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Abstract

Background Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress 
in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery fol-
lowed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the 
blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge 
for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts 
made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM. 
Area covered Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this 
article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted 
therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, 
active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic plat-
forms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed.
Expert opinion Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they 
support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and 
projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-
depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.

Keywords Glioblastoma multiforme · Blood–brain barrier · Lipid-based nanocarriers · Lipid–polymer hybrid 
nanoparticles · Targeted drug delivery

Introduction

Glioblastoma, also referred to as glioblastoma multiforme 
(GBM), is a grade IV astrocytoma and is one of the most 
devastating forms of cancer. Based on the tumor location 
in the brain, brain tumors have either focal or general-
ized symptoms, such as irregular headaches associated 
with aphasia and seizures (DeAngelis 2001). First-line 
of treatment for GBM involves surgical resection of the 
tumor accompanied by radiotherapy and chemotherapy. 
The current gold-standard drug for glioma is temozolo-
mide (TMZ), an alkylating agent, and its effect is limited 
due to the resistance caused by O6-methylguanine-DNA 
methyltransferase (MGMT). Moreover, TMZ has a short 
half-life, due to which it has to be administered at high 
doses and for a prolonged duration, which result in a series 
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of side effects including thrombocytopenia, neutropenia, 
and lymphopenia (Chamberlain 2010). Although multi-
modality therapy comprising of surgery, radiotherapy and 
TMZ has improved survival outcomes (Stupp et al. 2010), 
the results are nowhere comparable to those achieved in 
most of the other advanced-stage solid tumors. This poor 
outcome can be attributed to the challenges in surgical 
resection, and GBM’s resistance to conventional chemo-
therapeutics because of several factors including presence 
of efflux pumps on the blood–brain barrier (BBB), which 
causes drug efflux, leading to poor drug delivery to tumor 
sites. Hence, novel targeted treatment approaches to com-
bat these obstacles are of utmost priority. In this regard, 
nanomedicine, a vast branch of nanotechnology, has great 
potential for overcoming most of the therapeutic barri-
ers and also effectively bypassing the BBB. Nanoparticles 
(NPs) of appropriate shape, size, physiological stability, 
and the ability to incorporate bioactive molecules may 
facilitate increased solubility and can successfully bypass 
the BBB. In literature, a large spectrum of nanocarriers 
such as metal-based ones, for example, gold and silver 
NPs; iron oxide NPs; polymeric NPs; and lipid-based NPs 
have been explored and are reported as promising drug 
delivery vehicles for GBM (Johnsen et al. 2017; Norouzi 
2020; Norouzi et al. 2020; Pottoo et al. 2020). However, 
despite the various advantages, many of these nanocarriers 
innately face drug delivery-related issues such as normal 
tissue toxicity, non-specific delivery, and the risk of unin-
tended drug release (Mishra et al. 2019; Li et al. 2021). 
Among all the nanocarriers explored for treating GBM, 
lipid-based NPs are preferred owing to the biocompatibil-
ity of the products used, such as lipids, triglycerides, fatty 
acids, and waxes; enhanced penetrability due to desired 
particle sizes varying between 50 and 300 nm; higher sta-
bility due to the advent of a combination of emulsifiers; 
and increased permeability (Aparicio-Blanco and Torres-
Suarez 2015; Karim et al. 2016; Barkat et al. 2020). In 
addition, these nanocarriers can transport bioactive com-
pounds such as nucleic acids and enzymes to target the 
tumor site. Moreover, they can shield their cargo from 
degradation while improving its pharmacological effect. 
Lipid-based nanocarriers, in general, reduce the drug's 
toxic profile and enhance targeted tissue specificity (Puri 
et al. 2009; Iqbal et al. 2012). In this review, we empha-
size the suitability of liposomes, solid lipid nanoparticles 
(SLNs), and nanostructured lipid carriers (NLCs)-the three 
major types of lipid nano formulations that have demon-
strated controlled and predictable release of drug load at 
the tumor site and have promising prognostic outcomes 
in terms of GBM tumor progression. Further, proper-
ties of the tumor microenvironment (such as acidic pH, 
mildly elevated temperature, and hypoxia) have also been 
explored to distribute payloads in glioma tumor tissues 

using stimuli-triggered lipid-based nanocarrier drug deliv-
ery systems (DDSs).

Glioma: challenges in clinical management

The major limiting factor for the design of novel therapeu-
tics that are effective for the brain is the BBB. The brain 
parenchyma cells are guarded by the BBB, which majorly 
consists of endothelial cells, pericytes, and astrocytes. The 
brain microvascular endothelial cells are linked by tight 
junctions (TJs), which form a barrier for most of the drugs 
entering the brain. This structure poises a major challenge to 
transport therapeutic molecules into the brain if they are not 
surface functionalized. Further, many active efflux transport-
ers present on the BBB restrict the entry of the drug to the 
brain (Ballabh et al. 2004; Abbott et al. 2006; van Tellingen 
et al. 2015). In GBM, the blood–brain tumor barrier (BBTB) 
resides between tumor tissues and blood capillary vessels. 
As tumor grows, BBTB loses its integrity, thereby becoming 
leakier and more dysfunctional than the BBB. Owing to the 
increased permeability and retention effect, BBTB becomes 
more prone to transporting nanocarriers and enables drug 
accumulation at the tumor site (Karim et al. 2016; Arvanitis 
et al. 2020). Hence, the structural and functional integrity 
of BBB/BBTB must be considered for the development of 
effective targeting molecules for gliomas. The mechanism 
of drug resistance includes the upregulation of drug efflux 
transporters, which can ooze out the drug from the cells (Ds 
2015; Mason 2015; Li and Sahi 2016). Efflux transporter in 
the BBB acts as a barrier in the drug delivery process, where 
it actively pumps out a variety of drugs such as anti-cancer 
agents via the cell membrane (Gulsun et al. 2017; Sriraman 
et al. 2017; Tellingen et al. 2018). Glioma stem cells (GSCs) 
can self-renew, initiate a tumor, and differentiate from 
reconstituting the initial tumor mass. GSCs are involved 
in tumorigenicity and are resistant to chemotherapy and 
radiation therapy (Bao et al. 2006; Eramo et al. 2006; Chen 
et al. 2012). It has been reported that GSCs express high 
levels of vascular endothelial growth factor (VEGF) and 
stromal-derived factor-1 (SDF-1)—crucial factors involved 
in angiogenesis that contribute to tumor growth (Bao et al. 
2006; Folkins et al. 2009; Huang et al. 2010). They are often 
commonly present in hypoxic environments, as they serve 
as essential components in neo-angiogenesis. Moreover, 
GSCs stimulate tumor-associated endothelial cell prolifera-
tion, expansion, and tube formation through intercellular 
signaling, resulting in tumor vascularization (Filatova et al. 
2013). Thus, GSCs could be a potential target for the devel-
opment of multitargeted therapeutics for better prognosis. 
Besides, hypoxia is another significant problem in GBM, as 
cells in hypoxic conditions are susceptible to migrate into 
healthy brain tissue, resulting in tumor invasion, which is 
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the leading cause of death in patients suffering from glioma. 
Hypoxia-inducible factors (HIFs), specifically HIF2α, are 
the major molecular markers expressed in hypoxic tumor 
cells. In response to hypoxia, cells undergo multiple tran-
scription modifications, which significantly impact cellu-
lar activities (Soeda et al. 2009). Therefore, HIF2α could 
potentially be used to target GSCs in malignant GBM. The 
presence of hypoxic regions within GBM and other solid 
tumors is one of the main causes of radio resistance. Conse-
quently, oxygen-mimicking compounds have been studied as 
effective radiosensitizers in many cancers (Rey et al. 2017). 
Researchers have put in a lot of effort to improve the limita-
tions in glioma radiotherapy, and nano-radiosensitizers have 
emerged as a promising treatment choice. Using nanotech-
nology to develop novel nano-sized platforms that cross the 
BBB and deliver a high concentration of the drugs into the 
tumor, thereby increasing tumor response to radiotherapy, 
is fast becoming an attractive approach to improve radio-
therapy outcomes in these tumors (Liu et al. 2017a; Xie et al. 
2021).

