

https://doi.org/10.11646/phytotaxa.302.1.2

Multigene phylogeny and morphology reveal that the Chinese medicinal mushroom '*Cordyceps gunnii*' is *Metacordyceps neogunnii sp. nov*.

TING-CHI WEN¹, YUAN-PIN XIAO^{1,2}, YAN-FENG HAN³, SHI-KE HUANG^{1,2}, LING-SHENG ZHA^{1,2}, KEVIN D. HYDE² & JI-CHUAN KANG^{1*}

¹Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, P.R. China

²Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand ³Institute of Fungus Resources, College of Life Science, Guizhou University

* email: jckang@gzu.edu.cn

Abstract

Morphological and molecular phylogenetic analyses of an entomogenous fungus associated with larvae of Lepidoptera in Guizhou and Anhui, China showed it to be a new species, *Metacordyceps neogunnii*. It differs from similar species in having longer asci and wider ascospores. Multigene analysis of ITS, 18S, *TEF*1 and *RPB*1 sequence data also confirmed the distinctiveness of this species. This species has been wrongly regarded in China as '*Cordyceps gunnii*' for more than 30 years. *Cordyceps gunnii* from Tasmania is considered to be in the family Ophiocordycipitaceae based on its multigene phylogeny and morphological analysis.

Key words: Chinese medicinal mushroom, controversial taxa, molecular phylogeny, new species, revision

Introduction

Metacordyceps G.H. Sung, *et al.* introduced by Sung *et al.* (2007a), and previously treated as a member of *Cordyceps* Fr. (Hypocreales), is characterized by solitary or grouped stromata that are simple or branched, with fleshy or tough whitish stipe, a greenish yellow to greenish cylindrical to enlarged fertile part, and perithecia partially or completely immersed in stromata (Sung *et al.* 2007a). This genus comprises five species after transfer of 11 species to *Metarhizium* Sorokīn (Sung *et al.* 2007a, Kepler *et al.* 2012b, 2013, Quandt *et al.* 2014, Wen *et al.* 2015, Index Fungorum, 2017). In China, *Cordyceps sensu lato* has been extensively studied, and more than 140 species have been reported (Song *et al.* 2006, Liang 2007, Li *et al.* 2008a, 2008b, 2010, Lin *et al.* 2008, Yang *et al.* 2009, Gao *et al.* 2010, Zhang *et al.* 2010, Chen *et al.* 2011, 2013, Wen *et al.* 2013, 2014, 2015, Yan & Bau 2015, Yang *et al.* 2015). Of these species, the Chinese '*Cordyceps gunnii*' used as a medicinal mushroom by local people, currently sells for about US\$2000/kg, its annual yield from nature is about ten tonnes and the species is only distributed in southern provinces. It has been long recognized as a prized medicinal mushroom and a desirable alternative for natural *Ophiocordyceps sinensis.* This mushroom contains many bioactive chemicals with a high biological activity (Xiao *et al.* 2004, Sun *et al.* 2012, Wei *et al.* 2012). This species has been wrongly regarded in China as *Cordyceps gunnii* for more than 30 years. Its asexual morph was described in China as *Paecilomyces gunnii* Z.Q. Liang (Liang 1985).

Cordyceps gunnii (Berk.) Berk. is known only from Australia (Berkeley 1848, Hooker 1860). A similar species, *Cordyceps hawkesii* Gray has been reported from Australia (Saccardo 1891) and Japan (Kobayasi & Shimizu 1983). More recently, Chen *et al.* (1984) reported *C. hawkesii* and its anamorph (*Paecilomyces hawkesii*) from China based on morphological observations. Tian *et al.* (2010) added two sequences for *C. hawkesii* to GenBank that had been collected in China, but their study lacked morphological description. Liu *et al.* (2002) and Liang (2007) reported that *C. hawkesii* is a synonym of *C. gunnii* (all specimens used for study were collected in south China). Saccardo (1891) mentioned that it is easy to distinguish between *C. gunnii* and *C. hawkesii* even though they both occur in Tasmania, Australia. Chan *et al.* (2011) revealed that collections of *C. gunnii* from China and Tasmania are not conspecific. Thus, there is a need to re-investigate the classification of these two taxa to avoid unnecessary misidentification.

In this study, collections of *C. gunnii* from China and Tasmania were restudied using multi-gene analysis and morphology. The collections of '*Cordyceps gunnii*' from China are morphologically different to *C. gunnii* of Tasmania, and combined multi-gene phylogeny also shows them to differ and to belong in a different genus. The fungus named '*Cordyceps gunnii*' in China, which has been regarded as a Traditional Chinese Medicine (TCM) for more than 1000 years is herein recognized as a new species, *Metacordyceps neogunnii*. Our results are reported herein.

Material and methods

Specimens and host

Collections were made in Yuntai Mountain, Shibin, Guizhou Province in April 2013 and in Huangshan Mountain, Anhui Province in June 2014. Specimens were stored in plastic containers at low temperature and transported to the laboratory for identification.

Morphological studies

Specimens were examined using an Olympus stereo dissecting microscope (Olympus Optec Instrument Co., Japan). Hand sections of the fruiting structures were mounted in water for microscopic studies and photomicrography. The microcharacters of the fungi were examined using an Olympus CX31 compound microscope and photographed (Wen *et al.* 2013, 2014). Herbarium materials are deposited in the Herbarium of Guizhou University (GZUH). Facesoffungi numbers and Index Fungorum numbers are provided as detailed in Jayasiri *et al.* (2015) and Index Fungorum (2016).

DNA extraction, PCR amplification and determination of DNA sequences

The total genomic DNA was extracted from dried specimens using E.Z.N.A.[™] Fungal DNA MiniKit (Omega Biotech, CA, USA) according to the manufacturer's protocols and the extracted DNA was stored at -20 °C. Primes for amplifying and sequencing were: ITS5 and ITS4 for the internal transcribed spacer (ITS) (White *et al.* 1990), NS1 and NS4 for the ribosomal small subunit (18S) (Vilgalys & Hester 1990), 983F and 2218R for partial elongation Factor 1-Alpha (*TEF*1) (Sung *et al.* 2007b) and CRPB1A and RPB1Cr (Castlebury *et al.* 2004) for partial second largest RNA polymerase subunit I (*RPB*1). PCR conditions were as follows: initial denaturation at 95 °C for 5 min, followed by 35 cycles at 95 °C for 50s, 50–53 °C for 50 s, 72 °C for 80 s, and a final extension of 72 °C for 10 min. All PCR products were directly sequenced by Life Biotechnology Co., Shanghai, China.

