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Nanotechnology has become a trending area in science and has made great

advances with the development of functional, engineered nanoparticles. Various metal

nanoparticles have been widely exploited for a wide range of medical applications.

Among them, gold nanoparticles (AuNPs) are widely reported to guide an impressive

resurgence and are highly remarkable. AuNPs, with their multiple, unique functional

properties, and easy of synthesis, have attracted extensive attention. Their intrinsic

features (optics, electronics, and physicochemical characteristics) can be altered by

changing the characterization of the nanoparticles, such as shape, size and aspect

ratio. They can be applied to a wide range of medical applications, including drug and

gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and radiation

therapy (RT), diagnosis, X-ray imaging, computed tomography (CT) and other biological

activities. However, to the best of our knowledge, there is no comprehensive review that

summarized the applications of AuNPs in the medical field. Therefore, in this article we

systematically review the methods of synthesis, the modification and characterization

techniques of AuNPs, medical applications, and some biological activities of AuNPs, to

provide a reference for future studies.

Keywords: AuNPs, synthesis, modification, characterization, medical applications, biological activities

INTRODUCTION

Nanomaterials are a novel type of material which has emerged in recent years. The term refers
to a material in which at least one dimension, of three-dimensional space, is at the nanometer
scale (0.1–100 nm), or is composed of the basic unit, which is approximately equivalent to the size
of 10–100 atoms, is closely arranged together (Khan et al., 2017; Tayo, 2017). Nanoparticles are
an example of nanomaterials, which now have the longest development time and are the most
mature technology. Nanoparticles and nanotechnology are widely used and play an important
role in a range of fields, such as medicine, biology, physics, chemistry and sensing, owing to their
unique properties (Ramalingam, 2019). In comparison with other metal nanoparticles, noble metal
(Cu, Hg, Ag, Pt, and Au) nanoparticles have increasingly attracted the attention of researchers
(Ramalingam et al., 2014). Among these, gold nanoparticles (AuNPs) are known to be the most
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stable, and have now been prepared with various shapes
and structures, including nanospheres, nanorods, nanocubes,
nanobranches, nanobipyramids, nanoflowers, nanoshells,
nanowires, and nanocages, by various synthetic techniques
(Figure 1) (O’Neal et al., 2004; Chen et al., 2008; Li et al., 2015;
Xiao et al., 2019). Moreover, they possess tunable and unique
optical properties. Therefore, AuNPs have attracted extensive
scientific and technological attention in recent decades. The
optical properties of AuNPs are dependent on surface plasmon
resonance (SPR), which is the fluctuation and interaction of
electrons between negative and positive charges at the surface
(Ramalingam, 2019). SPR can also be described in terms
of surface plasmon polariton (SPP), which originates from
propagating waves along a planar gold surface (Gurav et al.,
2019). Due to their unique optical and electrical properties,
and economic importance, AuNPs have abundant applications
in various interdisciplinary branches of science, including
medicine, material science, biology, chemistry and physics
(Khan et al., 2019).

Especially, AuNPs are widely employed across the medical
field owing to their excellent biocompatibility, which respectively
results from their high chemical and physical stability, easy to
functionalize with biologically active organic molecules or atoms
(Pissuwan et al., 2019). AuNPs can directly conjugate and interact
with diverse molecules containing proteins, drugs, antibodies,
enzymes, nucleic acids (DNA or RNA), and fluorescent dyes
on their surface, for diverse medical applications and biological
activities (Figure 2) (Slocik et al., 2005; Ramalingam, 2019).
Although AuNPs are so widespread and increasingly used in
the medical field, there is no comprehensive review of their
applications in medicine. Therefore, in this review, we have
summarized the approaches that are available for synthesizing
common AuNPs, as well as the techniques that are used to
characterize them, based on their unique and diverse properties.
We have also paid particular attention to the discussion of
established medical applications of AuNPs.

FIGURE 1 | The main morphologies of AuNPs.

FIGURE 2 | Various connecting molecules of AuNPs.

SYNTHESIS AND MODIFICATION OF
MULTIFUNCTIONAL AuNPs

Almost all the medical applications and biological activities
of AuNPs was characterized based on the unique SPR, since
the SPR can enhance the surface activity of AuNPs. Due to
the excitation of SPR, the absorption spectrum connected with
AuNPs shows a resonance band in the visible region, whose
amplitude, spectral location and width can be modified by the
diverse particle size and shape in the medium. Also, the SPR
is strongly dependent on both size and shape (Ramalingam,
2019). Therefore, the preparation of size-controlled and shape-
controlled AuNPs is essential for the medical applications and
biological activities. The first report on AuNPs was published
in 1857 by Faraday with light scattering potential of AuNPs
confirmed by the change of red color and colloidal nature
of nanomaterials (Faraday, 1857). Although AuNPs have a
long history, the synthesis of small and stable structure of
AuNPs is difficult, key challenge in nanotechnology. To our
knowledge, there are two distinct approaches of synthesizing
AuNPs, which are top–down and bottom–up respectively
(Figure 3). The materials of AuNPs prepared by different
methods are various, which are bulk material, small gold
seeds or gold target, HAuCl4·4H2O and various biological
extracts respectively. Furthermore, AuNPs can bind various
active molecules, and have broad prospects in the application
of diverse fields. Thus, the modification of AuNPs will
also be introduced.

Top–Down Approach
Generally, the top–down approach is a subtractive process,
starting with the slicing of bulk materials and ending
with self-assembled nanoscale objects (Khanna et al., 2019).
Micropatterning and photolithography are the most common
approaches (Chen et al., 2009; Walters and Parkin, 2009).
Yun et al. (2006) demonstrated micropatterning of a single
layer of nanoparticles and micelles through conventional
and soft lithographical methods. Although the approach is
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FIGURE 3 | The top–down and bottom–up approaches for AuNPs synthesis.

