

Multigene phylogeny of the family Cordycipitaceae (Hypocreales): new taxa and the new systematic position of the Chinese cordycipitoid fungus *Paecilomyces hepiali*

Yuan-Bing Wang^{1,2,3} · Yao Wang^{1,2,4} · Qi Fan^{1,2} · Dong-E Duan^{1,2} · Guo-Dong Zhang^{1,2,3} · Ru-Qin Dai⁶ · Yong-Dong Dai^{1,2,4} · Wen-Bo Zeng⁷ · Zi-Hong Chen⁸ · Dan-Dan Li^{1,2} · De-Xiang Tang^{1,2} · Zhi-Hong Xu^{1,2} · Tao Sun^{1,2,4} · Thi-Tra Nguyen² · Ngoc-Lan Tran⁹ · Van-Minh Dao⁹ · Can-Ming Zhang¹⁰ · Luo-Dong Huang¹ · Yong-Jun Liu¹¹ · Xiao-Mei Zhang^{1,2,3,12} · Da-Rong Yang¹³ · Tatiana Sanjuan¹⁴ · Xing-Zhong Liu¹⁵ · Zhu L. Yang^{4,5} · Hong Yu^{1,2}

Received: 15 November 2019 / Accepted: 31 July 2020 / Published online: 26 August 2020 @ The Author(s) 2020

Abstract

The phylogeny and systematics of cordycipitoid fungi have been extensively studied in the last two decades. However, systematic positions of some taxa in the family Cordycipitaceae have not yet been thoroughly resolved. In this study, a new phylogenetic framework of Cordycipitaceae is reconstructed using multigene (nrSSU, nrLSU, tef- 1α , rpb1 and rpb2) sequence data with large-scale taxon sampling. In addition, ITS sequence data of species belonging to the Lecanicillium lineage in the family Cordycipitaceae are used to further determine their phylogenetic placements. Based on molecular phylogenetic data together with morphological evidence, two new genera (Flavocillium and Liangia), 16 new species and four new combinations are introduced. In the new genus *Flavocillium*, one new species *F. bifurcatum* and three new combinations previously described as Lecanicillium, namely F. acerosium, F. primulinium and F. subprimulinium, are proposed. The genus Liangia is built by the new species Lia. sinensis with Lecanicillium-like asexual morph, isolated from an entomopathogenic fungus Beauveria yunnanensis. Due to the absence of Paecilomyces hepiali, an economically and medically significant fungus, in the earlier phylogenetic analyses, its systematic position has been puzzling in both business and academic communities for a long time. Here, *P. hepiali* is recharacterized using the holotype material along with seven additional samples. It is assigned to the genus Samsoniella (Cordycipitaceae, Hypocreales) possessing Cordyceps-like sexual morph and Isaria-like asexual morph, and thus a new combination, namely S. hepiali is proposed. An additional nine new species in Samsoniella are described: S. alpina, S. antleroides, S. cardinalis, S. cristata, S. lanmaoa, S. kunmingensis, S. ramosa, S. tortricidae and S. yunnanensis. Four new species in Cordyceps are described: C. chaetoclavata, C. cocoonihabita, C. shuifuensis and C. subtenuipes. Simplicillium yunnanense, isolated from synnemata of Akanthomyces waltergamsii, is described as a new species.

Keywords Cordycipitaceae · Cordyceps · Flavocillium · Liangia · Paecilomyces hepiali · Phylogeny · Samsoniella

Yuan-Bing Wang, Yao Wang, Qi Fan, Dong-E Duan and Guo-Dong Zhang have equally contributed to this work.

Zhu L. Yang fungi@mail.kib.ac.cn

Hong Yu hongyu@ynu.edu.cn

Extended author information available on the last page of the article

Introduction

In the taxonomic system of the twentieth century, *Cordyceps* Fr. sensu lato belonged to the family Clavicipitaceae s. l. characterized by possessing cylindrical asci, thickened ascus apices, and filiform ascospores that often disarticulate into secondary ascospores (Mains 1958; Kobayasi 1982; Rossman et al. 1999, 2002; Sung et al. 2007). This genus is the most diverse group of Clavicipitaceae s. l. due to the large number of species and wide host range. The host associations for *Cordyceps* s. l. are complex and diverse. Most of species are pathogens of more than 10 orders of invertebrates, while others are parasites of hypocrealean fungi,

the truffle-like *Elaphomyces* Nees and myxomycetes (Kobayasi and Shimizu 1960; Kobayasi 1982; Sung et al. 2007; Kepler et al. 2013, 2017; Wang et al. 2015a,b). Phylogenetic analyses have indicated that neither *Cordyceps* s. l. nor Clavicipitaceae s. l. are monophyletic (Sung et al. 2007). Three cordycipitoid families are now recognized in the order Hypocreales: Clavicipitaceae, Cordycipitaceae and Ophiocordycipitaceae. At least 39 genera accommodating more than 1300 cordycipitoid species have been assigned to these three families (Sung et al. 2007; Chaverri et al. 2008; Johnson et al. 2009; Luangsa-ard et al. 2011, 2017; Kepler et al. 2013, 2014, 2017; Quandt et al. 2014; Spatafora et al. 2015; Tsang et al. 2016; Zare and Gams 2016; Mongkolsamrit et al. 2018).

The family Cordycipitaceae shares a common ancestor with Hypocreaceae and contains most of the species that have pallid or brightly pigmented, fleshy stromata (Sung et al. 2007; Maharachchikumbura et al. 2015). However, some species are characterized by possessing reduced stipes or subiculate stromata on the host. This family is the most complex group in Hypocreales with its varied morphological characteristics and wide-ranging hosts. Some genera with sexual or asexual morphs, such as Akanthomyces Lebert, Beauveria Vuill., Cordyceps, Gibellula Cavara, Isaria Pers., Lecanicillium W. Gams & Zare and Torrubiella Boud., present numerous taxonomical problems and exist competing names. Numerous species of Cordyceps are associated with genera described originally for asexual morphs, including Akanthomyces, Beauveria, Evlachovaea B.A. Borisov & Tarasov, Isaria, Lecanicillium, Microhilum H.Y. Yip & A.C. Rath and Paecilomyces Bainier. For example, in the genus Akanthomyces proposed by the type species A. aculeatus Lebert, C. tuberculata (Lebert) Maire is linked to an asexual morph A. pistillariiformis (Pat.) Samson & H.C. Evans (Samson and Evans 1974). The sexual morph C. confragosa (Mains) G.H. Sung et al. described by Mains (1949) in Torrubiella, is linked to the type species Lecanicillium lecanii (Zimm.) Zare & W. Gams of Lecanicillium and considered to be a synonym of Akanthomyces (Kepler et al. 2017). Cordyceps militaris (L.) Fr. also produces an asexual conidiogenous structure linked to Lecanicillium (Gams and Zare 2001). Cordyceps bassiana Z.Z. Li et al. was described as the sexual morph of B. bassiana (Bals.-Criv.) Vuill., the type species of Beauveria, which caused economically devastating epizootics of domestic larval silkworms in southern Europe during the eighteenth and nineteenth centuries (Li et al. 2001). Evlachovaea kintrischica B.A. Borisov & Tarasov, the type species of Evlachovaea, was demonstrated to be a synonym of *Isaria* and was later combined into C. kintrischica (B.A. Borisov & Tarasov) Kepler et al. (Humber et al. 2013; Kepler et al. 2017).

Kepler et al. (2017) provided the most complete taxonomic treatment of Cordycipitaceae and harmonized competing names based on principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa, following Article 59 of the International Code of Nomenclature for algae, fungi and plants. They proposed to accommodate 11 genera within Cordycipitaceae, namely Akanthomyces, Ascopolyporus Möller, Beauveria, Blackwellomyces Spatafora & Luangsa-ard, Cordyceps, Engyodontium de Hoog, Gibellula, Hyperdermium J.F. White et al., Hevansia Luangsa-ard et al., Parengyodontium C.C. Tsang et al. and Simplicillium W. Gams & Zare. The other eight genera Evlachovaea, Granulomanus de Hoog & Samson, Isaria, Lecanicillium, Microhilum, Phytocordyceps C.H. Su & H.H. Wang, Synsterigmatocystis Costantin and Torrubiella were rejected. The genus Leptobacillium Zare & W. Gams, recently described with L. leptobactrum (W. Gams) Zare & W. Gams and two related new varieties, was added to the family Cordycipitaceae, presenting a sister generic relationship with Simplicillium (Zare and Gams 2016). The genus Amphichorda Fr. was established by Fries (1825) and comprised only one species, Amp. felina (DC.) Fr., which was later recombined into B. felina (DC.) J.W. Carmich. Recently, Zhang et al. (2017) described a species Amp. guana Z.F. Zhang, F. Liu & L. Cai on bat guano in this genus based on multigene phylogeny and morphology. Subsequently, Mongkolsamrit et al. (2018) erected the genus Samsoniella Mongkols et al. to accommodate three species with orange cylindrical to clavate stromata, superficial perithecia and orange conidiophores with Isaria-like phialides and white to cream conidia, and to segregate them from the Akanthomyces group. Although several taxonomic studies have been conducted, many species originally described in Lecanicillium remain incertae sedis members in the family Cordycipitaceae and are polyphyletic (Zare and Gams 2016; Kepler et al. 2017; Mongkolsamrit et al. 2018). To date, 32 Lecanicillium species have been formally described and recorded in the Index Fungorum (https://www.indexfungo rum.org). Available data indicated that some species, such as L. aranearum (Petch) Zare & W. Gams, L. antillanum (R.F. Castañeda & G.R.W. Arnold) Zare & W. Gams, L. primulinum Kaifuchi et al. and L. psalliotae (Treschew) Zare & W. Gams represent basal to subbasal monophyletic clades in the family Cordycipitaceae (Kepler et al. 2017; Huang et al. 2018; Zhou et al. 2018). Therefore, new generic names for these species in the family Cordycipitaceae need to be introduced and supported by more detailed morphological and phylogenetic evidence combined with a larger taxon sampling.

The genus *Paecilomyces* erected by Bainier (1907), based on the type species *P. variotii* Bainier, was placed in the family Aspergillaceae (Eurotiales). Samson (1974) expanded *Paecilomyces* and recognized some mesophilic species previously placed in *Isaria* or *Spicaria* Harting as a distinguishing sect. *Isarioidea* with mostly insect hosts. However, a nrSSU phylogenetic analysis indicated that *Paecilomyces* is not monophyletic and the sect. *Isarioidea* is not a eurotialean lineage (Luangsa-ard et al. 2004). Based on the β -tubulin and ITS phylogentic data, Luangsa-ard et al. (2005) found that *Paecilomyces* sect. *Isarioidea* is polyphyletic in the order Hypocreales. The group designed as the *Isaria* clade is excluded from the genus *Paecilomyces*. It is monophyletic comprising of 10 *Paecilomyces* species, nine of which are subsequently transfered into *Cordyceps*.

Paecilomyces hepiali Q.T. Chen & R.Q. Dai ex R.Q. Dai et al. was first isolated from natural Ophiocordyceps sinensis (Berk.) G.H. Sung et al. (syn. C. sinensis) associated with the larvae of Hepialus armoricanus Oberthür in China (Dai et al. 1989). This is a very important fungus because of its therapeutic benefits. However, molecular phylogenetic position of P. hepiali has been unclear for a long time due to the absence of nucleotide sequences from the holotype material. Recent phylogenetic analyses based on mitochondrial genomic sequences from five families within the order Hypocreales indicated that the putative P. hepiali specimen belongs to the family Cordycipitaceae (Li et al. 2019). However, without any generic assignment, its wellestablished phylogenetic position within the family remains undetermined. For such a species that makes a significant contribution to human health, it is indispensable to elucidate its phylogeny and systematics using the holotype material.

During the last two decades, our efforts have been exerted in the investigation of cordycipitoid fungi especially in China and Southeast Asia. To date, over 18,000 specimens and 7500 strains of Cordyceps s. l., representing more than 450 species, have been deposited in Yunnan University, Kunming, Yunnan Province. In this study, 1568 specimens and 1075 strains of Cordycipitaceae from different regions in Yunnan Province of China and Vietnam were analyzed using molecular phylogeny and morphology. Among these materials, five-gene (nrSSU, nrLSU, tef-1 α , rpb1 and rpb2) data from 56 samples, and ITS data from two samples were selected and submitted to GenBank. We established phylogenetic and evolutionary trees by maximum likelihood (ML) and Bayesian inference (BI) analyses from the five-gene and ITS data. Two new genera, 16 new species and four new combinations are introduced.

Materials and methods

Fungal materials and isolation

The majority of Cordycipitaceae specimens were collected from Yunnan Province in China. Some specimens were collected from the Hoang Lien Mountains of Lao Cai Province in Vietnam. Specimens were noted and photographed in the fields. Collections were placed in sterilized plastic tubes and boxes, returned to the laboratory, and stored at 4 °C. The specimens were examined using an Olympus SZ61 stereomicroscope. To obtain axenic cultures, the stromata or synnemata were removed from insect bodies and divided into 5-10 segments, each 3 mm long. The segments were immersed in 30% H₂O₂ for 30 s and then rinsed five times in sterilized water. After drying on sterilized filter paper, segments were inoculated onto potato dextrose agar (PDA: potato 200 g/L, dextrose 20 g/L, agar 20 g/L) plates. The conidia of cordycipitoid fungi at the conidial masses were picked up with an inoculating loop and spread on PDA plates containing 0.1 g/l streptomycin and 0.05 g/l tetracycline. To isolate the strains from the sexual morph, the stroma containing mature perithecia was placed over a PDA plate and care was taken that the stroma was above the PDA plate and did not touch the agar surface in an effort to discharge ascospores. Discharged ascospores were removed with a sterile needle from the agar and transferred onto a new PDA plate containing 0.1 g/l streptomycin and 0.05 g/l tetracycline. Pure cultures were transferred onto PDA plates and incubated in a culture room at 25 °C. After isolation into pure cultures, they were transplanted to a PDA slant and stored at 4 °C. Specimens were deposited in Yunnan Herbal Herbarium (YHH) of Yunnan University. The cultures were deposited in Yunnan Fungal Culture Collection (YFCC) of Yunnan University.

Morphological observations

For descriptions of the sexual morph, fruiting bodies were photographed and measured using an Olympus SZ61 stereomicroscope. Hand sections of the fruiting structures were mounted in water or lactophenol cotton blue solution for microscopic studies and photomicrography. The micromorphological characteristics of fungi such as perithecia, asci and ascospores were examined using Olympus CX40 and BX53 microscopes. Cultures on slants were transferred to PDA plates and cultured in an incubator for 21 days at 25 °C. The circular agar blocks, circa 5 mm in diameter, from a colony were removed and placed on new PDA plates to observe colony morphology. Colonies were photographed and measured every fourth day. For asexual morphological descriptions, microscope slide cultures were prepared by placing a small amount of mycelia on 5-mm diameter PDA medium blocks overlaid by a cover slip. Micro-morphological observations and measurements were conducted using Olympus CX40 and BX53 microscopes, and a FEI QUANTA200 scanning electron microscope.

DNA extraction, PCR, and sequencing

Clean-washed specimens and axenic living cultures were prepared for DNA extraction. Total DNA was extracted using the CTAB method described by Liu et al. (2001). The following primer pairs were used for PCR amplification. The primer pair, nrSSU-CoF and nrSSU-CoR was used to amplify the nuclear ribosomal small subunit (nrSSU) (Wang et al. 2015a). The primer pair, LR5 and LR0R was used to amplify the nuclear ribosomal large subunit (nrLSU) (Vilgalys and Hester 1990; Rehner and Samuels 1994). The primer pair, EF1 α -EF and EF1 α -ER was used to amplify the translation elongation factor 1α (*tef-1* α) (Bischoff et al. 2006; Sung et al. 2007). The two primer pairs, RPB1-5'F and RPB1-5'R, RPB2-5'F and RPB2-5'R were used to amplify the largest and second largest subunits of RNA polymerase II (rpb1and rpb2), respectively (Bischoff et al. 2006; Sung et al. 2007). The primer pair, ITS4 and ITS5 was used to amplify the nuclear ribosomal internal transcribed spacer region (ITS) (White et al. 1990). Polymerase chain reaction (PCR) assays of five genes and ITS were performed as previously described (Bischoff et al. 2006; Wang et al. 2015b). The PCR assay was conducted as described by Wang et al. (2015b). PCR products were separated by electrophoresis in 1.0% agarose gels, purified using the Gel Band Purification Kit (Bio Teke Co., Ltd, Beijing, China) and then sequenced on an automatic sequence analyser (BGI Co., Ltd, Shenzhen, China). When PCR products could not be sequenced directly, coloning was performed by the TaKaRa PMDTM18-T vector system (TaKaRa Biotechnology Co., Ltd, Dalian, China).

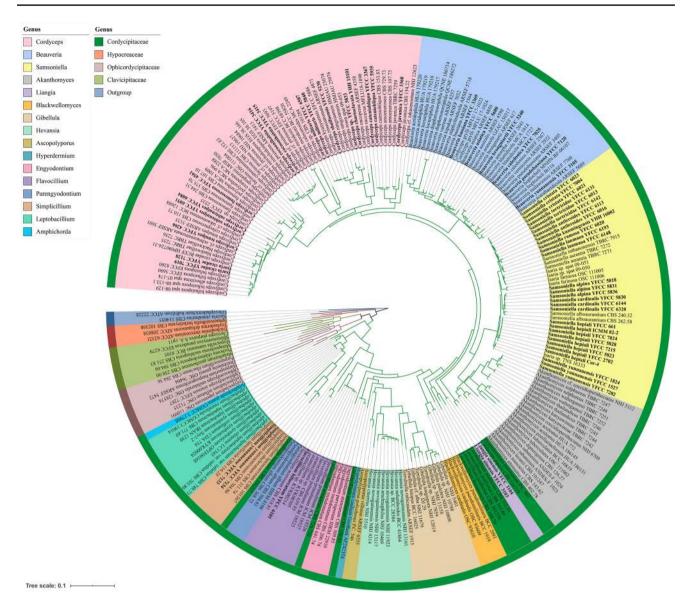
Phylogenetic analyses

Five-gene (nrSSU, nrLSU, tef-1 α , rpb1 and rpb2) sequences from 56 samples of 30 species belonging to six genera, and ITS sequences from two samples of the new species Flavocillium bifurcatum, were newly generated. Sequences of five genes and ITS were retrieved from GenBank, and then combined with the newly generated sequences. The taxon information and GenBank accession numbers of five genes were listed in Table 1. GenBank accession numbers of ITS sequences were placed in the front of the species name, appearing in the ITS phylogenetic tree (Fig. 3). Sequences of five genes and ITS were aligned using Clustal X2.0 and MEGA6 (Larkin 2007; Tamura et al. 2013). Ambiguously aligned sites were excluded from phylogenetic analyses, and gaps were treated as missing data. Adjustment to the computer-assisted alignment was necessary regarding the nrSSU sequences containing an intron. These sequences were manually adjusted and ambiguous regions created by insertions and deletions (indel) were eliminated. After sequence alignments, the aligned sequences of five genes were concatenated. Conflicts between the five genes were tested using PAUP* 4.0b10 (Swofford 2002). The results showed that the phylogenetic signals in the five genes were not in conflict. Eleven data partitions were defined for the combined five-gene dataset employing PartitionFinder V1.1.1 (Lanfear et al. 2012). These included one each for nrSSU and nrLSU, and three for each of the three codon positions of $tef-1\alpha$, rpb1 and rpb2. Phylogenetic analyses of the five-gene and ITS datasets were conducted using ML and BI methods. ML analyses were performed with RAxML v7.9.1 using the optimal model GTR + I with 1000 rapid bootstrap replicates on the five-gene and ITS datasets (Stamatakis 2006). The model was separately applied to each of the 11 partitions of five genes. BI analyses were performed with MrBayes v3.1.2 for five million generations using a GTR + G + I model determined by jModelTest version 2.1.4 and employed the model separately for each partition of five-gene analyses, whereas the default F81 model was used for the ITS analyses (Ronquist and Huelsenbeck 2003; Darriba et al. 2012). Trees were sampled every 100 generations. The first 25% trees were discarded as burn-in and the remaining trees were used to create a consensus tree using the sumt demand. Phylogenetic trees were visualised and modified using the Interactive Tree Of Life (iTOL) (https://itol.embl.de) online tool (Letunic and Bork 2019).

Results

In ML and BI phylogenetic analyses, five-gene sequences of 30 species collected in this study were employed to reconstruct phylogenetic framework of the family Cordycipitaceae. Taxa within the order Hypocreales consisted of four families, viz. Cordycipitaceae, Ophicordycipitaceae, Clavicipitaceae, Hypocreaceae, and two taxa of Nectriaceae (Nectria cinnabarina CBS 114055 and Gliocephalotrichum bulbilium ATCC 22228) designated as the outgroup. The concatenated sequence dataset of 241 taxa was composed of 4837 bp sequence data (1082 bp for nrSSU, 904 bp for nrLSU, 1064 bp for tef-1 α , 802 bp for rpb1 and 985 bp for rpb2). Phylogenetic trees obtained from ML and BI analyses were identical in overall topologies and were not significantly different (Fig. 1). Most well-resolved genera and lineages in Cordycipitaceae shared similar relationships with previous analyses (Sung et al. 2007; Sukarno et al. 2009; Kepler et al. 2017; Mongkolsamrit et al. 2018). Our ML and BI analyses showed that the placement of Cordycipitaceae in the order Hypocreales was well-supported by bootstrap proportions (BP = 70%) and posterior probabilities (PP = 95%), respectively.