Sequence alignment and phylogenetic analysis

Blast searches were made to reveal the closest matches in GenBank for phylogenetic analysis. The taxa information and GenBank accession numbers used in the molecular analysis are listed in Table 1. The four gene datasets (ITS, 18S, *TEF*1 and *RPB*1) from the *Ophiocordyceps* species, plus datasets obtained from GenBank were aligned using MEGA6.06 (Tamura *et al.* 2013). Alignments were manually adjusted to allow maximum sequence similarity. Gaps were treated as missing data. Unweighted Maximium Parsimony (MP) analysis was performed using PAUP* 4.0b10 (Swofford 2002). Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Maxtrees were 5,000, branches of zero length were collapsed and all multiple parsimonious trees were saved. Clade stability of the trees resulting from the parsimony analyses were assessed by bootstrap analysis with 1,000 replicates, each with 10 replicates of random stepwise addition of taxa (Felsenstein 1985). Trees were viewed in Treeview and exported to graphics programs (Page 1996).

Results

Phylogenetic analyses

The partition homogeneity test (P = 0.01) suggested that the individual gene partitions were not highly incongruent (Farris *et al.* 1994, Cunningham 1997). The combined ITS, 18S, *TEF*1 and *RPB*1 datasets, included 227 sequences (including 206 from GenBank, Table 1), representing 38 species, and comprised 3,427 characters after alignment, of which 961 characters were parsimony-informative, 2,213 constant, and 253 parsimony-uninformative. Parsimony analysis generated 5,000 trees; SH test verified that they were similar, one of which (tree length = 2,289 steps, CI = 0.464, RI = 0.751, RC = 0.348, HI = 0.536) and the most parsimonious tree is shown in Fig. 1. The materials collected

PAUP_1

FIGURE 1. Phylogenetic relationships among *Metacordyceps neogunnii* and related species based on combined analysis of ITS, 18S, *TEF1* and *RPB1* sequence data. Bootstrap values (1,000 replicates) are indicated above the nodes. The tree is rooted to *Glomerella cingulata*. Ex-type culture or holotype has an asterisk.

from Guizhou and Anhui, China formed a separate clade from other species of *Metacordyceps* with credible bootstrap support (96%), but the relationship with other species within the genus was unresolved. Three specimens of *Cordyceps gunnii* from Tasmania, Australia formed a well-supported clade (100%), closely related to genus *Tolypocladium* in the family Ophiocordycipitaceae (Fig. 1).

Morphologically, *Metacordyceps neogunnii* differs from other species of *Metacordyceps* in having longer asci and wider ascospores (Fig. 2, Table 2), so the new species is introduced.

We consider *Cordyceps gunnii* from Tasmania belongs to Ophiocordycipitaceae based on its multigene phylogeny and morphology analysis. '*Cordyceps gunnii*' from China, used under the wrong name for 30 years, is now recognized as a new species, *Metacordyceps neogunnii* (Liang 1983). *Cordyceps gunnii* var. *minor* from Anhui Province also belongs to *M. neogunnii* (Li *et al.* 1999, Liang 2007) based on phylogeny (ITS tree not show) and its morphology analysis. This study was hindered by a lack of type species and molecular data, so *Cordyceps hawkesii* remains undetermined.