FIGURE 4 | The four major steps of pyrolysis.

fast, it has the limitation of synthesizing nanoparticles of
uniform size. Thus, Chen et al. (2009) developed a novel
patterning technique for AuNPs by removing salt-loaded
micelles from substrate areas with a polymer stamp. They
called the technique µ-contact (microcontact) deprinting,
providing a fast and cheap way to produce nanoparticles
on a wide range of substrates. In addition, there are several
physical methods, such as pyrolysis, lithography, thermolysis
and radiation induced methods in this category. Pyrolysis is
another important technique frequently used, generally for
the production of noble metal nanoparticles. As shown in
Figure 4, pyrolysis has four major steps, from generation of
drops from a precursor solution to solid particle formation
(Figure 4) (Li et al., 2004). Pyrolysis has several disadvantages,
such as the formation of porous films, low purity in some cases
and limited products (Garza et al., 2010). In conclusion, the
top–down approach has major limitations in the control of

surface and structure of the AuNPs, which has a significant
effect on their physical and chemical properties (Amblard
et al., 2002; Sant et al., 2012). Size distribution is uncontrolled
and enormous energy is required to maintain conditions of
high-pressure and high-temperature during these synthetic
procedures. Thus, it is very uneconomical and difficult to meet
product requirements.

Bottom–Up Approach
As a popular nanomaterial, AuNPs are expected to present
with applications in many areas. However, their yield is
currently too low in existing methods of synthesis. Developing
more convenient and adjustable methods to improve their
preparation efficiency, in order to achieve production on a
technical scale, has become the focus of research. The bottom–
up approach has been an emerging strategy in recent years.
There are three types of bottom–up synthesis approaches: (1)
physical approaches, such as laser ablation, sputter deposition,
ion implantation, γ-irradiation, optical lithography, microwave
(MW) irradiation, ultrasound (US) irradiation, and ultraviolet
(UV) irradiation (Table 1); (2) the chemical reduction of metal
ions in solutions by introducing chemical agents and stabilizing
agents, such as sodium hydroxide (NaOH), sodium borohydride
(NaBH4), cetyl-trimethylammonium bromide (CTAB), lithium
aluminum hydride (LiAlH4), sodium dodecyl sulfate (SDS),
ethylene glycol (EG), and sodium citrate (Figures 5, 6);
(3) biological approaches, using intracellular or extracellular
extracts of prokaryotic cells (bacteria and actinomycetes) or
eukaryotic cells (algae, fungi, and yeast), and extracts from
various plants (leaves, stem, flower, fruits, peel, bark, and root)
(Table 2). These syntheses will be discussed in detail in the
following parts.

Physical Approach

Most of the physical methods used to prepare nanoparticles
involve controlling experimental parameters in the presence of
a reducing agent, to modulate the structures and properties of
AuNPs without contamination (Table 1). Laser ablation and
ion implantation are the most common and important physical
methods of synthesis. Laser ablation provides an approach which
effectively alters the surface area, geometric shape, properties,
fragmentation, and assembly of AuNPs in aqueous solution, a
biocompatible medium (Correard et al., 2014; González-Rubio
et al., 2016). For example, Vinod et al. (2017) synthesized
pure AuNPs through laser ablation of a gold target in water,
and these nanoparticles are inherently non-toxic. And these

TABLE 1 | Physical synthesis of AuNPs with different morphology and size.

Method Morphology Size (nm) Author References

γ-irradiation Nanosphere 3–6 Le et al. Le et al., 2019

Ion implantation Crystalline 1.5–5 Morita et al. Morita et al., 2017

Laser ablation Nanosphere 10–15 Vinod et al. Vinod et al., 2017

Nanosphere 7 Hampp et al. Riedel et al., 2020

Ultrasound irradiation Polyhedral 15–40 Shaheen et al. Bhosale et al., 2017

Microwave irradiation Nanosphere 10–50 Luo et al. Luo et al., 2018
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FIGURE 5 | The chemical synthesis of AuNPs using different reaction conditions.

FIGURE 6 | The factors affecting the size and shape of AuNPs.

particles are photothermally active when excited with 532 nm
laser irradiation. However, the yield of this method is low,
and the method is inconvenient. Therefore, the development

of convenient, high-efficiency methods is necessary, in order to
scale up production. Recently, Riedel et al. (2020) synthesized
spherical, silica-coated AuNPs, with an average diameter of
9 nm and a coating thickness of 2 nm, by improved pulsed
laser ablation in liquid (PLAL), and this method offers great
progress to the large-scale production of nanoparticles. Another
promising method for synthesis of AuNPs is ion implantation,
which has been extensively used to prepare AuNPs with
precise physical, chemical, and biological properties. Nie et al.
(2018) reported the synthesis of embedded AuNPs in Nd:YAG
single crystals, using ion implantation, and subsequent thermal
annealing. Both linear and non-linear absorption of the Nd:YAG
crystals have been significantly enhanced.

Chemical Approach

The easiest and most commonly used approach to synthesis is
the chemical reduction of metal ions in solutions (Figure 5).
A typical synthesis of AuNPs is dependent on the reduction
of Au(III) (from hydrogen tetrachloroaurate hydrate, HAuCl4)
to Au(0) atoms, formed as clusters and accumulated into
large, polycrystalline particles via aggregation in the presence
of reducing or stabilizing agent. Citrate-stabilized AuNPs were

TABLE 2 | Organisms mediated synthesis of AuNPs with different morphology and size.

