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Abstract: In biomaterials science, it is nowadays well accepted that improving the biointegration of 

dental and orthopedic implants with surrounding tissues is a major goal. However, implant surfaces 

that support osteointegration may also favor colonization of bacterial cells. Infection of biomaterials 

and subsequent biofilm formation can have devastating effects and reduce patient quality of life, 

representing an emerging concern in healthcare. Conversely, efforts towards inhibiting bacterial 

colonization may impair biomaterial-tissue integration. Therefore, to improve the long-term success 

of medical implants, biomaterial surfaces should ideally discourage the attachment of bacteria without 

affecting eukaryotic cell functions. However, most current strategies seldom investigate a combined 

goal. This work reviews recent strategies of surface modification to simultaneously address implant 

biointegration while mitigating bacterial infections. To this end, two emerging solutions are considered, 

multifunctional chemical coatings and nanotopographical features.  
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1. Introduction 

The replacement and healing of non-functional tissues has become a major challenge worldwide, due 

to the increase in life expectancy and the prevalence of age-related diseases. In the case of 

osteoarticular conditions, > 1 million total knee and hip replacement surgeries were performed in 2010 

in the United States,[ 1 ,2 ] and projections indicate that the number of primary and revision joint 

arthroplasties will grow significantly in coming years;[3] similar statistics are also found in Europe.[4,5] 

However, and despite the intrinsic capacity of bone to regenerate after injury, complete fracture healing 

and implant fixation are not always possible. [6,7] Thus, joint replacements still fail at unacceptable 

rates, with some reports describing revision rates as high as 17.5% for total hip arthroplasty.[8] 

Successful implant fixation and full recovery of lost function depend on many factors, which include 

patient characteristics (e.g. age, alcohol consumption, smoking habits, metabolic conditions), factors 

associated with the implantation site (e.g. injury and infection at the site, poor vascularization) and 

those related to the surgical procedure and implant properties.[ 9 ] Nonetheless, it is increasingly 

accepted that the two major causes of implant failure are aseptic loosening and infection.[10] For 

example, a recent epidemiologic study indicates that mechanical loosening (20.3%) and infection 

(20.4%) were the most common etiology for revision of total knee arthroplasty in the United States 

between 2009 and 2013.[11] 

Incomplete osteointegration (i.e. not achieving a strong and durable connection between periimplant 

bone and the implant surface)[12] represents a major contribution towards aseptic loosening. Although 

Brånemark’s description of osteointegration originally referred to titanium (Ti) dental implants, it is 

nowadays widely used for orthopedic implants as well. Osteointegration relies on i) mechanical 

interdigitation, which ensures the primary fixation of the implant with bone after surgery, and ii) 

cellular interactions at the surface level, which are responsible of promoting osteoconduction, 

osteoinduction and healing during the first 3-4 months.[13] Both processes are crucial to ensure an 

optimal clinical outcome, i.e. bone healing, allowing the recovery of lost function and patient’s 

mobility.  

Implant infection also represents a major concern.[14,15] In fact, post-implantation, patients are more 

susceptible to infection. This increased vulnerability relates to the fact that the efficacy of the immune 

system is locally reduced by the presence of a foreign body (e.g. a metallic implant) and to the 

predilection of bacteria to adhere to solid substrates.[16] Thus, it only takes a few adherent bacteria to 

attach to the implant surface, grow and multiply to form a biofilm.[17,18] This process is usually initiated 

by planktonic bacteria, which act as primary colonizers, and is followed by a second phase, in which 
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secondary (or late) colonizers are irreversibly bound to the surface and create a biofilm. Once 

established, biofilms are highly resistant to the immune system and conventional drugs, such as 

antibiotics, and may also spread and infect other tissues. This further affects patient morbidity and 

even results in death in severe cases.[19,20,21,22] Moreover, the emergence of antibiotic resistance, e.g. 

methicillin-resistant Staphylococcus aureus (MRSA), poses a serious threat.[14,19,23 ] Although the 

numbers vary greatly depending on the surgical procedure and the type of device, infection of 

orthopedic implants may occur in up to 5% of cases.[9] In the case of dental implants, infection rates 

are higher, reaching values of peri-implantitis or dental implant infections as high as 14%.[24] 

It is therefore not surprising that extensive research is being performed to tackle these two problems, 

and a large number of strategies for surface modification have been described to either improve implant 

osteointegration[9,13,25,26,27,28,29] or reduce bacterial infection.[9,14,24,30,31,32,33,34] However, the necessity 

of simultaneously addressing both these limitations has only been highlighted recently.[10,35,36,37]  

The development of multifunctional strategies that promote osteointegration while mitigating bacterial 

colonization is clearly important because both effects are necessary to ensure an optimal, long-term 

functionality of medical implants. However, we note that this notion is not new. Already in the late 

1980s, the attachment of host cells and bacteria to the implant surface was defined as a competitive 

“race for the surface”.[38] In such a scenario, the winner takes it all. If host eukaryotic cells colonize 

the implant and proliferate faster, the resulting adherent cell layer will discourage bacterial attachment 

and reduce the risk of infection. In contrast, if bacteria are able to adhere and produce biofilms, the 

osteointegration of the implant will be seriously compromised.  

Further, classical approaches focusing only on improving one biological effect might paradoxically be 

detrimental for the other. Implant surfaces that promote osteointegration (e.g. rough surfaces) may also 

facilitate an increased bacterial attachment. Conversely, bactericidal agents used to inhibit bacterial 

infection may be toxic or impair normal host cell functions.[9,10]  

The aim of this review is to provide an overview of the existing strategies of surface modification that 

simultaneously combine cell adhesive/osteoinductive and antibacterial properties. Implants with such 

multifunctional potential would accelerate implant osteointegration and healing but minimize the risk 

of early/late infections – thus improving their clinical outcome and reducing the number of revision 

surgeries. To this end, this review particularly focuses on two emerging solutions, the use of 

multifunctional chemical coatings and nanotopographical features.  
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2. Classical strategies and limitations   

2.1. Strategies to improve osteointegration 

Improvement of the implant’s bioactivity towards enhanced levels of osteointegration has been 

classically addressed by physical and chemical methods of surface modification (Figure 1A), and 

several reviews comprehensively covering these approaches are available.[9,13,25,26,27,28,29] 

 

 
 

 

 

Figure 1: Schematic summary of classical strategies of surface functionalization. A) Improvement of 
osteointegration can be achieved by physical methods, which commonly focus on modifying the surface 
topography (e.g. surface roughness), or chemical methods, which are based on inorganic (e.g. calcium 
phosphate) or organic (e.g. peptide and protein) coatings. B) The strategies to inhibit bacterial infection can be 
divided into passive (e.g. anti-adhesive) or active (e.g. drug eluting or immobilized) coatings.  
 

Physical methods have largely focused on increasing the average roughness (Ra) of the implant surface, 

following experimental evidence in vivo that substrates with higher Ra were capable of achieving 

higher rates of osteointegration.[13,39] This observation may be due to higher micromechanical retention 

of bone on rougher substrates compared to smooth ones, and the positive influence of surface 
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roughness on protein adsorption and osteoblastic function. [40,41,42] Increasing surface roughness at the 

submillimeter – micrometer level can be easily achieved by several inexpensive methods, such as grit 

blasting or acid etching, and many dental implants nowadays display Ra values within 1 to 5 µm. The 

main limitation of non-specifically increasing the surface roughness of an implant above a certain 

threshold (some authors have defined this value as Ra > 0.2 µm)[43,44] is that such rougher surface will 

likely support higher levels of bacterial attachment as well (Table 1). Alternatively, well-defined 

surface modifications at the nanotopographic level have emerged – and are now established – as a 

feasible way to control stem cell response and osteogenic differentiation. Topographical features at the 

nanoscale are not expected to promote bacterial attachment (i.e. they are below 0.2 µm) and can be 

tuned to even prevent infection. This subject will be covered with detail in Sections 4 and 5 of this 

review. 

Chemical coatings generally try to mimic the extracellular matrix (ECM) of bone.[27] As such, 

inorganic coatings are often based on calcium phosphate (CaP) / hydroxyapatite (HAp), the mineral 

component of bone. Organic coatings, on the other hand, include cell adhesive proteins or peptides 

derived from the ECM. The deposition of CaP minerals to bioactivate implant surfaces has represented 

a main focus of research for more than 30 years now.[45,46] This was originally achieved by plasma 

spray and electrodeposition methods,[47,48] but concerns on the (poor) mechanical stability of thick CaP 

coatings were later reported.[49,50] To overcome this, biomimetic strategies were described during the 

90s. In general, these strategies allowed the formation of thinner CaP layers, exhibiting high bioactivity 

and better mechanical properties.[51,52,53,54,55,56,57] A representative and successful example is the 

method developed by Kokubo,[51,58] which combines a basic etching and a thermal treatment of Ti to 

produce an amorphous sodium titanate layer. Immersion of treated surfaces into physiological buffers 

(i.e. simulated body fluid, SBF) drives the nucleation of bone-like apatite, thus conferring bioactivity 

to the material. Interestingly, this method has shown good versatility and can be applied to other 

medically-relevant materials, including niobium, tantalum and zirconium.[59,60,61] 

These coatings are highly osteoconductive and have shown osteointegrative potential in vivo.[9,13] 

According to some authors, CaP materials are osteoinductive as well, which may be attributed to their 

capacity to adsorb proteins such as growth factors (GFs). In this regard, both their chemistry and 

specific surface area can be tuned to efficiently immobilize bone morphogenetic proteins (BMPs) – 

yet it is plausible that these characteristics (i.e. high specific surface area) may concomitantly favor 

bacterial adhesion (Table 1).[62] A potential solution to that is to use CaP coatings as drug delivery 

systems (e.g. loaded with antibacterial agents),[63] so the bioactivity of CaP can be combined with 

antibacterial properties (this strategy will be discussed in Section 3.2).  
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Organic coatings include a diverse range of molecules, from polymers to proteins, peptides or small 

organic molecules. [13,64] In general, this strategy has focused on proteins from bone ECM, with 

fibronectin, vitronectin and collagens being representative examples.[27,28,65] The majority of ECM 

proteins support cell attachment via cell adhesive motifs such as the RGD sequence,[66,67] which 

recognizes and binds to integrin receptors expressed by eukaryotic cells.[68] Integrin (and non-integrin) 

binding ligands have thus been frequently used not only to improve cell adhesion but also to stimulate 

cell proliferation and differentiation.[69,70] As the use of native ECM proteins and synthetic peptides 

entails limitations of stability, biological potency and specificity (these issues still remain 

controversial),[71,72,73] advances in this field have focused on recombinant protein fragments,[74,75,76,77] 

multifunctional peptides[78,79,80] and non-peptidic ligands.[69,81]  

Inducing integrin signaling cascades has become a common strategy to improve bone healing. 

However, to optimally mimic the cellular microenvironment on the biomaterial surface, signaling 

through other mechanisms is required. For instance, several GFs such as BMPs[82] are known to 

cooperate with integrin ligands to regulate bone regeneration. In this regard, a growing body of 

evidence indicates that GF signaling can be regulated and enhanced by dynamic crosstalk with integrin 

receptors.[83,84,85] In particular, recent examples have shown that the combination of ECM proteins with 

BMPs has a synergistic effect to induce stronger osteogenic signals and bone formation in vivo with 

reduced doses of GF.[86,87,88,89] These approaches are of relevance and constitute a hot topic of research, 

as they take advantage of the osteoinductive potential of BMPs while overcoming the complications 

and concerns associated to their use.[ 90 , 91 ] Further information is available in the recent 

literature.[35,84,85] 

Functionalization of medical implants with molecules from the ECM appears to provide a strategy that 

should not promote bacterial colonization. However, organic coatings are not exempt from risks either. 

