to conventional anti-
biotics. Because of their ability to neutralize endotoxins and
consequently to inhibit the secretion of proinflammatory
cytokines (e.g., TNF-α, IL-1) by host cells, cationic
peptides could be potential candidates for treatment of
acne. Granulysin is an antimicrobial peptide of the saponin-
like family reported to be present in acne lesions. Recently,
it has been reported that granulysin-derived peptides kill P.
acnes effectively [77] and possess anti-inflammatory
effects, as demonstrated by the suppression of P. acnes-
stimulated cytokine release. Study of another peptide
designated MX-594AN, which is under clinical develop-
ment by Migenix, has demonstrated significant decrease in
lesion counts of acne vulgaris in humans [78]. Taken
together, these studies suggest that AMPs may be useful as
agents for the treatment of acne. Hence, development of
peptide-based drugs, preferentially applied topically, should
be one area of research focus to resolve skin infections such
as acne infection and other worse conditions.

AMPs and respiratory and lung disorder

Respiratory secretions have microbicidal properties medi-
ated by their constituent antimicrobial peptides/proteins
including lysozyme, lactoferrin, secretory leukocyte prote-
ase inhibitor (SLPI), defensins, and cathelicidins. These
molecules are produced by airway epithelial and inflam-
matory cells and are involved in many processes such as
host defense, stimulation of adaptive immune response, and
modulation of inflammatory response of lung disease [79].
Evidence for their role in lung disorder came from a
number of recent studies describing the alteration of
antimicrobial concentration in several pulmonary disease
states [80]. Increased defensin levels were observed in
cystic fibrosis, diffuse panbroncheolitis, idiopathic pulmo-
nary fibrosis, acute respiratory distress syndrome, and lung
transplant [81, 82]. Cystic fibrosis, a genetic disease
associated with recurrent bacterial infections of the airways
and inflammation, represents one illustration of the impli-
cation of AMPs in human pathologies. The defective
chloride channel causing the disease increases salinity of
the alveolar fluid and thus impairs the bactericidal activity
against P. aeruginosa of β-defensins, which are salt
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sensitive [83]. In this context, overexpression of human LL-
37 in lungs of mice inhibited bacterial load and inflamma-
tory response after pulmonary challenge with P. aeruginosa
[84]. In a further investigation, gene transfer approach
restored the expression of LL-37 in a cystic fibrosis
xenograft model and restored bacterial killing [85]. Overall,
these peptides/proteins act as the first line of defense
against pulmonary infection and may amplify the adaptive
immune response by inducing the production of cytokines,
which promote T cell-dependent cellular immunity and
antigen-specific Ig production [86], or by enhancing both
cellular (Th1-dependent) and humoral (Th2-dependent)
cytokine production and immune responses [87]. Future
studies should identify AMPS active against cystic fibrosis-
associated pathogens including P. aeruginosa, S. aureus,
and Burkholderia cepacia. Additionally, these peptides
need to be selected or engineered to retain their activities
at a high salt concentration.

AMPs and periodontal disease

Human periodontitis is a multifactorial inflammatory oral
disease with a complex pathogenesis. It is initiated by a
group of predominantly gram-negative anaerobic bacteria

such as Porphyromonas gingivalis, Bacteroides forsythus,
and Actinobacillus actinomycetemcomitans. One primary
barrier to infection is the oral mucosa with its innate and
adaptive immune processes. Disruption of this tissue can
lead to infection by a variety of microbial challenges that
can cause periodontal diseases. In line with this observa-
tion, patients with a severe congenital neutropenia have
AMP deficiency, which is associated with the occurrence of
infection and periodontal diseases [26]. A recent study has
shown the expression of hBD-1 and hBD-2 peptides in
gingival epithelia from periodontally healthy subjects, as
well as patients with unsolved chronic periodontitis,
suggesting a role of these peptides in periodontal health
and disease [88]. Histatin 5, a salivary peptide, was
reported to protect the periodontium from host and bacterial
enzymes implicated in periodontal disease [89]. More
recently, histatin 5 was shown to prevent biofilm formation,
thereby reducing denture-induced stomatitis [90]. Thus,
salivary AMPs could play a primary role in blocking of
periodontal disease initiated by microbes. The knowledge
gained from these and future studies will help identify the
role of AMPs in periodontal pathogenesis and will provide
support for the ongoing attempts to develop these peptides
as drugs for the prevention of oral diseases.