Organism Morphology Size (nm) Author References

Garcinia mangostana Nanosphere 20–40 Nishanthi et al. Nishanthi et al., 2019

Couroupita guianensis Nanocube 15–37 Singh et al. Singh et al., 2016a

Acanthopanax sessiliflorus Nanoflower 30–60 Ahn et al. Ahn et al., 2017

Sporosarcina koreensis Nanosphere 92 Singh et al. Singh et al., 2016b

Sargassum swartzii Nanosphere 35 Prema et al. Prema et al., 2015
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initially synthesized by Turkevich et al. (1951), which was also the
first chemical synthesis of AuNPs. This synthesis was based on
the single-phase aqueous reduction of HAuCl4 by sodium citrate.
This synthesis was further refined by Frens (1973) by varying
the ratio of sodium citrate and gold salt in order to control
the size of AuNPs, from 5 to 150 nm. However, the diameter
(<30 nm) of AuNPs was too poor. Leff et al. (1995) synthesized
surfactant-mediated AuNPs over a range of diameters from 1.5
to 20 nm, by varying the gold-to-thiol ratio (Leff et al., 1995).
In 2007, adopting the classical reaction system, Ji et al. (2007)
also synthesized AuNPs by changing the pH of solution, which
can affect the composition of gold solute complexes, in order
to alter the particle size. Then, Jimenez et al. (2010) synthesized
small AuNPs with sodium citrate and heavy water (D2O). This
was a faster reduction method, and by increasingly replacing
water with deuterium oxide, smaller diameters were obtained.
Today, the aqueous method remains the most commonly used.
However, the shape of AuNPs is irregular, and the size and size
distribution obtained are quite poor. Thus, Natan and Brown
(1998) reported the seeded growth of AuNPs (up to 100 nm in
diameter) by using hydroxylamine as a mild reducing agent. And
Brown et al. (1999) prepared AuNPs with highly uniform shape
and size by introducing the boiling solution of sodium citrate.
Themean diameters of the AuNPs producedwere between 20 and
100 nm, and they exhibit improved monodispersity. A similar
procedure, utilizing the reductant NH2OH at room temperature,
produces two populations of particles. The larger population
is even more spherical than citrate-reduced particles of similar
size, while the smaller population is very distinctly rod shaped.
This work was improved by Jana et al. (2001) and Rodriguez-
Fernandez et al. (2006). They synthesized monodispersed AuNPs
with narrow size distributions, using ascorbic acid (AA) and
CTAB, which are used as a reducing agent and cationic
surfactant respectively. Jana et al. (2001) prepared the AuNPs
with diameters of 5–40 nm by varying the ratio of seed to gold
salt, whereas Rodriguez-Fernandez et al. (2006) prepared the
AuNPs with diameters from 12 to 180 nm by incorporating
small gold clusters on the surface of seed particles (Jana et al.,
2001; Rodriguez-Fernandez et al., 2006). Although CTAB-based
method can control the morphology of AuNPs, the thiolated
cationic surfactant molecules that bind to the gold surface are
difficult to remove and restrict further functionalization. The
reason is that the strongly bound capping layer provided by
the CTAB is difficult to exchange with the thiolated cationic
surfactant molecules (Leonov et al., 2008). Thus, Bastus et al.
(2011) reported a kinetically controlled seeded growth method
for the synthesis of monodispersed citrate-stabilized AuNPs, with
a uniform quasi-spherical shape of up to ∼200 nm, via the
reduction of HAuCl4 by sodium citrate. They also evaluated the
effect of temperature and pH on their final shape. According to
the mentioned above, it is known that the temperature, pH, the
solvent, and the reducing/stabilizing agent of the reaction system
play a crucial role in controlling the size and shape of AuNPs
(Figure 6). This has also encouraged researchers to look for novel
strategies to prepare AuNPs with controllable properties. Recent
seed-mediated synthesis methods are considered very efficient,
with respect to precise control of the size and shape of AuNPs.

Biological Approach

Although the synthesis of AuNPs by physical and chemical
methods gives a high yield and is relatively cheap, there are a
few disadvantages which have also been reported, such as the use
of carcinogenic solvents, the contamination of precursors, and
high toxicity (Ramalingam, 2019). To overcome these difficulties,
researchers have investigated the biological production of AuNPs,
and have explored the potential of micro-organisms, due to
the quest for economically as well as environmentally benign
methods (Table 2) (Jain N. et al., 2011; Ramalingam et al.,
2019). Biological systems and agents are excellent examples of
hierarchical organization of atoms or molecules and this has
caused researchers to use a wide range of biological agents
as potential cell factories for the production of nanomaterials
(Gardea-Torresdey et al., 1999; Singaravelu et al., 2007; Kasthuri
et al., 2008; Smitha et al., 2009). Using biological agents to reduce
themetal ions requires benign conditions of external temperature
and pressure, and little organic solvent (Khan et al., 2019). For
example, Dubey et al. (2010) reported a rapid, green synthesis
for AuNPs, using the lower amounts extract of Rosa rugosa
leaf (Kumar et al., 2010). They also evaluated the effect of the
quantity of leaf extract, the concentration of gold solution, the
stability of AuNPs and different pH with zeta potentiometer.
Although environmentally friendly and easy to regulate the shape
and size of the nanoparticles, bacterial-mediated synthesis also
has disadvantages, such as difficulty in handling and low yield
(Azharuddin et al., 2019).