For example, the production of proteins (or fragments) by recombinant methods is commonly done 

using bacterial systems. Such methods inherently entail the risk of introducing remnants of bacteria 

(e.g. endotoxins) on the biomaterial surface during the coating procedure. In addition, bacteria share 

similar adhesion mechanisms with eukaryotic cells to attach to surfaces, and may bind to ECM proteins 

such as fibronectin[92,93] or collagens[94]. 

Finally, it should be mentioned that the aforementioned strategies (e.g. surface roughness and bioactive 

coatings) can be combined to achieve synergistic effects and improved biological responses. For 

example, grit blasting of titanium surfaces,[95] followed by alkaline etching and thermal treatments (a 

method named 2Step) showed accelerated in vitro formation of bioactive apatite on the bottom of the 

topographical valleys in comparison to smooth surfaces.[ 96 ] This treatment showed improved 
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differentiation of human osteoblastic cells in vitro[97] and enhanced bone formation in vivo.[13,98] 

Another study evaluated the combination of different levels of surface roughness with a cyclic RGD 

peptide. Interestingly, the highest levels of cell adhesion were obtained on the rougher surfaces 

functionalized with the peptide, compared to peptide-coated smooth surfaces or non-functionalized 

controls (smooth and rough).[99] 

2.2. Strategies to inhibit bacterial infection  

The number of strategies investigated to fight bacterial infection is also growing, and this field 

represents a very active area of research in the biomaterials community.[9,14,24,30,31,32,33,34] Although a 

myriad of methods have been described, a common classification is to divide antibacterial treatments 

as passive or active, depending on their ability to discourage bacterial cell attachment or actually kill 

contaminating bacteria, respectively. Active coatings may rely on the release of antibacterial agents 

(release-based) or surface strategies (non-release-based) (Figure 1B). Regardless of classification, the 

goal is always the same: inhibit bacterial adhesion on the surface and prevent the formation of highly 

resistant biofilms.  

Passive coatings are typically based on anti-adhesive polymers that prevent protein and cellular (e.g. 

bacteria) attachment. Alternatively, such anti-fouling effect can also be achieved using 

nanotopographies (see Section 5.1). Among all polymers, polyethylene glycol (PEG) is probably the 

most widely used to confer anti-fouling properties to a material surface.[30,100] Its repelling properties 

are related to its flexible and hydrophilic chains. These chains form a wide exclusion volume that 

blocks protein adsorption and cell attachment. Other examples of low fouling polymers include 

poly(methacrylic acid) (PMAA), dextran or hyaluronic acid.[36] Such coatings can easily be applied to 

a broad range of materials and have the advantage of being simple, effective and not requiring the use 

of drugs. However, the main strength of anti-adhesive coatings represents a concomitant weakness, as 

very efficient bacteria repelling coatings will inhibit eukaryotic cell attachment as well. For this reason, 

anti-fouling polymers often require the incorporation of cell adhesive sequences to preserve cell 

adhesion and the biomaterial’s functionality. Such strategy represents a clear example of 

multifunctional coating and is described later in Section 3.1. 

In contrast to passive coatings, active coatings exert their antibacterial action by directly killing 

bacteria. This may be achieved by a very diverse range of molecules, including bactericidal polymers 

(e.g. chitosan, cationic polymers), quaternary ammonium salts, ions (e.g. silver, zinc), antibiotics, 

bactericidal agents (e.g. chlorhexidine) and antimicrobial peptides (AMPs).[9,14,24,31,32,33,34]  These 

strategies are largely reliant upon two physicochemical approaches: i) the incorporation of antibacterial 
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agents (e.g. antibiotics or silver ions) on the biomaterial via physical adsorption or entrapment in 

polymeric matrices (drug-releasing mechanism), and ii) the covalent functionalization of the materials 

with bactericidal molecules (e.g. AMPs). Although drug-releasing approaches are commonly applied 

and have proven their efficacy in many reports, the second approach (i.e. immobilization of the 

antibacterial molecule) warrants further research because the release of antibacterial agents entails 

several risks in terms of (off target) toxicity, rapid dwindling concentration due to release and loss of 

activity over time; these latter effects necessitate use of very high doses increasing toxicity and 

increasing probability of bacterial resistance. 

In particular, the emergence of antimicrobial resistance mechanisms in bacteria severely compromises 

the use of antibiotics and other antibacterial drugs.[101,102] For instance, the highly virulent multi-drug 

resistant strains of Staphylococcus aureus (e.g. MRSA) establish dangerous infections that in many 

instances are very difficult or impossible to treat with existing medicines.[103] These bacteria, also 

known as “superbugs”, are considered one of the most frequent causes of healthcare-associated 

infections worldwide and are responsible for a high mortality rate. As mentioned before, on 

biomaterial-associated infections, the picture is further complicated by the growth of biofilms, 

exacerbating the antibiotic resistance scenario. Furthermore, it has also been described that the release 

of antibacterial agents such as silver or antibiotics may negatively affect osteoblastic functions as well 

(Table 1). [104,105]  

 

Table 1. Summary of classical strategies of surface functionalization of biomaterials, main effect 
targeted and potential non-wanted effects.  
 

Strategy  Main effect targeted Limitation 

Increasing surface roughness (e.g. 
Ra in the µm range)  

Improvement of osteointegration by 
higher mechanical retention  

Rough surfaces (e.g. > 0.2 µm) may 
also increase bacterial attachment 

Inorganic coatings based on CaP / 
bone-like apatite 

Providing osteoconductive / 
osteoinductive potential to improve 

osteointegration 

Higher specific surface area of CaP 
may also increase bacterial attachment 

Organic coatings based on 
proteins / peptides from the ECM 

Providing osteoconductive / 
osteoinductive potential to improve 

osteointegration 

Bacteria share cell adhesion 
mechanisms with eukaryotic cells 

(using ECM molecules) 

Anti-adhesive coatings Inhibiting / repelling bacterial 
attachment 

Eukaryotic cell attachment is also 
compromised (inhibited) 

Bactericidal coatings (release-
based and non-release-based) 

Killing bacteria / inhibiting bacterial 
attachment 

Eukaryotic cell attachment, functions 
and viability may be also compromised 
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3. Multifunctional chemical coatings  

The functionality of biomaterials can be significantly improved by either enhancing their interaction 

with eukaryotic cells (e.g. osteoblasts – improved osteointegration) or inhibiting bacterial infection. 

However, specifically improving host cell adhesion while inhibiting bacterial attachment is a 

challenging task. As a matter of fact, most approaches intended to confer osteoinductive properties to 

biomaterials have not considered the risk of bacterial colonization. Or worse, treatments or surface 

modifications that facilitate cell adhesion and proliferation, may also favor bacterial attachment and 

biofilm formation. Conversely, research efforts devoted to inhibit bacterial colonization are often 

related to anti-adhesive polymers or cytotoxic agents that may compromise osteoblast-like cell 

functions.   

In this section, we will focus on coatings composed of distinct chemical entities (e.g. materials, 

biomolecules or drugs), which are combined in a way that a dual function (i.e. osteointegrative and 

antibacterial) is achieved. These strategies are normally not intended to modify the properties of the 

bulk material, only its surface, and hence are categorized as strategies of surface functionalization. 

Although the number of examples in the literature is rapidly increasing and a myriad of combinations 

are possible, we will center this section according to three differentiated approaches: i) antibacterial 

coatings functionalized with cell instructive molecules; ii) osteoconductive/osteoinductive coatings 

loaded with antibacterial agents; and iii) immobilized multifunctional peptides (Figure 2 and Table 2).  

3.1 Coatings based on antibacterial polymers  

3.1.1 Functionalized anti-adhesive polymers 

The first approach to achieve cell instructive and antibacterial effects focuses on the use of anti-fouling 

polymers functionalized with cell adhesive peptides (Figure 2A). It is plausible that this strategy was 

originally not conceived as a multifunctional coating, but that it responded to the inherent limitations 

of anti-fouling polymers like PEG. As previously outlined, PEG is very efficient in preventing bacterial 

attachment, but it also blocks the adhesion of wanted host cells – as a matter of fact, PEG is frequently 

used to reduce non-specific cell binding in cellular and biophysical studies. Thus, the incorporation of 

a cell adhesive sequence such as RGD is required to maintain cell-binding properties.  

To the best of our knowledge, the first report following this strategy was published by Harris and 

coworkers in 2004 (Table 2).[106] In this work, PEG was electrostatically adsorbed on Ti surfaces using 

poly-L-lysine (PLL), and the PEG-PLL co-polymer was further functionalized with an RGD peptide 

using vinyl sulfone-thiol chemistry. The PEG coating significantly reduced the attachment of 

Staphylococcus aureus, and, of note, the presence of the RGD peptide did not affect the antibacterial 
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activity. In a subsequent study, the same group showed a reduced attachment of other medically 

relevant bacterial strains (e.g. Staphylococcus epidermidis, Streptococcus mutans and Pseudomonas 

aeruginosa).[107] However, the authors did not check the response of eukaryotic cells to the RGD 

peptide on these studies. Both effects were actually reported in other investigations, which reflected 

the multifunctional potential of this strategy: the passive PEG layer inhibited bacterial attachment, 

while the RGD peptide simultaneously supported (or improved) osteoblast (OB)[108] or fibroblast 

(FB)[109] adhesion. In addition to electrostatic adsorption, a number of other methods have been 

proposed to coat Ti surfaces with PEG, such as electrodeposition, silanization and plasma 

polymerization.[109]  

This technique is facile and versatile, as it can be expanded using different anti-fouling polymers and 

bioactive sequences. For instance, PMAA, dextran or hyaluronic acid have been combined with cell 

adhesive sequences (e.g. RGD, silk sericin) or GFs (e.g. BMP-2, vascular endothelial growth factor, 

VEGF) demonstrating excellent dual potential (see Table 2 for details).[110, 111,112]  

Recent studies have further combined the anti-adhesive properties of PEG and other polymers with 

bactericidal agents (e.g. quaternary ammonium compounds, ions, AMPs or bactericidal polymers) to 

simultaneously exploit passive and active antibacterial mechanisms. [113,114,115,116,117,118,119] Such dual 

antibacterial function aims at both preventing bacterial attachment and killing bacteria able to adhere. 

This approach is also interesting because it inhibits the accumulation of bacterial debris and proteins, 

which may provide anchoring points for the formation of biofilms. These works, however, do not 

address eukaryotic cell adhesion – crucial to ensure implant integration with tissues – and will not be 

covered in this review.  

The major limitation of using polymers to coat substrates is the risk of polymer degradation over time. 