Table 1 Expression level and proposed functions of antimicrobial peptides/proteins in various human inflammatory diseases

Disease state Peptides Expression levels and potential functions

Skin inflammatory diseases
Psoriasis LL-37, defensins Overexpressed, absence of S. aureus [27]
Atopic dermatitis LL-37, defensins Downregulated, presence of S. aureus [27]
Lupus, erythrematous, and
contact dermatitis

LL-37 Increased [75]

Acne vulgaris MX-594 AN Inhibits P. acne [78]
Granulysin Kills P. acne, anti-inflammatory action [77]

Respiratory diseases
Cystic fibrosis LL-37, β-defensins Reduced antimicrobial activity due to salt accumulation [7]
Periodontal disease Defensins Reduced in saliva of patients with oral candidiasis [142]

LL-37 Absent in patients with congenital neutropenia [26]
Histatin 5 Protects periodontium from bacterial infection [89] and prevents biofilm formation

[90]
Inflammatory bowel disease
Crohn’s disease HD5 and HD6 Deficient expression in Paneth cells

HD5 and HD6 Reduced in CD patients with Nod2 mutation [91]
LL-37 Expression is altered [91]

Ulcerative colitis HD5, 6; hBD2–4 Upregulated in patients with UC [95]
Cancer Magainin II Toxic effect against cancer cell lines melanoma, breast and lung cancer, lymphoma,

and leukemia [97, 98]
Insect cecropins Lyse tumour cells [100]
Bovine lactoferrin Inhibits lung and liver metastasis of murine melanomas and lymphomas [101] and

cytotoxic toward neuroblastoma cells [103]
Atherosclerosis Defensins Involved in lipoprotein metabolism [111, 113], exhibit antifibrolytic activity [111], and

regulate angiogenesis [115]
LL-37 Increased expression in human lesions [118]

Inflammatory articular joints hBD-3, LL-37 Upregulated in osteoarthritis [124]
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AMPs and chronic inflammatory bowel diseases

In the small intestine, Paneth cells are the major source of
AMPs that purportedly play a crucial role in intestinal
immunity. A breakdown of this functional barrier may lead
to aberrant production of defense molecules and conse-
quently to IBD. IBD is a chronic inflammation of the
intestinal mucosa often grouped into two major entities:
Crohn’s disease (CD) and ulcerative colitis (UC).

Crohn’s disease is attributed in part to intestinal bacteria
that may initiate and perpetuate mucosal inflammation in
genetically susceptible individuals [91]. Studies of trans-
genic and knockout mice support a pivotal role of Paneth
cell α-defensins in protection from bacterial pathogens.
New data suggest that deficient expression of Paneth cell α-
defensins (HD5 and HD6) may contribute to the patho-
physiology of CD [91, 92]. These observations are
supported by recent findings showing that mice lacking
Nod2, an intracellular sensor of bacteria-derived muramyl
dipeptide, fail to express cryptidins, equivalents of human
α-defensins [93]. Similarly, human α-defensin expression
is diminished in CD patients, particularly in those with
Nod2 mutations [91]. Besides defensins, cathelicidin
peptides also showed alteration of their expression profile
in IBD [94].

Ulcerative colitis is considered a consequence of a
failing adaptive and/or innate immune system, in particular
AMPs, to cope with pathogenic microorganisms in the
intestine. Its has been demonstrated that the expression of
hBD-2 to -4 is upregulated in colonic enterocytes in
patients with UC [95] and that HD5, HD6, and lysozyme
are overexpressed due to metaplastic Paneth cell differen-
tiation in UC colon [96]. Overall, these data provide
compelling evidence supporting the hypothesis that AMPs
play an important role in intestinal defense, and reduction
in their expression may compromise host defense and
initiate inflammatory diseases. The discovery of factors
such as Nod2 [93] that have a direct impact on the
expression of AMPs may contribute to development of
future preventive and treatment strategies against IBD.