Modification
The size and morphology controlled AuNPs can be prepared
based on different approaches above mentioned. AuNPs
exhibit excellent physiochemical properties like unique SPR
property, wide surface chemistry, high binding affinity, good
biocompatibility, enhanced solubility, tunable functionalities for
targeted delivery (Dreaden et al., 2012). Therefore, they have
the ability to bind thiol and amine groups, which allows their
modification for medical applications and biological activities
(Shukla et al., 2005). On the one hand, AuNPs can directly attach
ligands such as drug (Table 3), protein, DNA/RNA, enzyme,
and so on (Figure 2). For instance, Podsiadlo et al. (2008)
synthesized AuNPs bearing 6-Mercaptopurine (6-MP) and its
riboside derivatives (6-Mercaptopurine-9-β-D-Ribofuranoside,
6-MPR). 6-MP and 6-MPR are loaded on the surfaces of AuNPs
through sulfur-gold (Au–S) bonds known for their strength.
They found substantial enhancement of the antiproliferative
effect against K-562 leukemia cells compared to the free form
of same drug. On the other hand, AuNPs are also used to
conjugate with various drug with polymer functionalized for
medical applications and biological activities. Recently, the
design and preparation of polymer-functionalized AuNPs have
attracted increasing interest. The AuNPs functionalized with
polymer have more biocompatibility, stability, controlled release
of drug, and enhanced therapeutic applications (Ramalingam,
2019). Some examples of polymer functionalized AuNPs
for drug delivery are as shown in Table 3. For example,
Venkatesan et al. (2013) developed AuNRs–doxorubicin
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TABLE 3 | Functionalized AuNPs without/with polymer for drug delivery with different morphology and size.

Polymer Drug Morphology Size (nm) References

– 6-Mercaptopurine Nanosphere 4–5 Podsiadlo et al., 2008

– Dodecylcysteine Nanosphere 3–6 Azzam and Morsy, 2008

– Kahalalide F Nanosphere 20, 40 Hosta et al., 2009

– Phthalocyanine Nanosphere 2–4 Wieder et al., 2006

– Rose Bengal Nanorod – Wang et al., 2014

PEG Doxorubicin Nanosphere 11 Asadishad et al., 2010

PSS Doxorubicin Nanorod 5 Venkatesan et al., 2013

Chitosan 5-fluorouracil Nanosphere 20 Chandran and Sandhyarani, 2014

Glycyrrhizin Lamivudine Nanosphere 16 Borker et al., 2016

PCPP Camptothecin Nanosphere 25–30 Sivaraj et al., 2018

FIGURE 7 | Characterization of AuNPs.

conjugates (DOX@PSS-AuNRs) by an electrostatic interaction
between the amine group (−NH2) of DOX and the negatively
charged PSS-AuNRs surface. DOX@PSS-AuNRs conjugates
exhibited improved drug loading efficiency, higher biological
stability and higher therapeutic efficiency than free DOX.
Therefore, the unique physical and chemical properties of
AuNPs functionalized with/without polymer can enhance the
efficiency of drug deliver and therapeutic efficiency, and increase
the multifunctional application.

CHARACTERIZATION OF
MULTIFUNCTIONAL AuNPs

Various analytical techniques have been developed, in recent
years, to characterize noble metal nanoparticles, according to
their unique thermal, electrical, chemical, and optical properties,
and to confirm their size (average particle diameter), shape,
distribution, surface morphology, surface charge, and surface
area (Roduner, 2006; Ray et al., 2015; Khanna et al., 2019).
The characterization of AuNPs starts with a visual color
change which can be observed with the naked eye, based

on the principle of their unique and tunable SPR band
(Ramalingam, 2019). The characterization of AuNPs has been
shown schematically in Figure 7.

There are some indirect methods (spectroscopic technique)
used to analyze the composition, structure, and crystal phase
of AuNPs. Their striking optical properties are due to their
SPR, which is monitored by UV-visible spectroscopy (UV-
vis) (Sharma et al., 2016). The absorption spectra of AuNPs
fall in the range of 500–550 nm (Poinern, 2014). It has
been suggested a broadening of the SPR band width, which
illustrates a redshift, can be used as an index of their
state of aggregation, dispersity, size, and shape (Govindaraju
et al., 2008; Shukla and Iravani, 2017). The size of AuNPs
and their size distribution in situ, in the same range of
hydrodynamic diameter, can be observed and measured by
dynamic light scattering (DLS) (Wu et al., 2018). The purity and
crystalline nature of AuNPs can be confirmed through X-ray
diffraction (XRD), which gives a rough idea of the particle
size, determined by the Debye-Scherer equation (Ullah et al.,
2017). The chemical composition of AuNPs can be confirmed
by energy-dispersive X-ray spectroscopy (EDX) (Shah et al.,
2015). Small-angle X-ray scattering (SAXS) analysis can be
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used to provide a measure of the interparticle distance of
AuNPs, of application to tumor imaging and tissue engineering
(Allec et al., 2015). Fourier transform infrared spectroscopy
(FT-IR) can investigate the surface chemistry to determine
the functional atoms or groups bound to the surface of
AuNPs (Dahoumane et al., 2016). The morphology of AuNPs
can now be better characterized, due to recent developments
in advanced microscopic techniques. These include scanning
electron microscopy (SEM), transmission electron microscopy
(TEM), high-resolution transmission electron microscopy (HR-
TEM), and atomic force microscopy (AFM), which are
commonly employed to determine and characterize their size,
shape, and surface morphology (Azharuddin et al., 2019;
Khanna et al., 2019). SEM provides nanoscale information
about particles and determines their surface morphology and
dispersion, while TEM is used to provide information about
the number of material layers and broad evidence of uptake
and localization, composition, polymer tethering, and physical
properties (Marquis et al., 2009; Khanna et al., 2019). Also, TEM
is commonly used as a quantitative method to measure size,
volume, and shape, and it produces mainly two-dimensional
(2D) image of three-dimensional (3D) nanoparticles (Quester
et al., 2013). HR-TEM is used to determine the exact shape, size,
and crystalline structure (Khanna et al., 2019). AFM, which is
similar to the scanning probe microscopy, provides information
about surface topography of AuNPs (Lu et al., 2004). AFM has
the advantage of obtaining 3D images in a liquid environment
(Lu et al., 2004; Khan et al., 2017). Some examples of the
characterization of AuNPs, its morphology and size are as
shown in Table 4.