Species in the typifed genus *Lecanicillium* were distributed throughout the family Cordycipitaceae and were polyphyletic (Fig. 1, 2). These species were clustered into the clades of *L. aranearum, L. antillanum, L. primulinum, L. fusisporum* and *L. psalliotae*, respectively. In the five-gene phylogenetic tree, the *L. primulinum* clade harbored *L. primulinum, L. acerosum* W. Gams et al., *Lecanicillium* sp. and another new species (YFCC 6101) described in this study. ML and BI phylogenetic

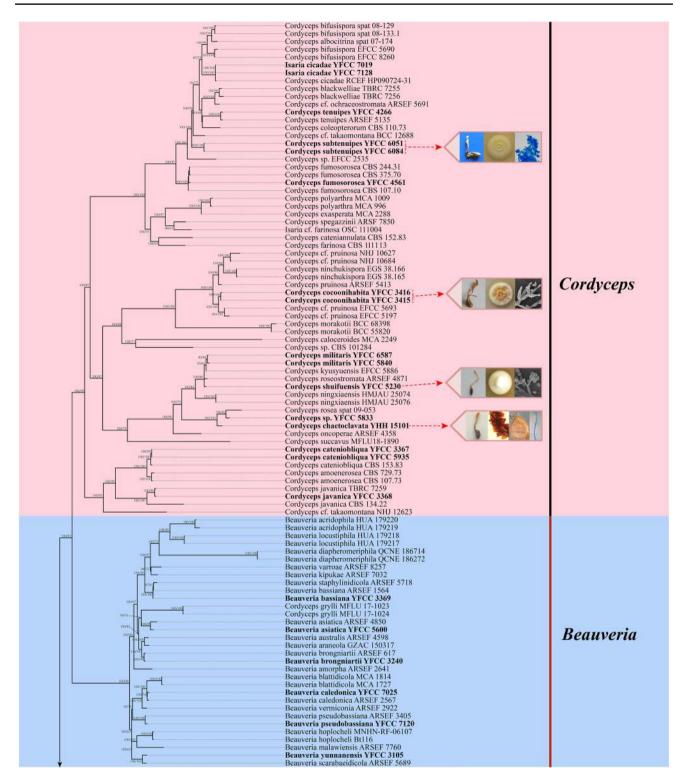

Taxon	Voucher information	GenBank accession number				
		nrSSU	nr <i>LSU</i>	tef-1a	rpb1	rpb2
Akanthomyces aculeatus	HUA 186145	MF416572	MF416520	MF416465		
Akanthomyces aculeatus	HUA 772	KC519368	KC519370	KC519366		
Akanthomyces attenuatus	CBS 402.78	AF339614	AF339565	EF468782	EF468888	EF468935
Akanthomyces cf. coccidioperitheciatus	NHJ 5112	EU369109	EU369043	EU369026	EU369066	
Akanthomyces coccidioperitheciatus	NHJ 6709	EU369110	EU369042	EU369025	EU369067	EU369086
Akanthomyces dipterigenus	CBS 126.27	AF339605	AF339556	KM283820	KR064300	KR064303
Akanthomyces kanyawimiae	TBRC 7242		MF140718	MF140838	MF140784	MF140808
Akanthomyces kanyawimiae	TBRC 7244		MF140716	MF140836		
Akanthomyces lecanii	CBS 101247	AF339604	AF339555	DQ522359	DQ522407	DQ522466
Akanthomyces muscarius	CBS 143.62	KM283774	KM283798	KM283821	KM283841	KM283863
Akanthomyces pistillariaeformis	HUA 186131	MF416573	MF416521	MF416466		
Akanthomyces sabanensis	ANDES-F 1023	KC633253		KC633267	KC875222	
Akanthomyces sabanensis	ANDES-F 1024	KC633251	KC875225	KC633266		KC633249
Akanthomyces sulphureus	TBRC 7247		MF140720	MF140841	MF140785	MF140811
Akanthomyces sulphureus	TBRC 7248		MF140722	MF140843	MF140787	MF140812
Akanthomyces thailandicus	TBRC 7245			MF140839		MF140809
Akanthomyces thailandicus	TBRC 7246		MF140719	MF140840		MF140810
Akanthomyces tuberculatus	OSC 111002	DQ522553	DQ518767	DQ522338	DQ522384	DQ522435
Akanthomyces tuberculatus	BCC 16819	MF416600	MF416546	MF416490	MF416647	MF416444
Akanthomyces waltergamsii	TBRC 7251		MF140713	MF140833	MF140781	MF140805
Akanthomyces waltergamsii	TBRC 7252		MF140714	MF140834	MF140782	MF140806
Amphichorda guana	CGMCC 3.17908		KU746711	KX855211		
Ascopolyporus polychrous	P.C. 546		DQ118737	DQ118745	DQ127236	
Ascopolyporus villosus	ARSEF 6355		AY886544	DQ118750	DQ127241	
Beauveria acridophila	HUA 179220	JQ895527	JQ895536	JQ958614	JX003852	JX003842
Beauveria acridophila	HUA 179219	-	JQ895541	JQ958613	JX003857	JX003841
Beauveria amorpha	ARSEF 2641		AB100039	AY531917	HQ880880	HQ880952
Beauveria araneola	GZAC 150317			KT961699	KT961701	-
Beauveria asiatica	ARSEF 4850			AY531937	HQ880859	HQ880931
Beauveria asiatica	YFCC 5600	MN576770	MN576826	MN576996	MN576886	MN576940
Beauveria australis	ARSEF 4598			HQ880995	HQ880861	HQ880933
Beauveria bassiana	ARSEF 1564	EU334676		HQ880974	HQ880833	HQ880905
Beauveria bassiana	YFCC 3369	MN576768	MN576824	MN576994	MN576884	MN576938
Beauveria blattidicola	MCA 1727	MF416593	MF416539	MF416483	MF416640	
Beauveria blattidicola	MCA 1814	MF416594	MF416540	MF416484	MF416641	
Beauveria brongniartii	YFCC 3240	MN576769	MN576825	MN576995	MN576885	MN576939
Beauveria brongniartii	ARSEF 617	AB027335	AB027381	HQ880991	HQ880854	HQ880926
Beauveria caledonica	ARSEF 2567	AF339570	AF339520	EF469057	HQ880889	HQ880961
Beauveria caledonica	YFCC 7025	MN576771	MN576827	MN576997	MN576887	MN576941
Beauveria diapheromeriphila	QCNE 186272	JQ895530	JQ895534	JQ958610	JX003848	
Beauveria diapheromeriphila	QCNE 186714	MF416601	MF416547	MF416491	MF416648	
Beauveria hoplocheli	MNHN-RF-06107			KC339702	KM453954	KM453963
Beauveria hoplocheli	Bt116			KC339703	KM453957	KM453966
Beauveria kipukae	ARSEF 7032			HQ881005	HQ880875	HQ880947
Beauveria locustiphila	HUA 179217	JQ958598	JQ958597	C	JX003847	C
Beauveria locustiphila	HUA 179218	JQ895525	JQ895535	JQ958619	JX003846	JX003845
Beauveria malawiensis	ARSEF 7760			DQ376246	HQ880897	HQ880969
Beauveria pseudobassiana	YFCC 7120	MN576772	MN576828	MN576998	MN576888	MN576942

Taxon	Voucher information	GenBank accession number					
		nrSSU	nrLSU	tef-1a	rpb1	rpb2	
Beauveria pseudobassiana	ARSEF 3405			AY531931	HQ880864	HQ880936	
Beauveria scarabaeidicola	ARSEF 5689	AF339574	AF339524	DQ522335	DQ522380	DQ522431	
Beauveria staphylinidicola	ARSEF 5718	EF468981	EF468836	EF468776	EF468881		
Beauveria varroae	ARSEF 8257			HQ881002	HQ880872	HQ880944	
Beauveria vermiconia	ARSEF 2922			AY531920	HQ880894	HQ880966	
Beauveria yunnanensis	YFCC 3105	MN576773	MN576829	MN576999	MN576889	MN576943	
Blackwellomyces cardinalis	OSC 93609	AY184973	AY184962	DQ522325	DQ522370	DQ522422	
Blackwellomyces cardinalis	OSC 93610	AY184974	AY184963	EF469059	EF469088	EF469106	
Blackwellomyces pseudomilitaris	BCC 1919	MF416588	MF416534	MF416478		MF416440	
Blackwellomyces pseudomilitaris	BCC 2091	MF416589	MF416535	MF416479		MF416441	
Claviceps purpurea	S.A. cp11	EF469122	EF469075	EF469058	EF469087	EF469105	
Cordyceps albocitrina	spat 07-174	MF416575		MF416467	MF416629		
Cordyceps amoenerosea	CBS 107.73	AY526464	MF416550	MF416494	MF416651	MF416445	
Cordyceps amoenerosea	CBS 729.73	MF416604	MF416551	MF416495	MF416652	MF416446	
Cordyceps bifusispora	spat 08-129	MF416576	MF416523	MF416468	MF416630		
Cordyceps bifusispora	spat 08-133.1	MF416577	MF416524	MF416469	MF416631	MF416434	
Cordyceps bifusispora	EFCC 5690	EF468952	EF468806	EF468746	EF468854	EF468909	
Cordyceps bifusispora	EFCC 8260	EF468953	EF468807	EF468747	EF468855	EF468910	
Cordyceps blackwelliae	TBRC 7255		MF140703	MF140823	MF140772	MF140796	
Cordyceps blackwelliae	TBRC 7256		MF140702	MF140822	MF140771	MF140795	
Cordyceps caloceroides	MCA 2249	MF416578	MF416525	MF416470	MF416632		
Cordyceps cateniannulata	CBS 152.83	AY526465	MG665226	JQ425687			
Cordyceps cateniobliqua	YFCC 3367	MN576765	MN576821	MN576991	MN576881	MN576935	
Cordyceps cateniobliqua	YFCC 5935	MN576766	MN576822	MN576992	MN576882	MN576936	
Cordyceps cateniobliqua	CBS 153.83	AY526466		JQ425688		MG665236	
Cordyceps cf. ochraceostromata	ARSEF 5691	EF468964	EF468819	EF468759	EF468867	EF468921	
Cordyceps cf. pruinosa	NHJ 10627	EF468967	EF468822	EF468763	EF468870		
Cordyceps cf. pruinosa	NHJ 10684	EF468968	EF468823	EF468761	EF468871		
Cordyceps cf. pruinosa	EFCC 5693	EF468966	EF468821	EF468762	EF468869		
Cordyceps cf. pruinosa	EFCC 5197	EF468965	EF468820	EF468760	EF468868		
Cordyceps cf. takaomontana	BCC 12688	MF416599	MF416545	MF416489	MF416646		
Cordyceps cf. takaomontana	NHJ 12623	EF468984	EF468838	EF468778	EF468884	EF468932	
Cordyceps ch. akuomonuna Cordyceps chaetoclavata	YHH 15101	MN576722	MN576778	MN576948	MN576838	MN576894	
Cordyceps cicadae	RCEF HP090724-31	MF416605	MF416552	MF416496	MF416653	MF416447	
Cordyceps cocoonihabita	YFCC 3415	MN576723	MN576779	MN576949	MN576839	MN576895	
Cordyceps cocoonihabita Cordyceps cocoonihabita	YFCC 3416	MN576724	MN576780	MN576950	MN576840	MN576896	
Cordyceps colcommanu Cordyceps coleopterorum	CBS 110.73	JF415965	JF415988	JF416028	JN049903	JF416006	
	MCA 2288	MF416592			MF416639	J1410000	
Cordyceps exasperata	CBS 111113	AY526474	MF416538 ME416554	MF416482 MF416499		MF416450	
Cordyceps farinosa Cordyceps fumosorosea	YFCC 4561	MN576761	MF416554	MN576987	MF416656 MN576877	MN576931	
			MN576817				
Cordyceps fumosorosea	CBS 244.31	MF416609	MF416557	MF416503 ME416501	MF416660 ME416658	MF416454	
Cordyceps fumosorosea	CBS 375.70		AB083035	MF416501	MF416658	MF416452	
Cordyceps fumosorosea	CBS 107.10	MERCOMP	MG665227	HM161735		MG665237	
Cordyceps grylli	MFLU 17-1023	MK863048	MK863055	MK860193			
Cordyceps grylli	MFLU 17-1024	MK863049	MK863056	MK860194	MN576002	MNERCOOR	
Cordyceps javanica	YFCC 3368	MN576767	MN576823	MN576993	MN576883	MN576937	
Cordyceps javanica	TBRC 7259		MF140711	MF140831	MF140780	MF140804	

Taxon	Voucher information	GenBank accession number					
		nrSSU	nrLSU	tef-1a	rpb1	rpb2	
Cordyceps kyusyuensis	EFCC 5886	EF468960	EF468813	EF468754	EF468863	EF468917	
Cordyceps militaris	YFCC 6587	MN576762	MN576818	MN576988	MN576878	MN576932	
Cordyceps militaris	YFCC 5840	MN576763	MN576819	MN576989	MN576879	MN576933	
Cordyceps morakotii	BCC 55820		MF140730	KT261399			
Cordyceps morakotii	BCC 68398		MF140731	KT261398			
Cordyceps ninchukispora	EGS 38.165	EF468991	EF468846	EF468795	EF468900		
Cordyceps ninchukispora	EGS 38.166	EF468992	EF468847	EF468794	EF468901		
Cordyceps ningxiaensis	HMJAU 25074		KF309671				
Cordyceps ningxiaensis	HMJAU 25076		KF309673				
Cordyceps oncoperae	ARSEF 4358	AF339581	AF339532	EF468785	EF468891	EF468936	
Cordyceps piperis	CBS 116719		AY466442	DQ118749	DQ127240	EU369083	
Cordyceps polyarthra	MCA 996	MF416597	MF416543	MF416487	MF416644		
Cordyceps polyarthra	MCA 1009	MF416598	MF416544	MF416488	MF416645		
Cordyceps pruinosa	ARSEF 5413	AY184979	AY184968	DQ522351	DQ522397	DQ522451	
Cordyceps rosea	spat 09-053	MF416590	MF416536	MF416480	MF416637	MF416442	
Cordyceps roseostromata	ARSEF 4871	AF339573	AF339523				
Cordyceps shuifuensis	YFCC 5230	MN576721	MN576777	MN576947	MN576837	MN576893	
Cordyceps sp.	CBS 101284	AF339613	AF339564	EF468803	EF468907	EF468948	
Cordyceps sp.	EFCC 2535	EF468980	EF468835	EF468772	21 100207	21 1000 10	
Cordyceps sp.	YFCC 5833	MN576764	MN576820	MN576990	MN576880	MN576934	
Cordyceps sp. Cordyceps spegazzinii	ARSF 7850	1111070704	DQ196435	1111070770	1111070000	111(570)54	
Cordyceps subtenuipes	YFCC 6051	MN576719	MN576775	MN576945	MN576835	MN576891	
Cordyceps subtenuipes	YFCC 6084	MN576720	MN576776	MN576946	MN576836	MN576892	
Cordyceps succavus	MFLU 18-1890	MK086058	MK086062	1111370740	MK084616	MK079353	
Cordyceps succuvus Cordyceps tenuipes	ARSEF 5135	MF416612	JF415980	JF416020	JN049896	JF416000	
Cordyceps tenuipes	YFCC 4266	MN576774	MN576830	MN577000	MN576890	MN576944	
Drechmeria gunnii	OSC 76404	AF339572	AF339522	AY489616	AY489650	DQ522426	
-	CBS 309.85	AF339572 AF339576	AF339526	DQ522341	DQ522387	DQ522420 DQ522439	
Engyodontium aranearum Engyodontium pamiaparum		AF559570		DQ322341	DQ322387	DQ322439	
Engyodontium parvisporum	IHEM 22910		LC092915				
Engyodontium rectidentatum	CBS 206.74		LC092912				
Engyodontium rectidentatum	CBS 641.74		LC092914	NO122/021	NO155/041	N N 175 (005	
Flavocillium bifurcatum	YFCC 6101	MN576725	MN576781	MN576951	MN576841	MN576897	
Flavocillium primulinum	JCM 18525		AB712263				
Flavocillium primulinum	JCM 18526		AB712264				
Flavocillium primulinum	JCM 18527		AB712265				
Gibellula cf. alba	NHJ 11679			EU369016	EU369054		
Gibellula leiopus	BCC 16025	MF416602	MF416548	MF416492	MF416649		
Gibellula longispora	NHJ 12014	EU369098		EU369017	EU369055	EU369075	
Gibellula pulchra	NHJ 10808	EU369099	EU369035	EU369018	EU369056	EU369076	
Gibellula sp.	NHJ 10788	EU369101	EU369036	EU369019	EU369058	EU369078	
<i>Gibellula</i> sp.	NHJ 5401	EU369102			EU369059	EU369079	
<i>Gibellula</i> sp.	NHJ 13158	EU369100	EU369037	EU369020	EU369057	EU369077	
Gliocephalotrichum bulbilium	ATCC 22228	AY489700	AY489732	AY489627	AY489664	EF469114	
Harposporium harposporiferum	ARSEF 5472	AF339569	AF339519	DQ118747	DQ127238		
Hevansia arachnophilus	NHJ 10469	EU369090	EU369031	EU369008	EU369047		
Hevansia cinereus	NHJ 3510	EU369091		EU369009	EU369048	EU369070	
Hevansia nelumboides	BCC 41864	JN201863	JN201873	JN201867			
Hevansia novoguineensis	NHJ 13161	EU369093		EU369011	EU369050		

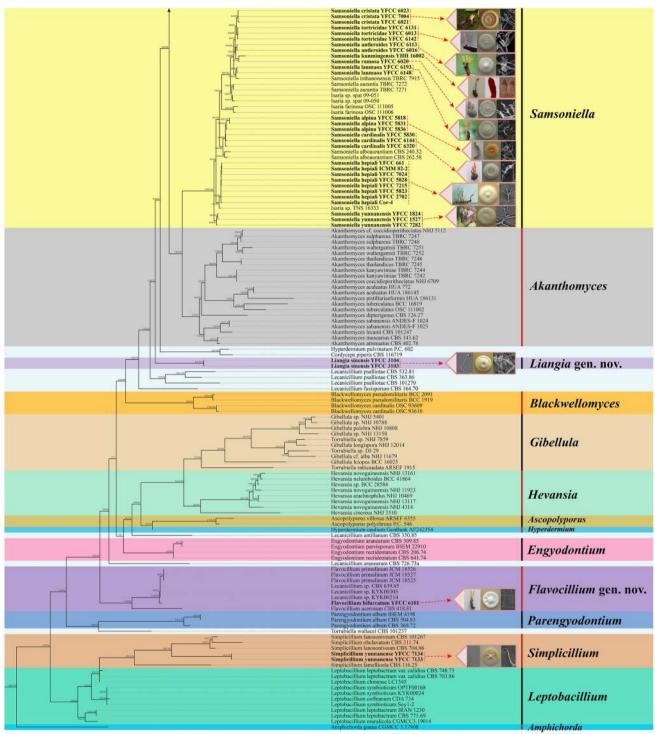
Taxon	Voucher information	GenBank accession number					
		nrSSU	nr <i>LSU</i>	tef-1a	rpb1	rpb2	
Hevansia novoguineensis	NHJ 13117	EU369092		EU369010	EU369049	EU369073	
Hevansia novoguineensis	NHJ 4314	EU369094		EU369012	EU369051	EU369071	
Hevansia novoguineensis	NHJ 11923	EU369095	EU369032	EU369013	EU369052	EU369072	
<i>Hevansia</i> sp.	BCC 28584	GQ249965	GQ249989	GQ250040			
Hyperdermium caulium	Genebank AF242354		AF242354				
Hyperdermium pulvinatum	P.C. 602		DQ118738	DQ118746	DQ127237		
Hypocrella siamensis	BCC 8105	DQ522537	DQ518752	DQ522317	DQ522363	DQ522411	
Isaria cf. farinosa	OSC 111004	EF468986	EF468840	EF468780	EF468886		
Isaria cicadae	YFCC 7128	MN576759	MN576815	MN576985	MN576875	MN576929	
Isaria cicadae	YFCC 7019	MN576760	MN576816	MN576986	MN576876	MN576930	
Isaria farinosa	OSC 111005	DQ522558	DQ518773	DQ522348	DQ522394		
Isaria farinosa	OSC 111006	EF469127	EF469080	EF469065	EF469094		
Isaria sp.	spat 09-050	MF416613	MF416559	MF416506	MF416663	MF416457	
Isaria sp.	spat 09-051	MF416614	MF416560	MF416507	MF416664	MF416458	
Isaria sp.	TNS 16333	MF416611		MF416505	MF416662	MF416456	
Lecanicillium acerosum	CBS 418.81	KM283762	KM283786	KM283810	KM283832	KM283852	
Lecanicillium antillanum	CBS 350.85	AF339585	AF339536	DQ522350	DQ522396	DQ522450	
Lecanicillium aranearum	CBS 726.73a	AF339586	AF339537	EF468781	EF468887	EF468934	
Lecanicillium fusisporum	CBS 164.70	KM283769	KM283793	KM283817	KM283836	KM283858	
Lecanicillium psalliotae	CBS 363.86	AF339608	AF339559	EF468784	EF468890		
Lecanicillium psalliotae	CBS 101270	EF469128	EF469081	EF469066	EF469095	EF469113	
Lecanicillium psalliotae	CBS 532.81	AF339609	AF339560	EF469067	EF469096	EF469112	
Lecanicillium sp.	KYK00214		AB378528				
Lecanicillium sp.	KYK00305		AB378529				
Lecanicillium sp.	CBS 639.85	KM283777	KM283801	KM283824	KM283843	KM283865	
Leptobacillium chinense	LC1345		JQ410322				
Leptobacillium coffeanum	CDA 734		MF066032				
Leptobacillium leptobactrum	CBS 771.69		KU382224				
Leptobacillium leptobactrum	IRAN 1230		KU382225				
Leptobacillium leptobactrum var. calidius	CBS 748.73		KU382227				
Leptobacillium leptobactrum var. calidius	CBS 703.86		KU382226				
Leptobacillium muralicola	CGMCC3.19014		MH379997				
Leptobacillium symbioticum	KYK00024		AB378539				
Leptobacillium symbioticum	Soy1-2		LC506046				
Leptobacillium symbioticum	OPTF00168		LC506047				
Liangia sinensis	YFCC 3103	MN576726	MN576782	MN576952	MN576842	MN576898	
Liangia sinensis	YFCC 3104	MN576727	MN576783	MN576953	MN576843	MN576899	
Metapochonia suchlasporia var. suchlasporia	CBS 251.83	AF339615	MH873311	KJ398790	KJ398601	KJ398697	
Metarhizium guizhouense	CBS 258.90	MH143830	MH873894	EU248862	EU248914	EU248942	
Nectria cinnabarina	CBS 114055	U32412	U00748	AF543785	AY489666	DQ522456	
Ophiocordyceps sinensis	EFCC 7287	EF468971	EF468827	EF468767	EF468874	EF468924	
Ophiocordyceps unilateralis	OSC 128574	DQ522554	DQ518768	DQ522339	DQ522385	DQ522436	
Parengyodontium album	CBS 504.83		LC092899				
Parengyodontium album	IHEM 4198	JF797223	LC092906	DQ268655			
Parengyodontium album	CBS 368.72		LC092910				
Pochonia chlamydosporia var. catenulata	CBS 504.66	AF339593	AF339544	EF469069	EF469098	EF469120	
Purpureocillium lilacinum	CBS 284.36	AY526475	FR775484	EF468792	EF468898	EF468941	