Species	Vouchers ¹	Host/ Source	GenBank Accession Number				
		location	ITS	185	<i>TEF</i> 1	RPB1	References
Metacordyceps neogunnii	GZUH SB13050301	Lepidopteran larva / Guizhou, China	KU729715	KU729721	KU729726	KU729731	This study
Metacordyceps neogunnii	GZUH SB13050302*	Lepidopteran larva / Guizhou, China	KU729716	KU729722	KU729727	KU729732	This study
Metacordyceps neogunnii	GZUH SB13050304	Lepidopteran larva / Guizhou, China	KU729717	KU729723	KU729728	KU729733	This study
Metacordyceps neogunnii	GZUH SB13050305	Lepidopteran larva / Guizhou, China	KU729718	KU729724	KU729729	KU729734	This study
Metacordyceps neogunnii	GZUH HS14061253	Lepidopteran larva / Anhui, China	KU729719	KU729725	KU729730	KU729735	This study
'Cordyceps gunnii'	CS1	China	HM149352		HM149362	HM149367	Chan et al. (2011)
'Cordyceps gunnii'		Guangdong, China	AJ243773				Chan et al. (2011)
'Cordyceps gunnii'	G97022	Yunnan, China	AJ309340				Chan et al. (2011)
'Cordyceps hawkesii'		China	AJ536571	DQ838790			Tian et al. (2010)
'Cordyceps hawkesii'	B96083	Hunan, China	AJ309341				Chan et al. (2011)
Cordyceps brongniartii	NBRC 101395		JN943298	JN941759		JN992493	Schoch et al. (2012)
Cordyceps brongniartii	BCC 16585		JN049867	JF415951	JF416009	JN049885	Kepler et al. (2012a)
Cordyceps gunnii	OSC 76404	Lepidopteran larva	JN049822	AF339572	AY489616	AY489650	Sung et al. (2007a)
Cordyceps gunnii	ARSEF 6828	Tasmania, Australia	HM140630	KU729720	HM140636	HM140639	Chan <i>et al.</i> (2011), This study
Cordyceps gunnii	K(M)	Tasmania, Australia	AJ309344				Liu et al. (2002)
Cordyceps gunnii var. minor		Anhui, China	AF368803				GenBank
Cordyceps militaris	OSC 93623	Lepidopteran pupa	JN049825	AY184977	DQ522332	DQ522377	Sung et al. (2007a)
Cordyceps militaris	NBRC 100741		JN943437	JN941755		JN992489	Schoch et al. (2012)
Metacordyceps atrovirens	TNM-F 10184	Coleoptera	JN049882	JF415950		JN049884	Kepler et al. (2012a)
Metacordyceps brittlebankisoides	G97025*		AJ309332				Liu et al. (2002)
Metacordyceps campsosterni	HMIGD 20885*		DQ150247				Zhang et al. (2005)
Metacordyceps campsosterni	HMIGD 20884		DQ150246				Zhang <i>et al.</i> (2005)
Metacordyceps chlamydosporia	CBS 101244		JN049821	DQ522544	DQ522327	DQ522372	Kepler et al. (2012a)
Metacordyceps chlamvdosporia	CBS 504.66	Nematode	AJ292398	AF339593	EF469069	EF469098	Sung et al. (2007a)
~~~ <i>I</i> ~~~~							. 1 .1 .

TABLE 1. Taxa used in molecular analyses.

... continued on the next page

# TABLE 1. (Continued)

Species	Vouchers ¹	Host/ Source	GenBank Accession Number				
		location	ITS	185	<i>TEF</i> 1	RPB1	References
Metacordyceps	GNJ020527-04*		AY913757				Li et al. (2010)
guniujiangensis Metacordycens indigotica	TNS-F18553	Lenidoptera	IN049874	IF415952	IF416010	IN049886	Kenler <i>et al.</i> (2012a)
	TNS-110555	Lepidoptera	DI040075	JI 415952	JI 410010	D1040007	Kepler <i>et ul.</i> (2012a)
Metacorayceps inalgotica	1NS-F18554	Lepidoptera	JN049875	JF415953	JF416011	JN049887	Kepler <i>et al.</i> (2012a)
Metacordyceps khaovaiensis	BCC 12687	Lepidoptera	JN049868		JF416013	JN049889	Kepler et al. (2012a)
Metacordyceps khaovaiensis	BCC 14290	Lepidoptera	JN049869		JF416012	JN049888	Kepler et al. (2012a)
Metacordyceps kusanagiensis	TNS F18494	Coleoptera	JN049873	JF415954	JF416014	JN049890	Kepler et al. (2012a)
Metacordyceps liangshanensis	EFCC 1452	Lepidopteran pupa		EF468962	EF468756		Sung et al. (2007a)
Metacordyceps liangshanensis	EFCC 1523	Lepidopteran pupa		EF468961	EF468755		Sung et al. (2007a)
Metacordyceps martialis	TTZ070716-04	Lepidoptera	JN049871	JF415955		JN049891	Kepler et al. (2012a)
Metacordyceps martialis Metacordyceps owariensis	HMAS 197472(S) NBRC 33258	Lepidoptera Hemiptera	JN049881 JN049883	JF415956	JF416016 JF416017	JN049892	Kepler <i>et al.</i> (2012a) Kepler <i>et al.</i> (2012a)
Metacordyceps pseudoatrovirens	TNSF 16380	Coleoptera	JN049870			JN049893	Kepler et al. (2012a)
Metacordyceps shibinensis	GZUH SB13050311*	Lepidopteran larva	KR153585	KR153588	KR153589	KR153590	Wen et al. (2015)
Metacordyceps taii	ARSEF 5714	Lepidoptera larva	JN049829	AF543763	AF543775	DQ522383	Sung et al. (2007a)
Metacordyceps yongmunensis	EFCC 2131	Lepidoptera	JN049856	EF468977	EF468770	EF468876	Kepler et al. (2012a)
Metacordyceps	EFCC 2135	Lepidoptera		EF468979	EF468769	EF468877	Kepler et al. (2012a)
yongmunensis Metarhiziu manisopliae	ARSEF 7450	Coleoptera	HQ331464		EU248852	EU248904	Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium acridum	ARSEF 324	Orthoptera	HQ331457		EU248844	EU248896	(2009) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i>
Metarhizium acridum	ARSEF 7486*	Orthoptera	HQ331458		EU248845	EU248897	(2009) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i>
Metarhizium anisopliae	ARSEF 7487*	Orthoptera	HQ331446		DQ463996	DQ468355	(2009) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium brunneum	ARSEF 2107{	Coleoptera	KC178691		EU248855	EU248907	Kepler <i>et al.</i> (2013), Bischoff <i>et al.</i> (2009)
Metarhizium brunneum	ARSEF 4152	Soil	HQ331452		EU248853	EU248905	Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium flavoviride	ARSEF 2133*	Coleoptera			DQ463999	DQ468358	(2009) Bischoff <i>et al.</i> (2009)
Metarhizium frigidum	ARSEF 4124*	Coleoptera			DQ464002	DQ468361	Bischoff et al. (2009)
Metarhizium globosum	ARSEF 2596*	Lepidoptera	HQ331459		EU248846	EU248898	Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i>