Current drug delivery strategies for brain 
tumors

Although the BBB is essential for the normal functioning of 
the brain, it becomes a major barrier during therapeutic drug 
interventions. Further, even though several novel methods to 
circumvent the BBB are being created, most of these thera-
peutic approaches are associated with inevitable side effects 
(Aryal et al. 2014; Barua et al. 2014). The various strate-
gies being applied to breach the barrier can be classified 
into invasive and non-invasive approaches. The strategies or 
treatment modalities that are being extensively employed for 
the betterment of treatment outcomes are indicated in Fig. 1.

Targeting glioblastoma multiforme: 
an e�ective approach via nanocarriers

Nanocarriers are effective DDSs that have recently gained 
a lot of attention as a potential platform for targeted drug 
delivery, including the brain. This is been explored not only 
as a multifunctional platform for efficient drug delivery but 
also as diagnostic tools. It must be noted that for the suc-
cessful transport of the drug/biomolecules to the brain, these 
carriers should possess required physicochemical properties 

Fig. 1  Current drug delivery 
strategies for glioblastoma 
multiforme treatment based 
on breaching the blood–brain 
barrier
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such as low molecular mass, lipid solubility, and less number 
of hydrogen bonds to cross the BBB (Banks 2016; Warren 
2018).

Nanocarriers could be structured by varying their com-
position and, consequently, tailored to achieve site-specific 
drug delivery to GBM (Bhaskar et al. 2010; Lombardo et al. 
2019). In recent years, NPs such as liposomes, dendrimers, 
micelles, and organic, inorganic, metallic, and polymeric 
nanocarriers have extensively been used as drug delivery 
vehicles for site-specific treatments, as shown in Fig. 2 (Ben-
net and Kim 2014; Zhu and Liao 2015; Din et al. 2017). 
For efficient drug delivery into the tumor, the nanocarriers 
should (1) carry the drugs to the targeted site via endocyto-
sis, (2) have a size < 200 nm and not be immunogenic, (3) 
escape from opsonization and clearance by the reticuloen-
dothelial system (RES), (4) be able to guard the drug against 
any mode of degradation and have long-plasma circulation 
time, and (5) should recognize intra/extracellular environ-
mental stimuli and increase the cellular internalization. A 
comparative account of widely used three different lipid-
based nanocarriers are described in Fig. 3. Many studies 
show that particle size and surface charge, as well as the 
presence of a targeting moiety on the surface, are important 
factors in brain targeting. However, nanocarriers are cleared 
by the RES consisting of phagocytic cells (monocytes and 
macrophages) and may preferentially attract phagocytes, 

which may enhance the rate of plasma clearance (He et al. 
2010). On the other hand, surface-charged nanocarriers do 
not aggregate easily, which can increase their shelf-life. 
Therefore, surface charge decides the fate of the nanocarri-
ers. However, to target the brain, cationic nanocarriers are 
more useful, as they can easily pass through the BBB by 
adsorptive-mediated transcytosis (AMT; Yang et al. 2017).

Lipid-based nanocarriers: �exible platform 
for targeted drug delivery to the brain

Lipid-based or lipidic nanocarriers are extensively used 
DDSs, as they offer versatile properties such as high drug 
loading efficiency, low toxicity, biocompatibility, sustained-
release behavior, protection against drug degradation, sta-
bility, and suitability for drug delivery via various routes. 
Lipid-based NPs such as liposomes, NLCs, SLNs are con-
sidered vital nanocarrier systems for brain targeting (Man-
sor et al. 2019; Niu et al. 2019). Moreover, to overcome 
the glitches associated with polymer NPs, lipid-based nano-
carriers have gained more attention for effective targeting 
(Shukla et al. 2018; Harshita et al. 2020). However, despite 
the advantages of using nanocarriers in various diseases, 
including GBM, they can still potentiate various toxicities 
induced by oxidative stress, inflammation, and DNA damage 

Fig. 2  Various nanoparticles 
explored as drug delivery 
systems for glioblastoma mul-
tiforme
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to healthy cells (Bahadar et al. 2016). Studies have revealed 
that phagocytes' particle size, diameter, and uptake are cru-
cial factors that affect the disease site (Riaz et al. 2018; Liao 
et al. 2019). Based on the physicochemical properties and 
the method of preparation, lipid-based nanocarriers can be 
classified into different categories: (1) liposomes, spherical 
vesicles having a lipid bilayer made up of phospholipids; 
(2) niosomes, consisting of cholesterol and non-ionic sur-
factants; (3) transferosomes, which are similar to liposomes 
and are composed of stabilized lipid matrix; (4) SLNs, which 
are made up of a solid lipid core; and (5) NLCs, comprising 
liquid lipid core surrounded by a solid lipid layer (Tapeinos 
et al. 2017). Some of the important lipids used in the formu-
lation of lipid nanocarriers are listed in Table 1.

Transport mechanism of lipidic nanocarriers 
across the blood–brain barrier

Anticancer agent-loaded lipid-based nanocarriers are known 
to be able to cross the BBB. Hence, endogenous drug trans-
port pathways provide a promising avenue for research into 

bypassing drug payloads across the BBB. Larger and/or 
hydrophilic molecules such as lipoproteins, transferrin, and 
insulin use various receptors that are highly expressed on the 
luminal side of endothelial cells. These receptors allow sub-
stances to pass through the BBB via endocytosis and trans-
cytosis. There are three major classes of transport pathways 
for BBB-targeted lipid-based nanocarriers: (1) AMT, (2) 
receptor-mediated endocytosis (RME), and (3) transporter-
mediated transcytosis (TMT) (Khan et al. 2018). AMT refers 
to the delivery of drugs using nanoparticulate systems func-
tionalized with cell-penetrating peptides or cationic proteins 
via electrostatic interactions (Hervé et al. 2008). Solutes, 
such as glucose or amino acids, bind to a protein transporter 
on one side of the membrane, allowing the protein to change 
conformation; this results in the transfer of the substance 
from a high to a low concentration on the other side of the 
membrane. Glucose transporters (GLUT) are proteins that 
help get glucose from the bloodstream to the brain; these 
have received a lot of interest in the study of BBB-targeted 
lipidic nanocarriers (Qin et al. 2010). RME transports drug-
loaded lipid nanocarriers across the BBB endothelium lining 
through highly selective and unique receptors with natural/

Fig. 3  Comparative account 
of lipid-based nanocarriers. 
Adapted from Poonia et al. 
(2016) and Ghasemiyeh and 
Mohammadi-Samani (2018)
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artificial (antibody) ligands and releases them into the brain 
(Rip et al. 2009).

Liposomes

Liposomes are considered first-generation lipid-based 
NPs, which were one of the first-ever drug delivery car-
riers used to transport anticancer and antimicrobial drugs 
into cells (Yingchoncharoen et al. 2016; Shukla et al. 2018). 
Liposomes resemble the cell membrane that can deliver 
several hydrophobic as well as hydrophilic pharmaceuticals 
without altering their basic properties. These pharmaceu-
ticals include proteins, peptides, small molecules, RNAs, 
etc. Owing to their versatility and many advantages over the 
other NPs, recent research has focused on formulating the 
multitargeted liposomes for central nervous system-related 
diseases, specifically for brain tumors. One of the advantages 
that liposomes possess is that they can cross the BBB via 
receptor-mediated transcytosis (RMT) or AMT (Liu and Lu 
2012; Liao et al. 2019) and, therefore, can be used to treat 
various types of brain tumors. Once they cross the BBB/
BBTB, liposomes preferentially accumulate at the tumor 
site; thus, non-specific targeting and consequent side effects 
of the entrapped therapeutics can be drastically reduced, 
which, in turn, improves the drug safety profile (Koukoura-
kis et al. 2000). Liposomes that are delivered systemically 
should retain their physicochemical properties to cross the 
BBB/BBTB effectively. They should be small (< 200 nm), 
have adequate plasma circulation time, and be bound to 
ligands that are internalized by cerebroendothelial cells on 
their surface (Alyautdin et al. 2014). The BBB passage of 
liposomes can be increased by making them functionalized 
with specific ligands such as transferrin, lactoferrin, and 
peptides (Zheng et al. 2015; Hayward et al. 2016). Several 
preclinical studies show that grafting endogenous ligands or 
monoclonal antibodies onto the liposome surface improves 
GBM targeted drug delivery as compared to a passively 
targeted nanocarrier. Active targeting of multifunctional 
liposomes is a promising approach for GBM-targeted drug 
delivery. Owing to their easy and large-scale manufacturing 
capability, tunable structure, ability to cross the BBB, and 
preferential aggregation within tumor tissue, they act as an 
appealing DDS for the treatment of GBM. The applications 
of liposome as a therapeutic moiety and in theragnostic for 
GBM are discussed subsequently.