Degradation may compromise the long-term stability and prolonged effect of the coatings. Moreover, 

their fabrication and obtaining of defined and homogenous structures may be challenging. 
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Figure 2: Schematic summary of multifunctional strategies to achieve both cell instructive and antibacterial 
properties. A) Antibacterial polymers can be used to either repel (anti-adhesive, e.g. PEG) or kill (bactericidal, 
e.g. chitosan) bacteria; in both cases the presence of a cell adhesive sequence is required; B) the opposite 
approach is to use osteogenic surfaces (Ti dioxide nanotubes, TNTs, CaP coatings) or RGD-decorated 
nanoparticles that incorporate and release antibacterial agents (e.g. antibiotics, silver, AMPs); C) A third strategy 
is to covalently immobilize cell adhesive sequences and AMPs on the biomaterial surfaces. To this end, peptide 
mixtures or peptidic branched platforms can be used. 
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3.1.2 Functionalized bactericidal polymers  

An alternative strategy to anti-adhesive coatings like PEG is to use polymeric coatings that are directly 

bactericidal. One canonical example is chitosan, which is well known for its antibacterial 

properties.[120] Although this polymer has been also attributed with good biocompatibility and cell 

adhesive activity, several reports have combined chitosan with cell adhesive peptides to achieve a dual 

effect; examples are provided in Table 2. For instance, Neoh and colleagues adsorbed polyelectrolyte 

multilayers of chitosan and hyaluronic acid on Ti, and anchored an RGD peptide to the external 

chitosan layer via carbodiimide chemistry. The resulting surfaces inhibited Staphylococcus aureus 

adhesion while improving osteoblastic responses (adhesion, proliferation and alkaline phosphatase, 

ALP, activity).[121] In a parallel study, the same authors reported the covalent immobilization of RGD-

coated chitosan with very similar biological results.[122] In this case, Ti was sequentially modified with 

dopamine (which binds to Ti via the catechol moiety) and glutaraldehyde, rendering a free aldehyde 

group on the surface that was used to covalently bind chitosan by reductive amination. The RGD 

sequence was finally grafted using carbodiimide chemistry. Another viable solution is to immobilize 

GFs or enzymes onto chitosan layers to improve cell adhesion and also osteogenic differentiation. This 

has been achieved using combining chitosan or carboxymethyl chitosan and with BMP-2[123,124], 

VEGF[112] or ALP[125] (see Table 2 for details). The biological potential of chitosan can be further 

increased with other antibacterial agents. In a recent study, the combination of chitosan with gallium 

effectively decreased Escherichia coli and Pseudomonas aeruginosa viability. Interestingly, gallium 

also showed a beneficial osteogenic effect.[126] 

In addition to chitosan, a number of other antibacterial cationic polymers have been described, such as 

ε-poly-L-lysine (ε-PLL), quaternary ammonium polymers, polyethylenimine and polyguanidines.[127] 

Among them, ε-PLL has shown a broad spectrum of antimicrobial activity against Gram-negative and 

Gram-positive bacteria but low toxicity for eukaryotic cells.[127,128] Taking advantage of this, ε-PLL-

based hydrogels with wound healing and anti-infective properties have been developed.[129,130] As 

positively charged polymers easily adsorb electrostatically on oxidized metallic surfaces, it is expected 

that these polymers may also be used as multifunctional coatings on orthopedic implants.  
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3.2 Osteoconductive/osteoinductive surfaces loaded with antibacterial agents 

A conceptually similar but inverse approach is to use surfaces that have osteoconductive or 

osteoinductive potential. Coatings such as Ti dioxide nanotubes (TNTs) or CaP can be doped with 

antibacterial agents, such as antibiotics or cations.  

TNTs represent a very attractive strategy in the biomedical field as they have excellent corrosion 

resistance and biocompatibility. In particular, they have been described to improve osteoblastic 

functions and, in some cases, have antibacterial potential (although these effects are largely reliant on 

the TNTs geometry and physicochemical properties).[131] On the basis of these interesting features, 

TNTs have been fabricated by different methods (e.g. template-assisted, anodization or 

hydrothermally) and loaded with silver (either as ion[ 132 ] or nanoparticles[ 133 , 134 ]), zinc[ 135 , 136 ], 

copper[137] or antibiotics.[138,139] Overall, this approach has shown good biocompatibility with OB-like 

cells, improved osteogenic responses and reduced adhesion and viability of several bacterial strains 

(Table 2). For this type of system, a crucial parameter to control is the concentration of the molecule 

released, as it has been observed that the release of high concentrations of silver may be cytotoxic for 

several eukaryotic cell types (e.g. epithelial cells, FBs and OBs),[133,140] and that high doses of ZnO 

and silver nanoparticles may decrease the antibacterial activity or even promote bacterial 

attachment.[141] Moreover, recent evidence has shown that certain bacterial isolates may develop 

resistance to silver.[142] Alternatively, TNTs can be engineered in a way that support the adhesion of 

osteogenic cells but reduce bacterial attachment without the addition of ions (see Section 6 for 

details).[143,144] 

A more classical approach would be to employ CaP coatings, which are inherently osteoconductive, 

and load them with antibacterial agents. Here, silver is frequently used too.[145,146,147,148,149] For example, 

HAp coatings doped with Ag2O and SrO were plasma-sprayed onto Ti to incorporate bactericidal 

potential to the inorganic substrate. Interestingly, silver was highly effective against Pseudomonas 

aeruginosa but the release of this ion was detrimental for the activity of OBs. Co-doping the coating 

with SrO seemed to compensate this negative effect and rescued normal osteoblastic functions (Table 

2).[150] Thus, the antibacterial potential of silver can be combined with the bioactivity of strontium 

within CaP-based coatings to improve Ti implants response; recent reports have further exploited such 

interesting multifunctional approach.[ 151 , 152 ] The limitations described for silver in the previous 

examples can be circumvented using other antibacterial agents. For example, AMPs (HHC36: 

KRWWKWWRR; Tet213: KRWWKWWRRC) have been incorporated into CaP coatings.[153,154] 

While Tet213 showed toxicity for OB-like cells even at low concentrations, HHC36 displayed little 

toxicity. HHC36-CaP-coated Ti surfaces showed antibacterial potential against Staphylococcus aureus 
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and Pseudomonas aeruginosa and improved levels of osteoconductivity in an in vivo model of 

trabecular bone growth using cylindrical implants in rabbits.[154] This study suggests that AMPs may 

be a good alternative to silver but also shows that the selection of the peptide is important (i.e. balancing 

good antibacterial activity with low toxicity for eukaryotic cells). Antibiotics have also been frequently 

combined with CaP coatings showing effective osteoconductivity and antibacterial properties.[63] 

Diverse examples of this strategy can be found in the literature and include the use of gentamicin,[155] 

vancomycin[156,157] and its derivatives,[158] among others. 

Regardless of the antibacterial agent used, a common limitation of this approach is the burst release of 

the bactericide. Such rapid release may be deleterious for several reasons, i) it reduces the long-term 

effectiveness of the coatings; ii) a high concentration of drug may be toxic for host cells; and iii) it 

may promote bacterial resistance. A potential solution to this problem is to introduce polymeric 

coatings that cap and protect the coating, and that deliver the drug as they degrade, thus slowing down 

release kinetics. For example, this has been achieved with polylactic-co-glycolic acid (PLGA), which 

was used to control the delivery of the antibiotic clindamycin from different CaP coatings.[159] A 

similar polymeric coating was used to fine-tune the release of drugs from TNTs.[138] In this case, TNTs 

were loaded with gentamicin and subsequently covered by PLGA and chitosan coatings (Figure 3).[138] 

Interestingly, the polymeric coatings not only improved the drug-release kinetics (i.e. decreased burst 

release) but also enhanced OB-like cell adhesion and reduced bacterial viability, representing an 

elegant example of tri-functional coating (e.g. TNT + antibiotic + chitosan). Similarly, the release of 

an AMP from a TNT-CaP coating was tuned using a phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine, POPC) capping layer.[160] Regulating the delivery of drugs from biomaterials with 

polymeric coatings is not easy and depends on many factors (e.g. the degradability of the polymer and 

stability, its chemistry, the number of layers deposited…) but opens new avenues to finely control the 

antibacterial action, ensuring prolonged effects and reducing unspecific toxicity. As new methods 

become available, a higher control might be possible. One of such methods is plasma polymerization, 

which has recently shown to be very effective in tuning the release of antibiotics from different 

biomaterials.[161,162] 
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Figure 3: To control the release of gentamicin from TNTs and exert both cell adhesive and antibacterial activity, 
TNTs were first loaded with gentamicin (encapsulated in a micelle polymer nanocarrier, d-α-tocopheryl 
polyethylene glycol 1000 succinate, TPGS), and then covered by biopolymer coatings (polylactic-co-glycolic 
acid, PLGA, and chitosan). Reproduced with permission.[138] Copyright 2015, Elsevier. 
  
 
Another approach, not sufficiently explored, would be the use of drug delivery systems, i.e. constructs 

already designed to encapsulate and release drugs in a controlled manner. Examples include micelles, 

liposomes and nanoparticles – which can moreover be functionalized with signaling molecules to 

improve receptor targeting. While drug delivery carriers functionalized with integrin-binding ligands 

(e.g. RGD peptides) have been widely used to target cancerous cells and specifically deliver cytotoxic 

(anti-cancer) drugs,[163] immobilization of these systems on biomaterials is not common.  
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Figure 4: A) Schematic representation of the multifunctional nanoparticles (NPs). The combination of 
hydrophilic and hydrophobic moieties confers an amphipathic structure to the NP. The drug roxithromycin is 
encapsulated in the hydrophobic oily core of the NP and the surface is decorated with the cyclic RGD peptide 
c(RGDfK). B) Multifunctional activity of the NPs. C) Immunostaining of OB-like cells on Ti; the samples 
functionalized with RGD-decorated NPs promoted higher cell adhesion and focal adhesions than controls; D) 
Antibacterial effect of the coatings. Roxithromycin significantly inhibits Streptococcus sanguinis attachment in 
a concentration-dependent manner. Ctrol: Ti non-functionalized; APTES: Ti aminosilanized; Lys/EDA 
(ethylenediamine): Ti functionalized with NPs (different crosslinker used) without RGD; Lys/EDA-RGD: Ti 
functionalized with RGD-NPs. Reproduced (adapted) from [164].  
 
 
In this regard, we recently described the use of RGD-decorated polyurethane-polyurea nanoparticles 

loaded with the antibiotic roxithromycin as multifunctional systems to functionalize Ti (Figure 4).[164] 

The multifunctional nanoparticles enhanced OB-like adhesion (cell numbers, spreading and focal 

adhesion formation) and proliferation compared to plain Ti and Ti functionalized with nanoparticles 

without the RGD motif. Simultaneously, the nanoparticles strongly suppressed the adhesion of 

Streptococcus sanguinis on the surfaces in a concentration (i.e. of roxithromycin)-dependent manner. 