Metarhizium guizhouense	CBS 258.90*	Lepidoptera	HQ331448		EU248862	EU248914	(2009) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i>
Metarhizium guizhouense	ARSEF 6238	Lepidoptera	HQ331447		EU248857	EU248909	(2009) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)

 $\ldots continued \ on \ the \ next \ page$ 

TABLE 1.	(Continued)
----------	-------------

Species	Vouchers ¹	Host/ Source location	GenBank Accession Number				
			ITS	185	TEF1	RPB1	References
Metarhizium lepidiotae	ARSEF 7412	Coleoptera	HQ331455		EU248864	EU248916	Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium lepidiotae	ARSEF 7488*	Coleoptera	HQ331456		EU248865	EU248917	(2007) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium majus	ARSEF 1015	Lepidoptera	HQ331444		EU248866	EU248918	(2007) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium majus	ARSEF 1914{	Coleoptera	HQ331445		EU248868	EU248920	(2007) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium pingshaense	ARSEF 3210	Isoptera	HQ331449		DQ463995	DQ468354	Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium pingshaense	CBS 257.90*	Coleoptera	HQ331450		EU248850	EU248902	(2007) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium robertsii	ARSEF 727	Orthoptera	HQ331453		DQ463994	DQ468353	(2007) Schneider <i>et al.</i> (2011), Bischoff <i>et al.</i> (2009)
Metarhizium robertsii	ARSEF 7501				EU248849	EU248901	Bischoff <i>et al.</i> (2009)
Ophiocordyceps rhizoidea	N.H.J. 12522	Termite (Isoptera)	JN049857	EF468970	EF468764	EF468873	Sung et al. (2007a)
Ophiocordyceps rhizoidea	N.H.J. 12529	Termite (Isoptera)		EF468969	EF468765	EF468872	Sung et al. (2007a)
Ophiocordyceps sinensis	EFCC 7287	Lepidopteran pupa	JN049854	EF468971	EF468767	EF468874	Sung et al. (2007a)
Ophiocordyceps sinensis	ARSEF 6282		HM595981		HM595918	HM595952	Chan et al. (2011)
Ophiocordyceps stylophora	OSC 111000	Elaterid larva	JN049828	DQ522552	DQ522337	DQ522382	Sung et al. (2007a)
Ophiocordyceps stylophora	OSC 110999	Coleopteran larva		EF468982	EF468777	EF468882	Sung et al. (2007a)
Polycephalomyces cuboideus	TNS F18487			KF049609	KF049683		Quandt et al. (2014)
Polycephalomyces cuboideus	NBRC 101740		JN943331	KF049610	KF049684	KF049646	Quandt et al. (2014)
Polycephalomyces nipponicus	N.H.J. 4268			KF049621	KF049695	KF049654	Quandt et al. (2014)
Polycephalomyces nipponicus	BCC 2325		KF049665	KF049622	KF049696	KF049655	Quandt et al. (2014)
Tolypocladium japonica	OSC110991	Elaphomyces sp.	JN049824	DQ522547	DQ522330	DQ522375	Sung et al. (2007a)
Tolypocladium japonica	IFO9647		AB027366	AB027320			Nikoh & Fukatsu (2000)
Tolypocladium ophioglossoides	OSC106405	Elaphomyces sp.		AY489691	AY489618	AY489652	Sung et al. (2007a)
Tolypocladium ophioglossoides	NBRC106331		JN943320	JN941733		JN992467	Schoch et al. (2012)
Tolypocladium subsessilis	OSC71235	Scarabaeid larva	JN049844	EF469124	EF469061	EF469090	Sung et al. (2007a)
Tyrannicordyceps fratricida Glomerella cingulata	TNS 19011* CBS 114054	Fungi <i>Fragaria</i> sp.	JQ349068 DQ286202	JQ257022 AF543762	JQ257028 AF543773	JQ257016 AY489659	Kepler <i>et al.</i> (2012b) Sung <i>et al.</i> (2007b)

1 ARSEF, USDA-ARS Collection of Entomopathogenic Fungal cultures, Ithaca, NY; BCC, BIOTEC Culture Collection, KlongLuang, Thailand; CBS, Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands; EFCC, Entomopathogenic Fungal Culture Collection, Chuncheon, Korea; GZUH, Guizhou University Herbarium, Guiyang, Guizhou, China; HKAS, Herbarium of Herbarium of Cryptogams,Kunming Institute of Botany,Academia Sinica (HKAS), Kunming, China; N.H.J., Nigel Hywel-Jones personal collection; OSC, Oregon State University Herbarium, Corvallis, OR;

2 * Denotes an ex-type isolate. { Denotes an ex-epitype isolate.

# Taxonomy

Metacordyceps neogunnii T.C. Wen & K.D. Hyde, sp. nov. (Figs. 3-4)

Index Fungorum no IF551950; Facesoffungi number FoF 01915.

'Paecilomyces gunnii' sensu Z.Q. Liang, Acta Mycol. Sin. 4(3): 163 (1985)

= Cordyceps gunnii var. minor Z.Z. Li, C.R. Li, B. Huang, M.Z. Fan & M.W. Lee, Korean J. Mycol. 27(3): 232 (1999)

= Paecilomyces gunnii var. minor Z.Z. Li, C.R. Li, B. Huang, M.Z. Fan & M.W. Lee, Korean J. Mycol. 27(3): 233 (1999)

Differs from related Metacordyceps species mainly in having longer asci and wider ascospores.

**Type:**—CHINA. Guizhou Province: Shibin County, Yuntai Mountain, on larvae of Lepidoptera in the soil, 23 April 2013, *Li-Ping Chen* SB13050302 (GZUH SB13050302, holotype!), ex-type living culture GZUCCSB130503021!

**Sexual morph:** *Stromata* arising from head of host (larvae of Lepidoptera), solitary or in groups of 2–3, rarely branched, 40–80 mm long, 2–6 mm wide, pallid, fleshy. *Stipe* cylindrical 2–4 mm wide, white to grey, fleshy, glabrous, enlarging abruptly at fertile portion. *Fertile portion* round head-shape, 10–12 mm long, 3–6 mm wide, white to grey (fresh specimen). *Ascomata* crowded, completely immersed, ampuliform, ovoid to oblong, 630–830 × 240–340 µm ( $\overline{x} = 732 \times 278$ , n = 10), curved, with the ostioles opening on the surface of the fertile head. *Peridium* 24–38 µm ( $\overline{x} = 29$ , n = 15) wide, comprising three layers. *Asci* 250–480 × 3–5 µm ( $\overline{x} = 347 \times 3.8$ , n = 10), 8-spored, hyaline, narrowly cylindrical, possessing a prominent apical cap. *Apical cap* 5–8 × 3–6 µm ( $\overline{x} = 7.2 \times 4.7$ , n = 15). *Ascospores* 330–460 × 2–3 µm ( $\overline{x} = 397 \times 2.6$ , n = 15), hyaline, filiform, multi-septate, disarticulating into secondary ascospores. *Secondary ascospores* 2.5–4 × 1.5–2 µm ( $\overline{x} = 3 \times 1.9$ , n = 15), cylindrical, hyaline. **Asexual state**: *Paecilomyces*-like.