MEDICAL APPLICATIONS OF
MULTIFUNCTIONAL AuNPs

In the above parts, the synthesis, modification and
characterization of AuNPs based on optical and physicochemical
properties have been introduced. Although nearly all studies are
in the experimental stages, it is clear that AuNPs have potential
applications in different fields. Based on their characteristics,
applications have been explored, particularly in medical field,
including deliver carriers (drug, gene and protein deliver),
therapeutics (PTT, PDT and RT), diagnostics, imaging, and other
biological activities (Figure 8 and Table 5). In the following
sections, these applications will be discussed in detail.

Delivery Carriers
In recent years, the idea of using AuNPs as delivery carriers has
attracted the wide attention of researchers. As shown in Figure 9,
AuNPs can be used for the delivery of drug, gene, and protein.

Chemotherapy is the most common method of cancer
therapy but its potential is limited in many cases. Traditional
drug delivery (oral or intravenous administration) for
chemotherapeutic drugs, results in the dissemination of the
drug throughout the whole body, with only a fraction of the dose
reaching the tumor site (Singh et al., 2018). Targeting of specific
cells, organs, and tissues, in a controlled manner, has become
a key issue and challenge. Drug delivery systems (DDSs) is a
promising approach to general anticancer therapy, which may
provide efficient targeted transport and overcome the limitation
of biochemical barriers in the body, e.g., the brain blood barrier
(Martinho et al., 2011). Moreover, DDSs can enable controlled
function in delivering drugs for early detection of the diseases
and damaged sites (Baek et al., 2016). There are many useful
forms for drug delivery, including liposomes, liquid crystals,
dendrimers, polymers, hydrogels, and nanoparticles (Yokoyama,
2014; Rigon et al., 2015). Among these, only a small number of
polymers and liposomes have been clinically approved (Piktel
et al., 2016). Thus, many researchers have started to focus on
the popular AuNPs. AuNPs have been examined for potential
anticancer drug delivery (Duncan et al., 2010). In addition, they
also can be easily modified to transfer various drugs, which
may be bound to AuNPs through physical encapsulation or
by chemical (covalent or non-covalent) bonding. Conjugation
of AuNPs with other drugs is also possible, but it should be
remembered that functionalization can change the toxicity of
AuNPs, and their ability to successfully load or attach the desired
drugs. The use of modified AuNPs has reduced systemic drug
toxicity and helped to decrease the possibility of the cancer
developing drug resistance (Yokoyama, 2014). For example,
Wójcik et al. (2015) using the MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) assay, confirmed that
glutathione-stabilized AuNPs (GSH-AuNPs) modified with
non-covalent conjugation of the DOX were more active against
feline fibrosarcoma cell lines than the activity exhibited by
unmodified AuNPs.

Gene therapy is the use of exogenous DNA or RNA to
treat or prevent diseases. Viral vectors are commonly used
but cannot be functionalized and can activate host immune
systems (Riley and Vermerris, 2017). Their ‘design’ is inflexible,
they target specific sites in a biological system with high

TABLE 4 | Characterization of AuNPs and its morphology and size.

Author Morphology Size (nm) Characterization References

Falagan-Lotsch et al. Nanorod 16–50 TEM, DLS, UV-vis Falagan-Lotsch et al., 2016

Dam et al. Nanostar 40 TEM, DLS Dam et al., 2014

Balfourier et al. Nanosphere 4–22 TEM, STEM, HR-TEM, EDX Balfourier et al., 2019

Ni et al. Nanosphere 5, 13, 45 DLS, UV-vis Ni et al., 2019

Lin et al. Nanosphere ∼10 TEM, SEM, DLS Lin et al., 2019

Dash et al. Nanosphere 15–23 HR-TEM, UV-vis, EDX, XRD, AFM, FT-IR Dash et al., 2014

Lee et al. Nanosphere Nanooctahedra Nanocube 75 TEM, SEM, UV-vis Lee et al., 2019
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FIGURE 8 | A schematic representation of medical applications for AuNPs.

TABLE 5 | The application or activity of AuNPs with different morphology and size.

Author Morphology Size (nm) Application/Activity References

Tian et al. Nanostar 40 PTT and CT Tian et al., 2017

Rossi et al. Nanosphere 5–10 Drug delivery and bioactivity Rossi et al., 2016

Xu et al. Nanocapsule 50 PTT, PDT and RT Xu et al., 2019

Borkowska et al. Nanocore 5.3 ± 0.7 Anticancer activity Borkowska et al., 2020

Zheng et al. Nanostar 7–10 PTT Zheng et al., 2020

Liu et al. Nanocapsule 30–40 Imaging Liu et al., 2018

Venditti Nanosphere 5 CT Venditti, 2017

Yang et al. Nanocube 50 PDT Yang et al., 2018

Hu et al. Nanosphere 100 PTT and RT Hu et al., 2017

Yu et al. Nanosphere 73.8 CT imaging and shRNA delivery Yu et al., 2019

Zheng et al. Nanosphere 2.04 ± 0.18 Drug delivery Zheng et al., 2019

Shahbazi et al. Nanosphere 19 Gene delivery Shahbazi et al., 2019

Loynachan et al. Nanocluster 2 Disease detection Loynachan et al., 2019

Philip et al. Nanosphere 37 SERS Philip et al., 2018

Ramalingam et al. Nanosphere 20–37 Anticancer and antimicrobial activity Ramalingam et al., 2017