Solid lipid nanoparticles

SLNs are new-generation lipid-based nanocarriers that 
have been developed as a substitute for liposomes and other 
polymeric NPs (Müller et al. 2000). Problems associated 

with other nanocarriers, such as systemic toxicity, rapid 
drug clearance, and poor loading capacities, led scientists 
to focus on SLNs, as they combine the advantages of con-
ventional drug carriers. Therefore, extensive studies have 
been carried out on SLNs and their applications in numerous 
fields (Khames et al. 2019). These NPs can be fabricated 
by using lipids such as stearic acid, acetyl palmitate, and 
stearyl alcohol, which are commonly used to prepare other 
lipidic nanocarriers. Surfactants, including polysorbate 80, 
polyvinyl alcohol, and sodium cholate, are also being used to 
stabilize SLNs (Sarangi and Padhi 2016). The morphology 
of SLNs is spherical, with sizes ranging from 40 to 1000 nm. 
As the name indicates, the lipid component is present in a 
solid state at both body and ambient temperature (Blasi et al. 
2007b). The appropriate selection of lipids and surfactants 
and their ratio could affect their physicochemical characters, 
such as particle size, stability, and drug release behavior. 
Compared to other carrier systems, SLNs has numerous ben-
efits, including low cost with high-scale production, reliabil-
ity, and excellent drug release profile. Moreover, low water 
solubility allows controlled and sustained release of the 
encapsulated drug. Additionally, their longevity allows them 
to be used for a prolonged period, which may be useful for 
treating brain tumors for which sustained drug release with 
high concentrations of the drug within the tumor is essential. 
Furthermore, SLNs are biocompatible and can be sterilized 
readily, and their fabrication techniques do not involve the 
use of organic solvents, which could otherwise unfavorably 
affect the finished product's toxicity (Pardeshi et al. 2012). 
In this regard, three models of drug incorporation in SLNs 
have been reported based on the production method: (1) 
core–shell model, which consists of a drug-enriched outer 
shell surrounding the lipid core; (2) solid solution model, in 
which drug is dispersed in a lipid matrix with strong drug 
lipid interaction; and (3) outer-shell model, with a drug-
enriched core (Üner and Yener 2007).

Nanostructured lipid carriers (NLC)

NLC emerged as second-generation lipid NPs to overcome 
the limitations posed by the first-generation carrier systems, 
i.e., SLNs and liposomes. They are made up of a solid lipid 
matrix containing a mixture of solid and liquid lipids and 
surfactants in an aqueous phase, which enhances the stability 
and drug loading capacity (Pardeike et al. 2009). They can 
be classified based on the incorporated drug moiety loca-
tion in an NLC. The first type is NLC type I, also called 
an imperfect crystal model, consisting of a disordered solid 
lipid matrix with void spaces for more drug accumulations. 
The second is the multiple-type NLC, characterized by 
high liquid lipid content, which is more useful for loading 
lipophilic drugs. The amorphous model is the third type of 
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NLC, in which a lipid matrix is present in the homogenous 
amorphous state (Selvamuthukumar and Velmurugan 2012). 
The basic component of an NLC that affects stability, drug 
loading, and sustained release is the lipid component. Com-
monly used solid lipids are diglycerides, steroids, fatty acids, 
and waxes, as they are designated as "generally recognized 
as safe" (GRAS) (Shah et al. 2015). Further, oleic acid, olive 
oil, propylene glycol dicaprylocaprate are some of the liquid 
lipids (oils) used in making NLCs.

Lipid–drug conjugates (LDC)

LDC are lipidic prodrugs in which drug molecules are either 
covalently or non-covalently linked to lipids such as fatty 
acids and glyceraldehydes. LDCs are prepared by utilizing 
the advantage of lipid metabolic pathways, which may tar-
get organs (Lambert 2000). LDCs have multiple advantages, 
including enhanced drug loading and oral bioavailability. 
Various conjugation methods are utilized to synthesize 
LDCs depending upon chemical structures and the inter-
action of lipids and drugs. Cholesterol and cholic acid are 
steroids that have been widely used to conjugate drug mol-
ecules through the hydroxyl group present on the steroid 
ring. As cancer cells overexpress low-density lipoprotein 
receptors (LDLRs) and require large amounts of cholesterol 
for rapid growth, many studies have led to the synthesis of 
cholesterol-conjugated anticancer drugs to target tumor 
cells (Radwan and Alanazi 2014). LDCs can improve BBB 
penetration by increasing lipophilicity of the drug or target 
receptors, which facilitates lipid transportation to the brain 
by crossing the BBB (Nikanjam et al. 2007).

Stimuli-responsive lipidic nanocarriers

Liposomes have been used as drug delivery vehicles for 
many years, as they possess numerous advantages over 
conventional DDSs. However, poor bioavailability of the 
encapsulated drug, instability in humans, and their uncon-
trolled release have limited their applications in the medi-
cal field (Akbarzadeh et al. 2013; Sercombe et al. 2015). 
To overcome these problems, DDSs that can respond to 
different external and internal stimuli for controlled drug 
release are highly desirable. Stimuli-responsive DDSs tar-
get a specific site for their drug delivery in a controlled 
manner, resulting in an adequate concentration of drug 
reaching the target site with reduced side effects. Based 
on various stimuli approaches, different types of nano-
carriers can be synthesized; these have been classified as 
endogenous stimuli-controlled and exogenous stimuli-
controlled systems. In the endogenous stimuli-controlled 
system, drug release is controlled by various enzymes, 
temperature, pH, etc.; conversely, in the exogenous stim-
uli-controlled system, external stimuli such as radiation, 
magnetic field, focused ultrasound are used to regulate 
drug release from the nanocarriers (Fig. 4; Gopalan et al. 
2020). Liposomes with stimuli-responsive ability consti-
tute a promising method to enhance therapeutic efficacy. 
Stimuli-responsive liposomes can be prepared by using 
phase transition lipids and stimuli-responsive chemical 
moieties into liposomes that respond to stimuli (Kono 
2001; Yuba 2020). Triggering the drug release from lipid-
based nanocarriers by applying external stimuli facilitates 
site-specific delivery (Fleige et al. 2012; Mura et al. 2013; 
Lee and Thompson 2017).

Fig. 4  Schematic representa-
tion of stimuli-responsive lipid 
nanocarriers for glioblastoma 
multiforme

Stimuli-responsive lipid 

nanocarriers

Different external and internal stimuli for triggered 

release of drug at  tumor site

Triggered release of drug from 

cargo
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Thermo-sensitive lipidic nanocarriers

Temperature influences the metabolic activity of cells. 
The human body maintains a physiological temperature 
of 37 °C for intracellular reactions, and when the body 
temperature exceeds the limit of 43–45 °C, hyperthermia 
sets in. In such conditions, cells cannot maintain their 
regular metabolism due to the denaturation of proteins 
and degradation in the cellular enzymatic activity. The 
increased temperature over physiological levels or "hyper-
thermia" can impose irreversible damage to the tumor cells 
through microtubule disruption, inhibition of DNA synthe-
sis, inhibition of DNA synthesis and repair, and changes 
in receptor expression (Aoki et al. 2004). In the case of 
brain tumors, the application of mild hyperthermia (char-
acterized by a few degrees (4–5 °C) above the physiologi-
cal temperature) has been used along with radiotherapy 
and chemotherapy as a non-invasive approach to boost 
the efficacy of treatment (Pacheco-Torres et al. 2015). 
Therefore, one of the most studied stimuli-responsive 
drug delivery mechanisms for cancer treatment is thermo-
responsive drug delivery. Thermo-sensitive liposomes are 
made up of lipids that can alter their physical properties 
in response to temperature changes, thereby causing drug 
release. To produce thermo-sensitive liposomes, dipalmi-
toyl phosphatidylcholine (DPPC) and 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC) are commonly used. 
As lipids have a transition temperature  (Tm) of 41–43 °C, 
the permeability of the lipid membrane is enhanced at this 
temperature, resulting in enhanced drug release from the 
liposomes (Yatvin et al. 1978). For instance, a similar tem-
perature-responsive liposomal formulation ThermoDox™ 
is currently in phase III clinical trials for the treatment of 
hepatocellular carcinoma (Ho et al. 2018). Thermo-sensi-
tive liposomes (TSL-Dox) are made by using lipids such 
as DPPC, 1,2-distearoyl-sn-glycero-3-phosphoethanola-
mine-N-[methoxy(polyethylene glycerol)-2000] (DSPE-
PEG2000), and mono stearoyl phosphatidylcholine (MSPC) 
encapsulated with doxorubicin (Dox). The formulation 
was evaluated for localized release upon hyperthermia 
applications in the canine model. TSL-Dox showed higher 
tumor cellular uptake, confirming its ability to cross the 
BBB. This formulation achieved delivery of therapeutic 
doses with sustained release up to 15–30 min of hyper-
thermia treatment at the tumor site as compared with 
unheated tissue (Bredlau et al. 2018). In another study, a 
novel thermo-sensitive liposome was developed using cell-
penetrating peptides (CPPs), anti-glioma antibodies, and 
super paramagnetic iron oxide nanoparticles (SPIONs). In 
this study, the authors used GBM-specific cell-penetrating 
peptide (P1NS) and an antibody (Tenascin-C) to direct 
the functionalized liposome to target glioma cells without 