The nanoparticles released 60-70% of the drug within the first 4-6 h, which would address the elevated 

risk of infection post-implantation,[165,166] but the remaining drug was released very slowly, allowing 

a sustained antibacterial effect at longer time periods. Interestingly, the remaining ca. 30% of drug was 

still efficient at inhibiting bacterial colonization at longer time points. Such design would thus tackle 

both acute infections post-surgery and chronic defense mechanisms; however, the application of this 

strategy on biomaterials remains to be fully explored.  
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Bovine serum albumin (BSA)-based nanoparticles (BNPs) are also gaining increasing attention as 

multifunctional systems with the capacity to control the release of diverse drugs. In a recent report, Lu 

and coworkers described nanostructured architectures on Ti surfaces by alternating layers of BNPs 

loaded with either BMP-2 or vancomycin.[167] The coatings were produced following a layer-by-layer 

approach, as BNPs were coated with chitosan or oxidized alginate to render positively or negatively 

charged BNPs, respectively. These coatings allowed a long-term sustained release of the drugs and 

showed a remarkable multifunctional potential: while the nanostructured texture and BMP-2 promoted 

BMSC adhesion, proliferation and osteogenic differentiation (i.e. increased ALP activity), vancomycin 

inhibited the growth of Staphylococcus epidermidis up to 7 days of incubation (Table 2).[167] These 

systems are versatile and can be used to encapsulate other substances. For example, in another study 

of the same group, BNPs-coated with chitosan and loaded with dexamethasone were combined with 

vancomycin-conjugated alginate to produce films with osteoinductive and antibacterial properties.[168] 

 

3.3 Immobilization of peptides  

The last multifunctional strategy focuses on the covalent immobilization of peptides. This approach, 

together with the use of nanostructured surfaces (see Section 5), is particularly attractive to combat 

infections, as it does not rely on transient drug-diffusion processes. Such processes are inherently 

limited and subjected to depletion over time, as well as having the risk of promoting antimicrobial 

resistance.  

The co-immobilization of peptides has been widely explored to improve the osteoconductive and 

osteoinductive properties of biomaterials.[35] This strategy takes advantage of the well-defined 

structure, ease of synthesis and good stability of short peptides, but improves their often moderate to 

low bioactivity and specificity, better recapitulating the complex microenvironment of bone ECM. The 

combination of peptide motifs has proven useful to e.g. synergize the binding towards integrin α5β1 

(RGD + PHSRN),[78,79,169] improve osteoblast functions via integrin and proteoglycan binding (RGD 

+ KRSR/FHRRIKA)[80,170,171] or trigger integrin and growth factor signaling (RGD + BMP-derived 

peptides).[ 172 , 173 ] These approaches will not be covered here, but are described in detail in the 

literature.[35,174]  

The combination of cell adhesive sequences with AMPs offers excellent opportunities to develop 

multifunctional biomaterials. It is important to note that AMPs display high potency against a broad 

spectrum of bacteria. Moreover, the mechanism of action of AMPs (i.e. interaction with bacterial 

membranes) appears to have a lower propensity to develop antibacterial resistance compared to 
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conventional antibiotics.[175,176,177,178] Following this rationale, the functionalization of Ti with an 

equimolar mixture of an RGD peptide and the AMP HHC36 inhibited the attachment of 

Staphylococcus aureus and Escherichia coli while improving bone marrow stromal cell (BMSC) 

adhesion.[179] Although the authors implemented a click chemistry-based methodology to modify the 

proportion of peptide grafting, controlling the concentration, ratio, and spatial organization of peptide 

mixtures upon binding to a surface is a challenging task and not always possible. To address that, we 

developed a peptidic branched platform with the capacity to simultaneously present two peptide 

sequences in a chemically controlled fashion.[78,79] Using this platform we recently combined the RGD 

sequence with LF1-11, an AMP derived from lactoferrin that showed excellent antibacterial properties 

on Ti surfaces.[ 180 , 181 ] Such approach very effectively improved OB adhesion, proliferation and 

mineralization, and inhibited Staphylococcus aureus and Streptococcus sanguinis attachment and 

biofilm progression (Figure 5).[182] Importantly, the bifunctional molecule was also effective in a co-

culture scenario in which the surfaces were exposed to bacterial suspensions (pre-infective condition) 

for 2h before seeding OB-like cells. On non-functionalized surfaces the presence of bacteria drastically 

inhibited cell attachment. In contrast, on the surfaces coated with the RGD/LF1-11 platform, normal 

cell adhesion and viability was preserved. SEM analysis further revealed that in such a competitive 

scenario, bacteria directly interfered with OBs (e.g. by surrounding and covering them), preventing 

eukaryotic cells from attaching and adequately spreading. The multifunctional coating, through its dual 

cell adhesive and antibacterial effect, proved useful to overcome the deleterious effects of initial 

bacterial adherence. These data support the concept of the “race for the surface”[14,38] and indicates that 

rather than a competition cells actually “fight for the surface”.  

Although this strategy has potential to develop anti-infective coatings, it should be emphasized that 

surviving bacteria, even very low numbers, might be capable of proliferating on the implant surfaces, 

initiating the formation of new biofilms. Moreover, bacterial debris and proteins from the extracellular 

environment may serve as new anchoring points for other colonizers.[183] To solve this, cell adhesive 

and antibacterial peptides can be combined together with anti-adhesive polymer coatings to confer 

biomaterials with a trifunctional potential (cell adhesive, bacterial repellent/bacteriostatic and 

bactericidal). We recently followed this approach (Figure 6), combining PEG coatings 

electrodeposited onto Ti surfaces with the aforementioned RGD/LF1-11 platform, which was 

covalently attached to the PEG layers using a maleimide crosslinker.[184] As expected, PEG coatings 

inhibited protein adsorption and cell (both bacteria and OB-like cells) adhesion. However, the presence 

of the RGD sequence efficiently rescued cell adhesion, while the AMP increased the antibacterial 

potential of the coatings, reaching values of Streptococcus sanguinis adhesion below 0.2% (Table 2 
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and Figure 6). In another example, the triblock copolymer Pluronic F127 (PEG-polypropylene glycol-

PEG) (PF127) was functionalized with either RGD or an AMP to coat the biomaterial surfaces.[185] In 

detail, surfaces were coated with different mixtures of PF127, PF127-RGD and PF127-AMP. By 

tuning the proportion of these polymers, antibacterial potential against Staphylococcus aureus, 

Staphylococcus epidermidis, and Pseudomonas aeruginosa, or improved FB adhesion could be 

obtained.  

An alternative approach would be the combination of AMPs with GFs. In this regard, Yüksel et al. 

recently described a bilayer of PLGA membranes with antibacterial and bioactive properties.[186] The 

dual function was achieved by covalently immobilizing the AMP magainin II within one of the layers, 

and incorporating epidermal growth factor (EGF) in the other layer. This approach reduced the 

adhesion of Escherichia coli and Staphylococcus aureus and supported FB adhesion. This strategy 

opens the way to combine AMPs with other GFs (e.g. BMPs) or osteogenic peptides. Particularly 

interesting would be the co-immobilization of AMPs with BMP-derived peptides,[ 187 ,188 ] as this 

strategy would allow for an osteogenic effect at the implantation site, reducing the risk of an 

uncontrolled release of GFs. However, while RGD has been co-immobilized with peptides derived 

from BMP-2[172] or BMP-7,[173] showing enhanced osteogenic differentiation of stem cells, the 

combination of BMP-mimetics with AMPs remains to be explored. Another approach that deserves 

further investigation is to integrate dual functions within one single biomolecule. Bronk et al. 

engineered a collagen-mimetic molecule that upon immobilization on Ti enhanced OB-like cell 

adhesion and differentiation, and prevented Staphylococcus aureus and Staphylococcus epidermidis 

colonization.[189] Godoy-Gallardo et al. reported a simple but effective multifunctional strategy by 

grafting triethoxysilypropyl succinic anhydride (TESPSA) silane on Ti. Silanes have been widely used 

as crosslinker to attach bioactive peptide sequences; however, in this study, the silane alone enhanced 

the expression of osteogenic markers on OB-like cells, decreased the adhesion of Streptococcus 

sanguinis and Lactobacillus salivarius, and supported FB adhesion in a co-culture competitive setting 

in the presence of bacteria.[190] Yuran et al. recently reported a minimalistic bifunctional peptide 

combining the RGD sequence with two units of fluorinated phenylalanine (Phe(4-F)), which promoted 

peptide self-assembly into cell adhesive and bacterial resistant coatings.[191] The amino acid 3,4-

dihydroxyphenylalanine (DOPA) was used as anchoring unit to bind the peptide to Ti surfaces (Table 

2).    
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Figure 5: A) Classical approaches tend to functionalize surfaces with either cell adhesive or antibacterial 
peptides, but ignore a combined effect. Using a peptidic platform both activities can be simultaneously exploited 
on the biomaterial surface; B) Chemical structure of the multifunctional platform; C) Immunostaining of actin 
fibers on cell-bacteria co-culture studies. Pre-incubation of Ti surfaces with bacteria (S. sanguinis or S. aureus) 
inhibits the adhesion of OB-like cells (upper row); functionalizing the surfaces with the platform restores cell 
adhesion to normal levels (lower row); D) SEM analysis of OB-bacteria interactions. In the absence of the 
platform bacteria surround cells and block their spreading. SS: S. sanguinis; SA: S. aureus. Reproduced 
(adapted) with permission.[182] Copyright 2017, American Chemical Society. 
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Figure 6: A) Trifunctional strategy: i) a repellent coating (e.g. PEG) prevents bacterial attachment; ii) a cell 
adhesive sequence (e.g. RGD) supports eukaryotic cell adhesion; and iii) a bactericidal molecule (e.g. AMP) 
kills adhering bacteria; B) Combining the low fouling potential of PEG with a cell adhesive/bactericidal 
platform (RGD + LF1-11) efficiently supports OB-like cell adhesion but totally suppresses the adhesion of S. 

sanguinis. Figure 6B is reproduced with permission.[184] Copyright 2018, Elsevier. 
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Table 1. Selection of representative examples of multifunctional approaches on biomaterials      

Strategy Biofunctional elements Substrate + coatings  
(immobilization method)[a]  

Main biological effects[b] References 

Functionalized anti-
adhesive polymer 

PEG + RGD Ti + PLL-g-PEG (electrostatic adsorption) 
+ RGD (vinyl sulfone-thiol) 

↓ S. aureus adhesion; Cell adhesion not studied [106]  

 

 PEG + RGD Ti + PLL-g-PEG (electrostatic adsorption) 
+ RGD (vinyl sulfone-thiol) 

↓Bacterial adhesion (several strains); Cell adhesion not studied [107] 

 PEG + RGD Ti + PLL-g-PEG (electrostatic adsorption) 
+ RGD (vinyl sulfone-thiol) 

↓ S. epidermidis adhesion; ↑ OB-like adhesion [108] 

 PEG + RGD Ti + PEG (several methods) + RGD 
(physisorption) 

↓ S. sanguinis and L. salivarius adhesion; ↑ FB adhesion [109] 

 Dextran + BMP-2 Ti6Al4V-dopamine + dextran (reductive 
amination) + BMP-2 (reductive amination) 

↓ S. aureus and S. epidermidis; ↑ OB response [110] 

 PMAA + silk sericin Ti + PMAA (silanization + SI-ATRP) + 
silk sericin (carbodiimide chemistry)   

↓ S. aureus and S. epidermidis adhesion; ↑ OB response [111] 

 HA + VEGF Ti + catechol-HA (direct chemisorption) + 
VEGF (carbodiimide chemistry) 

↓ S. aureus adhesion; ↑ OB response [112] 

Functionalized 
bactericidal polymer 

CM-CH + VEGF Ti-dopamine + CM-CH (carbodiimide 
chemistry) + VEGF (carbodiimide 
chemistry) 

↓ S. aureus adhesion; ↑ OB response [112] 

 HA/CH + RGD Ti + HA/CH (PEMs electrostatic 
adsorption) + RGD (carbodiimide 
chemistry) 

↓ S. aureus adhesion; ↑ OB response  [121] 

 CH + RGD Ti-dopamine + CH (glutaraldehyde 
crosslinking) + RGD (carbodiimide 
chemistry) 