Taxon	Voucher information	GenBank accession number					
		nrSSU	nr <i>LSU</i>	tef-1a	rpb1	rpb2	
Samsoniella alboaurantium	CBS 240.32	JF415958	JF415979	JF416019	JN049895	JF415999	
Samsoniella alboaurantium	CBS 262.58	MH869308	AB080087	MF416497	MF416654	MF416448	
Samsoniella alpina	YFCC 5818	MN576753	MN576809	MN576979	MN576869	MN576923	
Samsoniella alpina	YFCC 5831	MN576754	MN576810	MN576980	MN576870	MN576924	
Samsoniella alpina	YFCC 5836	MN576755	MN576811	MN576981	MN576871	MN576925	
Samsoniella antleroides	YFCC 6016	MN576747	MN576803	MN576973	MN576863	MN576917	
Samsoniella antleroides	YFCC 6113	MN576748	MN576804	MN576974	MN576864	MN576918	
Samsoniella aurantia	TBRC 7271		MF140728	MF140846	MF140791	MF140818	
Samsoniella aurantia	TBRC 7272		MF140727	MF140845		MF140817	
Samsoniella cardinalis	YFCC 5830	MN576732	MN576788	MN576958	MN576848	MN576902	
Samsoniella cardinalis	YFCC 6144	MN576730	MN576786	MN576956	MN576846	MN576900	
Samsoniella cardinalis	YFCC 6320	MN576731	MN576787	MN576957	MN576847	MN57690 1	
Samsoniella cristata	YFCC 6021	MN576735	MN576791	MN576961	MN576851	MN576905	
Samsoniella cristata	YFCC 6023	MN576736	MN576792	MN576962	MN576852	MN576906	
Samsoniella cristata	YFCC 7004	MN576737	MN576793	MN576963	MN576853	MN57690	
Samsoniella hepiali	ICMM 82-2	MN576738	MN576794	MN576964	MN576854	MN57690	
Samsoniella hepiali	Cor-4	MN576743	MN576799	MN576969	MN576859	MN57691	
Samsoniella hepiali	YFCC 661	MN576739	MN576795	MN576965	MN576855	MN57690	
Samsoniella hepiali	YFCC 2702	MN576740	MN576796	MN576966	MN576856	MN57691	
Samsoniella hepiali	YFCC 5823	MN576745	MN576801	MN576971	MN576861	MN57691	
Samsoniella hepiali	YFCC 5828	MN576744	MN576800	MN576970	MN576860	MN57691	
Samsoniella hepiali	YFCC 7024	MN576741	MN576797	MN576967	MN576857	MN57691	
Samsoniella hepiali	YFCC 7215	MN576741 MN576742	MN576798	MN576968	MN576858	MN57691	
Samsoniella inthanonensis	TBRC 7915	WIN370742	MF140725	MF140849	MF140790	MF140815	
amsoniella kunmingensis	YHH 16002	MN576746	MN576802	MN576972	MN576862	MN57691	
Samsoniella lanmaoa	YFCC 6148	MN576733	MN576789	MN576959	MN576849	MN57690	
Samsoniella lanmaoa Samsoniella lanmaoa	YFCC 6193	MN576734					
			MN576790	MN576960	MN576850	MN57690	
Samsoniella ramosa	YFCC 6020	MN576749	MN576805	MN576975	MN576865	MN57691	
Samsoniella tortricidae	YFCC 6013	MN576751	MN576807	MN576977	MN576867	MN57692	
Samsoniella tortricidae	YFCC 6131	MN576750	MN576806	MN576976	MN576866	MN57692	
Samsoniella tortricidae	YFCC 6142	MN576752	MN576808	MN576978	MN576868	MN576922	
Samsoniella yunnanensis	YFCC 1527	MN576756	MN576812	MN576982	MN576872	MN57692	
Samsoniella yunnanensis	YFCC 1824	MN576757	MN576813	MN576983	MN576873	MN57692	
Samsoniella yunnanensis	YFCC 7282	MN576758	MN576814	MN576984	MN576874	MN57692	
himizuomyces paradoxus	EFCC 6279	EF469131	EF469084	EF469071	EF469100	EF469117	
Simplicillium lamellicola	CBS 116.25	AF339601	AF339552	DQ522356	DQ522404	DQ522462	
Simplicillium lanosoniveum	CBS 704.86	AF339602	AF339553	DQ522358	DQ522406	DQ522464	
Simplicillium lanosoniveum	CBS 101267	AF339603	AF339554	DQ522357	DQ522405	DQ522463	
Simplicillium obclavatum	CBS 311.74	AF339567	AF339517	EF468798			
Simplicillium yunnanense	YFCC 7133	MN576728	MN576784	MN576954	MN576844		
Simplicillium yunnanense	YFCC 7134	MN576729	MN576785	MN576955	MN576845		
phaerostilbella berkeleyana	CBS 102308	AF543770	U00756	AF543783	AY489671	DQ522465	
olypocladium inflatum	OSC 71235	EF469124	EF469077	EF469061	EF469090	EF469108	
olypocladium japonicum	OSC 110991	DQ522547	DQ518761	DQ522330	DQ522375	DQ522428	
forrubiella ratticaudata	ARSEF 1915	DQ522562	DQ518777	DQ522360	DQ522408	DQ522467	
<i>Torrubiella</i> sp.	DJ 29	EU369108		EU369027	EU369065		
<i>Torrubiella</i> sp.	NHJ 7859	EU369107			EU369064	EU369085	
Forrubiella wallacei	CBS 101237	AY184978	AY184967	EF469073	EF469102	EF469119	
Frichoderma deliquescens	ATCC 208838	AF543768	AF543791	AF543781	AY489662	DQ522446	
Trichoderma stercorarium	ATCC 62321	AF543769	AF543792	AF543782	AY489633	EF469103	


Fig. 1 Phylogenetic tree of Cordycipitaceae and related families inferred from a multigene dataset (nr*LSU*, nr*SSU*, *tef-1* α , *rpb1* and *rpb2*) based on maximum likelihood (ML) and Bayesian inference (BI) analyses. Families of Hypocreales and genera of Cordycipitaceae

are differentiated with different colors. Phylogenetic relationships among families of Hypocreales are strongly supported by ML bootstrap proportions and BI posterior probabilities ($BP \ge 70\%$, $PP \ge 95\%$)

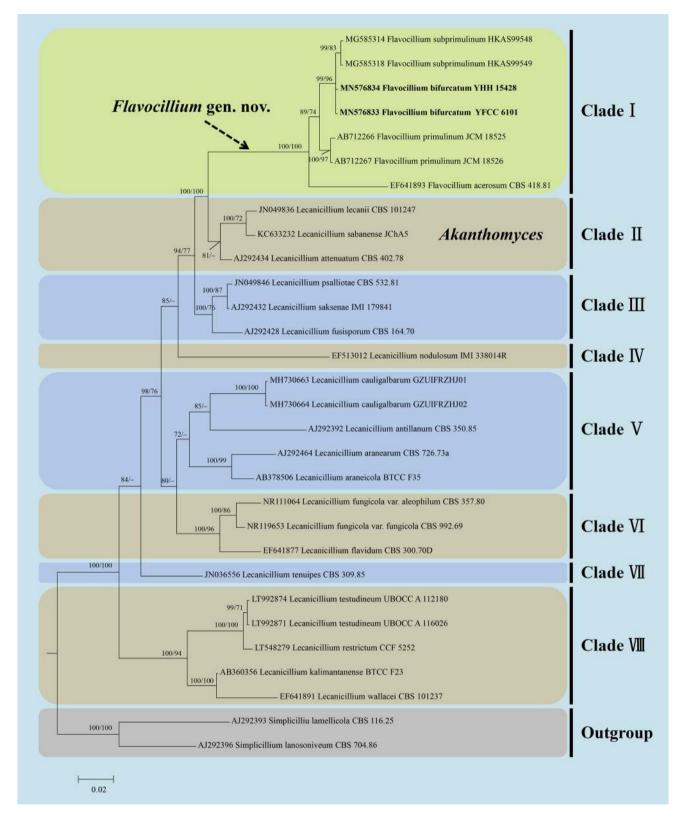
analyses based on ITS sequences containing 655 bp from 30 taxa arranged in *Lecanicillium* and *Simplicillium* clarified further phylogenetic relationships in *Lecanicillium*. The ITS phylogenetic tree showed that the *Lecanicillium* lineage was polyphyletic and composed of eight monophyletic clades. In addition to *L. primulinum*, *L. acerosum*, *Lecanicillium* sp. and one new species (YHH 15428, YFCC 6101), the *L. primulinum* clade contained one recently described species *L. subprimulinum* S.K. Huang & K.D. Hyde (Fig. 3). Five-gene phylogenetic analyses showed that a *Lecanicillium*-like species (YFCC 3103, YFCC 3104) isolated from *B. yunnanensis* Z.H. Chen & L. Xu was clustered in the central portion of


phylogenetic tree within Cordycipitaceae and formed a monophyletic clade, being well supported by analyses (BP=75%, PP=100%) (Fig. 1, 2).

The systematic position of *P. hepiali* was determined by five-gene phylogeny with the holotype living culture ICMM 82–2 and seven other samples. These eight samples closely clustered together with a well-supported clade and were placed in the genus *Samsoniella*, all of which were phylogenetically distinct from *C. farinosa* (Holmsk.) Kepler et al. (type strain CBS 111113) belonging to the type genus *Cordyceps* of Cordycipitaceae (Fig. 1). Nine undescribed species collected from Yunnan in China also clustered in the

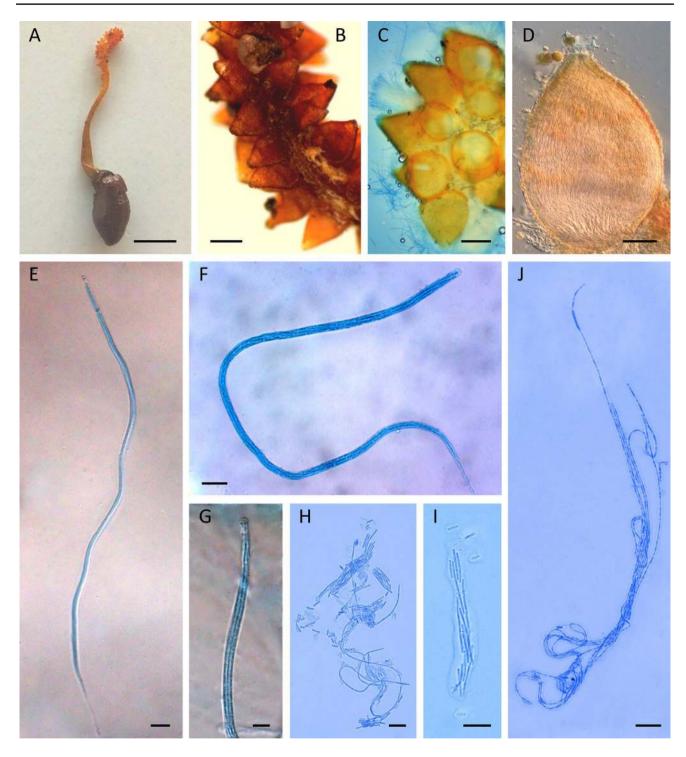
Fig. 2 Phylogenetic relationships among genera and related species in the family Cordycipitaceae inferred from a multigene dataset (nrLSU, nrSSU, $tef-1\alpha$, rpb1 and rpb2) based on ML and BI analyses. Values

at the nodes before and after the backslash are BI posterior probabilities and ML bootstrap proportions, respectively. Support values greater than 50% are indicated at the nodes



Tree scale: 0.1

Fig. 2 (continued)


genus *Samsoniella* and were clearly distinct from *P. hepiali* and three described species, viz. *S. alboaurantia* (G. Sm.) Mongkolsamrit et al., *S. aurantia* Mongkolsamrit et al. and *S. inthanonensis* Mongkolsamrit et al. (Fig. 1, 2). Five-gene

phylogenetic analyses showed that four new species in *Cordyceps* and one new species in *Simplicillium* represented distinctive taxa in the family Cordycipitaceae.

Fig. 3 Phylogenetic relationships of the genus *Flavocillium* and related *Lecanicillium* species in the family Cordycipitaceae inferred from ITS sequences based on ML and BI analyses. Statistical support values greater than 70% are shown at the nodes for BI posterior prob-

abilities / ML boostrap proportions. *Simplicillium lanosoniveum* CBS 704.86 and *Sim. lamellicola* CBS 116.25 were designated as the outgroup taxa

Fig.4 *Cordyceps chaetoclavata.* **A** Fungus on the pupa of Lepidoptera. **B** Fertile part. **C**, **D** Perithecia. **E**–**G** Asci. **H** Ascospores and partspores. **J** Part-spores. **J** Ascospores. Scale bars: A = 5 mm; B, C = 200 µm; D = 50 µm; E, F = 10 µm; H = J = 10 µm

Taxonomy

Cordyceps chaetoclavata H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.** Mycobank: MB 833090; Fig. 4

🖄 Springer

Etymology: Referring to the clavate stromata with spinous fertile parts.

Holotype: YHH 15101.

Sexual morph: Stroma arising from the pupa of Lepidoptera buried in soil, solitary, cylindrical, reddish-orange to crimson, tapering gradually toward the apex, 2.3 cm long. Stipe cylindrical, orange to reddish-orange, 0.8 mm wide. Fertile part clavate, reddish-orange, covered by a spinous surface, up to 5.6 mm long, 0.7–1.1 mm wide, with sparsely distributed perithecia. Perithecia lageniform, crimson, superficial, $402-610 \times 280-427 \mu m$. Asci cylindrical, eight-spored, $274-385 \times 3.7-4.8 \mu m$, with a hemispheric apical cap of $3.1-4.3 \times 2.1-2.7 \mu m$. Ascospores $127-260 \times 0.9-1.2 \mu m$, filiform, multiseptate, breaking into cylindrical part-spores of $3-12 \mu m$ long. Asexual morph: Undetermined.

Host: Pupa of Lepidoptera.

Habitat: On the pupa of Lepidoptera buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Lepidoptera buried in soil, 12 August 2017, Qi Fan, (YHH 15101, holotype).

Notes: Five-gene phylogenetic analyses show that C. chaetoclavata is sister to C. rosea Kobayasi & Shimizu (spat 09-053) and an undescribed Cordyceps species (YFCC 5833). Based on the original description of C. rosea, it has rose stromata (1.1 cm long), immersed perithecia with ovoid shape, and the host of lepidopteran larvae (Kobayasi and Shimizu 1982). However, C. chaetoclavata differs from C. rosea by its longer stromata (2.3 cm long) with reddishorange to crimson colors, spinous fertile parts, superficial lageniform perithecia, and the host of lepidopteran pupae. In addition, C. chaetoclavata is also morphologically similar to those of C. militaris, C. ningxiaensis T. Bau & J.Q. Yan, C. kyusyuensis Kawam, C. roseostromata Kobayasi & Shimizu, C. shuifuensis and C. succavus Y.P. Xiao et al. by sharing fleshy and cylindrical stipes, and orange to reddishorange stromata (Kobayasi 1981; Kobayasi and Shimizu 1983; Liang 2007; Yang et al. 2012; Yan and Bau 2015; Hyde et al. 2019). The difference is that C. chaetoclavata has spinous fertile parts and superficial lageniform perithecia.

Cordyceps cocoonihabita H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833091; Fig. 5

Etymology: Referring to the host pupae of Lepidoptera inhabiting cocoons.

Holotype: YHH 8004.

Sexual morph: Stromata two or several, arising from the oval cocoon of the insect host, orange to pink, cylindrical, 15.2–57.8 mm long, unbranched or sometimes terminal branched. Stipes cylindrical, pink to reddishorange, 0.1–1.3 mm wide. Fertile parts clavate, orange to pink or reddish-orange, $3.5-17.4 \times 0.3-1.5$ mm, often with aperithecial apices. Perithecia superficial, oblong-ovate, $346-435 \times 125-199$ µm. Asci cylindrical, $205-330 \times 2.1-3.3$ µm, eight-spored, with a hemispheric apical cap of $2.9-4.2 \times 2.1-3.0$ µm. Ascospores hyaline, cylindrical, septate, $140-269 \times 1.4-2.1$ µm, disarticulating into cylindrical part-spores of 2.9–8.0 µm long. **Asexual morph:** *Isaria*-like. Colonies on PDA moderately fastgrowing, 38–45 mm diameter in 14 days at 25 °C, cottony, with high mycelial density; yellowish to pale orange at the centrum, white to yellowish at the edge, generating radially distributed stromata after 10 days, reverse brown. Hyphae smooth, septate, hyaline, 1.3–2.4 µm wide. Conidiophores smooth-walled, cylindrical, 5.8–8.3 × 1.4–2.0 µm. Phialides cylindrical to flask-shaped, solitary, alternate or whorled, 4.0–16.7 µm long, tapering gradually or abruptly from 1.5–2.7 µm at the base to 0.5–1.2 µm at the apex. Conidia in chains or solitary, hyaline, oval to fusiform, one-celled, 1.6–3.0×0.7–1.5 µm.

Host: Pupae of Limacodidae.

Habitat: On the pupae of Limacodidae in cocoons buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Shuanglong Village, on the pupa of Limacodidae in a cocoon buried in soil, 21 July 2011, Yuan-Bing Wang, (YHH 8004, holotype; YFCC 3415, ex-holotype living culture); *Ibid.*, (YHH 8005, paratype; YFCC 3416, ex-paratype living culture). Kunming City, Xishan Forest Park, on the pupa of Lepidoptera in a cocoon buried in soil, 13 August 2018, Yuan-Bing Wang, (YHH 16246; YFCC 6569, living culture).

Notes: Cordyceps cocoonihabita is characterized by unbranched or terminally branched stromata, clavate fertile parts often have aperithecial apices, orange to pink or reddish-orange, superficial perithecia with oblong-ovate shape, cylindrical ascospores, and the host of lepidopteran pupae in oval cocoons. The asexual morph from PDA culture produces conidiophores with cylindrical to flask-shaped phialides which are monothetic, alternate or whorled, as well as oval to fusiform conidia in chains.

It is phylogenetically closely related to a formally undescribed taxon C. cf. pruinosa (EFCC 5197, EFCC 5693) and is separated from C. pruinosa Petch and C. ninchukispora (C.H. Su & H.H. Wang) G.H. Sung et al. in this clade. Cordyceps cocoonihabita, C. pruinosa and C. ninchukispora have the similar macromorphological characteristics of stromata with orange to pink colors, pyriformlike perithecia, with the exception of the former fertile parts often have aperithecial apices (Petch 1924; Su and Wang 1986). The former two taxa have similar hosts of lepidopteran pupae in cocoons, they differ, however, from C. ninchukispora with hosts such as seeds of Beilschmiedia Nees. Ecologically, C. cocoonihabita and C. obliquiordinata Kobayasi & Shimizu have similar habitats that are in cocoons of Lepidoptera (Kobayasi and Shimizu 1982). However, C. obliquiordinata is morphologically different from C. cocoonihabita by having shorter stromata, brevis stipes, ovoid and irregular pars fertile parts, obliquely

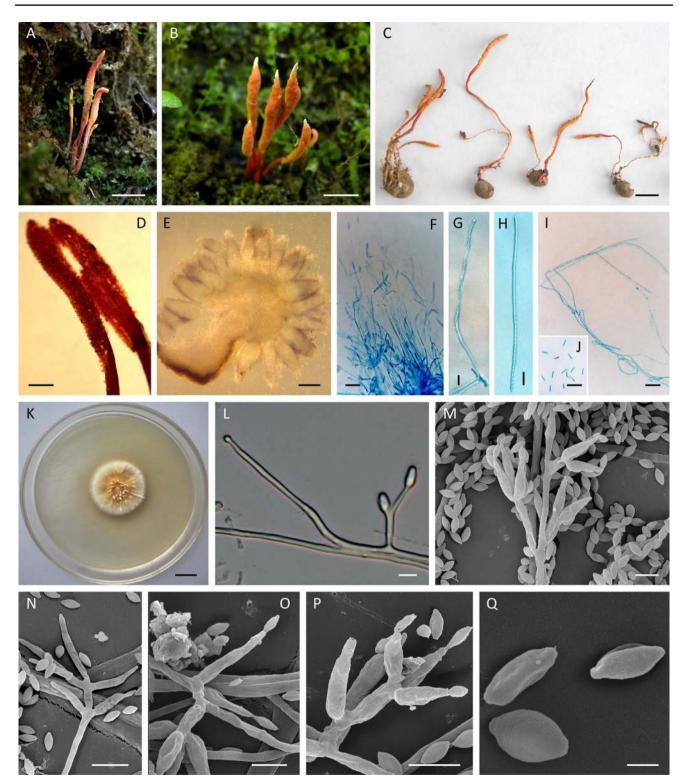


Fig. 5 *Cordyceps cocoonihabita*. **A**, **B** Stromata arising from hosts buried in soil. C Fungus on the pupae of Lepidoptera inhabiting cocoons. **D** Fertile part. **E** Perithecia. **F**, **G** Asci. **H**, **I** Ascospores. **J** Part-spores. **K** Colony on PDA. **L**–**P** Conidiophores and phialides. **Q**

Conidia. Scale bars: A-C=1 cm; D=1 mm; $E=200 \mu$ m; $F=20 \mu$ m; $G=10 \mu$ m; $H=20 \mu$ m; $I, J=10 \mu$ m; K=1 cm; $L=5 \mu$ m; $M=2 \mu$ m; $N-P=5 \mu$ m; $Q=1 \mu$ m

immersed perithecia, fairly short asci and ascospores. In terms of asexual morph, *C. cocoonihabita* has *Isaria*-like micromorphological characteristics and is significantly different from *C. pruinosa* and *C. ninchukispora* which respectively have morphs of *Mariannaea* G. Arnaud and *Acremonium* Link (Liang et al. 1983, 1991; Su and Wang 1986).