AMPs and cancer

Cancer treatment using classical chemotherapy approach
presents a number of limitations, including toxicity and
development of multi-drug resistance by cancer cells.
Several reports have demonstrated that AMPs are emerging
as a promising class of new natural drugs with toxic activity
towards cancer cells. In this aspect, magainin II was shown
to exert cytotoxic effect against a wide range of cancer cell
lines including melanoma, breast and lung cancers, as well
as lymphomas and leukemias [97, 98]. Further studies
carried out in vivo have shown that magainin peptides

improve survival of animals with ascites-producing tumors
[97]. More recently, magainin II was reported to exert
cytotoxic and antiproliferative efficacy by pore formation in
bladder cancer cells but had no effect on normal murine or
human fibroblasts [99]. Cecropins, insect-derived cationic
peptides, were also found to be effective in lysis of tumor
cells including multidrug-resitant tumor cell lines [100]. In
contrast, bovine lactoferricin inhibited liver and lung
metastasis of both murine melanomas and lymphomas
[101] and induced apoptosis in human leukaemia and
carcinoma cell lines [102]. In another study, Eliassen et al.
[103] reported that lactoferricin B shows cytotoxicity to
neuroblastoma cells in vitro and inhibits the growth of
neuroblastoma xenograft in nude rats. Interestingly, lacto-
ferricin seems to induce a rapid destabilization of tumor cell
cytoplasmic membrane, triggering apoptosis cascades at a
dose that does not affect normal fibroblasts or erythrocytes
[104]. Moreover, α-defensins were localized to solid
epithelial tumors, specifically oral squamous cell carcino-
ma, lung tumors, and renal cell tumors, suggesting an
association of these peptides with cancer development
[105–107]. Recently, an association between the over-
expression of α-defensin peptides and bladder cancer
invasiveness was reported [108]. However, a physiological
approach involving animal models will help to better define
the biological activity of these peptides toward cancer cells
and to clarify the molecular mechanism by which these
cells become susceptible to some of the AMPs. So far, at
least three mechanisms have been proposed, (1) cell
membrane lytic effect, (2) activation of intrinsic pathways
of apoptosis via mitochondrial membrane disruption
(reviewed in [109]), and (3) certain peptides are potent
inhibitors of blood vessel development that is associated
with tumor progression; extensive studies need to be
performed to prove that these peptides do not destroy vital
organs and have lower toxicity toward normal cells. If all
these desirable properties are proven, then AMPs could be
the next generation of drugs for cancer therapy. Hence, the
development of a strategy that can be used to efficiently
deliver apoptosis-promoting and/or anti-angiogenic pep-
tides to both tumor cells and tumor vasculature should be
another issue to take in consideration.

AMPs and the inflammatory process of atherosclerosis

Atherosclerosis is a complex and chronic inflammatory
disease process characterized by the retention and modifi-
cation of low-density lipoproteins within the wall of blood
vessels [110] and the development of local inflammation
event. AMPs produced by endothelial cells and neutrophils
are present within atheromatous plaques in the cerebral and
coronary circulation [111, 112]. The potential role of these
peptides in the development of atherosclerosis, including
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endothelium dysfunction, has been investigated. In this
context, defensins were found to have multiple functions.
They participate in the lipoprotein uptake and degradation
in the vessel wall [111, 113]. They possess antifibrolytic
activity [114] and regulate angiogenesis [115, 116]. Lately,
animal studies have shown that neutrophil α-defensins
cause endothelial cell dysfunction in porcine coronary
arteries by reducing endothelium-dependent vasorelaxation
[117]. Besides defensins, cathelicidins have also been
investigated in the atherosclerosis development process. A
sixfold increase in LL-37 transcripts in human atheroscle-
rotic lesions compared with normal arteries was reported
[118]. Using gene transfer approach, adenoviral PR-39 was
reported to improve blood flow and myocardial function in
a pig model of chronic myocardial ischemia by enhancing
collateral formation [119]. Antimicrobial peptides/proteins
have also been associated with an emerging global problem
of obesity and diabetes, a complication that leads to
increased burden of heart disease. In diabetic patients, an
interesting theory on lactoferrin and lysozyme inactivation
proposes specific binding of these proteins to glucose-
modified proteins bearing advanced glycation end products
[120]. These motifs inhibit endogenous bacterial proteins,
thereby increasing susceptibility to bacterial infections in
the diabetic population. However, a number of questions
have not been answered convincingly. For instance, what is
the biological significance of these findings? Is increased
expression of these peptides beneficial or harmful to the
vessel wall? Is there a link between AMP expression and
modified lipids known as a major risk factor for the
development of atherosclerosis? Because of the high
prevalence of atherosclerosis and the resulting complica-
tions, clinical studies are needed to explain the significance
of the above-mentioned findings.