**Asexual morph:** *Colonies* on Czapek agar, attaining a diameter of 25–30 mm within 14 d at 25 °C, dense, white at first, becoming pale to grey; brownish or dark brown at center, reddish brown at margin, slightly penetrating medium, reverse similar in colour (Fig. 2). *Conidiophores* short, hyaline, smooth, up to 60  $\mu$ m long, mostly arising from aerial hyphae. *Conidiogenous cells* swollen globose at basal portion, tapering into thin and long cylindrical neck, smooth, hyaline, 12–21.5 × 2–3  $\mu$ m, sometimes proliferating. *Conidia* ellipsoidal, ovoid or fusiform, 1-celled, spinulose conidia, 3.5–5 × 2–3  $\mu$ m, in long divergent, dry chains.

**Distribution:**—Anhui, Guangdong, Guizhou, Henan, Hunan, Jiangxi, Sichuan and Yunnan Province, China. **Host:**—On larvae of Lepidoptera living in soil.

**Other material studied (paratypes):**—CHINA. Guizhou Province: Shibin County, Yuntai Mountain, on lepidopteran larva, 23 April 2013, *Li-Ping Chen SB13050301* (GZUHSB13050301!), *Li-Ping Chen SB13050304* (GZUHSB13050304!), *Li-Ping Chen SB13050305* (GZUHSB13050305!); Anhui Province: Huangshan Mountain, on lepidopteran larva, 12 June 2014, *Ting-Chi Wen HS14061253* (GZUHHS14061253!).

Etymology:-Refers to previous, incorrect name used for this species in China, Cordyceps gunnii (Berk.) Berk.

Species	Host	Stromata (mm)	Ascomata(µm)	Asci (µm)	Ascospores (µm)	References
Metacordyceps	Larvae of	40-80 × 2-6,	Embedded, 630-	Cylindrical,	Ascospores $330-460 \times 2-3$ ,	This study
neogunnii	Lepidoptera	white to gray	830 × 240–340	250–480 × 3–5	breaking into $2.5-4 \times 1.5-2$ secondary ascospores	
Cordyceps consumpta (= Cordyceps gunnii)	Porina sp.	40–30 long, head 8–10 × 2–3, black	Embedded, 1000–1200 × 200–500	Cylindrical, 250 × 7	Ascospores 180–220 long, breaking into $4-5 \times 1-1.5$ secondary ascospores	Cunningham (1921)
Cordyceps gunnii		40-80 long	Embedded	Cylindrical	As cospores $155-165 \times 2.5-3$ , with 4-5 septet	Massee (1895)
Cordyceps gunnii var. minor	Larvae of Endoclita excrescens	Stipe 36.6–52.3 × 4.8–8.6, head 18.5–19.3 × 4–9.4	Embedded, 870– 920 × 260–320	Cylindrical, 345–530 × 4.4–6.9	As cospores breaking into $2-4.3 \times 1-1.8$ secondary as cospores	Li <i>et al.</i> (1999)
Cordyceps hawkesii			Embedded, 500– 550 × 170–200	Cylindrical, 230–300 × 7–9		Shimizu (1994)

TABLE 2. Synopsis of the characteristics of Cordyceps species related to Metacordyceps neogunnii.



**FIGURE 2.** *Metacordyceps neogunnii* (holotype) **a.** Overview of stroma and host (dry specimen). **b.** Stroma. **c.** Dorsal view of the host. **d.** Ventral view of the host. **e, f.** Sections of ascomata. **g.** Section of a peridium. **h.** Ascus with apical cap. **i.** Immature ascus. **j.** Mature asci. **k.** Ascospore. **l.** Secondary ascospores. **m.** Czapek agar culture viewed from above. **n.** Czapek agar culture viewed from below. **o, p.** Conidiogenous cells, conidiophores and developing conidia, stained with cotton blue. Scale bars:  $f = 400 \mu m$ , e,  $i = 100 \mu m$ , k,  $o = 50 \mu m$ , j, h,  $l = 10 \mu m$ , g,  $p = 20 \mu m$ .



**FIGURE 3.** *Metacordyceps neogunnii* (GZUHHS14061253, overmature) **a.** Overview of the stroma and the host. **b.** Cross section of the stroma. **c, d.** Sections of ascomata. **e.** Section of an ascoma. **f.** Part of a peridium. **g.** An ascus. **h, i.** Asci stained with methylene blue. **j.** Ascospore stained with methylene blue. **k.** Ascus with an apical cap. **l.** Secondary ascospores. Scale bars: c,  $d = 400 \mu m$ ,  $e = 100 \mu m$ ,  $f = 50 \mu m$ ,  $g-j = 80 \mu m$ ,  $k-m = 10 \mu m$ .

### Discussion

Many cordyceps species, such as *C. militaris* (L.) Fr., *C. bassiana* Z.Z. Li *et al.*, *Isaria cicadae* Miq. and *Ophiocordyceps sinensis* (Berk.) G.H. Sung *et al.*, are widely used as traditional Chinese medicine in China, Japan, Korea and other eastern Asian countries (Mortimer *et al.* 2012) and are listed in Chinese pharmacopoeia. Because of limited wild resources and high prices, many fake cordyceps have been found in markets, so determination of genuine cordyceps and related products is especially important for quality control (Zhu *et al.* 1998, Wen *et al.* 2016). Winkler (2009) estimated that total annual yield of natural *O. sinensis* in the Himalayas and Tibetan plateau is 85 to 185 tonnes, while the total amount emerged in world markets is more than 200 tonnes per year. *Metacordyceps neogunnii*, as a medicinal mushroom with high biological activity, has been also long regarded as a prized medicinal mushroom in China (Xiao *et al.* 2004, Zhu *et al.* 2011).

There has been no thorough study of the collections of *C. gunnii* from China and Tasmania (Stensrud *et al.* 2005, Sung *et al.* 2007a, b). Only one publication (Liu *et al.* 2002) suggested Chinese *C. hawkesii* and *C. gunnii* are conspecific based on 5.8S-ITS rDNA sequences. Lacking both a morphology comparison and sufficient molecular data, many details about these two species remain undetermined. Thus, a taxonomic re-evaluation of these important fungi was urgently needed (Chan *et al.* 2011). This study conclusively demonstrates that the Chinese collections identified as *C. gunnii* are misidentified. Our results also support Quandt *et al.* (2014) and Spatafora *et al.* (2015) that *Cordyceps gunnii* from Tasmania is in the family Ophiocordycipitaceae.