Filip et al. Nanosphere 31 Anti-inflammation activity Filip et al., 2019

Wang et al. Nanobipyramid – Diagnosis Wang et al., 2020

Ahmad et al. Nanosphere 4–10 Antimicrobial activity Ahmad et al., 2013

Tahir et al. Nanosphere 2–10 Antioxidant activity Tahir et al., 2015

Terentyuk et al. Nanosphere 62 Antifungal activity Terentyuk et al., 2014

El-Husseini et al. Nanosphere 15 Diagnosis El-Husseini et al., 2016

cytotoxicity and reduce the efficiency of gene therapy (Riley
and Vermerris, 2017). The use of non-viral vectors system
(such as metallic nanoparticles) can solve this problem. Recent
studies have shown that AuNPs can protect nucleic acids
through preventing their degradation by nucleases (Klebowski
et al., 2018). The unique properties of AuNPs, conjugated to
oligonucleotides, can make them potential gene carriers, via
covalent and non-covalent bonding. Covalent AuNPs can activate

immune-related genes in peripheral blood mononuclear cells,
but not in an immortalized and lineage-restricted cell line (Ding
et al., 2014). This shows promise application in its application
for gene delivery systems. For example, Shahbazi et al. (2019)
synthesized AuNPs core using the citrate reduction method, and
developed a CRISPR nanoformulation, using colloidal AuNPs
(AuNPs/CRISPR), with guide RNA and nuclease on the surface
of AuNPs, with or without a single-strand DNA (ss DNA)
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FIGURE 9 | The application of delivery carriers for AuNPs.

template to support homology-directed repair. The outcome was
an efficient gene editing. They also demonstrated the non-toxicity
delivery of entire CRISPR sequences into human blood stem and
progenitor cells.

Recently, researchers have also found some evidence that
AuNPs can be used as protein carriers. For instance, Joshi
et al. (2006) obtained insulin directly bound to bare AuNPs
(Au-insulin nanoparticles) via a covalent linkage, which have
been confirmed more active than insulin bound via hydrogen
bonds with amino acid-modified AuNPs (Au-Asp-insulin
nanoparticles) in the transmucosal delivery of drugs for the
treatment of diabetes. In this case, the efficiency of insulin
delivery can be enhanced by coating the AuNPs with a non-toxic
biopolymer, which can strongly adsorb insulin to its surface.

Therapeutics
In the following section, we will discuss photothermal therapy
(PTT), photodynamic therapy (PDT), and radiation therapy
(RT) applications of AuNPs, which continue to be under
development (Figure 10).

PTT, also known as thermal ablation or optical hyperthermia,
is a non-invasive and is widely applied for cancer therapy
due to its benefits of real-time observation of tumor sites
and photoinduced destruction of tumor cells or tissues (Singh
et al., 2020). PTT uses materials with a high photothermal
conversion efficiency, injected into the body, which gather near
the tumor tissues by targeting recognition technology (Murphy
et al., 2010; Mubarakali et al., 2011). Under the irradiation of
external light sources, usually visible or near-infrared (NIR) light,
photothermal materials (such asmetal nanoparticles) can convert
light energy into heat energy (photothermal conversion), result
in the destruction of the tumor tissue, and kill the cancer cells
(Murphy et al., 2010; Mubarakali et al., 2011). AuNPs as a
photothermal material, with maximum absorption in the visible

or NIR region, have a high photothermal conversion efficiency
due to their SPR effect. In addition, the SPR peak of AuNPs can
be adjusted to the NIR region by controlling their geometrical
and physical parameters, such as size and shape, which contribute
to the depth of effective penetration of PTT (Boyer et al., 2002;
Orendorff et al., 2006; Bibikova et al., 2017). Therefore, many
researchers have been focusing on the different size and shape
of AuNPs for application in PTT (both in vitro and in vivo)
due to their absorption peaks being in the visible or NIR region
and their ability to load and deliver various anticancer drugs
(Sharifi et al., 2019; Sztandera et al., 2019). AuNPs used in PTT
are generally nanorods or nanoshells but, when introduced into
a biological environment, the cellular uptake can be limited (Kim
and Lee, 2018). Tian et al. (2017) synthesized gold nanostars
(AuNSs) with pH (low) insertion peptides (pHLIPs) (AuNSs-
pHLIP). They have low toxicity, are plasmon tunable in the
NIR region, and exhibited excellent biocompatibility and effective
PTT (Tian et al., 2017).

PDT is another form of light therapy, developed in recent
decades, and used to destroy cancer cells and pathogenic bacteria
(Abrahamse and Hamblin, 2016). PDT involves visible light,
photosensitizer (PS), andmolecular oxygen (O2) from the tissues.
PDT is completely dependent on the availability of O2 in tissues.
The process of PDT is that the PS absorbed by the tissue, is
excited by laser light of a specific wavelength. Irradiating the
tumor site can activate the PS that selectively accumulate in the
tumor tissue, triggering a photochemical reaction to destroy the
tumor. The excited PS will transfer energy to the surrounding
O2 to generate reactive oxygen species (ROS) and increase ROS
level in the target sites. ROS can react with adjacent biological
macromolecules to produce significant cytotoxicity, cell damage,
even death or apoptosis (Imanparast et al., 2018; Falahati et al.,
2019; Singh et al., 2020). As a PS, AuNPs can absorb the NIR
light, accumulate in the tumor area, raise the temperature, and
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FIGURE 10 | The application of PTT, PDT and RT for AuNPs.

generate high levels of ROS, which can ultimately damage the
tumor growth and promote cancer cell death (Jing et al., 2014).
In addition, AuNPs have been considered for PS carriers due
to their simple thiolation chemistry for the functionalization of
desired molecules, enhancing its capability for loading PS drugs.
For example, Yang et al. synthesized spherical AuNPs using UV-
assisted reduction with sodium and chloroauric acid, and hollow
gold nanorings with a sacrificial galvanic replacement method
(Yang et al., 2018). They utilized AuNPs and gold nanorings
as drug delivery carriers, with a PS enhancer, to compare and
investigate the shape-dependent SPR response in PDT. They
found that gold nanorings exhibited efficient PS activation and
SPR in the NIR region. Therefore, these may be promising
nanoparticles to address the current depth limitation of PDT, for
deep tumor therapy.