Cordyceps shuifuensis H. Yu, Y.B. Wang, Y. Wang & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833092; Fig. 6

Etymology: Named after the location Shuifu City where this species was collected.

Holotype: YHH 14101.

Sexual morph: Stromata solitary, cylindrical to slightly clavate, 2.5 cm long. Stipes cylindrical, yellowish to orange, 21×1 mm. Fertile parts clavate, yellowish, reddish-orange, 4×1.5 mm. Perithecia ovoid, reddish-orange, losely-packed, pseudoimmersed, 450-620 × 300-430 µm. Asci cylindrical, $275-510 \times 3.5-5.2 \mu m$, with a hemispheric apical cap of 3.2-4.8×2.3-3.2 µm. Ascospores filiform, multiseptate, 180-410×1.2-1.7 µm, breaking into cylindrical part-spores of 2.8-6.5 µm long. Asexual morph: Verticillium-like. Colonies on PDA fast-growing, 45-50 mm diameter in 14 days at 25 °C, white, cottony, with protuberant mycelial density at the centrum, reverse yellowish. Hyphae smooth-walled, branched, septate, hyaline, 0.9–2.1 µm wide. Conidiophores smooth-walled, solitary, cylindrical, $5.5-9.2 \times 1.6-2.7 \mu m$. Phialides cylindrical or subulate, solitary or in whorls of two to three, 4.7–20.0 µm long, tapering gradually toward the apex, $1.1-2.0 \mu m$ wide at the base, $0.4-2.1 \mu m$ wide at the apex. Conidia have two types, hyaline, smooth-walled, onecelled, single or usually aggregate in subglobose to ellipsoidal heads at the apex of phialides. Macroconidia clavate to oblong-ovate, 5.1–11.8×1.3–2.4 µm. Microconidia globose to ellipsoidal, $1.8-3.0 \times 1.6-2.5$ µm.

Host: Pupa of Lepidoptera.

Habitat: On the pupa of Lepidoptera buried in soil.

Distribution: Shuifu City, China.

Material examined: CHINA. YUNNAN PROVINCE: Shuifu City, Tongluoba National Nature Reserve, on the pupa of Lepidoptera buried in soil, 07 September 2016, Yong-Dong Dai, (YHH 14101, holotype; YFCC 5230, exholotype living culture).

Notes: Cordyceps shuifuensis phylogenetically clusters with C. militaris, C. kyusyuensis Kawam and C. roseostromata Kobayasi & Shimizu, but is distinguished from these three by forming a separate clade in this group. This species is morphologically closest to C. militaris having cylindrical to slightly clavate stromata with yellowish to reddish-orange colors, superficial perithecia and Verticillium-like asexual morph, but differs from the latter in size. Cordyceps shuifuensis only has Verticillium-like asexual morph, whereas C. militaris has both Verticillium- and Isaria-like asexual morphs (Yang et al. 2012). *Cordyceps kyusyuensis* differs from *C. shuifuensis* by having mutiple rhizoid stromata, the host larvae of Sphingidae and being very large in size (Kobayasi 1981; Liang 2007). *Cordyceps roseostromata* differs from *C. shuifuensis* by its mutiple and rhizoid stromata, rose color, and the host larvae of Coleoptera (Kobayasi and Shimizu 1983).

Cordyceps subtenuipes H. Yu, Y.B. Wang, Y. Wang, D.E. Duan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833093; Fig. 7

Etymology: Referring to morphologically resembling *Cordyceps tenuipes* but phylogenetically distinct.

Holotype: YHH 15016.

Sexual morph: Undetermined. Asexual morph: Isaria-like. Synnemata arising from the pupae of Lepidoptera. Synnemata erect, solitary or two, flexuous, white, fleshy, up to 1.5 cm long, with terminal branches of $3-5 \times 1.5-2.0$ mm. Stipes cylindrical, 1 mm wide, producing a mass of conidia at the branches of synnemata, powdery and floccose. Conidiophores grouped together on th apex of synnemata, biverticillate with phialides in whorls of three to seven, $3.0-5.6 \times 1.8-3.2 \mu m$. Phialides with a globose basal portion, $3.7-6.2 \times 2.3-3.9 \,\mu\text{m}$, tapering abruptly into a narrow neck of 0.5-1.0 µm wide. Conidia usually single, one-celled, smooth-walled, hvaline, fusiform or oval, 2.2-3.2×1.5-2.7 µm. Colonies on PDA moderately fastgrowing, 50-54 mm diameter in 14 days at 25 °C, white to yellowish, cottony, with low mycelial density, reverse deep vellow. Hyphae smooth-walled, branched, septate, hyaline, 1.3–2.7 µm wide. Conidiophores erect, arising from the aerial and prostrate hyphae, solitary or verticillate, with phialides in whorls of two to six, smooth-walled, cylindrical to ellipsoidal, $3.5-8.6 \times 1.5-2.9 \mu m$. Phialides solitary or verticillate, 5.3-42.5 µm long, with a cylindrical or flaskshaped basal portion, tapering gradually or abruptly toward the apex, $1.6-3.4 \mu m$ wide at the base, and $0.5-1.1 \mu m$ wide at the apex. Conidia hyaline, one-celled, ellipsoidal or fusiform, $1.9-3.4 \times 1.7-2.5 \mu m$, often in chains.

Host: Pupae of Lepidoptera.

Habitat: On the pupae of Lepidoptera buried in soil.

Distribution: Lanping County and Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Nujiang Lisu Autonomous Prefecture, Lanping County, Tongdian Town, on the pupa of Lepidoptera buried in soil, 05 August 2017, Yuan-Bing Wang, (YHH 15016, holotype; YFCC 6051, ex-holotype living culture). Kunming City, Xishan Forest Park, on the pupa of Lepidoptera buried in soil, 13 August 2018, Yuan-Bing Wang, (YHH 15002; YFCC 6084, living culture).

Notes: Phylogenetically, the new species *C. subtenuipes* forms a separate clade from the other species of *Cordyceps* with high credible support (100%). *Cordyceps subtenuipes* is similar to *C. tenuipes* (Peck) Kepler et al. by its

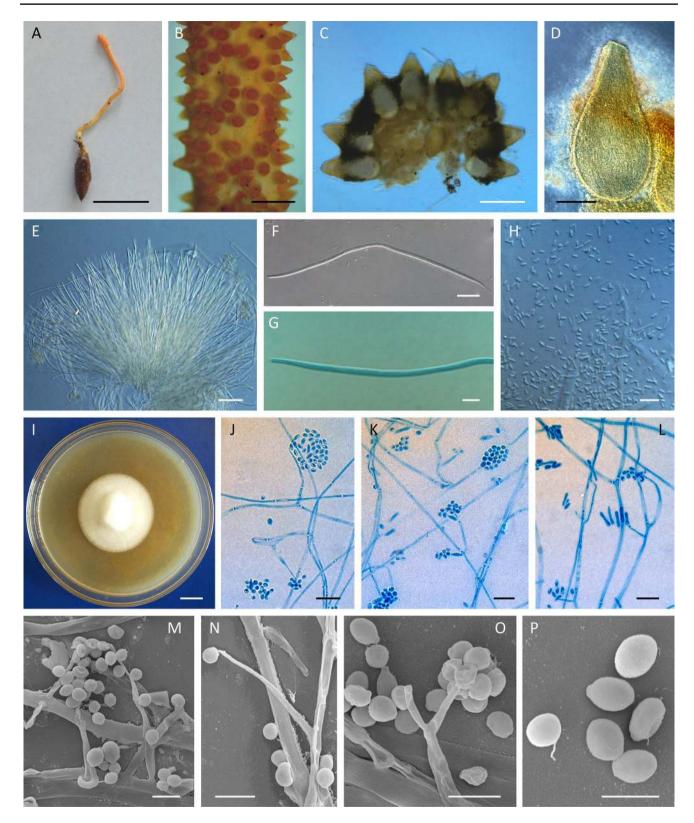


Fig. 6 *Cordyceps shuifuensis*. A Fungus on the pupa of Lepidoptera. B Fertile part. C, D Perithecia. E–G Asci. H Part-spores. I Colony on PDA. J–O Conidiophores and phialides. P Conidia. Scale bars:

A=1 mm; B, C=500 μm; D=200 μm; E=50 μm; F, G=10 μm; H=5 μm; I=1 cm; J-L=10 μm; M-O=5 μm; P=2 μm

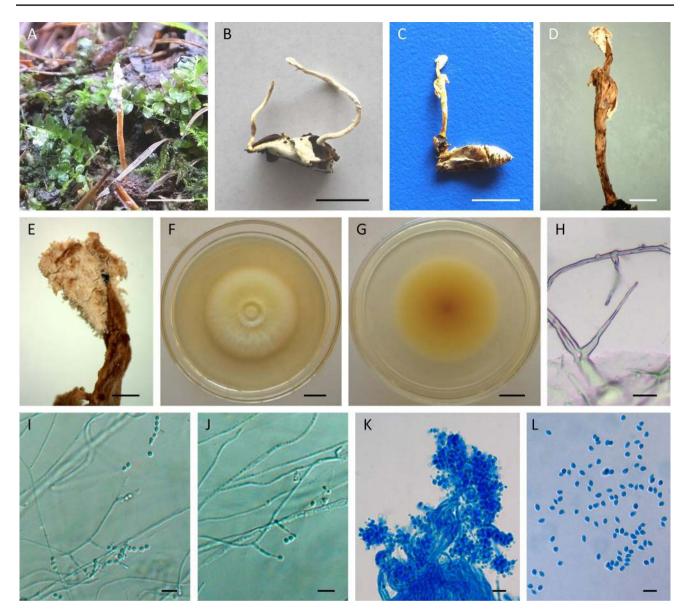


Fig. 7 Cordyceps subtenuipes. A Synnemata arising from the pupa of Lepidoptera buried in soil. B, C Fungus on the pupae of Lepidoptera. D, E Stipe producing a mass of conidia at the apex. F Colony

conspicuous synnemata and *Isaria*-like asexual conidiogenous structure producing phialides with a swollen basal portion. It differs from *C. tenuipes* by its single or two synnemata, white color, phialides with a globose basal portion and smaller fusiform or oval conidia measuring $1.9-3.4 \times 1.5-2.7 \mu m$. *Cordyceps tenuipes* has mutiple synnemata, larger cylindrical to botuliform conidia with the size of $2.0-7.5 \times 1.0-2.5 \mu m$ (Samson 1974). The sexual morph of *C. tenuipes* as proposed by the name *C. takaomontana* Yakush & Kumaz has yellowish stromata and often co-occurs with its asexual morph (Liang 2007). However, the sexual morph of *C. subtenuipes* was not found in this study.

on PDA. **G** Reverse of colony. **H–K** Conidiophores and phialides. **L** Conidia. Scale bars: **A–C**=5 mm; **D**=1 mm; **E**=500 μ m; **F**, **G**=1 cm; **H**=10 μ m; **I**, **J**=5 μ m; **K**=10 μ m; **L**=5 μ m

Flavocillium H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, gen. nov.

Mycobank: MB 833094.

Etymology: Referring to the yellowish stromata and colonies.

Type species: Flavocillium bifurcatum H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang.

Sexual morph: Stromata arising from the insect buried in soil, clavate to flake-like, solitary, flexuous, yellowish, fleshy, up to 5 cm long, with a furcate terminal branch; stipe clavate, flexuous; fertile part contorted, clavate; perithecia densely packed, yellowish. **Asexual morph:** *Lecanicillium*like. Colonies yellowish, slow-growing. Conidiophores mononematous, cylindrical, with two to five phialides at the terminal nodes. Phialides lanceolate, solitary or in whorls of two to five, tapering gradually toward the apex. Two types of conidia hyaline, one-celled and smooth-walled, single or usually aggregate in subglobose to ellipsoidal heads at the apex of the phialides. Macroconidia fusiform, cymbiform or ellipsoidal to cylindrical. Microconidia oval to ellipsoidal or fusiform.

Notes: Five-gene phylogenetic analyses show that L. acerosum, L. primulinum, Lecanicillium sp. and our samples (YHH 15428, YFCC 6101) group together, in a monophyletic clade in the family Cordycipitaceae (Fig. 1, 2). This L. primulinum clade is clustered in the subbasal portion of phylogenetic tree within Cordycipitaceae and has a close phylogenetic relationship with Engyodontium and Parengyodontium, but forms a distinct lineage. ML and BI phylogenetic analyses based on ITS sequences from 30 taxa in Lecanicil*lium* and *Simplicillium* show that the *Lecanicillium* group is polyphyletic and consists of eight monophyletic clades (Fig. 3). The L. primulinum clade includes L. acerosum, L. primulinum, Lecanicillium sp., L. subprimulinum and one new species with yellowish stromata (Fig. 3). This result is also supported by the previous phylogenetic analyses of Lecanicillium species from a combined nrSSU, nrLSU, tef-1 and ITS sequence dataset (Huang et al. 2018). In this clade, L. acerosum was first described by its distinguishing morphological characteristics producing the large straight macroconidia (Zare and Gams 2001). Recently, two species (L. primulinum and L. subprimulinum) producing pastel yellow pigment were added, which were respectively isolated from soil and an ophioceras-like taxon on the dead submerged wood (Kaifuchi et al. 2013; Huang et al. 2018).

Morphologically, the L. primulinum clade is similar to other Lecanicillium species in terms of conidiophores, phialides and two types of conidia (Zare and Gams 2001; Zhou et al. 2018). However, these species of *Flavocillium* possess yellowish stromata with a furcate terminal branch, contorted fertile parts with yellowish perithecia and colonies that usually produce pastel yellow pigment, are obviously different from other members of the Lecanicillium lineage. In addition, the L. primulinum clade also can be distinguished from these phylogenetically related genera Engyodontium and Parengyodontium based on the morphological characteristics of the latters, both of which usually produce white colonies, conidiiferous rachids with denticles on phialides and terminal fertile regions that are zigzag-shaped (Gams et al. 1984; Tsang et al. 2016). Therefore, the new genus Flavocillium is introduced by the type species F. bifurcatum in order to accomodate the three following new combinations previously treated as members of *Lecanicillium*.

Flavocillium acerosum (W. Gams et al.) H. Yu, Y.B. Wang, Y. Wang & Zhu L. Yang, **comb. nov.**

Mycobank: MB 833101.

Basionym: *Lecanicillium acerosum* W. Gams et al., Nova Hedwigia 73(1–2): 37 (2001).

Descriptions and illustrations: Zare and Gams (2001).

Distribution: Known from Brazil, Amazon (Zare and Gams 2001).

Notes: Flavocillium acerosum was first isolated from Crinipellis perniciosa (Stahel) Singer on Theobroma caocao Linn. (Zare and Gams 2001). This species is characterized by producing phialides solitary or up to two to five at the node, which gradually taper toward the apex ($30-32 \times 1.8-2.2 \mu m$), fusiform macr- and microconidia with acute ends, presenting octahedral crystals (Zare and Gams 2001). It morphologically resembles *L. antillanum*, but its straight conidia are distinct from the sigmoidally curved conidia of the latter. Five-gene and ITS phylogenetic analyses indicate that *F. acerosum* and *L. antillanum* are located in different clades which represent a genus level difference in the family Cordycipitaceae.

Flavocillium bifurcatum H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833096; Fig. 8

Etymology: Referring to the stromata with a bifurcate terminal branch.

Holotype: YHH 15428.

Sexual morph: Stromata arising from the insect buried in soil, clavate to flake-like, solitary, flexuous, yellowish, fleshy, up to 2.0 cm long, with a furcate terminal branch of 13-16×1.5-2.0 mm. Stipe clavate, flexuous, 2.2 mm wide. Fertile parts contorted, clavate, $11-14 \times 1.4-2.0$ mm. Perithecia densely packed, yellowish, immature. Asci not observed. Asexual morph: Colonies on PDA slowgrowing, up to 3 cm diameter in 14 days at 25 °C, white to yellowish, cottony with raised mycelial density at the centrum, generating several concentric rings at the edge, reverse pale yellow to brown. Hyphae hyaline, septate, branched, smooth-walled, 1.0-2.3 µm wide. Conidiophores mononematous, cylindrical, 50.0-64.2×0.9-1.8 µm. Phialides on conidiophores or arising from prostrate hyphae, lanceolate, solitary or in whorls of two to five, tapering gradually toward the apex, $18.1-44.5 \,\mu m \log$, $1.1-2.4 \,\mu m$ wide at the base, and $0.7-1.5 \mu m$ wide at the apex. Two types of conidia hyaline, one-celled and smooth-walled, single or usually aggregate in subglobose to ellipsoidal heads at the apex of the phialides. Macroconidia cymbiform, $5.5-9.2 \times 1.3-2.7$ µm. Microconidia ellipsoidal to reniform, $2.1-4.2 \times 0.9-1.5$ µm.

Host: Larva of Noctuidae.

Habitat: On the larva of Noctuidae buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the larva of Noctuidae buried in soil, 12 August 2017, Hong Yu, (YHH 15428, holotype; YFCC 6101, ex-holotype living culture).

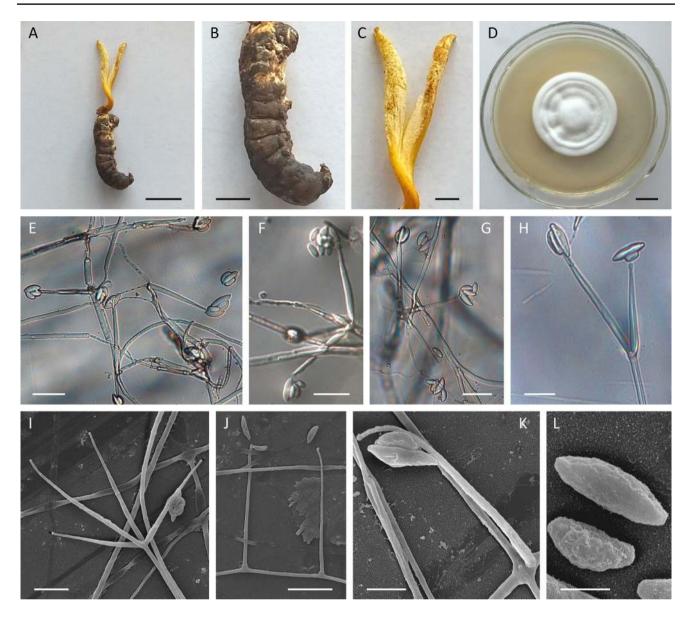


Fig. 8 Flavocillium bifurcatum. A Fungus on the host. B The host larva of Noctuidae. C Stroma with a bifurcate terminal branch. D Colony on PDA. E–I Conidiophores with phialides. J, K Phial-

Notes: Flavocillium bifurcatum is characterized by the fleshy stromata with a bifurcate terminal branch, solitary, yellowish, contorted fertile parts, long conidiophores, lanceolate phialides, two types of cymbiform macroconidia and ellipsoidal to reniform microconidia.

Five-gene phylogenetic analyses suggest that *F. bifurcatum* is close to *Lecanicillium* sp. and *F. primulinum*. In addition, ITS phylogenetic analyses from more complete sequence data in this clade show that *F. bifurcatum* is sister to *F. subprimulinum*. Morphologically, *F. bifurcatum* is similar to *F. subprimulinum* and *F. primulinum* by the yellowish colonies, solitary or whorled phialides, macro- and microconidia aggregate in subglobose to ellipsoidal heads

ides with conidia. L Conidia. Scale bars: A=5 mm; B, C=2 mm; D=1 cm; E-J=10 µm; K=5 µm; L=2 µm

at the apex of phialides (Kaifuchi et al. 2013; Huang et al. 2018). However, the sexual morphs of *F. subprimulinum* and *F. primulinum* have not been observed. *Flavocillium bifurcatum* differs from *F. subprimulinum* and *F. primulinum* by its cymbiform macroconidia and longer conidiophores up to 64 µm. Ecologically, *F. bifurcatum* is parasitic on the larva of Noctuidae buried in soil and is quite different from other congeneric species.

Flavocillium primulinum (Kaifuchi et al.) H. Yu, Y.B. Wang, Y. Wang & Zhu L. Yang, **comb. nov.**

Mycobank: MB 833103.

Basionym: *Lecanicillium primulinum* Kaifuchi et al., Mycoscience. 54: 294–293 (2013).

Descriptions and illustrations: Kaifuchi et al. (2013).

Distribution: Known from Okinawa Prefecture, Japan (Kaifuchi et al. 2013).