The age of the stromata of a cordyceps species is often reflected by differing morphology, which is illustrated by *Metacordyceps neogunnii* in Fig. 2 and 3. Based on differences in maturity of stromata apparent new species have been described, for example, *C. gansuensis* Zhang, Wang & Yan, *C. multiaxialis* Zang & Kinjo and *O. nepalensis* (M. Zang & Kinjo) G.H. Sung *et al.* are all synonyms of *O. sinensis* (Liu *et al.* 2001, Liang 2007). In pharmaceutical industry and traditional medicine fields, correct identification of source material is essential. Incorrect scientific name of an organism may lead to legal disputes and ineffective conservation, and even misleading information in filing and retrieval (Chan *et al.* 2011). The strategies used for identifying cordyceps species based on combined sequenced data from multi-gene loci could have a wide application in other traditional Chinese medicine and in fungal biotechnology.

#### Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31460012, 31460010) and the Science and Technology Foundation of Guizhou Province (No. [2016]2863) and the Modernization of Traditional Chinese Medicine Program of Guizhou Province (No. [2012]5008). We thank L.P. Chen for kindly providing us the specimens.

#### References

Berkeley, M.J. (1848) Decades of fungi. Decade XX. Tasmanian fungi. London Journal of Botany 7: 572–580.

Bischoff, J.F., Rehner, S.A. & Humber, R.A. (2009) A multilocus phylogeny of the *Metarhizium anisopliae* lineage. *Mycologia* 101 (4): 512–530.

http://dx.doi.org/10.3852/07-202

- Castlebury, L.A., Rossman, A.Y., Sung, G.H., Hyten, A.S. & Spatafora, J.W. (2004) Multigene phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus. *Mycological Research* 108: 864–872.
- Chan, W.H., Ling, K.H., Chiu, S.W., Shaw, P.C. & But, P.P.H. (2011) Molecular analyses of *Cordyceps gunnii* in China. Journal of Food and Drug Analysis 19 (1): 18–25.
- Chen, Q.T., Xiao, Z.M., Li, T.B., Liu, Q.Y. & Chen, H.R. (1984) A new species of Paecilomyces. Acta Mycologica Sinica 3 (2): 109-112.
- Chen, J.Y., Cao, Y.Q., Yang, D.R. & Li, M.H. (2011) A new species of *Ophiocordyceps* (Clavicipitales, Ascomycota) from southwestern China. *Mycotaxon* 115: 1–4.

http://dx.doi.org/10.5248/115.1

Chen, Z.H., Dai, Y.D., Yu, H., Yang, K., Yang, Z.L., Yuan, F. & Zeng, W.B. (2013) Systematic analyses of *Ophiocordyceps lanpingensis* sp. nov., a new species of *Ophiocordyceps* in China. *Microbiological Research* 168: 525–532. http://dx.doi.org/10.1016/j.micres.2013.02.010

- Cunningham, C.W. (1997) Can three incongruence tests predict when data should be combined? *Molecular Biology and Evolution* 14: 733–740.
- Cunningham, G.H. (1921) The genus Cordyceps in New Zealand. Transactions and Proceedings of the New Zealand Institute 53: 372–382.
- Farris, J.S., Källersjö, M., Kluge, A.G. & Bult, C. (1994) Testing significance of incongruence. *Cladistics* 10: 315–319. http://dx.doi.org/10.1111/j.1096-0031.1994.tb00181.x
- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
- Fu, L., Huang, H.Y. & Cheng, Z.H. (2004) Studies on the condition of liquid fermentation of *Cordyceps gunnii*, *Journal of Natural Science* of Hunan Normal University 27 (2): 71–74.
  - http://dx.doi.org/10.3969/j.issn.1000-2537.2004.02.019
- Gao, S., Zhang, Q., Li, C.R., Huang, B., Fan, M.Z., Spatafora, J.W. & Li, Z.Z. (2010) *Cordyceps cardinalis*, a new species in China and its *Isaria* anamorph. *Journal of Anhui Agricultural University* 37 (4): 712–715.
- Hooker, J.D. (1860) Botany of the Antarctic Voyage, III. Flora Tasmaniae 2: 1–422. [Lovell Reeve, London]
- Index Fungorum (2016) Available from: www.indexfungorum.org (accessed 1 March 2017)
- Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I., Jeewon, R., Gareth Jones, E.B., Bahkali, A.H., Karunarathna, S.C., Liu, J.K., Luangsa-ard, J.J., Lumbsch, H.T., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Moncalvo, J.M., Ghobad-Nejhad, M., Nilsson H., Pang, K.L., Pereira, O.L., Phillips, A.J.L., Raspé, O., Rollins, A.W., Romero, A.I., Etayo, J., Selçuk, F., Stephenson, S.L., Suetrong, S., Taylor, J.E., Tsui, C.K.M., Vizzini, A., Abdel-Wahab, M.A., Wen, T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S., Jayawardena, R.S., Li, W.J., Perera, R.H., Phookamsak, R., de Silva, N.I., Thambugala, K.M., Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao, Q., Kang, J.C. & Promputtha, I. (2015) The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. *Fungal Diversity* 74 (1): 3–18. http://dx.doi.org/10.1007/s13225-015-0351-8
- Kepler, R.M., Sung, G.H., Ban, S., Nakagiri, A., Chen, M.J., Huang, B., Li, Z.Z. & Spatafora, J.W. (2012a) New teleomorph combinations in the entomopathogenic genus *Metacordyceps*. *Mycologia* 104 (1): 182–197. http://dx.doi.org/10.3852/11-070