↓ S. aureus and S. epidermidis adhesion; ↑ OB response [122]  

 CM-CH + BMP-2 Ti6Al4V-dopamine + CM-CH 
(carbodiimide chemistry) + BMP-2 
(carbodiimide chemistry) 

↓ S. aureus and S. epidermidis adhesion; ↑ OB and MSC 
response 
 

[123] 

 CM-CH + ALP Ti-dopamine + CM-CH (carbodiimide 
chemistry) + ALP (carbodiimide chemistry) 

↓ S. epidermidis adhesion; ↑ OB, MSC and ADSC osteogenic 
differentiation 

[125] 

 CH/PAA + Ga Ti + PAA (electropolymerization) + CH-Ga 
(electrochemical deposition) 

↓ E. coli and S. epidermidis viability; OB-like adhesion 
supported and ↑ BMP-2 expression  

[126] 
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Osteoconductive 
/osteoinductive surface 
loaded w/ antibacterial 
agents 

TNT + Ag Ti > TNT (anodization) + Ag 
(electrodeposition) 

↓ P. aeruginosa adhesion; Biocompatible for OBs [132] 

 TNT + Ag2O NPs Ti > TNT-Ag2O (TiAg magnetron 
sputtering and anodization) 

↓ S. aureus and E. coli; OB-like response not influenced 
compared to TNTs 

[133] 

 TNT + Zn Ti > TNT (anodization) + Zn (hydrothermal 
treatment) 

↓ S. aureus adhesion and proliferation; ↑ OB-like response; ↑ 
Bone formation in vivo 

[135] 

 TNT + gentamicin + 
CH/PLGA 

Ti > TNT (anodization) + gentamicin (drop 
casting) + CH/PLGA (dip coating) 

↓ S. epidermis viability; ↑ OB-like response [138] 

 HAp + Ag2O + SrO Ti + HAp/Ag2O/SrO (plasma spray) ↓ P. aeruginosa viability; ↑ OB-like response for HAp + Ag/Sr 
compared to HAp 

[150] 

 CaP + HHC36 Ti + HAp (electrolyte deposition) + HHC36 
(physical adsorption)  

↓ P. aeruginosa and S. aureus viability; ↑ OB-like cell 
adhesion; ↑ Bone formation in vivo 

[154] 

 cRGD + roxithromycin Ti + RGD-NPs/roxithromycin (silanization; 
roxithromycin is loaded by emulsification) 

↓ S. sanguinis adhesion; ↑ OB-like response [164]  

 BMP-2 + vancomycin Ti + BNP/BMP-2 + BNP/vancomycin 
(layer-by-layer adsorption; drugs are loaded 
by a desolvation method 

↓ S. epidermidis growth; ↑ BMSC response [167] 

Immobilized peptides RGD + HHC36 Ti  + RGD/HHC36 (silanization + click 
chemistry) 

↓ S. aureus and E. coli adhesion; ↑ BMSC adhesion  [179] 

 RGD + LF1-11 Ti + RGD/LF1-11 (silanization) ↓ S. aureus and S. sanguinis; ↑ OB-like response [182] 

 PEG + RGD + LF1-11 Ti + PEG (electrodeposition) + RGD/LF1-
11 (maleimide-thiol chemistry) 

↓ S. sanguinis; ↑ OB-like response [184] 

 PF127 + RGD + AMP Silicon + PF127/PF127-RGD/PF127-AMP 
(physical adsorption) 

↓ S. aureus, S. epidermidis and P. aeruginosa adhesion; ↑ FB 
adhesion 

[185] 

 EGF + magainin II PLGA + EGF (physical entrapment) + 
magainin II (carbodiimide chemistry) 

↓ S. aureus and E. coli adhesion; ↑ FB adhesion [186] 

 Collagen-mimetic Ti + collagen-mimetic (physisorption) ↓ S. aureus and S. epidermidis adhesion; ↑ OB-like adhesion 
and differentiation 

[189] 

 TESPSA silane Ti + TESPSA (silanization) ↓ S. sanguinis and L. salivarius adhesion; ↑ OB-like 
differentiation; ↑ FB adhesion 

[190] 

 RGD + Phe(4-F) Ti + DOPA-peptide (chemisorption) ↓ E. coli adhesion; ↑ OB-like adhesion [191] 
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[a] “Substrate” refers to the material used, and “coating” to the combination of chemical entities that exhibit multiple biological activity; the methods used to immobilize the coatings are described in brackets.  

[b] Only the main biological effects are highlighted. Reduced bacterial adhesion commonly indicates a reduction in bacterial cell numbers compared to controls. Improved cell response usually refers to increased 
values of cell adhesion, proliferation and differentiation compared to controls. Detailed data can be found in the corresponding references.  

 

Abbreviations used: ADSC = adipose-derived stem cell; BMSC = bone marrow stromal cell; BMP = bone morphogenetic protein; BNP = BSA-based nanoparticle; CH = chitosan; CM-CH = carboxymethyl 
chitosan; cRGD = cyclic RGD; DOPA = 3,4-dihydroxyphenylalanine; FB = fibroblast; HA = hyaluronic acid; HHC36 peptide = (KRWWKWWRR); MSC = mesenchymal stem cell; NP = nanoparticle; OB = 
osteoblast; PAA = poly(acrylic acid); PEG = poly(ethylene glycol); PEMs = polyelectrolyte multilayers; Phe(4-F) = fluorinated phenylalanine;  PLL-g-PEG = poly-L-lysine-graft-poly(ethylene glycol); PMAA = 
poly(methacrylic acid); SI-ATRP = surface initiated atom transfer radical polymerization; VEGF = vascular endothelial growth factor;  

 

Bacterial strains: Escherichia coli = E. coli; Lactobacillus salivarius = L. salivarius; Pseudomonas aeruginosa = P. aeruginosa; Staphylococcus aureus = S. aureus; Staphylococcus epidermidis = S. epidermidis; 
Streptococcus sanguinis = S. sanguinis; Streptococcus mutans = S. mutans.  
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4. Osteogenic nanotopographies  

We have already discussed that implant osteointegration can be enhanced by physical and 

chemical methods. While physical modifications (i.e. surface roughness) improve implant 

functionality by increasing its micromechanical retention with bone, chemical coatings such as 

integrin-binding molecules or CaP have been described to promote osteogenesis from 

mesenchymal stem cells (MSCs). While roughness is undoubtedly useful, it is hard to dissect 

effects as surfaces with two similar Ra values can appear very different and so could potentially 

have different effects on cells. This section of the review will focus on cell response to defined 

nanotopography with particular consideration on nanotopographically-directed osteogenesis. 

We note that roughness based approaches are being developed – most notably for orthopedic 

application (see Section 2.1). These are not a focus of this review, but excellent reviews are 

available.[192,193] 

The ability of surface topography to guide cells has been known for over 100 years,[194] with 

the term ‘contact guidance’ becoming used in the 1950/60s.[195,196]. In the 1980s, understanding 

of the cell-topographical interaction at the microscale started to become elucidated thanks to 

microfabrication techniques such as photolithography and wet/dry etch.[ 197 , 198 ] This 

proliferation of biological data revealed that all cell types tested responded to 

microtopographical features.[199,200,201,202,203,204,205] As semiconductor technology advanced to 

help develop faster computer microchips, the study of nanotopographical-cell interactions 

became possible with first indications of the cells’ ability to contact guide to nanopatterns 

shown using substrates derived from laser holographical lithography.[206] By the turn of the 21st 

century, both top-down (lithographical, e.g. electron beam lithography, colloidal 

lithography[ 207 , 208 , 209 ]) and bottom up (e.g. polymer phase separation, block co-polymer 

separation, etc.[210,211,212,213]) approaches were becoming available to cell biologists. These 

substrates allowed development of understanding that cells could respond to features where all 

features were nanoscale;[214] soon it was understood that a broad range of cells could respond 

to nanoscale features[215] – even platelets.[216] 

Considering controlled topography, top-down techniques such as electron beam lithography 

(EBL) allow patterning for cell experimentation with features down to 10 nm in size.[217] 

Moving from cell-scale to clinical-scale may, however, be challenging for such techniques. 

In contrast, bottom-up techniques such as polymer phase separation,[211] colloidal 

lithography,[218] block co-polymer lithography[219] and micelle lithography[220] where larger 

areas can be fabricated more simply – but with some loss of the resolution that EBL can offer 
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– are gaining popularity. However, for bone formation perhaps this is not so important. A study 

using EBL to fabricate nanopits with 120 nm diameter, 100 nm depth and 300 nm-center-to-

center positioning in a square pattern showed that MSCs did not form osteoblasts when the 

features were precisely placed (in fact a later study showed enhanced MSC self-renewal[221]) – 

rather osteoblast specific differentiation was only observed when the features were slightly 

offset (by up to  50 nm from the center positioning) (Figure 7A).[222] It is thus noteworthy that 

block co-polymer micelles can now be fabricated almost to the scale that EBL has been used to 

generate controlled nanodisorder, i.e. with  50 nm feature offsets known to drive cell 

function.[ 223 ] Copies (via nickel shims) of phase separated nanosurfaces and colloidal 

nanosurfaces in bio-polymers (polymethylmethacrylate and polycaprolactone) have now been 

shown to influence MSC growth in vitro.[224] Further, such bottom-up methodologies have been 

used to generate masks for anodization of e.g. Ti implant materials to enhance 

osteogenesis.[225,226,227,228] 

Moving into 3D is challenging for lithographical and demixing processes due to their 2D 

natures. Interestingly for tissue engineering, polymer demixing can be performed inside 3D 

constructs such as tubes[229] and, indeed, influence MSC growth.[230] Tube-like structures are 

typical in bone e.g. Haversian and Volkman’s canals (the osteon system). A further major 

development towards 3D is a topographical approach with the potential to incorporate ultra-

precise (e.g. lithographical) nanotopographical fabrication.[231] In this system, a biodegradable 

polymer (e.g. polycaprolactone) was embossed between two micron or nanopatterned surfaces. 

Included in the design were spacing posts (approx. 50 µm high) to allow perfusion of media 

and oxygen during pre-conditioning. The embossed sheet was rolled to form a larger construct 

and seeded with cells prior to pre-conditioning in vitro. Also, ‘car-park’ assemblies have been 

made using osteogenic micropatterns embossed onto polymeric sheets that incorporate large 

spacers to separate layers of the ‘car-park’;[232] embossing of osteogenic nanotopographies in 

this system is easily envisaged.   

If we consider mechanism of cellular response, cell adhesions are very sensitive to nanoscale 

features, being able to form filopodia in response to topographies down to 10 nm in height[233]  

but, further, being seen to have to have ‘nanopodial’ interactions down to 8 nm in height.[234] 

At the microscale, contact guidance by features of similar scale to the cells themselves is easy 

to envisage (i.e. they have no choice). At the nanoscale, however, subcellular features, i.e. 

adhesions, must reorganize to guide cells. As adhesive proteins encounter a nanoscale cue (e.g. 

a nanogroove or a fibronectin line) - an order of magnitude smaller than the cell, but on a similar 
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scale to filopodia and integrin receptors - the adhesions will elongate along the cue and this, in 

turn, will drive actin alignment in the direction of the cues.[235] This will align the cell literally, 

and metaphorically, from the bottom-up (in fact, this is a first step for large scale tissue 

organization during development).  