Notes: The type strain of *F. primulinum* was isolated from soil under an unidentified plant. It is characterized by phialides produced on prostrate aerial hyphae, solitary or in whorls of two to five which taper toward the apex, ellipsoidal to cylindrical macroconidia and oval to ellipsoidal microconidia aggregate in subglobose to ellipsoidal heads at the apex of the phialides, presenting octahedral crystals (Kaifuchi et al. 2013). Phylogenetically, this species is close to *F. bifurcatum* and *F. subprimulinum*, but it differs morphologically from *F. bifurcatum* by the latter's cymbiform macroconidia and smaller microconidia of $2.1-4.2 \times 0.9-1.5 \,\mu\text{m}$ in size.

Flavocillium subprimulinum (S.K. Huang & K.D. Hyde) H. Yu, Y.B. Wang, Y. Wang & Zhu L. Yang, **comb. nov.**

Mycobank: MB 833106.

Basionym: *Lecanicillium subprimulinum* S.K. Huang & K.D. Hyde, Phytotaxa 348 (2): 102 (2018).

Descriptions and illustrations: Huang et al. (2018).

Distribution: Known from Baoshan City, China (Huang et al. 2018).

Notes: Flavocillium subprimulinum is characterized by solitary or two to three phialides on conidiophores arising from hyaline hyphae, with gregarious, ovoid to ellipsoidal conidia (Huang et al. 2018). Ecologically, this species is associated with a sexual morph of an ophioceras-like taxon on submerged wood and is different from those of *F. bifurca-tum* on the larva of Noctuidae and *F. subprimulinum* isolated from soil. Phylogenetically, *F. subprimulinum* is sister to *F. bifurcatum* based on ITS phylogenetic analyses of *Lecanic-illium* lineage, but it differs morphologically from *F. bifurcatum* because the latter has bifurcate stromata, cymbiform macroconidia and longer conidiophores.

Liangia H. Yu, Y.B. Wang, Y. Wang, Z.H. Chen & Zhu L. Yang, gen. nov.

Mycobank: MB 833107.

Etymology: In honor of Prof. Zong-Qi Liang, acknowledging his contributions to our knowledge of cordycipitoid fungi.

Type species: Liangia sinensis H. Yu, Y.B. Wang, Y. Wang, Z.H. Chen & Zhu L. Yang.

Colonies on PDA slow-growing, effuse or stellate, white, usually raising dome-shaped mycelial density with a sunken zone at the centrum, verrucose around the margin. Conidiophores not observed. Phialides lanceolate, occurring directly from the prostrate hyphae, solitary, gradually attenuated toward the apex. Two types of macro- and microconidia, aseptate, smooth-walled, one-celled, both of them existing singly or in pairs at the the apex of phialides. Macroconidia positioned at a right angle to the apex of phialides, straight, oblong-oval to fusiform. Microconidia oval to ellipsoidal. *Notes: Liangia sinensis*, isolated from an entomopathogenic fungus *B. yunnanensis*, represents a well-supported monophyletic lineage in the family Cordycipitaceae (Fig. 1). The new genus *Liangia* with *Lecanicillium*-like asexual morph is proposed for the type species *Lia. sinensis* based on its phylogenetic placement. In this study, it appears more closely related to *C. piperis* (J.F. Bisch. & J.F. White) D. Johnson et al. and *L. psalliotae* clades by the five-gene phylogenetic analyses. The genus *Liangia* is morphologically similar to these two clades which possess asexual morph of *Lecanicillium* (Zare and Gams 2001; Bischoff and White 2004). However, it differs from the latter two groups by the shape and size of its colonies, phialides and conidia.

Liangia sinensis H. Yu, Y.B. Wang, Y. Wang, Z.H. Chen & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833109; Fig. 9

Etymology: Named after China where the species is distributed.

Holotype: YHH 7455.

Sexual morph: Undetermined. Asexual morph: Lecanicillium-like. Strains isolated from the stromata of Beauveria vunnanensis associated with the pupa of Lepidoptera. Colonies on PDA slow-growing, 28-34 mm in diameter after 14 days at 25 °C, effuse or stellate, white, usually raising dome-shaped mycelial density with a sunken zone at the centrum, verrucose around the margin. Reverse pale brown, causing a brown concentric ring outside of the inoculum. Hyphae hyaline, septate, branched, smooth-walled, and 0.7-2.4 µm wide. Phialides lanceolate, occurring directly from the prostrate hyphae, solitary, gradually attenuated toward the apex, 16.7-59.0 µm long, 0.7-1.6 µm wide at the base and 0.3–0.7 µm wide at the apex. Conidia existing in two types, macro- and microconidia, aseptate, hyaline, smooth-walled, one-celled, straight, both existing singly or in pairs at the apex of phialides. Macroconidia positioned at a right angle to the apex of phialides, oblong-oval to fusiform, 4.5–9.3×1.2–1.9 µm. Microconidia oval to ellipsoidal, $1.8-3.3 \times 1.1-1.8 \ \mu m.$

Substratum: Beauveria yunnanensis.

Habitat: On the stromata of *B. yunnanensis* associated with the pupa of Lepidoptera buried in soil.

Distribution: Baoshan City, China.

Material examined: CHINA. YUNNAN PROVINCE: Baoshan City, Mangkuan Village, isolated from *B. yunnanensis* associated with the pupa of Lepidoptera buried in soil, 22 July 2016, Zi-Hong Chen, (YHH 7455, holotype; YFCC 3103, ex-holotype living culture); *Ibid.*, (YHH 7456; YFCC 3104, living culture).

Notes: Liangia sinensis possesses *Lecanicillium*-like asexual morph and is characterized by white colonies forming a sunken zone at the centrum of dome-shaped mycelial density and verrucose around the margin, solitary and lanceolate phialides occurring directly from the prostrate

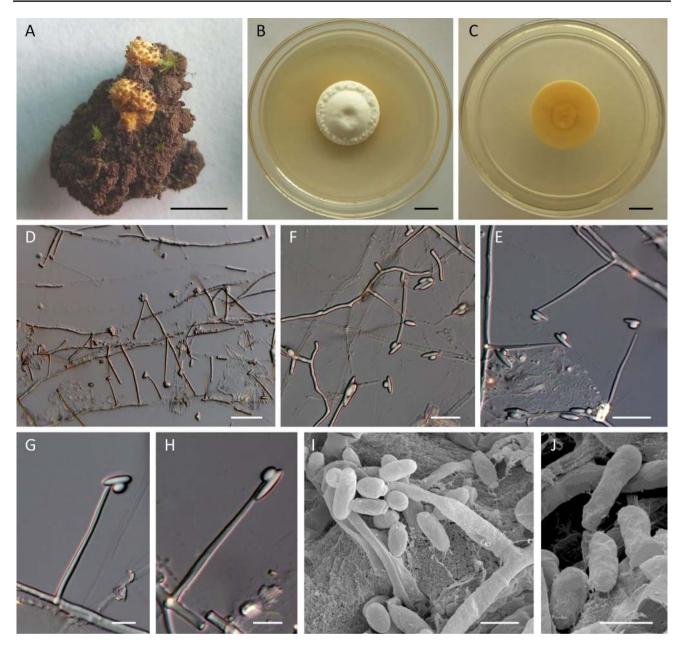


Fig. 9 *Liangia sinensis.* A Stromata of *Beauveria yunnanensis* arising from the pupa of Lepidoptera buried in soil, from which *Lia. sinensis* was isolated. B Colony on PDA. C Reverse of colony. D, E Phialides.

F-H Macro- and microconidia existing in pairs at the apex of phialides. **I** Phialides and conidia. **J** Conidia. Scale bars: A=5 mm; **B**, C=1 cm; $D=20 \mu$ m; **E**, $F=10 \mu$ m; $G-I=5 \mu$ m; $J=2 \mu$ m

hyphae, oblong-oval to fusiform macroconidia, and oval to ellipsoidal microconidia existing singly or in pairs at the apex of phialides.

It is similar to the two phylogenetically more closely related *C. piperis* and *L. psalliotae* clades with asexual morph of *Lecanicillium* (Zare and Gams 2001; Bischoff and White 2004). However, *Lia. sinensis* differs from *C. piperis* and *L. psalliotae* by its distinguished colonies, solitary and lanceolate phialides without conidiophores and oblong-oval to fusiform macroconidia. *Cordyceps piperis*, originally named *T. piperis* J.F. Bischoff & J.F. White, was reported to have the sexual morph of *Torrubiella* with sessile perithecial stromata which covered the corpses of scale insects attached to Piperaceae (Bischoff and White 2004). *Lecanicillium psalliotae* was originally described as *Verticillium psalliotae* Treschew which caused diseases of cultivated mushrooms (Treschew 1941), and later were widely discovered from insects, nematodes, soil, mushrooms, *Rhopalomyces* Corda and other fungi (Dayal and Barron 1970; Zare and Gams 2001; Yang et al. 2005). *Liangia sinensis* is distinctive for its isolates from the newly described cordycipitoid fungus *B. yunnanensis* parasitic on the lepidopteran pupa (Chen et al. 2019).

In the five-gene phylogenetic tree, *B. yunnanensis* (exholotype living culture CCTCC AF 2018010 = YFCC 3105) is closely clustered with *B. scarabaeidicola* (Kobayasi) S.A. Rehner & Kepler, and remotely related to *Lia. sinensis* (Fig. 1, 2). In this study, there is no strong

hyperparasitic evidence that *Lia. sinensis* grows on the stromata of *B. yunnanensis*. However, two strains of *Lia. sinensis* were truly isolated from the stromata of *B. yunnanensis*. The possibility that *Lia. sinensis* is a hyperparasitic fungus of *B. yunnanensis* requires confirmation.

Samsoniella alpina H. Yu, Y.B. Wang, Y. Wang & Zhu

L. Yang, **sp. nov.** Mycobank: MB 833110; Fig. 10

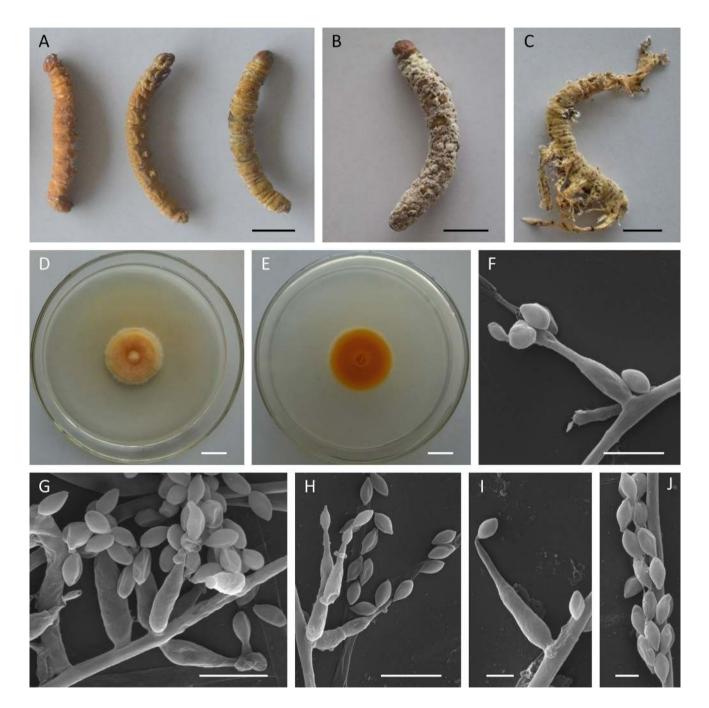


Fig. 10 Samsoniella alpina. A, B Larvae of Hepialus baimaensis infected by S. alpina. C Synnemata arising from the whole body of H. baimaensis. D Colony on PDA. E Reverse of colony. F Solitary

phialides on hyphae. **G**, **H** Verticillate phialides. **I** Solitary phialides on hyphae. **J** Conidia in chains. Scale bars: A-E=1 cm; F-H=5 µm; **I**, **J**=2 µm

Etymology: Named after the alpine locations where this species is distributed.

Holotype: YHH 15316

Sexual morph: Undetermined. Asexual morph: Isarialike. Synnemata arising from the whole body of larvae of Hepialus. Synnemata irregularly branched, 0.3–2.0 cm long, 0.1-0.3 mm wide; cylindrical or clavate stipes with white powdery heads, white to orange yellow. Conidiophores on the apex of synnemata, biverticillate with phialides in whorls of two to seven, cylindrical, 4.5-7.2 × 1.5-3.0 µm. Phialides with a basal portion cylindrical to narrowly lageniform, $4.3-10.3 \times 1.6-2.9 \mu m$, tapering abruptly into a narrow neck of 0.5-1.0 µm wide. Conidia in chains, one-celled, smoothwalled, hyaline, fusiform or oval, $2.2-2.9 \times 1.3-2.0 \mu m$. Colonies on PDA growing fairly well at 25 °C, up to 40 mm diameter in 14 days, hairy, floccose, light orange to orangered. Reverse cream, turning yellowish. Hyphae smoothwalled, branched, septate, hyaline, 0.9-2.7 µm wide. Conidiophores cylindrical, usually biverticillate with phialides in whorls of two to seven, $3.1-6.5 \times 1.6-2.8 \mu m$. Phialides verticillate on conidiophores, solitary or verticillate on hyphae, occasionally verruculose, basal portion cylindrical to narrowly lageniform, tapering abruptly toward the apex, 4.7-9.5 μm long, 1.9-3.1 μm wide at the base, 0.5-1.1 μm wide at the apex. Conidia one-celled, smooth-walled, hyaline, fusiform or oval, $2.0-3.1 \times 1.3-2.1 \mu m$, often in chains.

Host: Larvae of Hepialus baimaensis Liang.

Habitat: On the larvae of *Hepialus baimaensis* (Hepialidae) buried in soil.

Distribution: Diqing Tibetan Autonomous Prefecture, China.

Material examined: CHINA. YUNNAN PROVINCE: Diqing Tibetan Autonomous Prefecture, Shangrila City, Xiaozhongdian Town, on the larva of *Hepialus baimaensis* (Hepialidae) buried in soil, 6 May 2017, Can-Ming Zhang, (YHH 15316, holotype; YFCC 5818, ex-holotype living culture); *Ibid.*, (YHH 15317, paratype; YFCC 5831, ex-paratype living culture); *Ibid.*, (YHH 15319, paratype; YFCC 5836, ex-paratype living culture).

Notes: Samsoniella alpina has *Isaria*-like asexual morph and is characterized by irregularly branched synnemata, cylindrical or clavate stipes with white powdery heads, white to orange yellow, hairy and floccose colonies with light orange to orange-red colors, solitary or verticillate phialides with cylindrical to narrowly lageniform basal portion, fusiform or oval conidia.

Samsoniella alpina is phylogenetically sister to S. cardinalis with high statistical supports by BP = 99% and PP = 100%. It is similar to S. cardinalis in producing phialides with cylindrical to narrowly lageniform basal portion, fusiform or oval conidia. However, it differs from S. cardinalis by irregularly branched synnemata with white powdery heads, white to orange yellow, colonies produing light orange to orange-red colors and parasitizing larvae of *H. baimaensis*.

Samsoniella antleroides H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833111; Fig. 11

Etymology: Referring to the antler-like stromata.

Holotype: YHH 15758

Sexual morph: Stromata fasciculate, antler-like, arising from the larvae of Noctuidae, 22.3-57.8 mm long, cylindrical to clavate, with oblate terminal branches of 4.6-26.2 mm long. Stipes flexuous, 16.4–43.5×0.7–2.2 mm. Fertile parts clavate to flake-like, lateral sides usually have a longitudinal ditch without producing perithecia, orange to orangered, $6.3-9.5 \times 0.6-2.3$ mm. Perithecia superficial, fusiform, 294–442×131–216 µm. Asci eight-spored, hyaline, cylindrical, $160-248 \times 2.1-2.7 \mu m$. Ascus caps hemispherical, $1.9-3.2 \times 1.8-2.5 \mu m$. Ascospores hyaline, bola-shaped, septate, $110-184 \times 0.8-1.3$ µm, central part filiform, terminal part narrowly fusiform, don't disarticulate into partspores. Asexual morph: Isaria-like. Colonies fast-growing on PDA, 35-40 mm diameter in 14 days at 25 °C, white to light orange, cottony, producing high mycelial density at the centrum. Reverse light orange, turning deep yellow brown, appearing a brown concentric ring and radiate stria out of the inoculum. Hyphae smooth, septate, hyaline, 1.1–1.9 µm wide. Conidiophores cylindrical, solitary or verticillate, $3.5-9.7 \times 1.3-3.2 \mu m$. Phialides verticillate, in whorls of two to nine, sometimes solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering abruptly toward the apex; 3.5–16.3 µm long, 1.7–2.9 µm wide at the base, and 0.5-1.0 µm wide at the apex. Conidia one-celled, smoothwalled, hyaline, fusiform or oval, $2.3-3.5 \times 1.6-2.5 \mu m$, often in chains.

Host: Larvae of Noctuidae.

Habitat: On the larvae of Noctuidae buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the larva of Noctuidae buried in soil, 12 August 2017, Hong Yu, (YHH 15758, holotype; YFCC 6016, ex-holotype living culture); *Ibid.*, (YHH 16034, paratype; YFCC 6113, ex-paratype living culture).

Notes: Samsoniella antleroides is characterized by fasciculate and antler-like stromata with oblate terminal branches, clavate to flake-like fertile parts, orange to orange-red, superficial and fusiform perithecia, cylindrical asci with bola-shaped ascospores, light orange to orange-red colonies, having *Isaria*-like asexual conidiogenous structure, and on the larvae of Noctuidae buried in soil.

Phylogenetic analyses reveal that *S. antleroides* forms a sister lineage with *S. tortricidae* and *S. cristata. Samsoniella antleroides* resembles the latter two species in having stromata with terminal branches, superficial and fusiform

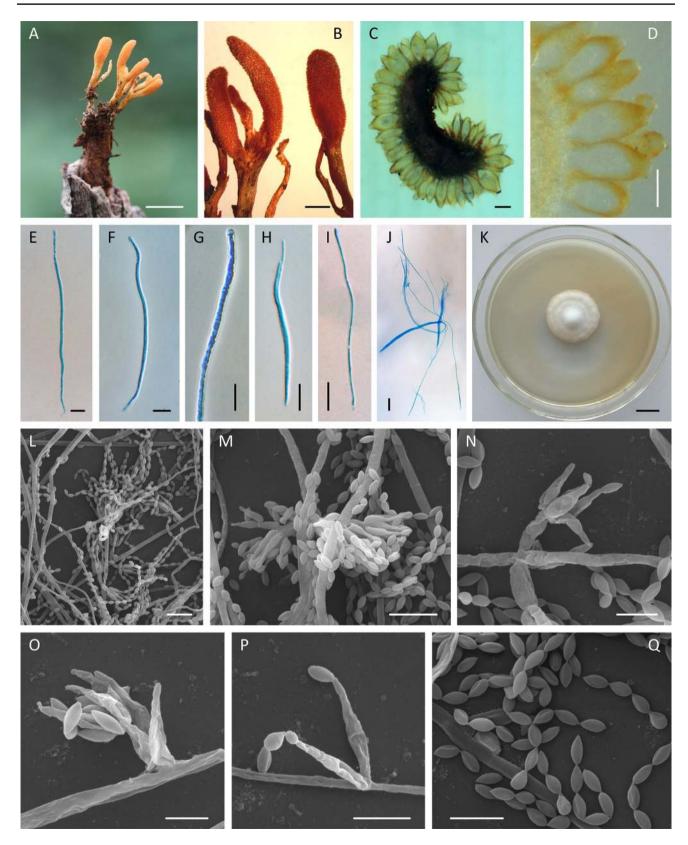


Fig. 11 Samsoniella antleroides. A Antler-like stromata arising from the larva of Noctuidae. B Fertile parts. C, D Perithecia. E–G Asci. H, I Immature ascospores. J Mature ascospores. K Colony on PDA. L–O Verticillate phialides on conidiophores. P Phialides in

whorls of two on hypha. Q Conidia in chains. Scale bars: A = 1 cm; B=1 mm; C, D=200 μ m; E, F=20 μ m; G–J=10 μ m; K=1 cm; L, M=10 μ m; N–Q=5 μ m

perithecia, cylindrical asci with bola-shaped ascospores and *Isaria*-like asexual morph. However, it differs from *S. cristata* and *S. tortricidae* in the production of fasciculate and antler-like stromata with oblate terminal branches, clavate to flake-like fertile parts, conidiophores forming verticillate branches with shorter phialides in whorls of up to nine. Ecologically, *S. antleroides* is parasitic on the larvae of Noctuidae buried in soil and is different from *S. cristata* and *S. tortricidae*, both of which parasitize the pupae of Saturniidae in cocoons buried in soil and the pupae of Tortricidae in cocoons rolled in fallen leaves, respectively.

Samsoniella cardinalis H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833112; Fig. 12

Etymology: Referring to the scarlet stromata arising from the host in cocoons.

Holotype: YHH 15732

Sexual morph: Several stromata arising from oval cocoons of insect host, scarlet, cylindrical, 11.5-18.6 mm long. Stipes reddish-orange, 0.4–1.8 mm wide. Fertile parts clavate, ateral sides usually have a longitudinal ditch without producing perithecia, scarlet, $2.5-6.8 \times 0.5-2.6$ mm. Perithecia superficial, oblong-ovate to fusiform, 370-485×140-238 um. Asci eight-spored, hyaline, cylindrical 163-320 × 3.2-4.3 µm. Ascus caps hemispherical, $1.9-3.0 \times 1.4-2.6 \mu m$. Ascospores hyaline, bola-shaped, septate, $165-230 \times 0.5-0.9 \mu m$, central part filiform, terminal part narrowly fusiform, do not disarticulate into part-spores. Asexual morph: Isaria-like. Colonies on PDA growing fairly well at 25 °C, 35–38 mm in 14 days, floccose, crater-shaped, white to pale pink, sporulating abundantly at the centrum. Reverse pale yellow to reddishbrown. Hyphae smooth-walled, branched, septate, hyaline, 1.3-2.2 µm wide. Conidiophores cylindrical, solitary or verticillate, $3.1-9.5 \times 1.3-2.0$ µm. Phialides verticillate, in whorls of two to five, sometimes solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; 4.1-43.5 µm long, 1.3–2.4 μ m wide at the base, and 0.6–1.2 μ m wide at the apex. Conidia one-celled, smooth-walled, hyaline, fusiform or oval, $2.4-3.2 \times 1.4-2.2 \mu m$, often in chains.