AMPs and articular joints

For the last couple of years, AMPs have been investigated in
articular joint inflammation including pyogenic arthritis,
rheumatoid arthritis, and osteoarthritis. Their presence in
human articular cartilage has been reported previously [121].
Further studies have revealed an alteration in the expression
of these peptides in synovial membrane from patients with
inflammatory joint disease [122], suggesting a role in the
protection against microbial infection. However, the upregu-
lation of hBD-3 and LL-37 in osteoarthritis without bacterial
challenge has led scientists to believe that they have
functions other than the ability to kill microbes. This
hypothesis was confirmed later by experiments using animal
model for osteoarthritis showing an induction of mouse
AMPs in the pathogenesis of osteoarthritis in vivo [123,
124]. Of interest is the finding of a report by Varoga and his
colleagues [125], showing overexpression of hBD-3 in

osteoarthritis cartilage without bacterial challenge. The
observed induction of defensins was attributed to their
modulation by proinflammatory cytokines including TNF-
alpha and IL-1, known to regulate AMPs [126, 127].
Together, these findings widen our knowledge of the
functional spectrum of AMPs, particularly that of hBD-3,
which is a multifunctional peptide with the ability to link
host defense mechanisms and inflammation with tissue-
remodeling processes in articular cartilage. A full knowledge
of the exact function of these intrinsic peptides in articular
cartilage and synovial membrane will provide further insight
into prevention of human articular joint disease.

AMPs and injury, angiogenesis and wound healing

Angiogenesis is one of the complex biological processes of
inflammation and wound repair [128]. For instance, when
skin epithelial barrier function is breached as a result of
injury, wound repair process requires both recruitment and
coordination of numerous cell types including inflammato-
ry cells. Neutrophils and macrophages are among cells that
invade wound areas and constitute the major source of
several angiogenic growth factors and AMPs such as LL-
37, which exerts chemoattractant and angiogenic activity. In
fact, the expression of LL-37 was reported to be increased
in wounded skin [129]. The biological significance of this
alteration is probably the protection of injured tissue until it
is restored. Growth factors are of major importance in
wound healing. Insulin-like growth factor I and TGF-alpha
have been shown to induce the expression of the antimicro-
bial protein hCAP-18/LL-37 (human cationic antimicrobial
protein of 18 kDa), hβD-3, neutrophil gelatinase-associated
lipocalin, and SLPI in human keratinocytes [130]. In this
context, mice deficient in SPLI have a deficiency in
cutaneous wound repair that is associated with increased
inflammation [131]. Another compelling evidence of the
role of AMPs in wound repair comes from a study by
Heilborn and his colleagues [132] showing that LL-37
peptide is involved in the re-epithelialization of human skin
wound, and its reduction is associated with chronic ulcer
epithelium. Another potential effect of AMPs is seen in
burn wounds. In severely burned patients, there is a relative
deficiency in certain AMPs, and these patients have greater
risk of infection [133, 134]. A study by Steinstraesser et al.
[135] investigated the in vivo antimicrobial activity of
protegrin-1 using an animal burn model. This study showed
a rapid decrease in bacterial counts compared to the
controls infected in burn wounds.

Using in vitro and in vivo models for wound healing,
Koczulla et al. [136] have identified another novel biologic
activity of human LL-37, which consists of induction of
angiogenesis and arteriogenesis. Interestingly, the porcine
cathelicidin PR-39, has been shown to induce a robust
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angiogenic response in in vivo and in vitro experimental
models [137]. In conclusion, the multiple links among
AMP expression, increased angiogenesis, and tissue repair
involve a number of pathways, including those of toll-like
receptors, inflammatory cytokines, and putative “danger”
signals. Together, these complicated processes could have
several implications, including protection of vulnerable
tissue against infection, growth promoting activities, and
epithelialization events.

Clinical development of antimicrobial peptides

The challenge at hand is to use current knowledge of AMPs
in the design and development of useful drugs. In this
respect, biotechnology firms have begun development of
new peptide-based compounds that show different and
potentially improved resistance profiles compared to early
antibiotics. A comprehensive summary of AMP-based
therapeutics under development has been published recent-
ly [11]. Representative examples of peptides going preclin-
ical or clinical trials are discussed next:

– Plectasin (Novozymes) is a defensin peptide that shows
good microbicidal activity against antibiotic-resistant
bacteria such as those responsible for diseases like
pneumonia [35]. Unlike other clinically tested AMPs,
plectasin appears to be tolerated at high doses and
shows efficacy in treatment of systemic infections. The
development of plectasin as a therapeutic agent is
currently entering preclinical phase with the anticipa-
tion that a product will be approved for clinical use in
8–10 years.

– P-113 (Dermegen) is a 12-amino acid fragment derived
from histatin 5 with anti-candidal activity comparable
to that of the parent form. This peptide is in phase I/II
clinical trials and is used as mouth rinse for treatment
of plaques and gingivitis. Data from a human experi-
mental model showed that P-113 is active against
gingivitis and plaques [138].

– MBI-226 (Migenix) is an Idolicidin analogue in phase
III clinical trials. It will be used for the treatment of
catheter-related blood stream infection [139].

– MX-594AN (Migenix) is an antimicrobial cationic
peptide in development that has been formulated as
topical treatment for mild to moderate acne vulgaris.
MX-594AN is under clinical trials and appears to
demonstrate efficacy against all types of acne lesion.
Migenix has also developed MX-594AN under the
name CLS001, which is tested for topical treatment of
rosacea. Phase II trials are due to be completed in 2007.

– PG-1 protegrin (Intrabiotics) is a peptide in phase III
clinical trial designed for the treatment of peritoneal

infections caused by P. aeruginosa, S. aureus, and
methicillin-resistant S. aureus.

– rBPI-21 (Xoma) is a recombinant form of human
bactericidal/permeability-increasing (BPI) protein that
has reached phase II/III clinical trials and will be
used for treatment of meningococcaemia and Crohn’s
disease.

– Heliomycin (EntoMed) is a peptide derived from
insects with antifungal activity, currently in preclinical
trials.

In summary, although several clinical trials underlined
the broad therapeutic potential of AMP-based drugs, these
agents are still at an early stage of technologic maturation,
and many hurdles have yet to be overcome.

Future perspectives

Although no peptide has yet reached the drug market,
pharmaceutical companies remain enthusiastic about the
prospect of developing these novel agents as a new
generation of medications. Additionally, researchers are
now convinced that these natural peptides have functions
beyond those of antimicrobial activities and represent an
attractive target for the future design of therapeutic agents.
The previous section has provided examples of the
promising use of AMPs in the clinical setting. However,
there are a few drawbacks to consider. As AMPs are of
peptidic nature, they could present the following problems:
(1) high manufacturing costs, (2) short half life, (3) lost of
activity in physiological conditions [140], (4) application
problems, (5) unwanted systemic reactions (aggregation,
half-life, or immunoreactivity), and (6) interference with
normal flora bacteria that may arise when trying to use
those peptides as antibacterial agents [141]. Additionally,
there remains a number of unresolved issues to consider:
(1) Standardized techniques to assess the activity of these
peptides is still unavailable. (2) Molecular regulation
mechanisms of certain alpha-defensin genes are poorly
defined. Detailed knowledge of how AMPs are regulated
will allow researchers to create drugs that directly modulate
the expression of specific AMPs to ameliorate the specific
disease condition. 3) The ability to target these future
medications to the site of disease remains a challenge. AMP
gene therapy could be a promising approach to revolution-
ize treatment of many inflammatory and infectious diseases
once strategies such as gene delivery are optimized. In this
sense, one of the goals will be to design a system that
simultaneously achieves high efficiency, prolonged gene
expression, and low toxicity. However, as it was mentioned
above, formidable challenges related to AMP properties are
still to be faced. 4) Tolerance and toxicity issues of these
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peptides need to be addressed, especially as their cationic
property make them prone to interact with anionic
components of the host cells. An ideal peptide drug would
be one that can be tolerated at high dose, resists
degradation, and is suitable for topical as well as intrave-
nous administration. 5) Finally, understanding of the role
and expression of AMPs both in health and disease remains
a challenging area of research.

In conclusion, research that focuses on the above issues
should provide further important insights into the patho-
physiological roles AMPs play in complex diseases. This
knowledge will lay the foundation for the use of these
peptides as prototypes of innovative drugs and/or as
potential sensors and biomarkers for early detection and
prevention of diseases.
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