- Kepler, R.M., Sung, G.H., Harada, Y., Tanaka, K., Tanaka, E., Hosoya, T., Bischoff, J.F. & Spatafora, J.W. (2012b) Host jumping onto close relatives and across kingdoms by *Tyrannicordyceps* (Clavicipitaceae) gen. nov. and *Ustilaginoidea* (Clavicipitaceae). *American Journal of Botany* 99 (3): 552–561. http://dx.doi.org/10.3732/ajb.1100124
- Kepler, R., Ban, S., Nakagiri, A., Bischoff, J., Hywel-Jones, N.L., Owensby, C.A. & Spatafora, J.W. (2013) The phylogenetic placement of hypocrealean insect pathogens in the genus *Polycephalomyces*: an application of One Fungus One Name. *Fungal Biology* 117: 611–622.
  - http://dx.doi.org/10.1111/10.1016/j.funbio.2013.06.002
- Kobayasi, Y. & Shimizu, D. (1983) Iconography of vegetable wasps and plant worms. Horkusha Publishing, Tokyo, pp. 280.
- Li, Z.Z., Li, C.R., Huang, B., Fan M.Z. & Lee, M.W. (1999) New variety of *Cordyceps gunnii* (Berk.) Berk. and its *Paecilomyces* anamorph. *The Korean Journal of Mycology* 27 (3): 231–233.
- Li, C.R., Chen, A.H., Zuo, D.P., Fan, M.Z. & Li, Z.Z. (2008a) Species of *Cordyceps* and *Shimizuomyces* new to China. *Mycosystema* 27 (3): 464–468.
- Li, T.H., Deng, C.Y. & Song, B. (2008b) A distinct species of *Cordyceps* on coleopterous larvae hidden in twigs. *Mycotaxon* 103: 365–369.
- Li, C.R., Huang, B., Fan, M.Z. & Lin, Y.R. (2010) *Metacordyceps guniujiangensis* and its *Metarhizium* anamorph: a new pathogen on cicada nymphs. *Mycotaxon* 111: 221–231.

http://dx.doi.org/10.5248/111.221

- Liang, Z.Q. (1983) A description of Cordyceps gunnii in China. Acta Mycologica Sinica 2 (4): 258-259.
- Liang, Z.Q. (1985) Isolation and identification of the conidial stage of Cordyceps gunnii. Acta Mycologica Sinica 4 (3): 162-166.
- Liang, Z.Q. (2007) Flora Fungorum Sinicorum, vol. 32, Cordyceps. Science Press, Beijing, 190 pp.
- Lin, Q.Y., Li, T.H. & Song, B. (2008) Cordyceps guangdongensis sp. nov. from China. Mycotaxon 103: 371-376.
- Liu, Z.Y., Yao, Y.J., Liang, Z.Q., Liu, A.Y., Pegler, D.N. & Chase, M.W. (2001) Molecular evidence for the anamorph-teleomorph connection in *Cordyceps sinensis*. *Mycological Research* 105 (7): 827–832. http://dx.doi.org/10.1017/S095375620100377X
- Liu, Z.Y., Liang, Z.Q., Liu, A.Y., Yao, Y.J., Hyde, K.D. & Yu, Z.N. (2002) Molecular evidence for teleomorph-anamorph connections in *Cordyceps* based on ITS-5.8S rDNA sequences. *Mycological Research* 106 (9): 1100–1108. http://dx.doi.org/10.1017/S0953756202006378

Massee, G. (1895) A revision of the genus Cordyceps. Annals of Botany 9: 1-42.

Mortimer, P.E., Karunarathna, S.C., Li, Q.H., Gui, H., Yang, X.Q., Yang, X.F., He, J., Ye, L., Guo, J.Y., Li, H.L., Sysouphanthong, P., Zhou, D.Q., Xu, J.C. & Hyde, K.D. (2012) Prized edible Asian mushrooms: ecology, conservation and sustainability. *Fungal Diversity* 56: 31–47.

http://dx.doi.org/10.1007/s13225-012-0196-3

- Nikoh, N. & Fukatsu, T. (2000) Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus *Cordyceps. Molecular Biology and Evolution* 17 (4): 629–638.
- Page, R.D.M. (1996) TreeView: An application to display phylogenetic trees on personal computers. CABIOS 12: 357-358.
- Quandt, C.A., Kepler, R.M., Gams, W., Araújo, J.P.M., Ban, S., Evans, H.C., Hughes, D., Humber, R., Hywel-Jones, N., Li, Z.Z., Luangsaard, J.J., Rehner, S.A., Sanjuan, T., Sato, H., Shrestha, B., Sung, G.H., Yao, Y.J., Zare, R. & Spatafora, J.W. (2014) Phylogeneticbased nomenclatural proposals for *Ophiocordycipitaceae (Hypocreales)* with new combinations in *Tolypocladium. IMA Fungus* 5 (1): 121–134.

http://dx.doi.org/10.5598/imafungus.2014.05.01.12

Saccardo, P.A. (1891) Sylloge Fungorum IX: 1001.

- Schneider, S., Rehner, S.A., Widmer, F. & Enkerli, J. (2011) A PCR-based tool for cultivation-independent detection and quantification of *Metarhizium* clade 1. *Journal of Invertebrate Pathology* 108 (2): 106–114. http://dx.doi.org/10.1016/j.jip.2011.07.005
- Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Bergeron, M.J., Hamelin, R.C., Vialle, A. & Fungal Barcoding Consortium. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proceedings of the National Academy of Science* 109: 6241–6246. http://dx.doi.org/10.1073/pnas.1117018109

Shimizu, D. (1994) Color Iconography of Vegetable Wasps and Plant Worms. Seibundo Shikosha, Tokyo, 230 pp.

- Song, B., Lin, Q.Y., Li, T.H., Shen, Y.H., Li, J.J. & Luo D.X. (2006) Known species of *Cordyceps* from China and their distribution. *Journal of Fungal Research* 4 (4): 10–26.
- Spatafora, J.W., Quandt, C.A., Kepler, R.M., Sung, G.H., Shrestha, B., Hywel-Jones, N.L. & Luangsa-ard, J.J. (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). *IMA Fungus* 6: 357–362.
- Stensrud, Ø., Hywel-Jones, N.L. & Schumacher, T. (2005) Towards a phylogenetic classification of *Cordyceps*: ITS nrDNA sequence data confirm divergent lineages and paraphyly. *Mycological Research* 109: 41–56.
- Sun, K.Z., Zhu, Z.Y., Ding, L.N., Liu, X.C. & Liu, A.J. (2012) Study on Submerged Fermentation Conditions for Intracellular Polysaccharide of *Cordyceps gunnii*. Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB2012): 343–349. http://dx.doi.org/10.1007/978-3-642-37916-1_35
- Sung, G.H., Hywel-Jones, N.L., Sung, J.M., Luangsa-ard, J.J., Shrestha, B. & Spatafora, J.W. (2007a) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. *Studies in Mycology* 57: 5–59. http://dx.doi.org/10.3114/sim.2007.57.01