Host: Pupae of Limacodidae.

Habitat: On the pupae of Limacodidae in cocoons buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Limacodidae in a cocoon buried in soil, 12 August 2017, Hong Yu, (YHH 15732, holotype; YFCC 6144, ex-holotype living culture). Kunming City, Xishan Forest Park, on the pupa of Limacodidae in a cocoon buried in soil, 13 August 2018, Qi Fan, (YHH 15764; YFCC 6320, living culture). VIETNAM. LAOCAI PROVINCE: Sapa County, Hoang Lien Mountains, on the pupa of Limacodidae in a cocoon buried in soil, 26 October 2016, Yuan-Bing Wang, (YHH 14891; YFCC 5830, living culture).

Notes: Samsoniella cardinalis is characterized by scarlet stromata with clavate fertile parts, superficial perithecia, oblong-ovate to fusiform, cylindrical asci, bola-shaped ascospores, crater-shaped colonies with white to pale pink, having *Isaria*-like asexual conidiogenous structure, and on the pupae of Limacodidae in cocoons buried in soil.

It is similar to *S. alpina* in sharing *Isaria*-like asexual conidiogenous structure which produces phialides with cylindrical to narrowly lageniform basal portion, fusiform or oval conidia. However, it differs from *S. alpina* by its scarlet stromata with clavate fertile parts and superficial perithecia, crater-shaped colonies with white to pale pink colors, and longer phialides up to 43.5 μ m. Ecologically, it is parasitic on the pupae of Limacodidae in cocoons and is significantly different from *S. alpina* which parasitizes the larvae of *H. baimaensis* (Hepialidae).

Samsoniella cristata H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833113; Fig. 13

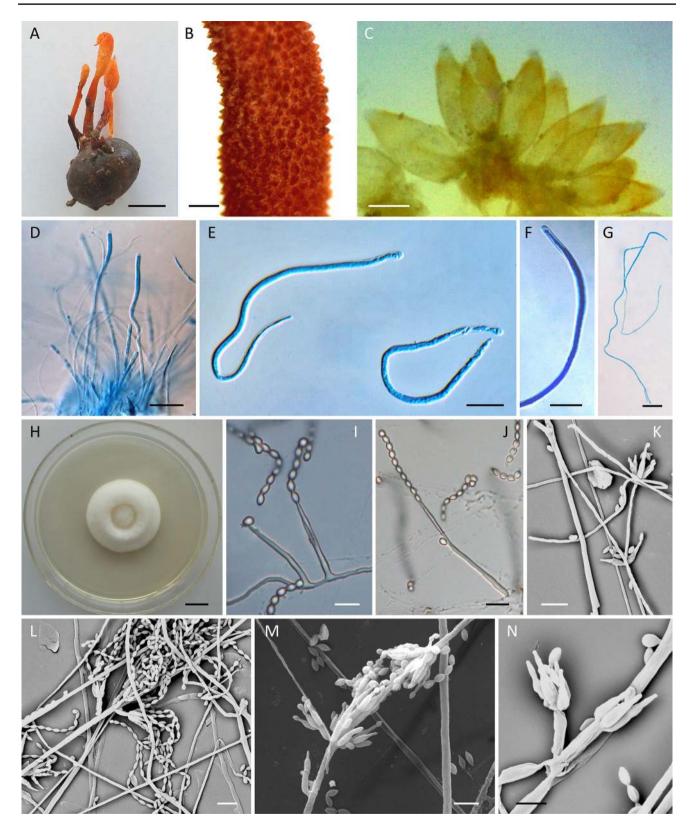
Etymology: Referring to the crista-like stromata.

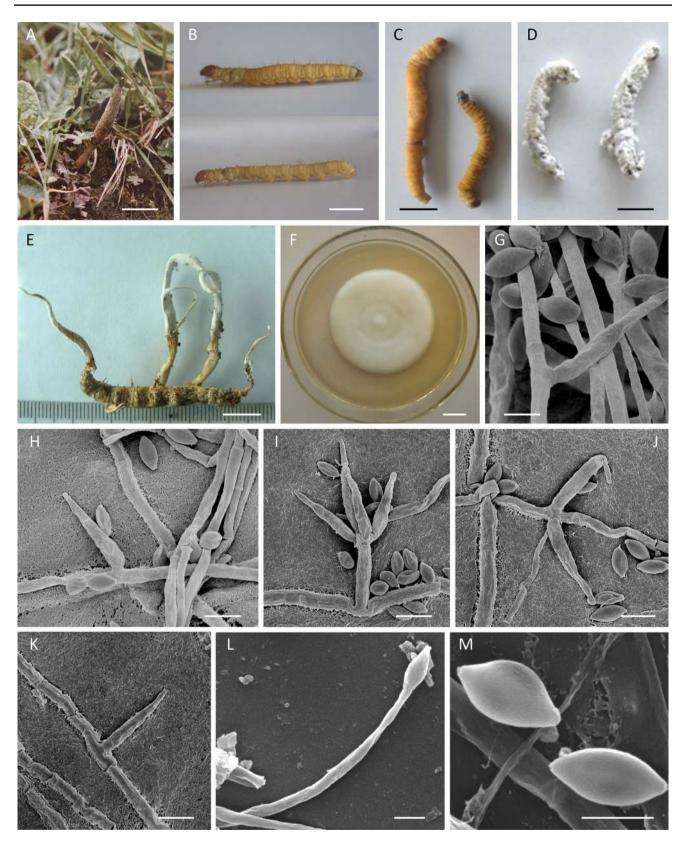
Holotype: YHH 16982

Sexual morph: Stromata arising from the insect cocoons, solitary or two, much branched, 25-40 mm long, orange, crista-like. Stipes fleshly, white at the rhizine, becoming orange towards the upper part, 1.0-1.5 mm wide. Fertile parts reddish orange, crista-like or subulate, $3.1-18.5 \times 0.9-8.0$ mm. Perithecia crowded, superficial, narrowly ovoid, 370-485×150-245 µm. Asci eightspored, hyaline, cylindrical 180-356×3.0-4.8 µm. Ascus caps hemispherical, $2.7-3.8 \times 1.5-2.4$ µm. Ascospores hyaline, bola-shaped, septate, 155-290×1.0-1.3 µm, central part filiform, terminal part narrowly fusiform, do not disarticulate into part-spores. Asexual morph: Isarialike. Colonies on PDA fast-growing, 43-50 mm diameter in 14 days at 25 °C, floccose, crater-shaped, white to light orange, forming yellow-brown concentric rings around the inoculum, sporulating abundantly, cottony, with high mycelial density around the edge, reverse pale brown. Hyphae smooth-walled, branched, septate, hyaline, 1.3-2.5 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, $3.6-11.5 \times 1.7-2.5 \mu m$. Phialides verticillate, in whorls of two to five, usually solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; 4.5–23.2 µm long, 1.6–2.7 μ m wide at the base, and 0.5–1.1 μ m wide at the apex. Conidia one-celled, smooth-walled, hvaline, fusiform or oval, $2.4-3.2 \times 1.6-2.3 \mu m$, often in chains.

Host: Pupae of Saturniidae.

Habitat: On the pupae of Saturniidae in cocoons buried in soil.




Fig. 12 Samsoniella cardinalis. A Fungus on the pupa of Limacodidae in a cocoon. B Fertile part. C Perithecia. D–F Asci. G Ascospores. H Colony on PDA. I, J Solitary phialides on hyphae.

K–N Verticillate phialides on conidiophores. Scale bars: A=5 mm; B, $C=200 \mu m$; D, $E=20 \mu m$; F, $G=10 \mu m$; H=1 cm; I–N=5 μm

Fig. 13 Samsoniella cristata. A Crista-like stromata arising from the host. B Fungus on the pupa of Saturniidae in a cocoon. C, D Fertile parts. E Perithecia. F Asus. G Ascospore. H Colony on PDA. I Solitary phialides on hyphae. J Verticillate phialides on conidiophores.

K Solitary phialides on hyphae. L–N Verticillate phialides on conidiophores. O Conidia. Scale bars: A, B=1 cm; C, D=500 μ m; E=200 μ m; F=5 μ m; G=10 μ m; H=1 cm; I–N=5 μ m; O=2 μ m

<Fig. 14 Samsoniella hepiali. A Stroma of Ophiocordyceps sinensis arising from the larva of Hepialus buried in soil in the Baima Snow Mountain, Yunnan Province (This picture taken in June 1982 was provided by Ru-Qin Dai); the holotype material of *S. hepiali* was isolated from this specimen. **B** The host larvae of Hepialus baimaensis. **C, D** Larvae of *H. baimaensis* infected by *S. hepiali*. **E** Synnemata arising from the whole body of *H. yunnanensis*. **F** Colony on PDA. **G–J** Verticillate phialides on conidiophores. **K, L** Solitary phialides on hyphae. **M** Conidia. Scale bars: **A–F**=1 cm; **G–K**=5 µm; **L**, **M**=2 µm

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Saturniidae in a cocoon buried in soil, 14 August 2018, Hong Yu, (YHH 16982, holotype; YFCC 7004, ex-holotype living culture); *Ibid.* (YHH 15760, paratype; YFCC 6021, ex-paratype living culture); *Ibid.* (YHH 15761, paratype; YFCC 6023, ex-paratype living culture).

Notes: Samsoniella cristata is characterized by solitary or two stromata, crista-like, reddish orange fertile parts, superficial and narrowly ovoid perithecia, cylindrical asci, bola-shaped ascospores, crater-shaped colonies with white to light orange colors, *Isaria*-like asexual conidiogenous structure, and on the pupae of Saturniidae in cocoons.

Phylogenetically, *S. cristata* is sister to *S. tortricidae*, a novel species described in this study. *Samsoniella cristata* resembles *S. tortricidae* in sharing stromata with terminal branches, subulate fertile parts, and *Isaria*-like asexual conidiogenous structure. However, it differs in having fewer and shorter stromata, crista-like, crater-shaped colonies, shorter phialides, and it is parasitic on the pupae of Saturniidae in cocoons buried in soil.

Samsoniella hepiali (Q.T. Chen & R.Q. Dai ex R.Q. Dai et al.) H. Yu, R.Q. Dai, Y.B. Wang, Y. Wang & Zhu L. Yang, **comb. nov.**

Mycobank: MB 833114; Fig. 14

Basionym: *Paecilomyces hepiali* Q.T. Chen & R.Q. Dai ex R.Q. Dai et al., Mycosystema 27 (5): 642 (2008); *Paecilomyces hepiali* Q.T. Chen & R.Q. Dai, Acta Agric. Univ. Pekin. 6(2): 223 (1989), invalid.

Holotype: IMM 82-2 [as "CHICMM 82-2"]

Sexual morph: Undetermined. Asexual morph: *Isaria*like. Synnemata arising from the whole body of lepidopteran insects, branched or unbranched, 0.5–4.1 cm long. Stipes cylindrical or clavate, 0.6–3.2 mm wide, with powdery conidia at the apex, white to yellowish. Conidiophores along the apex of synnemata, solitary, with phialides in whorls of two to five, cylindrical, 4.1–7.3×1.4–2.0 µm. Phialides with a basal portion cylindrical to narrowly lageniform, 4.5–12.6×1.5–2.6 µm, tapering gradually or abruptly into a narrow neck of 0.5–1.0 µm wide. Conidia in chains, one-celled, smooth-walled, hyaline, fusiform or oval, 2.0–3.1×1.4–1.9 µm. Colonies on PDA moderately fast-growing, 50–55 mm diameter in 14 days at 25 °C, cottony, with high mycelial density, white to yellowish, forming concentric rings around the inoculum. Reverse white to yellowish, turning orange when old. Hyphae smooth-walled, branched, septate, hyaline, $1.3-2.2 \,\mu$ m wide. Conidiophores smooth-walled, cylindrical, solitary, $4.0-7.6 \times 1.4-2.2 \,\mu$ m. Phialides on conidiophores verticillate, in whorls of two to five, solitary or opposite on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; $3.5-13.6 \,\mu$ m long, $1.3-2.1 \,\mu$ m wide at the base, $0.5-1.0 \,\mu$ m wide at the apex. Conidia one-celled, smoothwalled, hyaline, fusiform or oval, $1.8-3.3 \times 1.4-2.2 \,\mu$ m, often in chains.

Host: Larvae and pupae of Lepidoptera.

Habitat: On the larvae and pupae of Lepidoptera, the larvae of *Hepialus* parasitized by *O. sinensis* buried in soil or clinging to fallen leaves.

Distribution: Deqin County, Shangrila City, Huanglong County, China; Sapa County, Vietnam.

Material examined: CHINA. YUNNAN PROVINCE: Diqing Tibetan Autonomous Prefecture, Deqin County, Baima Snow Mountain, isolated from the larva of H. armoricanus parasitized by O. sinensis, June 1982, Ru-Oin Dai, (IMM 82-2 = CHICMM 82-2, holotype; ICMM 82-2, exholotype living culture); same location, isolated from the larva of *H. baimaensis* associated with *O. sinensis*, May 2002, Zhuo Zhang, (YHH 1056; YFCC 661, living culture); same location, on the larva of H. baimaensis associated with O. sinensis, 26 May 2010, Hong Yu, (YHH 4258; YFCC 2702, living culture); same location, associated with O. sinensis on the larva of H. baimaensis, 18 May 2018, Hong Yu, (YHH 16883; YFCC 7024, living culture); Diqing Tibetan Autonomous Prefecture, Shangrila City, Xiaozhongdian Town, on the larva of H. yunnanensis, 24 December 2017, Hong Yu, (YHH 16827; YFCC 7215, living culture). QIN-HAI PROVINCE: Haidong City, Huanglong County, (Cor-4, dried culture). VIETNAM. LAOCAI PROVINCE: Sapa County, Hoang Lien Mountains, on the pupa of Lepidoptera buried in soil, 26 October 2016, Yuan-Bing Wang, (YHH 14896; YFCC 5823, living culture); same location, on the larva of Lepidoptera clinging to fallen leaves, 26 October 2016, Yao Wang, (YHH 14898; YFCC 5828, living culture).

Notes: This fungus, named as *Paecilomyces hepiali* by Dai et al. (1989), was originally collected from the Baima Snow Mountain in Yunnan Province, China based on isolates from the larvae of *H. armoricanus* parasitized by *O. sinensis*. However, the name was effectively, but not formally published due to the failure of the authors to comply with the requirements of the Code for type indication, and the only cited material was a living culture (Dai et al. 2008; Turland et al. 2018). *Paecilomyces hepiali* was later validly published and the holotype IMM 82–2 was designated using a dried culture from the living culture 82–2 (ICMM 82–2) (Dai et al. 2008, 2018a).

Based on the original description, *P. hepiali* was morphologically similar to *P. xylariiformis* (Lloyd) Samson, originally named as *I. xylariiformis* Lloyd, but it differs in the globose or subglobose conidia with smaller size and the host of hepialid larvae (Dai et al. 1989). In addition, *P. hepiali* differed from *I. farinosa* (Holmsk.) Fr., currently recombined into *C. farinosa*, by the shape and arrangement of phialides, the shape of conidia, its host belonging to the genus *Hepialus*, and its habitat of an extremely cold area at an altitude of 4000–4500 m (Dai et al. 1989).

Paecilomyces xylariiformis, probably belonging to Isaria, is only known from dried type herbarium material no. 42613, and its phylogenetic analyses have not been conducted (Samson 1974; Luangsa-ard et al. 2005). Its generic status, and even so, higher taxonomic rank remain unresolved. Recent phylogenetic analyses together with our fivegene phylogeny of the family Cordycipitaceae show that C. farinosa belongs to the type genus Cordyceps of this family (Kepler et al. 2017; Mongkolsamrit et al. 2018). In our phylogenetic analyses, the holotype material ICMM 82-2 and seven other samples of P. hepiali were used to determined its systematic position. Our results show that the eight samples of P. hepiali group together with strong statistical support (BP = 80% and PP = 100%), are clustered within the recently established genus Samsoniella of Cordycipitaceae, and form a single clade related to an undescribed taxon *Isaria* sp. TNS 16333 (Fig. 1, 2). Consequently, P. hepiali is phylogenetically distinguished from C. farinosa which also produces Isaria-like asexual morph. Based on the strong phylogenetic and morphological evidence, a new combination, namely S. hepiali is proposed for P. hepiali.

Here, a redescription of *S. hepiali* is made on the basis of morphological observations of the ex-holotype living culture ICMM 82–2 and related samples collected in this study. *Samsoniella hepiali* has *Isaria*-like asexual morph and is characterized by branched or unbranched synnemata arising from the whole body of lepidopteran insects, cylindrical or clavate stipes with a powdery conidia at the apex, white to yellowish, moderately fast-growing colonies with white to yellowish colors, cottony, solitary conidiophores with cylindrical shape, solitary or verticillate phialides with cylindrical to narrowly lageniform basal portion, fusiform or oval conidia often in chains.

Samsoniella hepiali is morphologically similar to S. alpina and S. yunnanensis in the Isaria-like asexual conidiogenous structure, producing synnemata with powdery conidia at the apex. However, S. hepiali differs from S. alpina by its white to yellowish colonies, solitary conidiophores with phialides in whorls of two to five and longer phialides. It differs from S. yunnanensis because the latter has synnemata with orange to pink stipes, white colonies, solitary or verticillate conidiophores up to 23.5 µm long with phialides in whorls of two to seven. Ecologically, S. hepiali and *S. alpina* share similar host larvae of *Hepialus*, whereas *S. hepiali* has a wider lepidopteran species host range.

Samsoniella kunmingensis H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833116; Fig. 15

Etymology: Named after the location Kunming City where the species was collected.

Holotype: YHH 6002

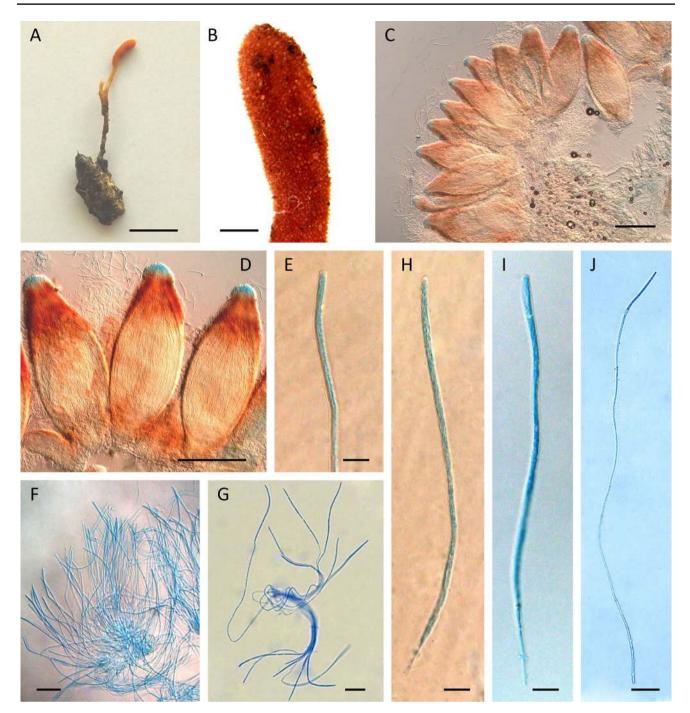
Sexual morph: Stromata arising from the lepidopteran pupa buried in soil, solitary, up to 23 mm long, cylindrical to clavate, bifurcated. Stipes fleshly, white to orange, 0.5-0.9 mm wide, with a terminal bifurcated branch of 5.2-11.4 mm long. Fertile parts reddish orange, clavate, ateral sides usually have a longitudinal ditch without producing perithecia, $3.3-4.2 \times 0.8-1.2$ mm. Perithecia crowded, superficial, narrowly ovoid to fusiform, $330-395 \times 110-185$ µm. Asci eight-spored, hyaline, cylindrical, $150-297 \times 3.0-4.6$ µm. Ascus caps hemispherical, $2.3-3.6 \times 1.5-2.5$ µm. Ascospores hyaline, bola-shaped, septate, $127-190 \times 0.8-1.5$ µm, central part filiform, terminal part narrowly fusiform, do not disarticulate into part-spores. Asexual morph: Undetermined.

Host: Pupa of Lepidoptera.

Habitat: On the pupa of Lepidoptera buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Lepidoptera buried in soil, 12 August 2017, Qi Fan, (YHH 16002, holotype).


Notes: Samsoniella kunmingensis is characterized by solitary stromata, bifurcated, clavate fertile parts with reddish orange color, ateral sides usually have a longitudinal ditch without producing perithecia, superficial perithecia, narrowly ovoid to fusiform, and cylindrical asci with bolashaped ascospores.

Phylogenetically, it is closely related to the new species *S. ramosa* described in this study. However, *S. kunmingensis* is morphologically similar to *S. antleroides*, *S. lanmaoa* and *S. inthanonensis* by producing superficial perithecia, narrowly ovoid to fusiform, cylindrical asci with bola-shaped ascospores. *Samsoniella kunmingensis* differs from *S. antleroides*, *S. lanmaoa*, *S. inthanonensis* and *S. ramosa* by its solitary and bifurcated stromata, and clavate fertile parts with reddish orange color. The latter three species have *Isaria*-like asexual morphs, whereas asexual morph of *S. kunmingensis* was not determined in this study.

Samsoniella lanmaoa H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833115; Fig. 16

Etymology: Lanmaoa is named for Mr. Lan Mao (1397–1476, Ming Dynasty), an ancient Chinese botanist, who recorded medicinal fungi in the famous Chinese literature "Dian Nan Ben Cao".