In the context of this review, particularly studied has been MSC to osteoblast (bone forming 

progeny) differentiation. A range of nanoscale topographies from nanodisordered surfaces,[222] 

to biomimetic helical structures with collagen-like 63 nm periodicity[236] has been demonstrated 

to induce osteogenesis (Figure 7B).   

At the cell-material interface, cell adhesion formation has been widely studied and is considered 

important in defining MSC to osteoblast differentiation. When observing MSC differentiation 

to bone, it is not the number of adhesions that a cell can form per se that is important for bone 

production, rather the size of the adhesions. Studying MSC adhesion size during osteogenesis 

shows that larger adhesions form.[222] In addition, it has been shown using RGD functionalized 

gold nanopatterns that a slight disorder significantly enhances MSC adhesion.[220] It has been 

seen that disorder can increase adhesion through bringing groups of adhesive points closer 

together, into a critical 70 nm range[237] to facilitate gathering of integrins into focal adhesions 

and thus facilitate integrin gathering. Also, MSCs cultured on osteogenic nanopatterns have 

been indicated to express endogenous vitronectin over fibronectin.[238] Vitronectin may be 

important, as it allows better bridging between integrin clusters via intracellular adhesion 

proteins such as vinculin and talin.[239] Efficient bridging will allow cells to form larger, more 

mature adhesions, over discontinuities such as nanopits.  

In further consideration of adhesion mechanism, the formation of “super-mature” adhesions 

(SMAs)[240] (> 5 µm long) is important for stabilizing the large osteoblast morphology and 

resultant bone formation. It is likely that such super-mature adhesions are stabilized/scaffolded 

by proteins such as RACK1,[241,242] allowing increased levels of intracellular tension,[243,244] 

mediated by RhoA Kinase (ROCK), important to MSC fate.[245,246,247] 
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Figure 7. Nanoscale topographical control of MSC differentiation. (A) MSCs respond to nanoscale 
disorder. Using electron beam lithography to fabricate arrays of nanopits (120 nm diameter, 100 nm 
deep) in a square array (SQ, 300 nm center-center pitch) with up to  50 nm offset from the center square 
position (nano), increased adhesion and adhesion co-localization of integrin (here integrin beta 5 is 
stained) and the BMP2 receptor (here BMPR1a is stained) and this drives MSC osteogenic progression, 
as demonstrated by expression patterns of the osteogenic genes RUNX2 (runt related transcription factor 
2), osterix (OSX), osteopontin (OPN), osteocalcin (OCN) and alkaline phosphatase (ALP). Reproduced 
(adapted) under the terms of the Creative Commons Attribution 4.0 International license (CC BY 4.0) 
[238] Copyright 2014, American Chemical Society. (B) Synthetic collagen banding patterns with 100 nm 
repeat (non-physiological) and 63 nm repeat (physiological); MSCs are stimulated to undergo 
osteogenesis on the physiological pattern, but not the non-physiological pattern. Reproduced (adapted) 
with permission.[236] Copyright 2013, American Chemical Society. 

 

5. Antimicrobial nanotopographies 

We have seen in the previous sections that current strategies to combat biomaterials-associated 

infections are largely reliant upon chemical means i.e. use of polymers (or surface functional 

groups) to prevent protein adsorption and inhibit bacterial adhesion, or coatings that release 

chemical agents such as antibiotics, silver ions or quaternary ammonium salts into the 

surrounding microenvironment. A critical limitation of these chemistry-based strategies is that 

they are transient because leaching of antimicrobial agents is limited and subject to depletion 

over time. Dwindling antibiotic concentration and/or prolonged bacterial colonization of 

materials may also inadvertently promote development and spread of antimicrobial resistance. 

A physical approach, such as topography, could potentially overcome the above problems and 

offers completely new and alternative solutions to biomaterial infections.  
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5.1 Anti-biofouling nanotopographies 

Surface topography has been known to alter bacterial adhesion and biofilm formation. It has 

become evident that surface hydrophobicity/hydrophilicity and effective contact area are two 

key factors that are responsible for the different bacterial adhesive behavior on surfaces. A well-

known example is the superhydrophobic ‘lotus effect’, which is the result of a combination of 

hydrophobic chemistry (wax) and the hierarchical and multiscale surface structure, i.e., 

nanostructures on microstructures. The hydrophobic epicuticle layer, with high density of nano-

featured wax crystalloids, covers micro-featured convex surface structures, creating a surface 

with very high contact angle (ca. 161°).[248] It was found that when the surface of a lotus leaf 

was dipped in ethanol to remove the wax, the contact angle of a water drop decreased 

dramatically from ca. 161° to 122°, and the water droplet was pinned to the surface.[249] This 

intrinsic hydrophobicity of the surface principally originated from the pure hierarchy of 

multiscale structures, similar to that observed on the surface of a rose petal. The lotus effect 

requires air to become “trapped” between the nanostructures on the surface, i.e. the Cassie and 

Baxter state, while the rose petal effect allows the liquid film to impregnate the micro/nano 

topographies, i.e. the Wenzel state, because the non-waxy petal surface has a good wetting 

characteristics with water. Many plant leave surfaces with micro/nano-topographies, e.g. rice 

and taro, have been shown to be able to control the bacterial fouling and biofilm 

formation.[250,251] Inspired by nature, various nanoengineered surfaces have been investigated 

in terms of their surface hydrophobicity/hydrophilicity and nanotopography. Hizal et al.[252] 

reported two nanostructured superhydrophobic surfaces with extremely low bacterial adhesion 

under dynamic flow condition. Both 2D nanoporous surface and 3D nanopillared surface 

showed a significant reduction in adhesion for Staphylococcus aureus and Escherichia coli, 

which was more pronounced for the hydrophobic surface treated with a Teflon coating (Figure 

8). This was attributed to a decreased contact area for the 2D porous surface and effective air 

entrapment in 3D nanopillars. The bacterial adhesion force on these nanoengineered surfaces 

was reduced as measured by atomic force microscopy (AFM). Similar anti-fouling effects were 

observed on hydrophilic TiO2 nanopillars[253] or nanotubes.[254] The nanofeature dimensions e.g. 

nanopillar diameter, height and spacing affected the bacterial adhesion due to the change of 

effective contact area.[255,256] Strong bacterial repelling has also been reported on highly ordered 

alumina nanoporous surfaces[257] and polymer (PLGA) nanopit surfaces with pore sizes ranging 

from 200 to 500 nm.[258 ] This contact-area-reducing approach has been attempted in real 

medical applications. Serrano et al.[259] reported oxygen plasma treated sutures with lamellae 

voids with feature size ≤ bacteria size. The results showed that bacterial attachment was 
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decreased with reduced surface contact area and effective prevention of biofilm formation was 

achieved in absorbable sutures with top area fractions below 30% presenting lamellae with 200-

500 nm thickness and several microns in length, separated by 1-2 um voids. 

 

 

Figure 8. FE-SEM images (a–d) and schematics (e–h) representing the bacterial adhesion on 
hydrophobic nanopillared surfaces. In panels e and g, the schematics represent the bacteria are floating 
over the entrapped air layer under static conditions. In panels f and h, the schematics represent the 
bacteria being washed off under flow. Reproduced with permission.[252] Copyright 2017, American 
Chemical Society. 
 

5.2 Bactericidal nanotopographies 

Bactericidal nanotopographies have not been reported until recently, although bactericidal 

nanostructures in the form of suspended colloids were investigated much earlier. For example, 

Liu et al. reported that the single-walled carbon nanotubes (SWCNTs) in a suspension are 

bactericidal upon contact with bacteria. They found that the sharpness and concentration of the 

SWCNTs coupled to mechanical shaking of the SWCNT suspension could enhance the 

bacteria-killing performance. They described these SWCNTS as ‘nano darts’ which were able 

to physically pierce the bacterial cells.[260]  

Ivanova et al. first reported bactericidal nanotopographies on cicada (Psaltoda claripennis) 

wings. When culturing Pseudomonas aeruginosa cells on Psaltoda claripennis wings, which 

comprised 200 nm tall nanopillars (or nanocones) with a diameter of 100 nm at the base and 60 

nm at the cap, and spaced 170 nm apart from center to center, it was noted that the bacterium 

died.[261] They postulated that cell death was caused purely by the mechanical rupturing of 

bacterial cell walls. A biophysical model has been developed to explain the mechano-
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bactericidal action of the cicada wings.[262] Kelleher et al. tested three different cicada wings 

(Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila).[263] They found a 

strong correlation between the bactericidal properties of the wings and the scale of the 

nanotopographies present on the different wing surfaces. Sharper and more densely packed 

nanopillars on Megapomponia intermedia wings killed more bacteria, probably by inducing a 

greater strain on the bacterial cell walls. Subsequently, more naturally occurring bactericidal 

surfaces have been reported.[264,265] They include nanopillars on the dragonfly wing,[266] the 

damselfly wing,[267] the moth eye,[268] the rat-tailed maggot, the aquatic larva of the Drone 

fly,[269] and the nanotipped hairs on gecko skin.[270]  

Inspired by nature, a number of studies have since been carried out to develop bactericidal 

nanotopographies on synthetic materials. They include silicon[271,272,273,274] and diamond coated 

silicon,[275,276,277] titanium and its alloy,[278,279,280,281,282,283,284] polymers,[285,286,287,288] stainless 

steel[289] and aluminium.[290] Table 3 lists a summary of biomimetic bactericidal surfaces on 

various materials currently in development. Examples of some bactericidal nanotopographies 

created on various synthetic materials are shown in Figure 9. 
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Table 3. Current development in biomimetic and bio-inspired bactericidal surfaces on various substrates. 
 

Material Surface 

nanotopography 

Fabrication 

method 

Bacteria studied Ref 

Silicon Nanopillars 
Nanoneedles 
Nanowires 

Reactive ion 
etching (RIE), 
metal-assisted 
chemical etching 

Pseudomonas aeruginosa, 

Staphylococcus aureus and 

Bacillus subtilis 

 

[271,272,273, 
274] 

Diamond 

and 

diamond 

coated Si 

Nanocones Chemical vapour 
deposition 
(CVD) + bias 
assisted RIE 

Pseudomonas aeruginosa [275] 

Nanoneedles RIE + CVD Pseudomonas aeruginosa, 

Escherichia coli, and 

Streptococcus gordonii  

 

[276,277] 
 

 

Titanium Nanowires Hydrothermal 
growth 

Staphylococcus aureus, 

Staphylococcus 

epidermidis, Pseudomonas 

aeruginosa, Escherichia 

coli, Bacillus subtilis, 

Enterococcus faecalis and 

Klebsiella pneumoniae 

[278,279,280, 
281] 

Nanocolumns Glancing angle 
sputter 
deposition  

Escherichia coli 
and Staphylococcus aureus 

[282] 
 

Nanopillars Reactive ion 
etching 

Escherichia coli, 

Pseudomonas aeruginosa, 

Staphylococcus aureus and 

Mycobacterium smegmatis 

[283] 

Ti alloy 

 

Nanocones  
Nanowire 

Thermal 
oxidation 

Escherichia coli [284] 

Polymers Nanopillars 
Nanocones 

Nanoimprinting  Escherichia coli, 

Pseudomona aeruginosa 

and Staphylococcus Aureus  

[285,286,287] 

Nanopillars 
Nanocones 

Colloidal 
lithography  

Escherichia coli and 
Klebsiella pneumoniae 
 

[288] 

Stainless 

steel 

Nano-protruding 
textures 

Electrochemical 
etching 

Escherichia coli 
and Staphylococcus aureus 

[289] 

Aluminium Micro/nano-
rough surfaces 

Chemical 
etching 

Escherichia coli, 
Klebsiella pneumoniae 
and Staphylococcus aureus 

[290] 
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Figure 9. Examples of various synthetic bactericidal nanotopographies on different substrates.  
 
(a) Black silicon (bSi). Reproduced with permission.[271] Copyright 2013, Springer Nature; (b) Diamond 
coated bSi. Reproduced with permission.[276] Copyright 2016, The Royal Society of Chemistry; (c) A 
pierced bacterium on bSi. Reproduced with permission.[277] Copyright 2018, The Royal Society of 
Chemistry; (d) Diamond nanocones. Reproduced with permission.[275] Copyright 2016, American 
Vacuum Society; (e) Hydrothermal TiO2 nanowires.[278,280] Reproduced under the terms of the Creative 
Commons Attribution 4.0 International license (CC BY 4.0).[280] Copyright 2018, Springer Nature; (f) 
TiO2 nanowires by thermal oxidation. Reproduced with permission.[284] Copyright 2016, Elsevier; (h) 
Black titanium (bTi). Reproduced under the terms of the Creative Commons Attribution 4.0 
International license (CC BY 4.0).[283] Copyright 2017, Springer Nature; (i) PMMA nanocones. 
Reproduced with permission.[285] Copyright 2015, American Vacuum Society. 
 
Ivanova et al. first reported the studies of biomimetic bactericidal surfaces on synthetic 

materials in 2013,[271] shortly after their discovery of bactericidal cicada wings in 2012.[261] 

Nanoprotruding surfaces with high-aspect-ratio nanopillars with a diameter of 20-80 nm and a 

height of 500 nm were generated on silicon substrates using a reactive ion etching (RIE) method, 

creating ‘black silicon’ (bSi), which mimics the wings of the dragonfly Diplacodes bipunctata. 

Notably, the bSi surfaces exhibited bactericidal activity towards both Gram-positive and Gram-

negative bacteria. Notably, the range and bactericidal efficacy were larger than their biological 

analogues (cicada and dragonfly wings). Further study indicated that the bactericidal efficacy 

was strongly dependent on their feature sizes. Smaller and more densely packed pillars 

exhibited the greatest bactericidal activity.[273] The decrease in the nanopillar heights, nanopillar 

cap diameter and inter-nanopillar spacing corresponded to a subsequent decrease in the number 

of attached cells for both Gram-positive and -negative bacterial species.[273]  

Similar nanopillar and nanowire surfaces using different etching methods also displayed similar 

bactericidal activity.[272,273,274] Susarrey-Arce et al. investigated the interaction and the viability 

(a) 

(i) (h) (f) (e) 
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of bacteria of highly-oriented silicon nanowires (SiNWs) with and without functionalization. 

They found that the bare SiNWs and SiNWs functionalized with a silane (APTES) exhibited 

some degree of intrinsic bactericidal activity towards Escherichia coli and Staphylococcus 

aureus. However, bacterial cells could still proliferate for a long time on these topographic 

surfaces. By functionalization with chlorhexidine digluconate (CHD), the antimicrobial 

performance was greatly enhanced because CHD released from the surface had the potential to 

decrease the viability of both sessile and planktonic bacterial cells. They have also identified 

two different growth modes producing distinct in-plane and out-of-plane bacterial colonies for 

Escherichia coli and Staphylococcus aureus, respectively.[274] However, silicon is a non-load-

bearing material and thus has limited application in biomedical implants. 

Diamond coating using thin film technology is becoming an attractive approach for material 

functionalization for biomedical applications due to its unique properties. It is bioinert and its 

electrical conductivity can be tuned from insulating to near-metallic, which makes it a potential 

candidate material for orthopedic and neural device applications.[291] Fisher et al. demonstrated 

that diamond nanocone arrays deposited on a silicon substrate via microwave plasma CVD 

followed by bias-assisted RIE were bactericidal towards Pseudomonas aeruginosa.[275] Similar 

antimicrobial performance has also been reported for diamond coated bSi nanoneedles.[276,277] 

Interestingly, such a diamond coating or film could be deposited on Ti substrates, which may 

have important medical implications, as Ti metal and its alloys are widely used materials in 

orthopedic, dental and cardiovascular applications. 

Because of the wide applications of Ti in biomedicine and the frequent biomaterials associated 

infections, the generation of antimicrobial nanosurfaces directly on Ti substrates would be 

desirable. Inspired by the cicada wings, Diu et al. first investigated bactericidal property and 

biocompatibility of nanowires grown directly on Ti substrates using an alkaline hydrothermal 

method.[278] It was found that motile and Gram-negative bacteria are more susceptible to killing 

than non-motile and Gram-positive ones. Culturing in dynamic (shaking) conditions also 

induced more killing compared to standard static bacterial cell culture condition. It is suggested 

that the thicker cell wall (peptidoglycan layer) found in Gram-positive cells and a lack of 

motility in non-motile cells may be responsible for their inferior susceptibility to killing.  

Similar works have reported on hydrothermal nanowires with various bactericidal 

performances depending on processing and culturing conditions.[279,280,281] Cao et al. 

investigated longer-term biofilm formation of Staphylococcus epidermidis on spear or brush-

type and pocket or niche-type nanowires. Pocket-type nanowire surfaces were found to delay 
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biofilm formation up to 6 days and exhibited more recalcitrance towards Staphylococcus 

epidermidis biofilm formation. It was believed that micro-sized pockets formed by the 

intertwined nanowires may result in the entrapment of bacterial cells which prevented their 

crosstalk and proliferation.[280] The advantage of hydrothermal treatments are that they can be 

easily applied to porous Ti substrates.[292] Nano-flowers, rods and wires were formed in porous 

Ti alloy scaffolds using an aqueous mixture of calcium hydroxide [Ca(OH)2] and sodium 

tripolyphosphate [STPP] depending on their ratios and hydrothermal conditions. Nanowire 

surfaces exhibited bactericidal properties against Staphylococcus aureus and Escherichia coli 

as well as osteogenesis from bone cells. Similarly, nanowire surfaces were generated on Ti 

alloy substrates using a controlled thermal oxidation method, which also showed 

bactericidal[284] and osteogenic[293] properties. Crucially, this method could be applied to porous 

and complex shaped Ti substrates, which paves the way to develop cell-instructive 

nanotopographies for implant applications. 

Other fabrication methods have been investigated to produce nanostructured surfaces on Ti 

substrates. Sengstock et al. reported Ti nanocolumnar structures produced using a glancing 

angle sputter deposition (GLAD) technique. It was again observed that there was more killing 

of Gram-negative rod-shaped Escherichia coli than the Gram-positive sphere-shaped 

Staphylococcus aureus. Apart from their cell wall differences discussed before, their different 

cell viability on the nanocolumnar structures may also be resulted from their difference in the 

structural process of cell division. Rod-shaped Escherichia coli bacteria multiply by elongating 

which requires an in-plane movement of the cell body attached to the nanostructures, by which 

the friction forces during cell dividing dynamics may lead to the damage or disruption of cell 

wall. In contrast, cell divisions of sphere-shaped Staphylococcus aureus occur in three 

dimensions, with the daughter cells remaining nearby leading to grape-like clusters or out-of-

plane growth, which resulted in fewer daughter cells in direct contact with the nanocolumnar 

surface during cell division process, therefore causing less damage to the cell wall by the 

friction force.[282] Analogous to black silicon, Hasan et al. reported the generation of Ti 

nanopillars or black Ti (bTi) using a chlorine based reactive ion etching technique. Within 

4 hours of contact with the bTi surface, 95% ± 5% of Escherichia coli, 98% ± 2% of 

Pseudomonas aeruginosa, 92% ± 5% of Mycobacterium smegmatis and 22% ± 8% of 

Staphylococcus aureus cells that had attached were killed. The killing efficiency for the 

Staphylococcus aureus increased to 76% ± 4% when the bacterial cells were allowed to adhere 

up to 24 hours.[283] 
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Polymers are also widely used in medical devices such as catheters, feeding tubes, contact 

lenses, dental prostheses and orthopedic implants. Nanopatterned surfaces can be fabricated 

using nanoimprinting and colloidal lithography, both are line-of-sight 2D processes. Dickson 

et al. found that nanopillars replicated from imprinting of lithographically produced moulds 

and cicada wings were bactericidal against Escherichia coli. Sharper, more closely packed 

nanopillars were more effective, possibly because bacteria on these surfaces both contacted 

more nanopillars and experienced higher stresses at these contact points,[285] which was in 

agreement with that found in different insect species.[263] Replication of moth eye-like 

nanopillars/cones via nanoimprinting also demonstrated good bactericidal performance in both 

dry and wet conditions,[286,287] which could potentially be used for inhibiting nosocomial 

infections or any sanitation-conscious touching surfaces. Hazzel et al. produced similar 

nanopillar/cone surfaces using colloidal microbeads as masks followed by RIE. It was shown 

again that surfaces with the most densely packed nanopillar/cone arrays (center-to-center 

spacing of 200 nm), higher aspect ratios (<3) and sharp tip widths (>20 nm) killed the highest 

percentage of bacteria (~30 %).[288]. 

It is worth noting that the exact mechanisms of bacteria-killing by nanostructures are still not 

completely clear. One of the most-widely accepted mechanisms is the physical deformation or 

rupturing of bacterial cell wall/membrane by sharp nanopillars.[262] However, other mechanisms 

cannot be ruled out, depending on the nano-feature size and structural process of bacterial cell 

division. For example, the physical entrapment of bacteria within nanopillars or nanowires may 

impede the proliferation and growth of bacteria.[280] The friction forces exerted on the Gram-

negative bacterial cell wall during their division process may also result in the damage of 

bacterial cell wall.[282] It is therefore important to elucidate the nanotopography-induced 

antibacterial mechanisms in order to rationally design and fabricate nanostructures for relevant 

biomedical applications. 