- Sung, G.H., Sung, J.M., Hywel-Jones, N.L. & Spatafora, J.W. (2007b) A multi-gene phylogene of *Clavicipitaceae (Ascomycota*, Fungi): identification of localized incongruence using a combinational bootstrap approach. *Molecular Phylogenetics and Evolution* 44 (3): 1204–1223.

http://dx.doi.org/10.1016/j.ympev.2007.03.011

- Swofford, D.L. (2002) *PAUP*: phylogenetic analysis using parsimony (*and other methods)*, version 4.0b10. Sinauer Associates, Sunderland.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729. http://dx.doi.org/10.1093/molbev/mst197
- Tian, L.H., Hu, B., Zhou, H., Zhang, W.M., Qu, L.H. & Chen, Y.Q. (2010) Molecular phylogeny of the entomopathogenic fungi of the genus *Cordyceps* (Ascomycota-Clavicipitaceae) and its evolutionary implications. *Journal of Systematics and Evolution* 48 (6): 435–444.

http://dx.doi.org/10.1111/j.1759-6831.2010.00100.x

- Vilgalys, R., Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172 (8): 4238–4246.
- Wei, X., Wu, Y.C., Yang, J.H. & Zheng, X.Q. (2012) Simultaneous multiresponse optimization of the medium for submerged fermenting Cordyceps gunnii mycelia using genetic algorithm. In: Fifth International Conference on Intelligent Computation Technology and Automation. pp. 325–329.

http://dx.doi.org/10.1109/ICICTA.2012.88

Wen, T.C., Xiao, Y.P., Li, W.J., Kang, J.C. & Hyde, K.D. (2014) Systematic analyses of Ophiocordyceps ramosissimum sp. nov., a new

species from a larvae of Hepialidae in China. *Phytotaxa* 161 (3): 227–234. http://dx.doi.org/10.11646/phytotaxa.161.3.6

- Wen, T.C., Zha, L.S., Xiao, Y.P., Wang, Q., Kang, J.C. & Hyde, K.D. (2015) *Metacordyceps shibinensis* sp. nov. from larvae of Lepidoptera in Guizhou Province, southwest China. *Phytotaxa* 226 (1): 51–62. http://dx.doi.org/10.11646/phytotaxa.226.1.5
- Wen, T.C., Zhu, R.C., Kang, J.C., Huang, M.H., Tan, D.B., Ariyawansha, H., Hyde, K.D. & Liu, H. (2013) Ophiocordyceps xuefengensis sp. nov. from larvae of *Phassus nodus* (Hepialidae) in Hunan Province, southern China. *Phytotaxa* 123 (1): 41–50. http://dx.doi.org/10.11646/phytotaxa.123.1.2
- Wen, T.C., Wei, D.P., Long, F.Y., Zeng, X.Y. & Kang, J.C. (2016) Multigene phylogeny and HPLC analysis reveal fake Ophiocordyceps sinensis in markets. Mycosphere 7 (6): 844–857.
- White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications*. Academic Press, New York, pp. 315–322.
- Winkler, D. (2009) Caterpillar fungus (*Ophiocordyceps sinensis*) production and sustainability on the Tibetan Plateau and in the Himalayas. *Asian Medicine* 5: 291–316.

http://dx.doi.org/10.1163/157342109X568829

- Xiao, J.H., Liang, Z.Q., Liu, A.Y., Chen, D.X., Xiao, Y., Liu, J.W. & Wan, W.H. (2004) Immunosuppressive activity of polysaccharides from *Cordyceps gunnii* mycelia in mice vivo/vitro. *Journal of Food, Agriculture & Environment* 2 (3–4): 69–73.
- Yan, J.Q. & Bau, T., (2015) Cordyceps ningxiaensis sp. nov., a new species from dipteran pupae in Ningxia Hui Autonomous Region of China. Nova Hedwigia 100 (1-2): 251–258.

http://dx.doi.org/10.1127/nova_hedwigia/2014/0222

- Yang, Y.H., Cai, S.X., Zheng, Y.M. & Lu, X.M. (2009) Metarhizium taii var. chongqingensis nov., anamorph of Cordyceps chongqingensis sp. nov. isolated from a low altitude area in Chongqing, China. Current Microbiology 58: 635–641. http://dx.doi.org/10.1007/s00284-009-9382-2
- Yang, Z.L., Qin, J., Xia, C.F., Hu, Q. & Li, Q.Q. (2015) Ophiocordyceps highlandensis, a new entomopathogenic fungus from Yunnan, China. Phytotaxa 204 (4): 287–295.

http://dx.doi.org/10.11646/phytotaxa.204.4.5

- Zhang, W.M., Hu, B., Zhong, H., Chen, Y.Q., Tao, M. H. & Qu, L.H. (2005) Study on the anamorph of *Cordyceps campsosterna*. *Mycological* Society of China Proceedings of the First Symposium on Development of China's Medicinal Fungi Industry 2005: 81–82.
- Zhang, Q., Zhu, C.L., Li, C.R., Huang, B., Fan, M.Z., Spatafora, J.W. & Li, Z.Z. (2010) A species of *Ophiocordyceps* new to China. *Journal of Anhui Agricultural University* 37 (4): 709–711.
- Zhu, J.S., Halpern, G.M. & Jones, K. (1998) The scientific rediscovery of a precious ancient Chinese herbal regimen: *Cordyceps sinensis*, part II. *Journal of Alternative and Complementary Medicine* 4: 429–457.
- Zhu, Z.Y., Si, C.L., Zhong, Y.R., Zhu, C.M., Zhou, J.P., Liu, A.J., Zhang, Y.M. (2011) The purification and antioxidative activities in Dgalactose-induced aging mice of a water-soluble polysaccharide from *Cordyceps gunnii* (Berk.) Berk. mycelium. *Journal of Food Biochemistry* 35 (1): 303–322.

http://dx.doi.org/10.1111/j.1745-4514.2010.00383.x

- Zhu, Z.Y., Liu, N., Si, C.L., Liu, Y., Ding, L.N., Chen, J., Liu, A.J. & Zhang Y.M. (2012a) Structure and anti-tumor activity of a highmolecular-weight polysaccharide from cultured mycelium of *Cordyceps gunni*. *Carbohydrate Polymers* 88: 1072–1076. http://dx.doi.org/10.1016/j.carbpol.2012.01.068
- Zhu, Z.Y., Chen, J., Si, C.L., Liu, N., Lian, H.Y., Ding, L.N., Liu, Y. & Zhang Y.M. (2012b) Immunomodulatory effect of polysaccharides from submerged cultured *Cordyceps gunnii*. *Pharmaceutical Biology* 50 (9): 1103–1110. http://dx.doi.org/10.3109/13880209.2012.658114
- Zhu, Z.Y., Liu, Y., Si, C.L., Yuan, J., Lv, Q., Li, Y.Y., Dong, G.L., Liu, A.J. & Zhang, Y.M. (2013) Sulfated modification of the polysaccharide from *Cordyceps gunnii* mycelia and its biological activities. *Carbohydrate Polymers* 92: 872–876. http://dx.doi.org/10.1016/j.carbpol.2012.10.007