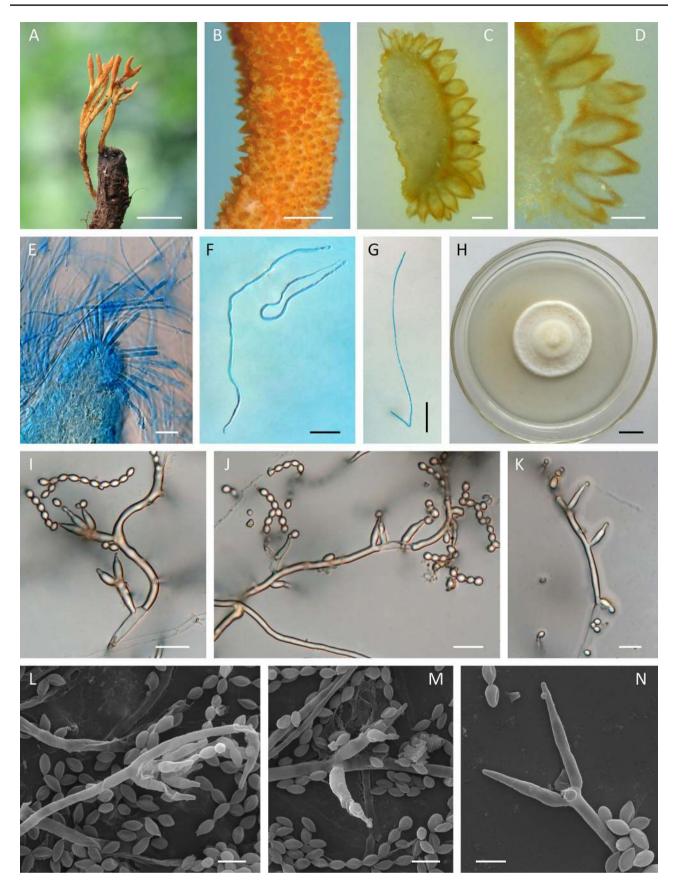


Fig. 15 Samsoniella kunmingensis. **A** Fungus on the pupa of Lepidoptera. **B** Fertile parts. **C**, **D** Perithecia. **E**, **F** Asci. **G** Ascospores. **H**, **I** Asci. **J** Ascospore. Scale bars: A = 1 cm; B = 500 µm; **C**, D = 200 µm; E = 5 µm; F = 20 µm; G = I = 5 µm; J = 10 µm

Holotype: YHH 15740

Sexual morph: Stromata arising from insect cocoons, two to five, 38–69 mm long, palmately branched, orange. Stipes fleshly, clavate, palmated at the branching portion, 1.2-3.9 mm wide. Fertile parts reddish orange, clavate, ateral sides usually have a longitudinal ditch without producing perithecia, $8.5-11.2 \times 0.6-2.3$ mm.

Perithecia crowded, superficial, narrowly ovoid to fusiform, $360-467 \times 124-210 \ \mu\text{m}$. Asci eight-spored, hyaline, cylindrical, $160-325 \times 3.3-4.8 \ \mu\text{m}$. Ascus caps hemispherical, $2.5-3.8 \times 1.6-2.3 \ \mu\text{m}$. Ascospores hyaline, bola-shaped, septate, $135-260 \times 0.9-1.4 \ \mu\text{m}$, central part filiform, terminal part narrowly fusiform, do not disarticulate into part-spores. **Asexual morph:** *Isaria*-like. Colonies on PDA

∢Fig. 16 Samsoniella lanmaoa. A Stromata arising from the pupa of Lepidoptera. **B** Fertile parts. **C**, **D** Perithecia. **E**−**F** Asci. **G** Ascospore. **H** Colony on PDA. **I**, **J** Verticillate phialides on conidiophores. **K** Solitary phialides on hypha. **L**, **N** Verticillate phialides on conidiophores. Scale bars: A = 1 cm; B = 500 µm; C-E = 200 µm; E-G = 20 µm; H = 1 cm; I-N = 5 µm

fast-growing, 38–40 mm diameter in 14 days at 25 °C, white to cream-colored, cottony, with high mycelial density at the centrum, forming concentric rings around the inoculum, reverse pale yellow to yellowish-brown. Hyphae smooth-walled, branched, septate, hyaline, 1.2–1.9 μ m wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, 3.8–13.3×1.5–2.1 μ m. Phialides verticillate, in whorls of two to six, usually solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; 3.5–20.7 μ m long, 1.7–2.6 μ m wide at the base, and 0.5–1.1 μ m wide at the apex. Conidia one-celled, smooth-walled, hyaline, fusiform or oval, 1.9–2.7×1.4–2.0 μ m, often in chains.

Host: Pupae of Lepidoptera.

Habitat: On the pupae of Lepidoptera in cocoons buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Lepidoptera in a cocoon buried in soil, 12 August 2017, Hong Yu, (YHH 15740, holotype; YFCC 6148, ex-holotype living culture); *Ibid.*, (YHH 15753, paratype; YFCC 6193, ex-paratype living culture).

Notes: Samsoniella lanmaoa is characterized by palmately branched stromata, clavate fertile parts with reddish orange color, superficial perithecia with narrowly ovoid to fusiform shapes, bola-shaped ascospores, white to creamcolored colonies, and *Isaria*-like asexual conidiogenous structure.

Phylogenetic analyses show that *S. lanmaoa* is sister to the recently described species *S. inthanonensis*, by which the genus *Samsoniella* was established. Morphologically, *S. lanmaoa* is similar to *S. inthanonensis* in producing branched stromata with reddish to orange colors, bola-shaped ascospores and *Isaria*-like asexual conidiogenous structure (Mongkolsamrit et al. 2018). However, it differs from *S. inthanonensis* by its longer stromata (38–69 mm), narrowly ovoid to fusiform perithecia, white to cream-colored colonies and larger phialides (3.5–20.7 µm long). Ecologically, *S. lanmaoa* is parasitic on the lepidopteran pupae in cocoons buried in soil, whereas *S. inthanonensis* was reported as a parasite of the lepidopteran larvae in leaf litter (Mongkolsamrit et al. 2018).

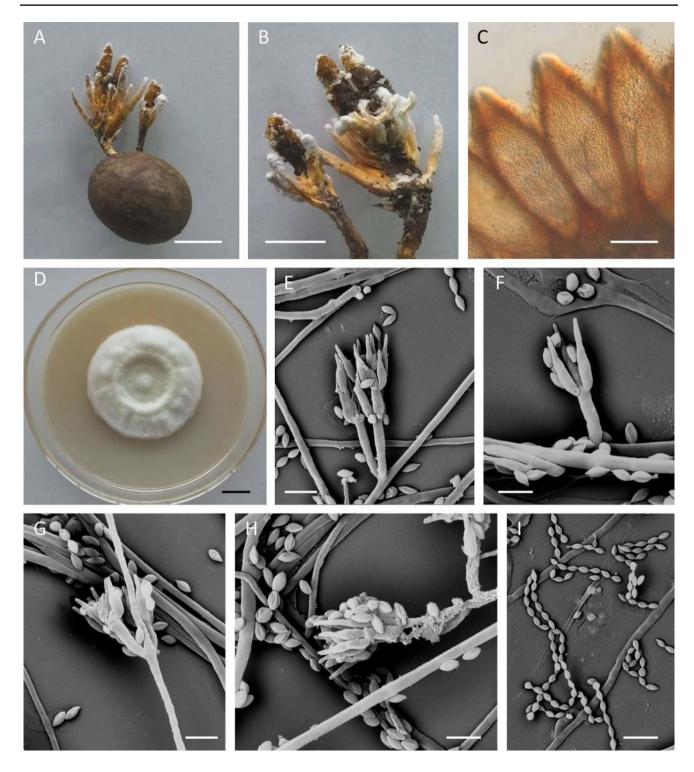
Samsoniella ramosa H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, sp. nov.

Mycobank: MB 833117; Fig. 17

Etymology: Referring to the ramose stromata. *Holotype:* YHH 15988

Sexual morph: Stromata arising directly from an insect cocoon, fascicular, multi-branched, often confluent at the base $15-32 \times 0.8-1.5$ mm. Stipes oblate or flaky, white at first, then turning into fulvous, rusty-brown when old. Fertile parts having no obvious boundary with stipes, white to pale brown, with a tapering sterile part, 1.6-7.8 mm long, white to khaki. Perithecia crowded, superficial, narrowly ovoid to fusiform, $340-435 \times 130-197$ µm. Asci and ascospores not observed. Asexual morph: Isaria-like. A mass of conidia producing toward the apex of stromatic branches, white, powdery and floccose. Conidiophores on the apex of stromata with phialides in whorls of two to five, cylindrical, $5.1-12.3 \times 1.4-2.5 \mu m$. Phialides with a basal portion cylindrical to narrowly lageniform, $4.5-12.6 \times 1.5-2.6 \mu m$, tapering abruptly into a narrow neck of 0.5-1.1 µm wide. Conidia in chains, one-celled, smooth-walled, hyaline, fusiform or oval, $2.0-3.3 \times 1.4-2.0 \mu m$. Colonies on PDA moderately fast-growing, 45-50 mm diameter in 14 days at 25 °C, floccose, crater-shaped, white to cream-coloured, sporulating abundantly, reverse off-white. Hyphae smoothwalled, branched, septate, hyaline, 1.5-2.8 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, $4.3-10.5 \times 1.3-2.4 \mu m$. Phialides verticillate, in whorls of two to six, usually solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; 5.3-14.6 µm long, 1.3-2.8 µm wide at the base, and 0.6-1.2 µm wide at the apex. Conidia one-celled, smooth-walled, hyaline, fusiform or oval, $2.0-3.6 \times 1.5-2.2 \mu m$, often in chains.

Host: Pupa of Limacodidae.


Habitat: On the pupa of Limacodidae in a cocoon buried in soil.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Limacodidae in a cocoon buried in soil, 12 August 2017, Hong Yu, (YHH 15988, holotype; YFCC 6020, ex-holotype living culture).

Notes: Samsoniella ramosa is characterized by fascicular stromata, multi-branched, oblate or flaky stipes, fertile parts with no obvious boundary with stipes, superficial perithecia, narrowly ovoid to fusiform, floccose and crater-shaped colonies, having *Isaria*-like asexual conidiogenous structure, and on the pupa of Limacodidae in a cocoon buried in soil.

It is similar to its phylogenetically closely related species *S. kunmingensis* in producing superficial perithecia, narrowly ovoid to fusiform. However, *S. ramosa* is easily distinguished by its fascicular stromata, multi-branched, oblate or flaky stipes and fertile parts having no obvious boundary with stipes.

Fig. 17 Samsoniella ramosa. **A** Fungus on the pupa of Limacodidae in a cocoon. **B** Ramose stromata. **C** Perithecia. **D** Colony on PDA. **E–H** Verticillate phialides on conidiophores. **I** Conidia in chains. Scale bars: \mathbf{A} , $\mathbf{B} = 5$ mm; $\mathbf{C} = 200 \,\mu\text{m}$; $\mathbf{D} = 1$ cm; $\mathbf{E} - \mathbf{I} = 5 \,\mu\text{m}$

Samsoniella tortricidae H. Yu, Y.B. Wang, Y. Wang, Q. Fan & Zhu L. Yang, **sp. nov.** Mycobank: MB 833118; Fig. 18 *Etymology:* Named after the host belonging to the family Tortricidae (Lepidoptera). *Holotype:* YHH 16050

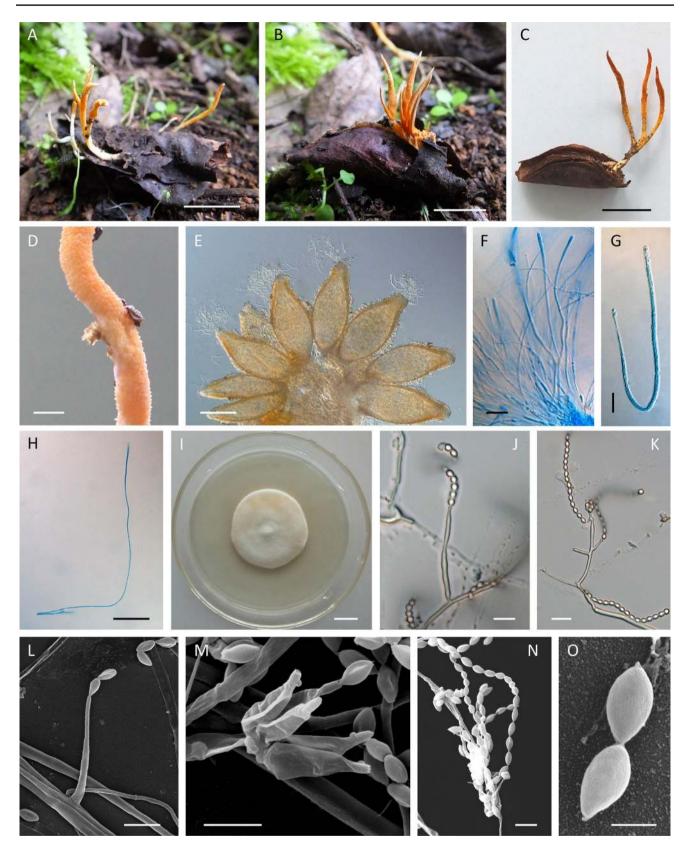


Fig. 18 Samsoniella tortricidae. A–C Stromata arising from the pupae of Tortricidae in cocoons rolled in fallen leaves. D Fertile parts. E Perithecia. F, G Asci. H Ascospore. I Colony on PDA.

J-M Conidiophores and phialides. N, O Conidia in chains. Scale bars: A-C=1 cm; D=1 mm; E=200 μ m; F-H=20 μ m; I=1 cm; J-N=5 μ m; O=2 μ m

Sexual morph: Stromata gregarious, arising from insect cocoons rolled in fallen leaves, up to 25-60 mm long, unbranched or dichotomous. Stipes flexuous, yellowish to orange, cylindrical to clavate, 12-46×1.1-3.0 mm. Fertile parts reddish orange, clavate to subulate, ateral side usually has a longitudinal section without producing perithecia, $5-15 \times 1.2-2.3$ mm. Perithecia crowded, superficial, narrowly ovoid to fusiform, 350-468 × 140-225 µm. Asci eightspored, hyaline, cylindrical, up to $170-285 \times 2.8-4.0 \ \mu m$. Ascus caps hemispherical, $2.2-3.3 \times 1.4-2.2 \mu m$. Ascospores hyaline, bola-shaped, septate, $120-235 \times 0.8-1.3 \mu m$, central part filiform, terminal part narrowly fusiform, do not disarticulate into part-spores. Asexual morph: Isaria-like. Colonies on PDA grow well, 30-36 mm diameter in 14 days at 25 °C, white to pale pink, cottony, sporulating abundantly, reverse orange to reddish-brown. Hyphae smooth-walled, branched, septate, hyaline, 1.1-2.4 µm wide. Conidiophores smooth-walled, cylindrical, solitary, $4.2-12.5 \times 1.4-2.4 \mu m$. Phialides verticillate, in whorls of two to five, usually solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; $3.6-42.4 \mu m \log_{1} 1.1-2.6 \mu m$ wide at the base, and 0.4-0.9 µm wide at the apex. Conidia one-celled, smoothwalled, hyaline, fusiform or oval, $2.1-3.0 \times 1.3-1.7 \mu m$, often in chains.

Host: Pupae of Tortricidae (Lepidoptera)

Habitat: On the pupae of Tortricidae (Lepidoptera) in cocoons rolled in fallen leaves.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, on the pupa of Tortricidae (Lepidoptera) in a cocoon rolled in fallen leaves, 12 August 2017, Hong Yu, (YHH 16050, holotype; YFCC 6131, ex-holotype living culture); *Ibid.*, (YHH 15989, paratype; YFCC 6013, ex-paratype living culture); *Ibid.*, (YHH 16064, paratype; YFCC 6142, ex-paratype living culture).

Notes: Samsoniella tortricidae is characterized by gregarious stromata, unbranched or dichotomous, cylindrical to clavate stipes, clavate to subulate fertile parts with reddish orange color, superficial perithecia, narrowly ovoid to fusiform, cylindrical asci with bola-shaped ascospores, and having *Isaria*-like asexual conidiogenous structure.

Samsoniella tortricidae resembles the phylogenetic sister species S. cristata in producing stromata with terminal branches, subulate fertile parts, and Isaria-like asexual conidiogenous structure. However, it differs from S. cristata by its gregarious stromata up to 25–60 mm long, unbranched or dichotomous, white to pale pink cottony colonies, sporulating abundantly, longer phialides (3.6–42.4 μ m). Ecologically, S. tortricidae is parasitic on the pupae of Tortricidae (Lepidoptera) in cocoons rolled in fallen leaves and is very different from S. cristata, which is parasitic on the pupae of Saturniidae in cocoons buried in soil.

Samsoniella yunnanensis H. Yu, Y.B. Wang, Y. Wang, D.E. Duan & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833119; Fig. 19

Etymology: Named after the location Yunnan Province where the species was collected.

Holotype: YHH 3126

Sexual morph: Undetermined. Asexual morph: Isarialike. Synnemata arising from the insect cocoons, gregarious, flexuous, fleshy, 0.4-1.8 cm long, with terminal branches of $3-7 \times 1.0-2.0$ mm. Stipes clavate to spatulate, orange to pink, about 1 mm wide, producing a mass of conidia toward the apex of synnemata, powdery and floccose. Conidiophores biverticillate with phialides in whorls of two to seven, cylindrical, $4.0-22.7 \times 1.5-2.5 \mu m$. Phialides with a basal portion cylindrical to narrowly lageniform, $4.2-12.1 \times 1.3-2.5 \mu m$, tapering gradually or abruptly into a narrow neck of 0.5-1.0 µm wide. Conidia in chains, one-celled, smoothwalled, hyaline, fusiform or oval, $2.0-2.8 \times 1.2-2.0 \mu m$. Colonies on PDA fast-growing, 48-50 mm diameter in 14 days at 25 °C, white, consisting of high mycelial density, loose and hairy, sporulating abundantly, reverse reddishbrown. Hyphae smooth-walled, branched, septate, hyaline, 1.2-2.3 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, 4.2-23.5 × 1.4-2.3 µm. Phialides verticillate, in whorls of two to seven, usually solitary on hyphae, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex; 4.5-11.6 µm long, 1.2-2.4 µm wide at the base, and 0.6-1.0 µm wide at the apex. Conidia one-celled, smooth-walled, hyaline, fusiform or oval, $2.0-3.3 \times 1.1-2.2 \mu m$, often in chains.

Host/Substratum: Pupae of Limacodidae, *Cordyceps* sp. and *Cordyceps cicadae* Shing.

Habitat: On the pupae of Limacodidae in cocoons, *Cordyceps* sp. associated with the pupae of Lepidoptera and *C. cicadae* associated with the nymphs of Cicadidae buried in soil.

Distribution: Kunming City and Shangrila City, China.

Material examined: CHINA. YUNNAN PROVINCE: Diqing Tibetan Autonomous Prefecture, Shangrila City, Hutiaoxia Town, isolated from *C. cicadae* associated with the nymph of Cicadidae buried in soil, 26 July 2007, Yi-Jian Chen, (YHH 3126, holotype); YFCC 1527, ex-holoype living culture); same location, isolated from *C. cicadae* associated with the nymph of Cicadidae buried in soil, 10 July 2008, Zi-Hong Chen, (YHH 3715; YFCC 1824, living culture); same location, on the pupa of Limacodidae in a cocoon buried in soil, 08 October 2010, Yuan-Bing Wang, (YHH 4520; YFCC 2830, living culture). Kunming City, Wild Duck Lake Forest Park, on *Cordyceps* sp. associated with the pupa of Lepidoptera buried in soil, 14 August 2018, Yao Wang, (YHH 17053; YFCC 7282, living culture).

Notes: Samsoniella yunnanensis is characterized by gregarious synnemata with terminal branches, clavate to

Fig. 19 Samsoniella yunnanensis. A, B Synnemata arising from the pupa of Limacodidae in a cocoon. C, D Stipes producing a white mass of conidia toward the apex. E Colony on PDA. F–I Verticillate

phialides on conidiophores. J Verticillate phialides on hypha. Scale bars: A-D=5 mm; E=1 cm; F-J=5 µm

spatulate stipes with orange to pink colors, producing a mass of conidia toward the apex of synnemata, powdery and floccose, loose and hairy colonies, sporulating abundantly, having *Isaria*-like asexual conidiogenous structure, and it is associated with pupae of Limacodidae and *Cordyceps* spp.

Phylogenetically, three samples of *S. yunnanensis* group together with strong statistical support, and form a separate clade at the basal portion of *Samsoniella* lineage. It is similar to *S. alpina* and *S. hepiali* in producing a mass of

conidia toward the apex synnemata with terminal branches and *Isaria*-like asexual conidiogenous structure. Additionally, none of these three fungal sexual morphs have been determined yet. However, it differs from the latter two by its orange to pink stipes, and associations with the pupae of Limacodidae in cocoons, *Cordyceps* sp. associated with the pupa of Lepidoptera, and *C. cicadae* associated with the nymphs of Cicadidae buried in soil.