being taken out by other endothelial cells. Additionally, 
co-encapsulating Dox and SPIONs inside the liposome 
exhibited thermo-triggered drug release under an alter-
nating magnetic field (AMF). The results demonstrated 
enhanced drug release with reduced cytotoxicity of Dox to 
healthy brain tissues, compared to the non-functionalized 
liposome. Incorporation of SPIONs allowed triggered Dox 
release in a temperature-dependent manner due to heat 
generation by external AMF. Therefore, dual-functional-
ized liposomes with thermo-sensitivity have emerged as a 
promising drug delivery approach for GBM treatment (Shi 
et al. 2019). In a recent study, a new type of dual sensitive 
SLN has been synthesized and its efficacy tested against 
various cancers, including glioma (Świętek et al. 2020). 
As it was incorporated with iron oxide NPs, this nano-
carrier had magnetic and temperature sensitivity, and it 
demonstrated heat dissipation when an external magnetic 
field was applied. The SLNs showed dose-dependent cyto-
toxicity against drug-resistant cells such as glioma U251 
cells as well as other cells such as Jurkat and HL-60 leuke-
mia cell lines even without any drug conjugation (Świętek 
et al. 2020).

Photo-thermal lipidic nanocarriers 
for glioblastoma multiforme: an evolving 
technology

Photodynamic therapy (PDT) is an evolving technique that 
uses non-ionizing excitation of light and a photosensitizing 
agent to induce an antitumor immune response (Dolmans 
et al. 2003). PDT is known to produce heat and singlet oxy-
gen species and affect vascular endothelial cells, resulting 
in tumor necrosis, apoptosis, and tissue ischemia (Kram-
mer 2001; Castano et al. 2005). This treatment has been 
employed for many types of cancer, such as skin cancer and 
non-small cell lung cancer, as well as in treating malignant 
gliomas (Akimoto 2016; Shafirstein et al. 2016). When PDT 
is applied for brain tumors, the use of safe excitation light is 
necessary to avoid collateral damage to the neighboring neu-
ral cells (Dolmans et al. 2003). PDT employs non-toxic dyes 
as photosensitizers (PSs), which are activated by absorbing 
light at wavelengths between 400 and 800 nm, resulting in 
an excited triplet state. An excited triplet state can create 
reactive oxygen species (ROS) by photochemical reactions 
in the presence of oxygen, which can kill cancer cells. How-
ever, most of the PSs are hydrophobic molecules with a high 
tendency to aggregate, lack tumor selectivity, and undergo 
rapid clearance by the kidneys (Licha et al. 2000; Saxena 
et al. 2003). Hence, the encapsulation of PSs could enhance 
their performance. A few NPs such as titanium oxide, fuller-
enes, and some types of quantum dots themselves act as 
PSs; therefore, these can be utilized in PDT (Li 2013; Lucky 
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et al. 2015). In a study, indocyanine green (ICG), a potent 
PS for PDT, was incorporated with 1,2-dioleoyl-snglycero-
3-phosphoethanolamine (DOPE) in liposomes in the rat 9L 
GBM model for effective PDT (Shibata et al. 2019). When 
ICG-liposomal formulation was intravenously administered 
to the tumor-bearing animals, the accumulation of NPs in 
the tumor site was notably increased, which was thereafter 
activated by near-infrared (NIR) light. Magnetic resonance 
imaging (MRI) images of the brain showed significant tumor 
growth suppression in NIR-irradiated animals. Interestingly, 
brain histopathological analysis revealed the accumulation 
of CD8+T cells and macrophages in tumor cells with a 
marked expression of heat shock protein-70 (HSP70), which 
was not activated by mild hyperthermia alone (45 °C) and 
IL-2-mediated immune reaction. Remarkably, the effec-
tiveness of this treatment was not seen in nude rats. These 
findings showed that NIR irradiation in combination with a 
novel NP (ICG and liposome combination) could effectively 
elicit an immune reaction by inducing HSP70 expression, 
which can lead to various immunological chain reactions, 
facilitating tumor cell death (Shibata et al. 2019).

pH-sensitive lipidic nanocarriers

pH-sensitive liposomes have numerous applications in dif-
ferent areas of drug delivery, as they can be tuned to attain 
the pH required for the human physiological state. The 
unique feature of being sensitive to external pH makes these 
nanocarriers one of the ideal choices for drug formulation 
in cancer therapy. However, liposome use in pH-triggered 
drug delivery is limited due to the absence of sensory com-
ponents. The incorporation of pH-sensitive lipids helps in 
sensing mild pH differences between the healthy tissues 
and tumor microenvironments, which further triggers drug 
release at the tumor site (Karanth and Murthy 2007).

Gliomas, especially GBM, have a low pH, ranging from 
5.9 to 6.8, while a healthy brain tissue has a pH of 7.1 
(Hjelmeland et al. 2011). A functionalized stealth liposome 
engineered with an ion channel as a sensory component that 
could sense the small pH change (0.2 pH unit precision) 
in the tumor microenvironment has been developed, which 
assists in image-guided drug delivery devices for GBM 
(Pacheco-Torres et al. 2015). This liposomal formulation 
was made by using DOPC, cholesterol, and DSPE-PEG2000, 
encapsulating Gd-diethylendiaminopentaacetic acid (Gd-
DTPA), a paramagnetic chelate that acts as an MRI contrast 
agent that can be readily detected in vivo during MRI. Fur-
ther, the addition of a mechanosensitive channel of large 
conductance (MscL), a sensory ion channel extracted from 
Escherichia coli, into the liposome bilayer creates a tempo-
rary pore on the liposome when pH is slightly acidic (pH 
6.6–7.0) in C6 glioma tumors of mice. These pores allow 

leakage of imaging agents at the tumor site, which could 
be tracked non-invasively via MR spectroscopy. This novel 
study would enable effective future drug delivery designs 
for cancer therapy (Pacheco-Torres et al. 2015). In another 
study, Li et  al. developed a dual-modified pH-respon-
sive liposome to target glioma. Paclitaxel (PTX)-loaded 
liposomes were co-modified with dNP2, a highly potent 
cell-penetrating peptide that can transport its cargo to dif-
ferent brain cells, exhibiting superior cellular internalization 
and tumor microenvironment and pH-cleavable folic acid, 
a ligand for attacking glioma cells. The addition of acid-
cleavable folic acid and dNP2 resulted in improved trans-
portation through the BBB and showed increased cellular 
uptake and cytotoxicity of the loaded drug in C6 glioma 
cells at pH 6.8. As compared to non-modified liposomes, 
this pH-sensitive nanocarrier maintained BBB permeability 
and increased aggregation in orthotopic glioma tumors. This 
multitargeting technique has been shown to be an effective 
drug delivery mechanism for the management of glioma (Li 
et al. 2018).

Hypoxia-responsive tumor targeting 
approach

Nanotechnology, a growing field, can open a new path in 
targeting glioma hypoxic zones, as NPs can be modified 
such that they accumulate in low-pH hypoxic regions and 
thus release the drug for effective therapy. In a recent study, 
a hypoxia-responsive ionizable liposome loaded with gene 
silencing small interference RNA (siRNA) was developed 
to selectively target the hypoxic tumor site of GBM. A polo-
like kinase 1 (PLK1) siRNA was used to inhibit PLK1, a 
highly expressed protein in glioma. Hypoxia-sensitive posi-
tively charged lipid-incorporated liposomes were designed in 
such a way that it could release siRNA at hypoxic conditions 
and at low extracellular pH by increasing positive charge on 
the surface. Significant tumor growth inhibition confirmed 
the effective targeted delivery of siRNA into the glioma 
tumor site (Liu et al. 2017c). To improve the radiosensitizing 
effect on gliomas, angiopep-2-lipid-poly-(metronidazoles)
n (ALP-(MIs)n) hypoxic radiosensitizer-polyprodrug NPs 
were created. The radiotherapy hypoxic sensitization effects 
of ALP-(MIs)n polyprodrug NPs could deliver hydrophobic 
chemotherapy, allowing for concurrent chemoradiotherapy 
while also activating the release of hydrophobic chemo-
therapeutics under hypoxic conditions. In vitro and in vivo 
findings indicate that these ALP-(MIs)n polyprodrug NPs 
can selectively attack gliomas and significantly inhibit their 
growth (Hua et al. 2018). Like the above study, Liu et al. 
(2017b) engineered a novel liposome having hypoxic sen-
sitization as a Dox carrier to achieve a synergistic chemo/
radiotherapy treatment of glioma. In both in vitro and in vivo 



59Journal of Pharmaceutical Investigation (2022) 52:49–74 

1 3

studies, MLP/Dox was shown to increase cellular uptake and 
facilitate Dox release inside hypoxic glioma cells (Liu et al. 
2017b). In another study, to produce synergistic results, an 
angiopep-2 (A2)-modified TMZ-loaded lipid-poly (hypoxic 
radiosensitized polyprodrug) NP was formulated. This parti-
cle exhibited several unique features such as a hydrophobic 
core wherein TMZ could be encapsulated; nitro groups of 
the hydrophobic core, which are transformed into hydro-
philic amino groups under low-oxygen conditions to imitate 
the oxygen environment and enhanced sensitization to radio-
therapy; and at the core–shell lipid monolayer interface to 
modify the angiopep-2, a ligand for low-density lipoprotein 
receptor-related protein-1 (LRP-1), which increases tumor 
specificity (Zong et al. 2019).

Receptor-mediated drug delivery

Cancer cells overexpress several receptors as compared 
to normal cells (Zeromski 2002). Therefore, targeting the 
overexpressed receptors could enhance cellular uptake and 
accumulation of anticancer therapeutics, as depicted in 
Fig. 5. The receptor-mediated DDS has been widely stud-
ied in various fields, including GBM. Some receptors have 
been reported to be highly expressed on both the BBB and 
gliomas, which provide targeting sites for receptor-medi-
ated drug delivery (Wang et al. 2015). A receptor-mediated 
DDS consists of nanocarriers that are conjugated with vari-
ous ligands targeting different receptors such as transferrin 
receptors (TfRs), lactoferrin receptors (LfRs), epidermal 
growth factor receptors (EGFRs), and folate receptors (FRs; 
Cui et al. 2013; Liu et al. 2013; Su et al. 2014). Targeting 

the receptors could facilitate both transportation of drugs 
across the BBB as well as their internalization into glioma 
cells. TfR is essential in cellular iron uptake, which regulates 
the amount of iron delivered to the cells (Calzolari et al. 
2010). Across the globe, researchers have utilized transfer-
rin to transfer the drugs across the BBB. TfR1 and TfR2 are 
overexpressed on cerebral endothelial cells and many other 
cells of malignant gliomas (Voth et al. 2015; Prabhu et al. 
2017). Lactoferrin is another abundantly expressed receptor 
in the neurons and brain endothelial cells. A list of receptors 
explored to target gliomas using liposomes is summarized 
in Table 2.

Subcellular targeted therapy for GBM

Biological macromolecules such as DNA, siRNAs, and 
antibodies specifically target the cell interior. They target 
organelles such as mitochondria, endoplasmic reticulum 
(ER), nucleus, and other subcellular structures. To facilitate 
the drug or macromolecule accumulation at the intracellular 
site, these macromolecules need to translocate through the 
lipophilic cell membrane. However, most of the drugs do 
not reach the targeted subcellular organelle unless they are 
actively transported (Rajendran et al. 2010). To escape from 
the endocytic pathway, intracellular drug delivery can be 
achieved by using surface-modified nanocarriers. Intracel-
lular targeting ligands or moieties such as pH-responsive 
polymer, antimicrobial peptide (AMP), CPP, mitochondrial 
localization signal (MLS), and nuclear localization signal 
(NLS) (Jhaveri and Torchilin 2016) are being incorporated 
with nanocarriers to target specific organelles for effective 

Fig. 5  Schematic representa-
tion of receptor-mediated drug 
delivery using lipid nanocarri-
ers. Functionalized nanoparti-
cles conjugated with receptor-
specific ligand/antibody will be 
internalized by the cells, thereby 
targeting the nucleus, which 
leads to apoptosis

Fig. 6   
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drug delivery to treat various diseases, including GBM 
(Parodi et al. 2015). Thus, subcellular targeting via nanocar-
riers could increase the potential of various drug therapies 
by reducing the quantity of payloads.

Mitochondrial and Golgi/endoplasmic 
reticulum targeting lipidic nanocarriers

Malignant tumors, including glioma, generate adenosine 
triphosphate (ATP) through aerobic glycolysis, which may 
result in mitochondrial dysfunction. This impairment could 
be associated with abnormalities in mitochondria-dependent 
apoptotic pathways. Mitochondria play a vital role in cellular 
proliferation and apoptosis; therefore, mutations in apoptotic 
genes like Bcl-2, p53 may lead to inherent chemoresistance 
in GBM (Costantini et al. 2000; Ordys et al. 2010; Battog-
tokh et al. 2018). Certain clinically approved drugs such as 
ceremide, PTX, and CD-437 are known to directly target 
mitochondria to trigger apoptosis. However, to date, no drug 
can target mitochondria in GBM. In this context, structural 
abnormalities and mitochondrial dysfunctions in malignant 
gliomas and their implications are poorly understood. More-
over, the application of lipid-based nanoplatforms to target 
subcellular organelle is still emerging. Liposomes function-
alized with a lipid-glucose derivative loaded with daunoru-
bicin to target GSC mitochondria have been shown to accu-
mulate in mitochondria by crossing the BBB, thus exhibiting 
a cell-killing effect by inducing apoptotic signaling pathways 
in mitochondria as well as glioma cells (Zhao et al. 2016a). 
Quercetin (QUE) nanoliposomes are unique in that they tar-
get tumor cells to induce type III (necrotic) programmed 
cellular death, which is independent of apoptosis and cas-
pase activity. Wang et al. (2012) assessed QUE nanolipo-
some-treated C6 glioma cells for necrosis, ROS production 
level, and loss of mitochondrial membrane potential by flow 
cytometry. Further, lactate dehydrogenase (LDH) activity, 
as well as cytochrome C release, was evaluated to confirm 
necrotic cell death. The findings showed that nanoliposomes 
induce necrotic cell death in glioma cells and thus provide 
the base for developing novel therapeutic approaches in this 
domain. Golgi complex/bodies are cell organelles that, along 
with the ER, form a part of the secretory pathway. It has been 
shown that the secretory pathway can sense the stress stimuli 
in cells and thus initiate cell death signaling (Momoi 2004). 
In GBM, ER and Golgi complex contents are in a higher 
proliferative phase than the normal adult glial cells (Silvestre 
et al. 2009). Hence, targeting the Golgi–ER network could 
provide a platform for better therapeutic opportunities in the 
field of targeted drug delivery. Moreover, actively targeting 
intracellular organelles helps deliver the drug accurately to 
the specific intracellular site of the tumor cell. The interleu-
kin 13 (IL-13) peptide-conjugated nanocarrier, loaded with 

docetaxel (DTX) and designed for intracellular delivery to 
target GBM, was observed to localize primarily to the Golgi 
apparatus and mitochondria, indicating their involvement in 
intracellular trafficking and sorting of NPs (Gao et al. 2014). 
Results suggested that accumulated NPs in the Golgi appara-
tus may cause toxicity that could affect protein modification 
and exertion, which further leads to the apoptosis of glioma 
cells (Gao et al. 2014).

Lipidic nanocarrier-based combinatorial 
drug approach for glioblastoma multiforme

The presence of BBB, tumor heterogeneity, multidrug 
resistance (MDR), poor pharmacokinetics of the chemo-
therapeutics limited the magnitude of benefit derived from 
monochemotherapy in GBM. To overcome these challenges, 
drug combinations with different working mechanisms have 
elicited considerable interest recently (Zhao et al. 2020). 
However, the enhanced efficacy of drug combinations comes 
at the cost of increased toxicity. To achieve a therapeutic 
drug level, high doses are given, which leads to significant 
off-target toxicity. For example, a well-known drug TMZ is 
administered in high doses (200 mg/m2/day) to treat glioma 
patients, resulting in side effects such as neutropenia, lym-
phopenia, and thrombocytopenia (Perry et al. 2017). Hence, 
combining different drugs with a reduced dose of each drug 
would be a better choice in treating GBM. However, cyto-
toxic drug combinations failed to address the problems asso-
ciated with drug distribution and poor cellular uptake at the 
desired tumor site. Different drug combination approaches 
have been reached in clinical trials to treat GBM. Some of 
them showed better results when treated in combination than 
in single-drug therapy (Davis et al. 2008; Alam et al. 2010; 
Lu et al. 2014). Often, effective preclinical drug-combina-
tion strategies failed to show their efficacy in clinical trials 
due to multiple reasons such as differences in individual 
drug distribution, metabolism, and excretion. These failures 
need to be addressed by alternative drug delivery strategies. 
With evolving technology, different therapeutic approaches 
have been applied to mitigate non-targeted drug distribution 
within the brain. Out of all the strategies, nanotechnology-
based targeted drug delivery approaches show a promising 
outcome with enhanced chemotherapeutic efficacy (Zhao 
et al. 2020). Encapsulating multiple drugs in a single nano-
carrier ensures delivery at the appropriate intracranial site in 
desirable concentrations. Lipid-based NPs have been widely 
explored in the drug combination delivery field. Among 
them, liposomes are best suited for transporting multiple 
chemotherapeutic agents, as they can carry hydrophilic 
drugs in an aqueous core and hydrophobic drugs in the lipid 
bilayer. A combination of drug-loaded NPs along with other 
treatment modalities such as radiation therapy has displayed 
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remarkable outcomes in pre-clinical studies. PEGylated 
liposomal Dox known as Caelyx® combined with radio-
therapy resulted in higher Dox accumulation in brain tumor 
than in normal brain tissues in GBM patients (Koukoura-
kis et al. 2000). In a recent study, hydrogels consisting of 
prodrug lauroyl-gemcitabine  (GemC12), lipid nanocapsules 
(LNCs), and lipophilic PTX were developed for a combined 
local delivery approach for GBM (Bastiancich et al. 2019). 
The addition of  GemC12, which is located at the oil–water 
interphase of LNC, led to the spontaneous formation of 
hydrogels, which was unaffected by the presence of PTX. 
In in vitro studies, cells showed combined and synergistic 
efficacy on GL261 GBM cells (Bastiancich et al. 2019). In 
addition, SLNs and LNC have gained attention in the area 
of lipid-based delivery systems.

Surface-modi�ed lipidic nanocarriers 
for GBM

Modification with chlorotoxin

Chlorotoxin (ClTx) is a powerful toxin exploited for tumor 
targeting. It is a 36-amino acid peptide derived from the 
venom of scorpion Leiurus quinquestriatus. It is known to 
bind to chloride channel-3 (ClC-3) and matrix metallopro-
teinase 2 (MMP2), which are upregulated in GBM but not in 
normal brain tissues (Soroceanu et al. 1998; Deshane et al. 
2003). When this toxin binds to the chloride channel present 
on glioma cells, it blocks the influx and efflux of chloride 
ions, with consequent adverse effects on cellular homeosta-
sis. However, very few studies have reported the application 
of ClTx as a targeting moiety to deliver the drugs or other 
diagnostic agents (Kievit et al. 2010; Huang et al. 2011). 
Results of studies on U87MG cells (expressing both MMP-2 
and ClC-3) demonstrated the increased targeting ability of 
liposome with ClTx conjugation via MMP-2 dependent 
uptake both in in vitro and in vivo studies. A similar study 
was done using ClTx as a targeting ligand conjugated with 
Dox-loaded liposomes for glioma therapy and imaging. 
Here, the targeting compound was synthesized by conjugat-
ing ClTx to DSPE-PEG2000-NHS and further added with 
lipids to make liposomes. Formulated liposomes confirmed 
enhanced cellular uptake through RME due to the pres-
ence of ClTx. In contrast, unconjugated liposomes showed 
poor cellular internalization. In vivo studies corroborated 
with in vitro studies; accumulation of ClTx-Dox liposome 
increased at the brain tumor site than at any other part of the 
body. However, drug distribution observed in the brain and 
toxicity of ClTx-liposomes on normal brain endothelial cells 
remain a matter of concern (Xiang et al. 2011). Although 
ClTx is reported as non-toxic to mammals (Shen et al. 2005), 
detailed studies on cellular and tissue toxicity need to be 

done to validate its potential as an anticancer drug deliv-
ery vehicle. Thus, ClTx can be beneficial in several ways 
to target the tumor, as it has the potential to target specific 
receptors in glioma.

Aptamer modification

Off-target consequences of currently available treatment 
modalities affect GBM patients' quality of life and out-
comes. To overcome the existing hurdles associated with 
targeted drug delivery, in recent decades, antibody develop-
ment to target tumor-specific receptors has been made an 
integral part of the research. However, antibody production 
is a time-consuming, costly process and high doses need 
to be administered for effective responses, thereby limit-
ing clinical efficacy of antibodies (Chames et al. 2009). To 
address the drawbacks of antibody utilization, an alternative 
approach using aptamers is under investigation (Gan et al. 
2017). Aptamers are single-stranded oligonucleotides that 
can be derived from an in vitro process known as systematic 
evolution of ligands by exponential enrichment (SELEX). 
Studies have been taken up to target brain tumors by utiliz-
ing aptamers and NPs (Guo et al. 2011; Monaco et al. 2017; 
Zhao et al. 2019).

Peptide modification

In recent times, peptides are gaining attention as potent 
targeting moieties, as they exhibit protein functionalities 
and possess a high degree of modification at the molecu-
lar level. Peptides display many advantages over proteins, 
including high stability, good specificity, and less suscep-
tibility to eliciting adverse immunogenicity (Sanna et al. 
2014). Many studies have shown the effective utilization 
of artificial peptides in biomedical applications (Raucher 
2019). The efficiency of peptide function can be increased 
by conjugating them with non-biological compounds such 
as polymers and metallic compounds, which would address 
the drawbacks of the peptides (Shu et al. 2013). Among all 
the available conjugation approaches, NPs are an attractive 
option for improving the functionality of the peptides. Con-
sequently, peptide conjugation with NPs has been a widely 
applied method in treating GBM (Raucher 2019). Further, 
CPPs can potentially be used to cross the BBB, as they are 
small peptides that can easily translocate the membrane with 
enhanced cellular uptake. Among widely used peptides for 
brain transport, Wang et al. tested peptide-22 and cyclic 
arginine-glycine-aspartic acid (RGD)/c(RGDfK), which are 
specific ligands for LDLR and integrin αvβ3/αvβ5, respec-
tively. Dual peptide-conjugated liposomes loaded with Dox 
displayed good physicochemical characterizations, as they 
have a particle size below 105 nm with > 95% drug entrap-
ment efficiency. In vitro and in vivo studies demonstrated 
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that both c(RGDfK) and peptide-22 conjugation could sig-
nificantly enhance the cellular uptake in U87 glioma cells 
as well as navigation across the BBB by increase in the lipo-
some accumulation at the tumor site (Chen et al. 2017). In a 
similar study, tumor-specific pH-responsive cell-penetrating 
peptide  H7K(R2)2 was designed, and  H7K(R2)2-modified 
Dox-loaded liposomes were developed to target GBM (Zhao 
et al. 2016b). Moreover, SLNs have also been widely used 
as a carrier for glioma-targeting peptides. Angiopep-2, a 
small peptide having 19 amino acid residues, specifically 
binds to LRP-1 and has higher BBB penetrating ability 
when conjugated with SLNs for the delivery of DTX for 
anti-glioma therapy (Kadari et al. 2018). In another study, 
ultra-small NLCs were utilized as dual drug carriers with 
peptide modification for targeting glioma (Basso et al. 2020). 
In this study, atorvastatin and curcumin (drugs that exhibit 
potential anticancer uses) were incorporated in NLCs, 
which were modified with hyaluronic acid (HA), cRGDfK, 
and  H7K(R2)2 peptide for effectively inhibiting GBM tumor 
growth. As RGD is a widely used peptide for targeted drug 
delivery, NLCs filled with TMZ and functionalized with an 
RGD peptide were tested in GBM therapy. The nanostruc-
tures that had a scale of 120 nm, a positive surface charge 
of + 28 mV, and an encapsulation efficiency of 85% inhibited 
the U87MG glioma cell, making them a potentially promis-
ing structure for treating GBM (Song et al. 2016). Together, 
these studies indicated that lipidic nanocarriers embellished 
with tumor-specific peptides can offer potentially efficacious 
options in GBM therapy.

Lipid–polymer hybrid nanoparticles

In the past two decades, polymeric NPs and liposomes have 
emerged as two dominant classes of nanocarriers in the field 
of targeted drug delivery due to their high efficiency of drug 
encapsulation and site-specific delivery (Zhang et al. 2008). 
However, these NPs are fraught with the problem of short 
circulation time, drug leakage, and non-specific targeting. 
To overcome these limitations, a new-generation delivery 
system has been developed by hybridizing both polymeric 
NPs and liposomes: lipid–polymer hybrid nanoparticles 
(LPHNPs). This robust hybrid nanocarrier displayed high 
encapsulation efficiency, sustained-release kinetics, good 
serum stability, and sensitivity to triggered release. As its 
name indicates, LPHNPs combine the characters of both 
liposomes and polymeric NPs. The structure consists of 
three layers: The innermost layer is a drug-encapsulating 
polymeric core, followed by a monolayer of lipid surround-
ing the core, and the outermost layer is the PEG layer act-
ing as a stabilizer for prolonged systemic circulation of 
LPHNPs (Mukherjee et al. 2019). The most common poly-
mer used for core preparation is poly(lactic-co-glycolic 
acid) (PLGA) because of its biocompatibility and excellent 

biodegradability. Its unique core is highly flexible to mod-
ulation so that a variety of drugs can be loaded. Several 
types of lipids can be used to fabricate the NP outer shell 
with lecithin, cholesterol, DPPC along with PEG for sur-
face modification (Guo et al. 2011). Studies have focused 
on treating GBM by modifying the surface with various 
targeting ligands. In a recent study, lipid-coated polymeric 
NPs were modified with RGD as a targeting peptide (Shi 
et al. 2015). The core was made up of PLGA and loaded 
with DTX. Synthesized nanoformulations displayed good 
physicochemical characteristics with size 110 ± 13.5 nm 
and 77% drug entrapment efficiency. A 4.13-fold increased 
anti-proliferative activity was shown by RGD-NP compared 
with PLGA-NPs in C6 glioma cells. When the animals were 
treated with a drug with fluorescent dye-loaded RGD-NPs, 
the strongest fluorescence signals were observed at the gli-
oma tumor site. Therapy was associated with an increased 
median survival rate (Shi et al. 2015). Indeed, combination 
therapy using chemotherapeutics and nucleic acid is always 
a better option to overcome drug resistance-related problems 
in cancer. A study adopted this strategy by combining an 
antifolate agent pemetrexed and anti-microRNA 21 (miR-21) 
encapsulated in PLGA polymer-based hybrid lipid NPs for 
the treatment of GBM (Küçüktürkmen et al. 2017). A rela-
tively recent study used farnesyl thiosalicylic acid (FTA), a 
Ras protein inhibitor, loaded in lipid–polymer hybrid nano-
carriers for passive transportation through the BBB due to 
their relatively smaller size (164 ± 10.3 nm) and lipophilic 
nature (Sekerdag et al. 2017). The synthesized formulations 
were administered by both intranasal and intravenous routes. 
The MRI and histopathological results displayed the effec-
tiveness of intranasal administration of FTA-loaded LPHNPs 
on tumors in treated animals over intravenous application 
with relatively fewer side effects and systemic accumulation 
(Sekerdag et al. 2017). Collectively, all these studies provide 
evidence for successful applications of LPHNPs as a unique 
mode of treatment for GBM.

Lipid nanoplatform-based alternative 
therapeutic strategy

Gene therapy

Latest efforts on developing more effective strategies to 
target brain tumors have yielded mixed results. Among all 
the strategies, gene therapy has attracted huge attention 
in the context of glioma treatment. The basic concept of 
gene therapy is the targeted transfer of genetic materials 
such as microRNAs, siRNA, and aptamers into tumor cells 
for effective therapeutic purposes (Bansal and Engelhard 
2000). However, gene therapy has failed to meet clinical 
expectations even though it showed promising outcomes 
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in preclinical applications. This is due to impediments 
posed by the brain that act as anatomical barriers and tumor 
heterogeneity, which hinders vector targeting to the brain 
(Bansal and Engelhard 2000). NPs are a viable strategy for 
gene delivery, as they have the potential to target the tumor 
site (Wang et al. 2016). LPHNPs have been explored as a 
gene delivery vehicle for drug-resistant GBM. In a study by 
Yang et al. (2021), LPHNPs were loaded with the CRISPR/
Cas9 plasmid for targeting the MGMT, the gene responsible 
for TMZ drug resistance. The nanocarrier was conjugated 
further with cRGD peptide for tumor targeting. The results 
showed that the nanocarriers could effectively deliver the 
CRISPR/Cas9 plasmid into the cells, which downregulated 
the MGMT expression, thus increasing the TMZ sensitivity, 
as shown in Fig. 6 (Yang et al. 2021).

Immunotherapy

The CNS has long been called an immune-privileged sys-
tem due to the lack of a conventional lymphatic system 
and the difficulties associated with initiating a disruptive 
T-cell response from the parenchyma. The brain has a non-
canonical lymphatic system and is protected from the BBB. 
Antigens and other molecules that circulate in the brain form 
a network of meningeal lymphatic vasculature (glymphatic 
system), which is necessary for the immune response to 
begin (Sahebjam et al. 2017). GBM possesses tumor-infil-
trating lymphocytes, which have been implicated in con-
tributing to poor tumor prognosis (Carpentier and Meng 
2006). While treating GBM via immunotherapy, targeting 
the tumor-immune system activates the host’s immune cells/
lymphocytes to destroy GBM cells. Among all the various 
immunotherapeutic strategies, the nanomedicine-based 
immunotherapeutic model can be applied to deliver drug 
moieties with improved pharmacokinetics. Precise and more 
effective nanocarriers can be designed by modifying them 
with different immunomodulatory agents such as immune 
checkpoint inhibitors, modulators of nucleic acids, and other 
adjuvants (Lou et al. 2019; Hanif et al. 2020). In this context, 
Zhang et al. (2018) developed the iRGD-liposome, com-
posed of egg phosphatidylcholine, cholesterol, and DSPE-
PEG-malamide and loaded with immunomodulatory agents 
PI3K inhibitor and alpha-GalCer agonist of therapeutic T 
cells, to remove protumor cell populations and trigger the 
essential antitumor effector cells (chimeric antigen recep-
tor [CAR] T cells). The results obtained from this study 
showed the anti-tumor efficacy of liposomes capped with 
immunomodulatory agents with reduced systemic toxic-
ity. The overall survival rate was increased in a genetically 
engineered immunotherapy-resistant glioma mouse model 
as compared to CAR T-cell therapy (Zhang et al. 2018). 
Myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs) play a major role in the 

induction of immune tolerance in cancer patients. To target 
these immunosuppressive cells, a recent study described the 
development of LNCs of size 100 nm that were able to elimi-
nate both macrophages and tumor cells in GBM patients, 
thereby opening a new path for exploiting lipid-based nano-
systems in the framework of immunotherapy (Pinton et al. 
2020).

Nose-to-brain delivery (intranasal delivery)

The anatomical relationship between the nasal cavity and the 
CNS, the obvious advantages of nasal delivery of drugs and 
their distribution into the brain pose a unique challenge in 
nanomedicine. The drug transport mechanism from the nose 
to the brain involves different pathways such as the olfactory 
and trigeminal pathways. Olfactory field neurons and axons 
terminate in the olfactory bulb, which has close interactions 
with the CNS due to the presence of olfactory receptors. 
The active moieties can be absorbed directly into the brain 
by olfactory and trigeminal receptors in the olfactory region 
(Erdő et al. 2018; Illum 2000). Today, an increasing num-
ber of therapeutics in the market are using the intranasal 
delivery to make use of these benefits for entering the CNS. 
NPs improve drug delivery from the nose to the brain by (1) 
binding with the mucus layer and then injecting a loaded 
drug into the mucus cells, (2) crossing the mucus layer to be 
picked up by neurons and get transported to the brain, or (3) 
crossing the mucus layer to be picked up by neurons and then 
translocating in nerve axons to enter the brain and release 
the drug. Mucoadhesive compounds such as chitosan, HA, 
or low-molecular-weight pectin may be used to coat LNP 
surfaces to extend olfactory residence time (Kumar et al. 
2017). SLNs and NLCs have been described as superior can-
didates for GBM targeting through the nasal route due to 
their high biocompatibility, low toxicity, and ease of surface 
functionalization. Curcumin-loaded NLCs were developed 
for intranasal delivery to the CNS. An ex vivo study was per-
formed using the nasal cavity of sheep to test carrier nasal 
permeation, and the permeability coefficient was found to 
be 3.8  cm2/min (Madane and Mahajan 2016). After nasal 
administration of Cur-NLCs, a biodistribution analysis in 
rats revealed a substantial increase in curcumin in the brain, 
with a  Cmax of 86.2 ± 8.1 mg/g and  Tmax of 120 min (Madane 
and Mahajan 2016). Intranasal application of TMZ-NLCs 
has also been developed to target GBM. In vivo experiments 
have shown that TMZ-NLCs accumulate in the brain more 
effectively than free TMZ, demonstrating the effectiveness 
of intranasal NLC administration (Khan et al. 2016). Fur-
ther, Gartziandia et al. developed achitosan-coated NLC for-
mulations having mucoadhesive properties with positively 
charged NPs, which enhanced intranasal drug delivery to 
the brain. The formulations had a long survival period in 
the nasal epithelium, indicating that they could be used as a 
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transporter to minimize drug dosage and frequency. How-
ever, in vivo fluorescence findings showed that these NPs 
collected less in the brain than in the lungs, necessitating 
more modifications to increase its concentration in the brain 
after being delivered through the nose (Gartziandia et al. 
2015).

Multimodal therapy

The heterogeneity of GBM and its microenvironment 
have driven researchers to design a variety of treatment 
approaches. In this context, as opposed to single treatments, 
combination therapies have raised fresh concerns. For a 
combination therapy, the selection of a treatment approach 
is the first and most important consideration; it involves the 
collection of combination strategies using multiple chemo-
therapeutic agents as well as the synergy of these techniques. 
The second major consideration is the therapeutic agent-
based delivery mechanism. In a recent study, a multicel-
lular complex model that mimics the microenvironment of 
a tumor was used to thoroughly characterize and test hybrid 
magnetic lipid NPs, wherein a physical method (hyperther-
mia) and a chemical approach utilizing TMS's antitumor 
effects on 3D models of GBM were investigated (Marino 
et al. 2019). Further, the heating of lipid magnetic nanovec-
tors, release of chemotherapy drugs, and hyperthermia-
dependent loss of plasma membrane integrity triggered by 
the alternating magnetic fields were used to activate lipid 

magnetic nanovectors. Alternating magnetic fields, lipid 
superparamagnetic nanovectors, and TMZ were tested 
independently and in combination on GBM spheroids to see 
whether the TMZ-loaded lipid superparamagnetic nanovec-
tors had a synergistic impact. The results demonstrated that 
the combined effect of magnetic field and TMZ on the disin-
tegration of glioma tumor spheroids led to tumor cell death 
(Marino et al. 2019). Additionally, a hypoxia-responsive 
lipid–polymer NP for combined fluorescence-guided sur-
gery, chemotherapy, PDT, and photothermal therapy (PTT) 
was used to create multimodal treatments for glioma (Xu 
et al. 2020). In this study, lipid–polymer NP (Dox + ICG)-
targeting, hypoxia-responsive NPs were used to deliver ICG 
and Dox, enabling fluorescence-guided surgery and multi-
modal treatment dependent on the eradication of remaining 
glioma cells in a novel glioma surgery technique (Xu et al. 
2020). The promising results obtained from the pre-clinical 
studies have been a driving force to conduct clinical trials 
with lipid-based nanocarriers, specifically with liposome as 
a drug delivery vehicle for GBM therapy (Table 3).

Future perspective and conclusion

GBM, the most common and fatal brain tumor, ranks among 
the least curable cancers owing to its heterogeneity, high 
proliferating capacity, and intrinsic resistance to radiation 
and chemotherapy. Existing management methods are often 

Fig. 6  Combination therapy 
for drug-resistant glioma using 
ultrasound and lipid–polymer 
hybrid nanoparticles loaded 
with temozolomide (TMZ) drug 
and O6-methylguanine-DNA 
methyltransferase (MGMT) tar-
geting CRISPER/Cas9 plasmid
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hindered by non-specific therapies that result in excessive 
normal tissue toxicity and are characterized by the failure 
of the therapeutic agents to cross the BBTB and penetrate 
the tumor microenvironment. Therefore, designing smart 
and successful therapies for GBM necessitates the use of 
targeted drug delivery mechanisms that improve drug con-
centration in tumor tissue while minimizing systemic side 
effects. Novel investigational therapies should be successful 
in addressing obstacles such as breaking through the BBB 
and releasing therapeutic payloads that are not only specific 
but also effective in the tumor cells, resulting in improving 
GBM survival and quality of life. Colloidal nanocarriers 
can be engineered to have a variety of beneficial proper-
ties that help in the distribution of therapeutic molecules 
to brain tumor site and, therefore have piqued the interest 

of many researchers. Thus, many nanocarriers are now 
constructed with newly synthesized polymers; however, 
their toxicity profiles are not well studied. The unpredict-
ability of the influence of different nanocarrier properties 
on biological fate of nanocarriers and the possibility of 
long-term toxic effects pose major scientific and regulatory 
challenges. Owing to these factors, only a small number of 
lipidic nanocarrier-based DDSs are currently available in the 
market despite their promising physiochemical characteris-
tics. Consequently, further research is required to develop 
standardized in vitro, ex vivo and in vivo models and assays 
that predict the biological and toxicological fate of nano-
carriers with greater accuracy. Indeed, nanocarriers such 
as liposomes, SLNs, lipid–polymer NPs, and LNCs have 
been shown to enhance drug potency, decrease non-specific 

Table 3  List of lipid-based nanocarriers under clinical trials for glioblastoma multiforme

Clinical trial ID Nanocarrier Drug used Study phase Study duration 
(years)

Number 
of patients 
(n)

Clinical setting Status

NCT 01044966 Liposome Intraventricular 
Ara-C + temo-
zolomide

I/II 2010–2019 12 Recurrent glio-
mas

Terminated due to 
inadequate patient 
enrollment

NCT 04573140 RNA-loaded lipo-
some vaccine

pp65 full-length 
lysosome-
associated 
membrane 
protein (LAMP) 
mRNA

I 2021–2022 (esti-
mated duration)

28 Newly diagnosed 
pediatric high-
grade gliomas 
and adult 
glioblastoma 
multiforme

Not yet recruited

NCT 00734682 Nanoliposome CPT-11 (irinote-
can)

I 2008–2014 34 Recurrent high-
grade gliomas

Completed
The study outcome 

measure was to 
assess the safety 
and pharmacoki-
netics as well 
as to determine 
the maximum 
tolerated dose of 
NL CPT-11 in 
patients with high 
grade recurrent 
glioma

NCT 01906385 Liposome – I/II 2015–2025 55 Recurrent glio-
mas

Recruiting process 
continued

NCT 00944801 PEGylated lipo-
some

Doxoru-
bicin + temo-
zolomide along 
with radio-
therapy

I/II 2002–2009 63 Primary glioblas-
toma multi-
forme

Completed
The study outcome 

measure was 
to assess the 
progression free 
survival probabil-
ity at 12 months 
to detect an 
improvement of 
the PFS-1215.6% 
as compared to 
EORTC26981/
NCIC-CE.3 com-
bination arm
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toxicity, and increase drug stability; with these carriers, bio-
distribution and drug release kinetics can be precisely regu-
lated, in contrast to conventional formulations. Although 
concerns about the safety of the raw materials used and 
regulatory problems persist, the relevance of lipidic nano-
carriers as brain-targeted DDSs has been increasing with the 
number of CNS-related diseases, especially in GBM. Over-
all, to translate the advances of lipid-based nanomedicine 
from the bench to the bedside and reap the success of these 
novel drug delivery platforms, there is an urgent need for a 
cohesive and amalgamated approach by academia, industry, 
drug regulatory authorities, and clinicians.
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