 

6. Cell-instructive (osteogenic and antibacterial) nanotopographies  

For many biomedical applications, surfaces with cell-instructive or cell-selective functionalities 

that are able to control the fate of both mammalian and bacterial cells at the same time are 

highly desirable. As previously discussed, orthopaedic implants provide a good example of a 

sector requiring cell-instructive surfaces that could simultaneously promote osseointegration 

and prevent bacterial infection. This is because the increased demand for orthopaedic prosthesis 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



  

37 
 

is fueled by both aseptic loosening (due to poor osseointegration) or infection (due to bacterial 

infiltration and biofilm formation).[10,294]  

The use of topographical cues to selectively modulate cells and bacteria has becoming 

increasingly reported on, mostly on pure Ti metal and its alloys (e.g. Ti6Al4V) because they 

are most widely used materials for endosseous implants.  For example, Peng et al. reported that 

concave nanotopographies e.g. TiO2 nanotube arrays with diameters of 30 to 80 nm grown on 

Ti substrates via anodization exhibited reduced adhesion and lower colonization of bacterial 

cells (Staphylococcus epidermidis) but enhanced, increased, adhesion of osteogenic cells.[143] 

Similar cell-selective behavior was observed on nanoporous surfaces for human gingival FBs 

and oral bacteria (Streptococcus mutans, Fusobacterium nucleatum and Porphyromonas 

gingivalis).[ 295 ] Different cell-selective behavior has also been reported on convex 

nanotopographies. Densely packed Ti nanocolumns with diameters of 40 to 60 nm fabricated 

via glancing angle deposition (GLAD) showed strongly reduced bacterial (Staphylococcus 

aureus) adhesion and biofilm formation, while osteoblast cells grew well on such surfaces. The 

selective cell behaviors were attributed to the ‘lotus leaf effect’ caused by the nanocolumnar 

arrays and the difference in the dimensions of osteoblast and bacterial cells.[144]  

Since the recent discovery of high aspect ratio bactericidal nanotopographies as reviewed in 

part 5, research has been carried out on selective cellular responses of both mammalian cells 

(OBs, MSCs and other cells) and bacteria to such surfaces. The group of Ivanova demonstrated, 

for example, that while bSi surfaces killed bacteria, the COS-7 eukaryotic cell model could 

survive and grow.[296] In fact, the bactericidal nanotopographies, fabricated from bSi with 

densely packed nanoneedles, promoted the growth and proliferation of fibroblastic cells. Such 

nanotopography was not only biocompatible but also reduced inflammatory response in a mice 

model compared with the flat controls.[296] For orthopaedic application, however, we need to 

consider bone forming cells. Diu et al. noted that the metabolic activity of OB (MG63) cells 

cultured on bactericidal hydrothermal TiO2 nanowire surfaces was only slightly decreased after 

14 days of cell culture and that while proliferation of OB cells was slowed, especially on long 

TiO2 nanowires that formed secondary ‘pocket’ structures, the cells did grow with time. A 

noticeable change in cell morphology was that some cells became elongated due to ‘pinning’ 

of osteoblast cells on bactericidal TiO2 nanowire arrays.[278]  Similar results were reported from 

other groups using different materials or other cell lines.[279,281,283]   

Most interestingly, these convex high-aspect-ratio, bactericidal nanotopographies seem capable 

of directing the differentiation of MSCs into OBs, which could have positive implication to the 
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real-world applications in orthopaedic or dental implants where both antimicrobial and 

osseointegrative properties are vital to ensure their long-term success. Tsimbouri et al. 

investigated osteogenesis of bactericidal TiO2 nanowires using a mesenchymal bone marrow 

stromal cell (BMSC)/bone marrow hematopoietic cell (BMHC) co-culture model where both 

osteogenesis and osteoclastogenesis can occur.[297] 

Similar to the previous results,[278] BMSCs were well-spread on shorter ‘fine’ or ‘brush’ 

nanowire surfaces (2 hours (2h) of anodization) with well-organized cytoskeleton but grew 

slight less well compared with the polished control. Nevertheless, cell proliferation was 

impaired when growing on longer ‘coarse’ or ‘niche’ nanowire surfaces (>2h) (Figure 10). Cells 

tended to ‘trap’ inside the pockets formed by the intertwined nanowires. Interestingly, analysis 

of osteogenic markers osteopontin (OPN) and osteocalcin (OCN) at the transcript and protein 

level demonstrated an increase in osteogenesis on the 2h nanowire surface compared with the 

polished control. This indicated that such a surface could be both bactericidal and osteogenic, 

thus potentially useful in the development of cell-instructive implants. It is notable that the 

nanowires also prevented osteoclastogenesis and this could have implication in reducing 

osteolysis. 

 

 

 

Figure 10. Immunofluorescence micrographs showing cell morphology and spread for BMSCs cultured 
on different bactericidal TiO2 nanotopographies. (A) flat control, (B) 2h, (C) 2.5h and (D) 3h surfaces 
(the length of anodization increasing nanowire size). Notable is that cells on the 2h nanowires spread 
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well – similar to on planar control. Red: actin, Green: tubulin, Blue: nucleus. Reproduced under the 
terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license 
(CC BY-NC-ND 4.0).[278] Copyright 2014, Springer Nature. 

 

7. The synergy of nanotopography and chemical coatings  

Nanotopographies with bactericidal potential and capacity to support bone cells populations 

would be ideal substrates for developing new medical implants, and the recent literature 

indicates this is possible (see previous Section). However, it is difficult to design cell instructive 

surfaces with topography alone, i.e. there is typically a reduction in spreading and/or 

proliferation of bone-related cell types on high aspect ratio bactericidal topographies compared 

to control Ti surfaces.[278,283,297] A potential solution to achieve this would be the 

functionalization of such high aspect-ratio antibacterial topographies with chemical ligands 

with integrin-binding potential. As discussed in Section 4, it is important for bone forming cells 

to form “super-mature” focal adhesions (> 5 µm long) in order to stabilize the large OB 

morphology and thus promote osteogenesis. Thus, a combined topography-chemistry approach 

could improve cell function on less adherent surfaces.  

Fraioli et al. further investigated the use of peptidic ligands combined with bactericidal TiO2 

nanotopographies to improve integrin-specific cell adhesion and hopefully enhance 

osteogenesis (Figure 11).[298] It was indeed observed that the functionalization of nanowires by 

the integrin-binding molecules improved MSCs adhesion significantly (Figure 11C), with 

increased cell area and formation of larger focal adhesions, which are required for bone 

formation. Notably, this effect was observed even on the spiky 3h anodization ‘coarse’ 

nanowire surface, where very poor cell adhesion and proliferation was initially found (Figure 

10D).[278] Further, the study of osteogenic markers confirmed a moderate increase in 

osteogenesis on the αvβ3-integrin selective peptidomimetic-functionalized nanotopographies. 

Crucially, the bactericidal properties of the high-aspect-ratio nanotopographies have not been 

masked by the integrin-binding molecules.  

Thus, the functionalization of nanostructured surfaces with chemical coatings should be 

regarded as a way to improve their cell instructive properties, and offers the possibility to further 

introduce a wide range of biological activities, which may not be always attainable by 

topography alone. We showed MSC response can be improved with integrin-binding ligands, 

while keeping antimicrobial effects; but many other biochemical cues may be introduced, e.g. 

GFs and osteogenic peptides, mineralization sequences, and even AMPs or other antibacterial 
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agents. These molecules may be incorporated using covalent (irreversible) approaches or drug-

releasing systems, as we have described in Sections 3.1 and 3.2. Another particularly relevant 

strategy would be to employ stimuli-responsive linkers, which could be cleaved upon enzymatic 

activity by either eukaryotic cells[299] or bacteria,[300] releasing or exposing the desired function 

in a dynamic and smart fashion. The possibilities are enormous and have not been investigated 

yet.  

 

 

Figure 10. A) Combining topographical and biochemical cues on the surface of biomaterials allows for 
a dual cell adhesive and antibacterial effect; B) Chemical structure of the synthetic ligands: αvβ3-
selective (V3) or α5β1-selective (51) peptidomimetics,[70] and a peptidic platform combining 
RGD/PHSRN (P) [78,79]); C) Immunostained actin fibers and DAPI-stained nuclei for the flat control, 
fine and coarse nanotopographies functionalized with the three different integrin-binding molecules (V3, 
51, or P). Scale bar=100 μm. Reproduced (adapted) under the terms of the Creative Commons 
Attribution 4.0 International license (CC BY 4.0).[298] Copyright 2017, Springer Nature. 
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8. Conclusions 

In this review we have shown that both chemical and topographical cues are potent modulators 

of the functions of eukaryotic and prokaryotic cells. In this regard, modifying the biomaterial 

surface properties to simultaneously enhance host cell adhesion and function while inhibiting 

bacterial biofilm formation has been a major focus; we have reported recent strategies that 

demonstrate this is possible. However, as more efforts are put into developing novel 

methodologies, the number of challenges increases too.  

In the first place, it is becoming evident that the biological evaluation of the osteoconductive 

and antibacterial potential of any new multifunctional surface will require the use of eukaryotic 

cell-bacteria co-cultures, as the results obtained with the individual cell types may greatly differ 

from the more realistic, competitive scenario. In a recent study, we showed that bacteria directly 

inhibited the capacity of osteoblastic cells to spread and proliferate.[184] This study indicates 

that bacteria and cells not only race for the surface, but ‘fight for it’, and makes us postulate 

that the interactions between these two cell types and the biomaterial surface are better referred 

to as “the fight for the surface”. However, the mechanisms governing these interactions are not 

well understood, as the majority of current methods focus on the ‘finish line’,[14] but do not 

monitor the dynamic process of competition for the surface. Coupling biomaterials science with 

biosensing technologies could help to take a step forward to better understand this process.  

Achieving potent osteogenic effects on the biomaterial surface is another challenge. Cell 

adhesive peptides such as RGD have shown moderate to poor outcomes in animal 

studies;[71,72,73] and the delivery of GFs like BMPs, while very effective in inducing bone 

formation, has raised concerns with regard to unwanted side effects, thus hampering its 

widespread clinical application.[90,91] Recent progress on developing multifunctional systems 

synergizing integrin and GF signaling have shown it is possible to achieve excellent osteogenic 

responses in vitro and bone growth in vivo, with only very low doses of GFs.[86,87,88,89] Such 

systems may likely represent future strategies for implant-driven osteoinduction. The 

development of GF-derived, short synthetic peptides and mimetics holds great potential too, 

and has not been fully explored. The combination of osteogenic peptides with antibacterial 

agents, like AMPs, has not been investigated either.  

We have also discussed that an increasing concern in the medical device arena is the emergence 

of bacterial resistance. However, most approaches to fight infections on biomaterials still rely 

on the use of antibiotics. While is true that newer systems of drug-delivery are being developed, 

with much better and improved release kinetics, replacement of antibiotics by other 
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antibacterial systems, like the immobilization of AMPs, needs to be further studied. Moreover, 

some other frequent strategies used in biomaterials research present limitations too. This is the 

case, for example, of silver, one of the ‘gold standards’ for use in antibacterial surfaces, but that 

presents toxicity for eukaryotic cells. In response to these limitations, innovations in genomics 

and the identification of new sources of antibacterial potential are being proposed to fill the 

classic antibacterial agents gap.[ 301 , 302 ] Interfering with bacterial quorum sensing 

communication is another emerging strategy with potential to inhibit biofilm formation on 

biomaterials.[303] Incorporation of such novel antibacterial drugs on biomaterials might well 

decrease the risk of bacterial resistance.  

Finally, conferring osteogenic or antibacterial potential to surfaces by pure topographical 

effects opens up new and promising possibilities in GF- and antibiotic-free medical therapies. 

Further, achieving both effects by means of topography is a very promising avenue of research 

and we have shown this is feasible. However, we also acknowledge that this strategy may be 

limited in terms of bioactivity: the same way bacteria and eukaryotic cells are different in size 

and morphology, the nanopatterns that maximize one biological effect (e.g. osteogenesis) are 

in general different from those required to exert the other one (e.g. bacterial kill). This is 

illustrated by several antibacterial nanopatterns, such as high aspect-ratio surfaces, which 

effectively kill bacteria, but reduce MSCs functions at the same time. However, we have shown 

that chemical functionalization of nanotopographies with integrin-binding molecules is a viable 

way to overcome this hurdle.[298] Thus, functionalizing nanotopographies with cell adhesive or 

antibacterial peptides opens new horizons towards highly cell instructive multifunctional 

biomaterials. The physical bacterial killing mechanism represented by topography is likely to 

be more evolution resistant than drug-based strategies and the chemical approach can help drive 

osteogenesis while maintaining bacterial kill. This approach offers an unlimited combination 

of biological signals for a wide range of applications, and, interestingly, only now is starting to 

be investigated. 
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