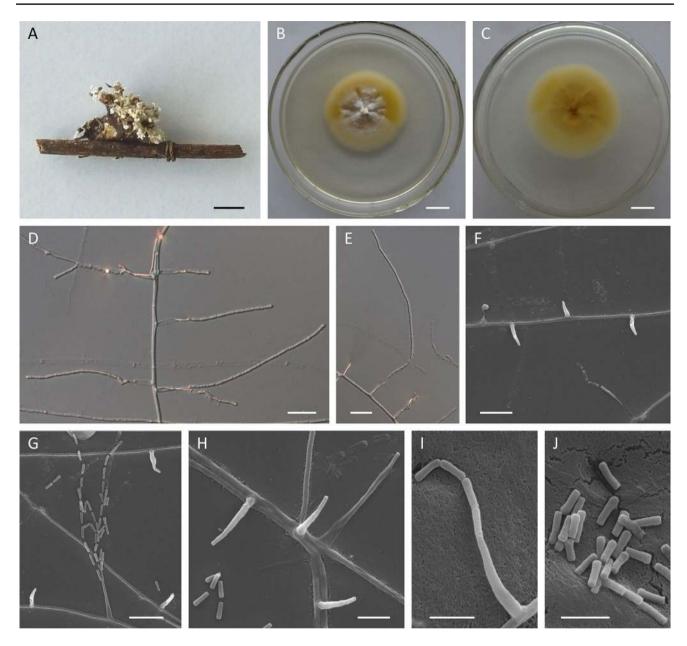


Fig. 20 Simplicillium yunnanense. A Akanthomyces waltergamsii associated with the spider on a dead stem, from which Sim. yunnanense was isolated. B Colony on PDA. C Reverse of colony. D-I

Simplicillium yunnanense H. Yu, Y.B. Wang, Y. Wang & Zhu L. Yang, **sp. nov.**

Mycobank: MB 833120; Fig. 20

Etymology: Named after the location Yunnan Province where this species was collected.

Holotype: YHH 16988

Sexual morph: Undetermined. **Asexual morph:** Colonies on PDA fast-growing, 39–42 mm diameter in 14 days at 25 °C, convex, white to light yellow, with very low mycelial density, producing hyaline droplets on the felty aerial mycelium, generating radially distributed grooves.

Solitary phialides with conidia in chains produced on prostrate aerial hyphae. J Cylindrical conidia. Scale bars: A=2 mm; B, C=1 cm; $D-G=10 \mu$ m; $H-J=5 \mu$ m

Reverse grayish orange to brown. Hyphae smooth-walled, branched, septate, hyaline, 0.8–1.7 μ m wide. Phialides produced on prostrate aerial hyphae, solitary, discrete, subulate, tapering gradually toward the apex, 5.8–16.9 μ m long, 1.1–1.5 μ m wide at the base, and 0.6–1.1 μ m wide at the apex. Conidia one-celled, smooth-walled, hyaline, cylindrical, 2.5–3.4×0.7–1.1 μ m, usually in chains at the phialidic apex.

Substratum: Akanthomyces waltergamsii Mongkols et al.

Habitat: On *A. waltergamsii* associated with the spider on a dead stem.

Distribution: Kunming City, China.

Material examined: CHINA. YUNNAN PROVINCE: Kunming City, Wild Duck Lake Forest Park, isolated from synnemata of *A. waltergamsii* associated with the spider on a dead stem, 14 August 2018, Yao Wang, (YHH 16988, holotype; YFCC 7133, ex-holotype living culture); *Ibid.*, (YHH 16989; YFCC 7134, living culture).

Notes: *Simplicillium yunnanense* is characterized by white to light yellow colonies with very low mycelial density, convex, generating radially distributed grooves, solitary phialides, discrete, subulate, produing cylindrical conidia usually in chains at the apex of phialides, and on *A. walter-gamsii* associated with the spider on the dead stem.

In our five-gene phylogenetic analyses (Fig. 1, 2), *Sim. yunnanense* forms a separate clade in *Simplicillium* and is likely to be related to *Sim. lanosoniveum* (J.F.H. Beyma) Zare & W. Gams and *Sim. obclavatum* (W. Gams) Zare & W. Gams. However, it differs from the latter two by its shorter phialides with subulate shape and producing cylindrical conidia usually in chains at the apex of phialides. *Simplicillium lanosoniveum* and *Sim. obclavatum* have much narrower and longer phialides, producing respectively oval or ellipsoidal to subcylindrical, obclavate to ellipsoidal conidia, and form respectively globose heads and short imbricate chains at the apex of phialides (Zare and Gams 2001). Ecologically, *Sim. yunnanense* can be differentiated due to its association with synnemata of *A. waltergamsii* parasitizing the spider.

Discussion

Many high-level phylogenetic classifications for entomopathogenic fungi have been undertaken, thus more and more available molecular data can be efficiently used to facilitate systematics and evolutionary biology of cordycipitoid fungi (Sung et al. 2007; Chaverri et al. 2008; Kepler et al. 2013, 2014, 2017; Quandt et al. 2014; Maharachchikumbura et al. 2015; Hongsanan et al. 2017; Luangsa-ard et al. 2017; Mongkolsamrit et al. 2018). In this study, we focused on the phylogenetic investigation of the family Cordycipitaceae, with special emphasis on species collected from Yunnan Province, China. Our phylogenetic study supports recognition of the genera Cordyceps, Samsoniella, Lecanicillium and Simplicillium, as previously reported (Kepler et al. 2017; Mongkolsamrit et al. 2018). We proposed two new genera Flavocillium and Liangia, 16 new species and four new combinations in the family Cordycipitaceae.

The genus *Flavocillium* was erected to accommodate *F. bifurcatum*, *F. acerosium*, *F. primulinium*, and *F. subprimulinium*. Even though *Flavocillium* is morphologically similar to other *Lecanicillium* species in conidiophores, phialides and two types of conidia, the genus is sufficiently distinct

by possessing yellowish stromata with a furcate terminal branch, contorted fertile parts, and colonies that usually produce pastel yellow pigment (Zare and Gams 2001; Kaifuchi et al. 2013; Huang et al. 2018; Su et al. 2019). In addition, Flavocillium is distinguished from phylogenetically close relatives Engyodontium and Parengyodontium because the latter two genera usually produce white colonies, conidiiferous rachids with denticles on phialides, and terminal fertile regions that are zigzag-shaped (Gams et al. 1984; Tsang et al. 2016). Liangia is established for the new species Lia. sinensis isolated from the cordycipitoid fungus B. yunnanensis. Liangia is more closely related to C. piperis and L. psalliotae clades in the five-gene phylogenetic analyses. However, this genus differs morphologically from C. piperis that produces the Verticillium-like anamorph with verticillate conidiophores and phialides, subcylindrical conidia aggregating into heads and conjoined polyhedral crystals (Bischoff and White 2004). *Liangia* is similar to *L. psalliotae* in sharing the Lecanicillium-like asexual morph, but it differs from the latter that produces erect conidiophores, relatively short verticillate phialides, short-ellipsoidal conidia formed in heads and octahedral crystals (Zare and Gams 2001). The new genera Flavocillium and Liangia can be distinguished from each other by having distinct morphological characteristics and phylogenetic positions.

The economically and medically significant fungus P. hepiali was reexamined and assigned to the genus Samsoniella based on study of the holotype IMM 82-2 and its ex-holotype living culture, as well as seven other samples of P. hepiali. The systematic position of P. hepiali is most appropriate in the genus Samsoniella. Therefore, the new taxonomic combination S. hepiali is proposed for P. hepiali. Collections of unknown identity are found to represent nine new species of Samsoniella, which are named S. alpina, S. antleroides, S. cardinalis, S. cristata, S. kunmingensis, S. lanmaoa, S. ramosa, S. tortricidae and S. yunnanensis. Four new species of Cordyceps are described and named C. subtenuipes, C. shuifuensis, C. chaetoclavata and C. cocoonihabita. Two isolations from A. waltergamsii associated with the spider on the dead stem represent a new species in the genus Simplicillium, viz. Sim. yunnanense. All of the above species are recognized as new members of the family Cordycipitaceae by well-supported morphological and molecular phylogenetic evidence.

The asexual genus *Lecanicillium* is typified by *L. lecanii* with the sexual morph *T. confragosa* and previously contained 32 species (Zare and Gams 2001, 2008; Sukarno et al. 2009; Crous et al. 2018; Huang et al. 2018; Su et al. 2019; Zhou et al. 2018). However, the recent taxonomic revision rejected *L. lecanii*, the type species of *Lecanicillium*, and considered that it was a synonym of *Akanthomyces* (Kepler et al. 2017). This treatment seeks to harmonize competing names by principles of priority, recognition of monophyletic

groups, and the practical usage of the affected taxa. Based on this, Akanthomyces was proposed to be maintained and Lecanicillium was rejected, although the generic name Lecanicillium was still being used thereafter (Crous et al. 2018; Huang et al. 2018; Su et al. 2019; Zhou et al. 2018). Species of different lineages may have similar micromorphological characteristics like those of Lecanicillium in the family Cordycipitaceae. Unfortunately, many species in the Lecanicillium lineage are published with singular gene data, such as ITS sequences. Few multigene sequences are available in online databases. Reconstructing the credible phylogenetic framework of Lecanicillium clades in the family Cordycipitaceae is difficult due to a lack of large-scale multigene sequence sampling. Thus, in this study, the phylogenetic tree of Lecanicillium inferred from ITS sequences includes eight clades, which does not match those of the tree generated from five-gene data because of differentiated available data sampling. To be prudent, we did not make major revisions to the Lecanicillium lineage but only added two genera, Flavocillium and Liangia, based on their monophyly and distinct morphological characteristics in the family Cordycipitaceae. A credible phylogenetic framework of Lecanicillium species, which have not been assigned appropriate generic names, will require more future extensive multigene taxon sampling.

Phylogenetic classifications of entomopathogenic fungi showed that most diagnostic characteristics used in current classifications of cordycepitoid fungi (e.g., arrangement of perithecia, ascospores fragmentation, conidiogenous structures, conidial shape and size) are not phylogenetically informative (Sung et al. 2007; Kepler et al. 2013, 2017; Ban et al. 2015; Mongkolsamrit et al. 2018). However, the characteristics that are most consistent with the phylogeny are texture, pigmentation and morphology of the stromata and synnemata. Even so, these macro- and micro-morphological characteristics could aid the identification of *Cordyceps*, Isaria-like and Lecanicillium-like fungi. Sexual morphs of *Cordyceps* are characterized by fleshy stromata, red to orange colors, superficial perithecia, asci cylindrical with thickened ascus apex, ascospores usually cylindrical and multiseptate. These are very similar to those of Samsoniella, which mainly have lepidopteran hosts. Previous studies of cordycipitoid fungi as well as our study show that both Samsoniella and Cordyceps species produce similar asexual conidiogenous structures (Samson 1974; Mongkolsamrit et al. 2018). Samsoniella and Cordyceps share similar Isaria-like asexual morphs that produce branched and white to orange synnemata, a dry mass of white to cream conidia on the synnemata, flask-shaped phialides that are produced in whorls, conidia with divergent chains. Therefore, the C. farinosa morphology is not diagnostic and represents a polyphyletic species complex as exemplified by the isolates delimited as *S. alboaurantium* (G. Sm.) Mongkolsamrit et al. (Kepler et al. 2017; Mongkolsamrit et al. 2018).

A review of the taxonomic history of Cordyceps concluded that Cordyceps is the oldest accepted generic name in the family Cordycipitaceae (Shrestha et al. 2014). Based on the cylindrical shape of stroma, pre-Linnaean literature of the 17th and early eighteenth centuries had recorded C. militaris. It is noteworthy that Cordyceps has a much longer history and culture in China. The famous Chinese medicine monograph "Shennong's Materia Medica" (Qin and Han Dynasties, second century BC) recorded the white muscardin silkworms infected by B. bassiana as a medicine. The archaeology of Haihun marquis (Western Han Dynasty, first century AD) discovered Cordyceps sp. in He Liu's funerary objects, proving that Cordyceps sp. had been used for health care in China as early as 2075 years ago. The "Mister Lei's Treatise on Processing Drugs" (Southern and Northern Dynasties, 5th Century AD) recorded I. cicadae Miq. as a traditional medicine. Tibetan Materia Medica "Medical King's Drugs for Medicine" (Tibetan Empire, 8th Century AD) recorded O. sinensis as a medicine.

In the phylogenetic classification of cordycipitoid fungi, the desire to preserve the term "cordyceps" within the family Ophiocordycipitaceae to reflect the cultural and economic importance of *O. sinensis* was expressed (Sung et al. 2007). This taxonomic revision ultimately benefits humanity, especially in Asia. *Samsoniella hepiali* (syn. *P. hepiali*) is also termed "cordyceps", and it is internationally known. Based on the above, we suggest that the Chinese name "鳞翅虫草 属" (Lín Chì Chóng Cǎo Shǔ), be given to *Samsoniella*, taking into account the similarity of its morphological and ecological characteristics with *Cordyceps* and practical usage.

Samsoniella hepiali is a very important fungus to humans, due to its therapeutic effects in cardiovascular, respiratory disorders, immunomodulatory, hyposexuality, hyperglycemia, renal disorder and antitumor conditions (Lou et al. 1986; Huang et al. 1988; Wang and Huang 1988; Dai et al. 1989; Zou and Huang 1993; Xiang et al. 2006; Jiang et al. 2010). The Ministry of Health of the P. R. China issued a new drug certificate (WYZZ2-67 05) in July, 1987 and listed the S. hepiali strain Cs-4 as a protected and confidential strain. The product of strain Cs-4, Jinshuibao capsule, was introduced into the market in 1987. The Ministry of Health of the P. R. China issued File No. 84 on 23 March 2001 and approved S. hepiali mycelia to be used as a stand-alone or a component of health foods (equivalent to dietary supplements in other countries) (Dai et al. 2018b). Thus, S. hepiali is widely used as a medicinal and edible cordycipitoid fungus, creating an annual economic value of approximately 10 billion RMB in China. In addition to the Jinshuibao capsule, over 260 healthcare products have been developed with S. hepiali as a raw material. Its therapeutic

effects have been demonstrated and are now widely recognized by doctors and patients. Many companies have put these products into Chinese markets and globally exported them to nearly 80 countries or regions as medicine and dietary supplements, including northeastern and southeastern Asia, the United States of America, Canada, Australia, New Zealand and other countries (Dai et al. 2018b). *Samsoniella hepiali* is economically, medicinally and culturally important, and share the morphologically and ecologically similar characteristics with *Cordyceps*. Based on its significant contribution as "cordyceps", here we strongly suggest that the Chinese name "蝙蝠蛾虫草" (Biān Fú É Chóng Cǎo), be given to this cordycipitoid fungus, which will allow for the convenient and unambiguous communication among the biomedical and health industries of China.

Acknowledgements We are grateful to the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences for providing the holotype material (CHICMM) IMM 82-2 and its ex-holotype living culture of Paecilomyces hepiali. Thanks are due to Prof. Zong-Qi Liang for his valuable suggestions about the taxonomy of P. hepiali and its related taxa. We thank Prof. Zhuo Zhang for providing a strain of P. hepiali. We are grateful to Mr. Run-De Yang, Prof. Yu-Ling Li, Dr. Zhong-Lin Yang, Dr. Feng Yuan, Mr. Kun Yang, Mr. Chang-Kui Wu, Mr. Rui Guo, Mr. Xian-Yan Ma, Mr. Tao Sun, Mr. Yun-Peng Sun, Mrs. Xue-Yuan Jia, Mr. Da-Kun Sun, Mr. Jian Chen, Mr. Tao Shen, Mr. Xi-Jun Dang, Prof. Wen-Ju Zhang, Dr. Ya-Nan Wang, Dr. Li Wang, Mr. Van-Minh Dao, Prof. Jing-Yu Zhang, Prof. Hong-Ren Yang, Mr. Wan-Wei Xu, Mr. Zi-Hao Liu, Mr. Yue-Tin Li and Mr. Neng Li for providing collections. We are very grateful to Mrs. Jun-Yuan Yang, Ms. Jiao Cai, Mr. Dong Wang, Mrs. Si-Qi Chen, Mrs. Yan-Fang Liu, Ms. Chen-Xin Chang, Ms. Zi-Jiao Wang, Ms. Yu-Feng Ma, Ms. Manzilamu Zaman, Ms. Juan Li, Mr. Yin-Long Yang, Ms. Dong-Yi Cao, Ms. Jing-Jing Tong and Ms. Yong-Yu Li for isolating strains. This work was jointly funded by the National Natural Science Foundation of China [31870017, 31760011], the Ministry of Science and Technology of the People's Republic of China [KC1610530], the China Postdoctoral Science Foundation [2017M613017], the Department of Science and Technology of Yunnan Province [2018IA075, 2018FY001(-006)], the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China [2019HJ2096001006], the Biodiversity Investigation, Observation and Assessment Program (2019-2023) of the Ministry of Ecology and Environment of China, and the Yunnan University's Research Innovation Fund for Graduate Students [YDY17100].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Ban S, Sakane T, Nakagiri A (2015) Three new species of *Ophio cordyceps* and overview of anamorph types in the genus and the family Ophiocordyceptaceae. Mycol Prog 14:1017
- Bainer G (1907) Mycotheque del' Ecole de Pharmacie XI. Paecilomyces, Genre Noveau de Mucedinees. Bull Soc Mycol France 23:26–27
- Bischoff JF, White JF (2004) Torrubiella piperis sp. nov. (Clavicipitaceae, Hypocreales), a new teleomorph of the Lecanicillium complex. Stud Mycol 50:89–94
- Bischoff JF, Rehner SA, Humber RA (2006) Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride Complex. Mycologia 98(5):737–745
- Chaverri P, Liu M, Hodge KT (2008) A monograph of the entomopathogenic genera *Hypocrella*, *Moelleriella*, and *Samuelsia* gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics. Stud Mycol 60:1–66
- Chen ZH, Chen K, Dai YD, Zheng Y, Wang YB, Yang XN, Yu H, Yang YM, Xu L (2019) *Beauveria* species diversity in the Gaoligong Mountains of China. Mycol Prog 18(7):933–943
- Crous PW, Wingfield MJ, Burgess TI, Hardy GEStJ, Gené J, Guarro J, Baseia IG, García D, Gusmão LFP, Souza-Motta CM, Thangave R, Adamčík S, Barili A, Barnes CW, Bezerra JDP, Bordallo JJ, Cano-Lira JF, de Oliveira RJV, Ercole E, Hubka V, Iturrieta-González I, Kubátová A, Martín MP, Moreau PA, Morte A, Ordoñez ME, Rodríguez A, Stchige AM, Vizzini A, Abdollahzadeh J, Abreu VP, Adamčíková K, Albuquerque GMR, Alexandrova AV. Álvarez Duarte E. Armstrong-Cho C. Banniza S. Barbosa RN, Bellanger JM, Bezerra JL, Cabral TS, Caboň M, Caicedo E, Cantillo T, Carnegie AJ, Carmo LT, Castañeda-Ruiz RF, Clement CR, Čmoková A, Conceição LB, Cruz RHSF, Damm U, da Silva BDB, da Silva GA, da Silva RMF, de A. Santiago ALCM, de Oliveira LF, de Souza CAF, Déniel F, Dima B, Dong G, Edwards J, Félix CR, Fournier J, Gibertoni TB, Hosaka K, Iturriaga T, Jadan M, Jany JL, Jurjević Ż, Kolařík M, Kušan I, Landell MF, Leite Cordeiro TR, Lima DX, Loizides M, Luo S, Machado AR, Madrid H, Magalhães OMC, Marinho P, Matočec N, Mešić A, Miller AN, Morozova OV, Neves RP, Nonaka K, Nováková A, Oberlies NH, Oliveira-Filho JRC, Oliveira TGL, Papp V, Pereira OL, Perrone G, Peterson SW, Pham THG, Raja HA, Raudabaugh DB, Řehulka J, Rodríguez-Andrade E, Saba M, Schauflerová A, Shivas RG, Simonini G, Siqueira JPZ, Sousa JO, Stajsic V, Svetasheva T, Tan YP, Tkalčec Z, Ullah S, Valente P, Valenzuela-Lopez N, Abrinbana M, Viana Marques DA, Wong PTW, Xavier de Lima V, Groenewald JZ (2018) Fungal Planet description sheets: 716-784. Persoonia 40:240-393
- Dai RQ, Lan JL, Chen WH, Li XM, Chen QT, Shen CY (1989) Research on *Paecilomyces hepiali* Chen et Dai, sp. nov. Acta Agric Univ Pekin 15(2):221–224
- Dai RQ, Li XM, Shao AJ, Lin SF, Lan JL, Chen WH, Shen CY (2008) Nomenclatural validation of *Paecilomyces hepiali*. Mycosystema 27(5):641–644
- Dai RQ, Shen CY, Li XM, Lan JL, Lin SF, Shao AJ (2018a) Discussion on related problems of model species of fungus: *Paecilomyces hepialid*. China J Chin Mater Med 42(19):3843–3846
- Dai RQ, Shen CY, Li XM, Lan JL, Lin SF, Shao AJ (2018b) Response to neotypification of *Paecilomyces hepiali* (Hypocreales) (Wang & al., 2015). Taxon 67 (4):784–786
- Dayal R, Barron GL (1970) Verticillium psalliotae as a parasite of Rhopalomyces. Mycologia 62(4):826–830
- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

- Gams W, de Hoog GS, Samson RA, Evans HC (1984) The hyphomycete genus *Engyodontium*: a link between *Verticillium* and *Aphanocladium*. Persoonia 12:135–147
- Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC, JeewonR ZQ, Al-Sadi AM, Bahkali AH (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84(1):25–41
- Huang MM, Zhang JF, Pang L, Jiang Z, Wang DW (1988) Studies on immunopharmacology of *Cordyceps* (Fr.) Link IV. Observations on the immunosuppressive activity of artificial substance of *Paecilomyces hapiali* Chen. Acta Univ Med Tongji 5:329–331
- Huang SK, Maharachchikumbura SSN, Jeewon R, Bhat DJ, Phookamsak R, Hyde KD, Al-Sadi AM, Kang JC (2018) *Lecanicillium subprimulinum* (Cordycipitaceae, Hypocreales), a novel species from Baoshan, Yunnan. Phytotaxa 348(2):099–108
- Humber RA, Rocha LFN, Inglis PW, Kipnis A, Luz C (2013) Morphology and molecular taxonomy of *Evlachovaea*-like fungi, and the status of this unusual conidial genus. Fungal Biol 117:1–12
- Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TTT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Aptroot A, Caceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanavake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Buyck B, Randrianjohany E, Hofstetter V, Gibertoni TB, da Silva Soares AM, Plautz HL Jr, Pontes Sotão HM, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayarathne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Réblová M, Fournier J, Nekvindová J, Barbosa RN, Felinto dos Santos JE, