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Abstract 

Zinc oxide (ZnO) is a fascinating semiconductor material with many applications such as adsorption, photocatalysis, 

sensor, and antibacterial activities. By using a poly (vinyl alcohol) (PVA) polymer as a capping agent and metal oxides 

(iron and manganese) as a couple, the porous PVA-aided Zn/Fe/Mn ternary oxide nanocomposite material (PTMO-

NCM) was synthesized. The thermal, optical, crystallinity, chemical bonding, porosity, morphological, charge transfer 

properties of the synthesized materials were confirmed by DTG/DSC, UV–Vis-DRS, XRD, FT-IR, BET, SEM-EDAX/TEM-

HRTEM-SAED, and CV/EIS/amperometric analytical techniques, respectively. The PTMO-NCM showed an enhanced 

surface area and charge transfer capability, compared to ZnO. Using the XRD pattern and TEM image analysis, the 

crystalline size of the materials was confirmed to be in the nanometer range. The porosity and superior charge 

transfer capabilities of the PTMO-NCM were confirmed from the BET, HRTEM (IFFT)/SAED, and CV/EIS analysis. The 

adsorption kinetics (adsorption reaction/adsorption diffusion) and adsorption isotherm test confirmed the presence 

of a chemisorption type of adsorbate/methylene blue dye-adsorbent/PTMO-NCM interaction. The photocatalytic per-

formance was tested on the Congo red and Acid Orange-8 dyes. The superior ascorbic acid sensing capability of the 

material was understood from CV and amperometric analysis. The noble antibacterial activities of the material were 

also confirmed on both gram-negative and gram-positive bacteria.
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Introduction
Zinc oxide nanoparticles (NPs) are commonly used 

in several fields such as adsorption [1], photocataly-

sis [2, 3], food preservation [4], and pollutant sensor 

[5]. Compared to  TiO2, the production cost of ZnO is 

approximately 75% lower and has higher absorption 

efficacy across a large fraction of the solar spectrum [6, 

7]. �e application of single metal oxide as a photocata-

lyst is restricted on the charger transfer property due to 

the photogenerated electron/hole recombination. �is 

recombination, particularly in the nanosized range, leads 

to the diminution of their quantum efficiency and also 

may lead to the dissipation of radiant energy by initiating 

highly desirable reactions [8, 9]. Among several efforts 

applied to reduce the electron–hole recombination prob-

lem such as doping, heterojunction, dye sensitization, 

noble and non-noble metal deposition, forming het-

erostructure materials was found to be one of the noble 

preferences [10–12]. Coupling of ZnO with other metal 

oxides was reported for remediation of the mentioned 

recombination problem [8, 13–16]. Due to their stability 

and unique properties, the hematite (α-Fe2O3) [8, 14] and 

 Mn2O3 [13] are suggested to act as a decent couple with 

ZnO.

Besides, PVA polymer as a stabilizing agent also has 

great use in diminishing the electron–hole recombina-

tion problems [17]. As reported [18, 19], 500  °C is the 

optimum temperature to remove unwanted impurities 

including the PVA polymer after acting as a capping 

agent. Modifying the synthesized materials to have a 

mesoporous property that allows a rapid charge transfer 

process has been also reported [20, 21]. Using only envi-

ronmentally benign water as a solvent and developing an 
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efficient synthesis procedure, the toxicity, cancer-causing 

ability, and mutagenic properties of organic solvents can 

also be removed.

A small variation in the standard level of ascorbic 

acid creates a lot of diseases in human beings [16]. As 

reported [22], ascorbic acid has a major role in the physi-

ological normal functioning of organisms and also used 

as a treatment for a different illness. �erefore, it is sig-

nificant to develop novel methods used for measuring the 

level of ascorbic acid. Nowadays, metal oxide nanomate-

rials have been largely employing as sensor applications 

[23]. Among several techniques that have been made to 

improve the sensing properties of ZnO, forming a com-

posite with other metal oxides and modifying the synthe-

sized materials to have a mesoporous property that allows 

a rapid charge transfer process have been reported [20, 

21]. Furthermore, hospital-acquired infections caused 

by microorganisms are becoming worldwide problems 

[24]. ZnO is also listed as an antimicrobial agent and safe 

material for food preservation of foodborne diseases by 

the US FDA (21CFR182.8991) [4, 25].

Considering all the mentioned aspects of aggregation/

agglomeration, surface area-to-volume ratio, and toxicity 

of organic solvents, this work synthesizes PVA-assisted 

PTMO-NCM using a simple sol–gel followed by acci-

dental self-propagation techniques. �e as-synthesized 

material was characterized by DTG/DSC, XRD, BET, 

SEM–EDX/TEM/HRTEM/SAED, and CV/EIS/ampero-

metric analytical techniques. A pronounced surface area 

and charge transfer capability improvement have been 

achieved for PTMO-NCM, compared to ZnO. �e appli-

cability of the synthesized coupled PTMO-NCM was 

tested on adsorption and degradation of organic dyes, 

antibacterial activity, and an ascorbic acid sensor.

Materials and methods
�e instrumental details and the reagents used were pre-

sent as supplementary material (S). �e detailed ZnO 

and PTMO-NCM synthesis procedures were also pre-

sent in the author’s earlier works [1, 26–28]. Roughly, 

the PVA polymer was dissolved in distilled water with 

continuous stirring on a magnetic stirrer at ~ 115  °C for 

about 15 min. �en, the salt precursors, Zn(NO3)2.6H2O, 

Fe(NO3)3.9H2O, and  MnSO4.H2O were mixed with pre-

viously dissolved and cooled PVA polymer solution with 

continuous stirring. After two days of aging followed by 

drying in an oven at about 110 °C, the product was gently 

crushed to reduce the highly amorphous self-propagated 

material. Finally, it was calcined at the DTG-optimized 

calcination temperature of 500 °C for 3 h. �e calcination 

process at the optimized temperature helps for remov-

ing unwanted impurities as well as the PVA polymer. 

�e synthesized PTMO-NCM was used for continuous 

sample characterization and application tests. �e pho-

tocatalytic experiment was performed using a 176.6-

cm2 circular glass reactor under a 125-W mercury vapor 

lamp. �e 20 ppm of 250 mL Congo red (CR) and Acid 

Orange-8 (AO8) dyes and 0.06 g of PTMO-NCM photo-

catalyst were used during the experiment. �e adsorption 

test was conducted using the experimentally optimized 

[1] adsorption parameters, 10–150-min adsorbate–

adsorbent contact time, and 1–35 mg L−1 concentrations 

with a constant 140 rpm shaking speed. �e antibacterial 

activity test had conducted using three different concen-

trations (75, 100, and 125 μg mL−1) of ZnO and PTMO-

NCM. �e experiment was accompanied by a disk 

diffusion method using a 0.5 McFarland standard.

Results and discussion
Characterization results

�e optimum calcination temperature was determined to 

be 500  °C using DTG stability analysis at a 50  °C min−1 

flow rate of nitrogen gas. About 56% of the sample 

decomposition took place and left with ~ 42% of pure 

PTMO-NCM (Fig. 1a). From the DSC plot (see Fig. 1b), 

the two exothermic peaks are supposed to be due to the 

evaporation of adsorbed volatile components at 80  °C 

and conformational changes at 144  °C. �e third endo-

thermic peak that appeared at about 210  °C is probably 

due to the phase transformation of other forms of iron 

or/and manganese oxides to the stable  Fe2O3 and  Mn2O3 

phase. Compared to ZnO, the high reflectance drop in 

the visible region for PTMO-NCM was observed from 

UV–Vis-DRS spectroscopic analysis (Additional file  1: 

Fig. S1a). �is optical analysis supports the peak intensity 

reduction of the XRD pattern and the porosity interpre-

tation of the SEM image. �e Kubelka–Munk plots [29, 

30] showed the nonexistence of bandgap change between 

ZnO and PTMO-NCM (Additional file 1: Fig. S1b).

�e noticeable approximate average crystalline size 

reduction (6×) was obtained for PTMO-NCM, com-

pared to ZnO (Fig. 1c). �e XRD pattern peaks of both 

ZnO and PTMO-NCM are consistent with the hexagonal 

ZnO phase (ICSD: 00-036-1451, P63mc (#186-1) space 

group). �is is probably due to the smaller percentages 

of iron (5%) and manganese (5%) oxides. �e absence 

of PTMO-NCM peaks shift relative to ZnO also shows 

the non-appearance of structural distortion on ZnO lat-

tice. �is may indicate the presence of only a local het-

erojunction between the ternary metal oxides [8, 31, 32]. 

�e XRD data and the respective size of the particles 

were calculated using Debye–Scherrer’s formula (D = Kλ/

(βcos(θ)), where λ is the wavelength of X-ray radiation 

(for Cu 0.15418 nm), K is constant close to unity, β is the 

full width at half maximum (FWHM) in 2θ scales and θ is 

the angle of the considered Bragg reflection [33, 34].
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Compared to ZnO, the great surface area enhancement 

for PTMO-NCM (15×) and the porous nature of PTMO-

NCM was approved from the BET and SEM image analy-

sis, respectively (see Fig. 1d, g, (the inset image in Fig. 1g 

is for ZnO)). As per IUPAC classifications, among six 

types of adsorption isotherms (I–VI) and four types of 

the hysteresis loops, the BET plots of ZnO and PTMO-

NCM look a typical IV isotherm and an H3 hysteresis 

loop. �e approximate average BJH pore size distribution 

for ZnO and PTMO-NCM was determined to be 9 and 

26, respectively, which is consistent with the mesoporous 

range of IUPAC classification [35]. �e greater current 

rise in CV analysis [36] (Fig.  1e) and the smaller semi-

circle diameter of the Nyquist plot in EIS techniques 

[37] (Fig.  1f ) confirm the enhanced charge transfer 

capabilities of PTMO-NCM over ZnO. �e nanometer 

range crystalline size of the PTMO-NCM was further 

confirmed from the TEM image (Fig.  1h). �e predict-

able composition and actuality of the PTMO-NCM were 

characterized by EDX (see Additional file 1: Fig. S2) and 

HRTEM analysis (Fig. 1i and its insets), respectively. �e 

d-spacing values (0.2864, 0.2543, 0.1969, 0.1663, 0.1520, 

0.1419, and 0.1104) that was determined from SAED 

rings (Fig. 1h inset) are also matching with XRD pattern 

result. �e stacking faults on the HRTEM (IFFT) image 

and the nonexistence of the diffraction spots in the SAED 

ring that confirms the crystallinity of the materials [38] 

further confirms the porous nature of the PTMO-NCM.

Methylene blue dye adsorption

�e optimized 0.02  g dosage, pH of 8, and a con-

stant 140  rpm shaking speed were used for the 

a b c

d e f

g h i

Fig. 1 a DTG. b DSC. c XRD. d BET. e CV. f EIS plots. g SEM. h TEM. i HRTEM images of single ZnO and ternary nanocomposite materials
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adsorption-reaction and adsorption-diffusion kinetics 

studies [1]. �e coefficient of determination (R2) value 

and equations used to calculate the adsorption kinet-

ics models parameter was given in the respective plots 

as inset (Fig.  2). Among the pseudo-first-order (PFO) 

(Fig.  2b), pseudo-second-order (PSO) (Fig.  2c), and 

Elovich (Fig.  2d) adsorption-reaction models, the PSO 

model that confirms the chemisorption types of adsorp-

tion fits well. Also, the theoretical (9.43  mg  g−1) and 

experimental (9.91 mg g−1) values of the PSO model have 

a close relation unlike that of the PFO that has the experi-

mental values of (3.64 mg g−1). �e intraparticle diffusion 

(IPD) model seems fitting well (Fig. 2e); however, to say 

the reaction is under the control of adsorption-diffu-

sion, its linear plot should pass through the origin. �e 

IPD plot for this work is not passing through the origin. 

From this, it is possible to conclude that the reaction is 

dominantly under the control of adsorption-reaction. 

However, the well-fitting of the Bangham model (Fig. 2f ) 

is indicating the presence of pore diffusion in the adsorp-

tion process [39]. �e presence of this pore diffusion is 

also consistent with the BET and SEM interpretations.

�e R2 value and equations used to calculate the 

adsorption isotherm models parameter were also given 

in the respective plots as inset (Fig. 3). Depending on the 

R2 values of the adsorption isotherm models (Langmuir 

(Fig.  2a), Freundlich (Fig.  2b), Dubinin–Radushkevich 

(D–RK) (Fig. 2c), Temkin (Fig. 2d), Flory–Huggins (FH) 

(Fig.  2e), and Fowler–Guggenheim (FG) (Fig.  2f )), the 

Langmuir and FH models are showing relatively bet-

ter fitting. From the Langmuir model, lying the separa-

tion factor RL value between 0 and 1 (0.05) indicates the 

favorability of the adsorption process. �e favorability of 

the adsorption process was also further confirmed from 

the n (1.59) value of the Freundlich model. �e well-fit-

ting of the Langmuir model indicates the presence of a 

monolayer methylene blue dye coverage, which is con-

sistent with the PSO kinetics model interpretation. �e 

maximum adsorption capacity of the adsorbent that 

was determined from the Langmuir isotherm model is 

7.75 mg g−1. �e indication of the characteristic surface 

coverage and spontaneity of the reaction (− 3.8 kJ mol−1) 

were also deduced from the FH model equation.

Congo red and Acid Orange-8 dye degradation 

and mechanism

�e photodegradation capabilities of PTMO-NCM were 

studied on the decolorization of CR and AO8 dyes at a 

maximum absorption wavelength of 494 and 484  nm 

(Fig.  4a, b), respectively. In the first 15  min, approxi-

mately 17% of CR dye and 15% of AO8 dye degradation 

took place. At 180 min, the maximum degradation of 70% 

a b c

d e f

Fig. 2 a Adsorption kinetics plot. b Pseudo-first-order. c Pseudo-second-order. d Elovich. e Intraparticle diffusion. f Bangham kinetics models
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a b c

d e f

Fig. 3 Adsorption isotherm plots of a Langmuir. b Freundlich. c Dubinin–Radushkevich. d Temkin. e Flory–Huggins. f Fowler–Guggenheim models

d e

a b c

Fig. 4 Photocatalytic activities of the PTMO-NCM: a, b absorbance vs. wavelength plots. c, d 1 − C/Co versus t and C/Co versus t plots of CR and 

AO8, respectively. e Proposed mechanism



Page 6 of 9Abebe et al. Nanoscale Res Lett            (2021) 16:1 

for CR dye and 68% for AO8 dye was taking place. �e 

obtained equilibrium constant k values for CR and AO8 

dyes were 0.007141 and 0.005627  min−1, respectively. 

From the contact point of 1 − C/Co versus t and C/Co ver-

sus t plots (see Fig. 4c, d), the obtained degradation half-

life value was approximately 105 min for CR and 119 min 

for AO8. See the PFO kinetic equation used to study 

reaction dynamics in Fig. 4d inset.

�e band edge position of metal oxides is highly 

dependent on the surface charge. For effective photocat-

alytic reaction, the bottom of the CB needs to be more 

negative than the redox potential of  H+/H2 and the top of 

the VB needs to be more positive than the redox potential 

of  O2/H2O [40, 41]. As reported [13], the CB of  Mn2O3 

and ZnO is close to each other. Besides, for confirming 

the presence of an appropriate heterojunction and real-

ity of the proper charge transfer synergy, analysis using 

electrochemical techniques such as CV and EIS is sig-

nificant [42]. As seen in the CV (Fig. 1e) and EIS (Fig. 1f ) 

analysis, the PTMO-NCM is showing the presence of a 

suitable heterojunction. �erefore, the possible photocat-

alytic mechanism was proposed as seen in Fig. 4e. Dur-

ing heterojunction, until the Fermi level equalizes, the 

energy band of metal oxides starts to move up and down 

by transferring electrons [8, 43] and lead to the creation 

of a depletion layer in the interface [44]. �e Fermi level 

of p-type  Mn2O3 exists near the VB. During UV irradia-

tion, the photogenerated electrons have the probability of 

either localizing on the ZnO CB or diffusing to the VB 

of the  Mn2O3, and the holes move to the VB of  Fe2O3. 