Besides PTT and PDT, radiation therapy (RT) is one of the
least invasive and commonly used methods in the treatment
of various cancers (Sztandera et al., 2019). RT involves the
delivery of high intensity ionizing radiations (such as γ-rays and
X-rays) to tumor tissues, while simultaneously protecting the
surrounding healthy cells, tissues, and organs, resulting in the
death of tumor cells (Retif et al., 2015; Klebowski et al., 2018).
γ-rays and X-rays are usually used to ionize cellular components
(such as organelle) and water. Water is the main component of
the cell, as well as the main target of the ionizing radiations,
resulting in the lysis of the water molecules. This lysis is named
radiolysis, which causes the formation of charged species and free
radicals. The interaction of free radicals and membrane structure
can also cause structural damage, leading to the apoptosis of cell
(Kwatra et al., 2013). Recently, there have been many reports of
radiosensitization using AuNPs in RT due to their high atomic
number of gold (Jain S. et al., 2011; McMahon et al., 2011). The
most probable mechanism of radiosensitization from AuNPs is
that Auger electron production from the surface of the AuNPs
can increase the production of ROS, reduce the total dose of

radiation, and increase the dose administrated locally to the
tumor sites, eventually resulting in cell death. Moreover, side
effects can also be reduced (Jeynes et al., 2014; Retif et al., 2015).

Diagnostics
Diagnostics are very essential to medical science and clinical
practice. Some diagnostic methods (such as immunoassay
diagnosis) have been applied to clinical diagnosis but have
limitations in precision molecular diagnostics because of their
inaccuracy and low sensitivity (Ou et al., 2019). With the
development of nanotechnology, the sensitivity, specificity, and
multiplexing of diagnostic tests have been improved. AuNPs
exhibit substantial and excellent optical properties, mainly
including localized surface plasmon resonance (LSPR) and
surface-enhanced Raman scattering (SERS), which play an
important role in their application to diagnostics (Ou et al.,
2019; Venditti, 2019). LSPR-based application of AuNPs is due
to spectral modulation (Figure 11) (Ou et al., 2019). When

FIGURE 11 | The application of AuNPs on the LSPR.
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FIGURE 12 | A simple scheme for X-ray imaging.

the light is incident on the surface of AuNPs, if the incident
photon frequency matches the overall vibration frequency of the
electrons transmitted by the AuNPs, the AuNPs will strongly
absorb the photon energy, and generate LSPR phenomenon,
which is useful for diagnostics (Link and El-Sayed, 2003; Liu et al.,
2011; Baek et al., 2016; Cordeiro et al., 2016). The LSPR peak
of AuNPs is usually in the visible-NIR region, often at around
500 nm or from 800 and 1200 nm (Huang et al., 2009; Aldewachi
et al., 2017). SERS is another very attractive spectroscopic
technique in diagnostics, being non-invasive and having high
sensitivity features (Boisselier and Astruc, 2009; Zhou et al.,
2017). Fleischmann et al. (1974) reported the enhancement of
a Raman scattering signal, which was the first observation of
SERS. The enhancement of SERS can be explained by two
mechanisms. One is the chemical enhancement due to charge
transfer between gold atoms and molecules (Kawata et al., 2017).
Another is the electromagnetic enhancement because of LSPR
on the surface of metallic gold (Kawata et al., 2017). Spherical
AuNPs are commonly used as the substrate for SERS, although
non-spherical AuNPs have also been produced and explored for
these applications (Tao et al., 2011; Yang et al., 2012). Nowadays,
the phenomenon of LSPR and SERS in AuNPs has been widely
used for the development of molecular diagnostics. For instance,
El-Husseini et al. (2016) synthesized 15 nm unmodified citrate-
coated AuNPs by the Frens method, for use in the diagnostic
polymerase chain reaction (PCR) technique for detection of
the equine herpes virus 1 (EHV-1). Their results showed that
AuNPs-assisted PCR was more sensitive than the conventional
PCR technique and, therefore, could be used as a more efficient
molecular diagnostic tool for EHV-1.

Imaging
X-ray computed tomography (CT) is one of the most important
and mature tissue imaging techniques widely used in various
research and clinical environments with broad availability and
fairly low cost (Kim et al., 2007). Specifically, CT is a non-invasive
clinical diagnostic tool that can perform 3D visual reconstruction
and tissue segmentation (Lusic and Grinstaff, 2013). The images
of CT are composed of X-ray images, which are taken at different
angles by rotating around an object to form a cross-sectional
3D image called a CT scan (Lusic and Grinstaff, 2013; Fuller
and Köper, 2019). According to the content of the images, the
contrast agent can attenuate the X-ray to improve the image
quality to highlight the specific area, such as the structure of

blood vessels or organs (Lusic and Grinstaff, 2013). The basis
of CT imaging is the fact that healthy and diseased tissues or
cells have different densities, which can generate in a contrast
between normal and abnormal cells by using contrasting agents
(such as iodinated molecules) (Figure 12) (Cormode et al., 2014).
Iodinated molecules are usually used as a contrasting agent, due
to their unique X-ray absorption coefficient (Klebowski et al.,
2018). However, their usage has its own limitations, such as
short imaging times, rapid renal clearance, reduced sensitivity
and specificity, toxicity, and vascular permeation (Chien et al.,
2012; Mackey et al., 2014). Therefore, it is very essential to
explore and develop novel materials as contrasting agents for
X-ray imaging. In recent years, AuNPs are attracting attention
in imaging as an X-ray contrast agent because they can strongly
absorb ionizing radiation to enhance the coefficient of X-ray
absorption and convert the light energy to heat energy through
the SPR effect (Rahman et al., 2014). Moreover, AuNPs have
some advantages compared to iodinatedmolecules such as ease of
synthetic manipulation, unique optical and electrical properties,
non-toxicity, higher electron density, higher atomic number of
gold, and higher X-ray absorption coefficient (Mackey et al.,
2014; Singh et al., 2017). The key factors for potential application
of AuNPs in enhanced X-ray CT imaging are their migration
and accumulation at target sites and longer vascular retention
time, and these allow non-invasive tracking and visualizing of
the therapeutic cells (Yin et al., 2017; Meir and Popovtzer,
2018). For example, Liu et al. (2018) synthesized 30–40 nm
sized gold nanocages (AuNCs) as part of an activatable probe, to
investigate the potential of imaging. The AuNCs were PEGylated
via conjugation with SH-PEG-NH2. It is the first report to
estimate protease activity in vivo using an imaging technique and
activatable probe.

Others
Besides the various applications described above, some
other applications involving antimicrobial (antibacterial
and antifungal) activity, antioxidant activity, and anticancer
activity need to be mentioned.

The increasing incidence of bacterial infection with drug
resistance is a major issue for human health (Dutta et al., 2017).
AuNPs are easily taken up by immune cells, due to their excellent
cell affinity, which leads to precise delivery at the infected
area, facilitating inhibition and damage to microbial pathogens
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(Saha et al., 2007). AuNPs show excellent antibacterial activity
against E. coli by absorbing light and converting it into heat
(Singh et al., 2009). The growing drug resistance of fungal strains
also demands the development of new drugs for better treatment
of fungal diseases. Among the various nanoparticles, AuNPs are
sensitive to candida cells, which can inhibit the growth and
kill the fungal pathogen C. albicans (Wani and Ahmad, 2013;
Yu et al., 2016). They increase the ROS and damage the cell
membrane by their unique properties, which include converting
light to heat when irradiated and strong anionic binding with
fungal plasma membrane (Wani and Ahmad, 2013; Yu et al.,
2016). Cancer is caused by many factors and is considered one
of the main causes for death worldwide. In tumor cells, AuNPs
have a tendency to enter subcellular organelles and increase the
cellular uptake, which enhances anticancer activity (Kajani et al.,
2016). AuNPs can increase the ROS level, to destroy cancer
cells. However, the biocompatibility and selectivity of AuNPs,
in targeting tumors, remains an important challenge. Therefore,
new developing methods are required to overcome the question.
Excessive ROS can lead to enzyme deactivation and nucleic acid
damage, which can itself lead to diseases diabetes, aging, and
cancer (Li et al., 2009). Ramalingam (2019) synthesized AuNPs
using NaBH4 and HAuCl4 as a reducing agent and precursor,
respectively. Furthermore, they investigated and confirmed the
anticancer activity of their AuNPs in human lung cancer cells,
and antimicrobial activity against human clinical pathogens,
such as P. aeruginosa, S. aureus, E. coli, V. cholera, Salmonella
sp., K. pneumonia. Their results suggested that AuNPs could
potentially act as anticancer and antimicrobial agents. Moreover,
AuNPs have also been confirmed as a potential antioxidant
agent. They can inhibit the formation of ROS, thus increasing
the antioxidant activity of defensive enzymes. The synergism
and antagonism of AuNPs, in their antioxidant activity, require
further investigation (Ramalingam, 2019). For instance, Tahir
et al. (2015) produced AuNPs (2–10 nm) using the extract of
Nerium oleander leaf, in a one-step, green synthetic method,
and these AuNPs showed good antioxidant activity. Furthermore,
the results showed that the extract of Nerium oleander leaf was
very active for the reduction of AuNPs, and could be used as a
reducing agent.

CONCLUSION

In summary, since Faraday first reported AuNPs in 1857
(Faraday, 1857), there have been many reports focusing on
their synthesis, as well as comparisons with other metallic
nanoparticles or noble metallic nanoparticles. In this review,
we have described the synthesis and modification of AuNPs,

the techniques of characterization, and their diverse medical
applications and biological activities. Since the yield is low,
using a top–down approach, a series of synthetic approaches
to the production of AuNPs have been proposed. Additionally,
the unique properties of AuNPs suggest its broad applications,
including drug and gene delivery, PTT, photodynamic therapy
(PDT), diagnosis, and imaging. Moreover, further applications,
arising from their antimicrobial (antibacterial and antifungal),
antioxidant, and anticancer activities, have also been discussed.
As the properties of AuNPs become better understood, a
considerable number of principal experiments and studies are
needed to focus on function, along with the design of different
therapies, generally involving PTT and PDT. Although the
antimicrobial, anticancer, and antioxidant activities of AuNPs
have been confirmed, they remain to be used in clinical treatment.
As a drug and gene carrier, AuNPs may also have broad
applications, in the future. Although AuNPs possess many useful
properties, some studies have demonstrated their toxic effects,
based on their physicochemical properties. Sabella et al. (2014)
showed that the toxicity of AuNPs was related to their cellular
internalization pathways. The safety of AuNPs remains a very
urgent and controversial issue, as more important concerns
are raised, and this needs to be properly addressed. In recent
studies, researchers have reduced the toxicity of AuNPs by
introducing functional groups to their surface, improved existing
methods of synthesis, and have developed new and better
methods. In conclusion, the unique properties of AuNPs should
be identified, such as their optical properties with SPR bands, and
as carriers with anticancer activity, to broaden their applications
in various fields.
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