�erefore, the recombination of the electrons and holes 

diminished and resulted in enhanced photocatalytic 

activity [8].

From the CV graph of PTMO-NCM (Fig.  5a), the 

reduction-reaction peaks were observed. As reported 

[45], this fast and reversible redox reaction is indicated 

to be due to the porous nature of the materials. �is is 

also consistent with the BET and SEM characterization 

results. �e obtained approximate peak potential differ-

ence (ΔEa,c) between Epa (+ 0.401 V) and Epc (+ 0.323 V) 

peak is 0.078 V. �is smaller ΔEa,c value shows the capa-

bility of the PTMO-NCM material to be more reversible. 

With an increase in the scan rate, the redox peaks posi-

tively shifted towards anodic and cathodic potentials. As 

seen in Fig. 5b CV plot and Fig. 5c amperometry plot, the 

novelty of the PTMO-NCM as an ascorbic acid sensor 

was also confirmed, as the concentration of ascorbic acid 

increase results in increasing the current rise. �e sens-

ing nobility of the material was also confirmed from the 

amperometry analysis as the sensing cycle was completed 

within a few seconds. �e cycles were repeated to eval-

uate the stability of the electrode for 1  h. �e obtained 

result confirms the stability and reproducibility of the 

PTMO-NCM electrode.

�e antibacterial activity of metal oxides is highly 

dependent on the particle size [46] and ROS [47] gen-

eration capacities of the materials. By taking different 

precursor percentages and PVA polymer amount [26], 

the optimum antibacterial activities of PTMO-NCM 

towards E. coli and S. aureus (Fig.  6a, b, respectively) 

were determined to be 50% ZnO, 25%  Fe2O3, and 

25%  Mn2O3. �e enhanced antibacterial activities for 

PTMO-NCM were achieved compared to both single 

ZnO- and binary ZnO-based materials [27]. �e anti-

microbial activity mechanism of NPs may follow three 

mechanisms [48], including the release of antimicrobial 

ions [25, 49], the interaction of NPs with microorgan-

isms [50], and the formation of ROS by the effect of 

light radiation [51]. As confirmed from the XRD pat-

tern and UV–Vis-DRS spectra, the structural distortion 

and band position shift had not observed. �e absence 

of this distortion and shift is due to the non-intercala-

tion of  Fe3+/Mn3+ ions. �is indicates the antimicrobial 

activity due to ions may not be the proper mechanism. 

a b c

Fig. 5 a CV plots at different scan rates. b CV ascorbic acid sensing curve at different concentrations. c Amperometric ascorbic acid sensing plot at 

different concentrations
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�erefore, the direct and indirect ways of ROS genera-

tion [52] were proposed as an antibacterial activities 

mechanism, as seen in Fig. 6c.

Conclusions
�e PTMO-NCM that has high porosity, enhanced sur-

face area, and superior charge transfer capability was syn-

thesized using the sol–gel followed by self-propagation 

techniques. Using the XRD pattern and TEM image anal-

ysis, the approximate average crystalline size of PTMO-

NCM was determined to be in the range of 10–60  nm. 

�e crystalline size of PTMO-NCM is six times smaller 

than bare ZnO. Compared to ZnO, fifteen times surface 

area enhancement for PTMO-NCM was confirmed from 

BET analysis. �e less crystalline nature of the PTMO-

NCM further confirmed from the stacking faults present 

on the HRTEM (IFFT) image and the absence of diffrac-

tion spots on the SAED ring. �e nine times smaller sem-

icircular diameter on the EIS and an enhanced current 

rise on CV indicate the presence of novel charge trans-

fer properties for PTMO-NCM, compared to ZnO. From 

the adsorption kinetics and adsorption isotherms study, 

the adsorbate–adsorbent interaction was examined to 

be a chemisorption type. From the Langmuir model, the 

maximum adsorption capacity was determined to be 

7.75  mg  g−1. �e photocatalytic equilibrium constants 

were found to be 0.007141  min−1 and 0.005627  min−1 

for CR and AO8 dyes, respectively. �e superior sensing 

capability and noble antibacterial activities of PTMO-

NCM were also verified.
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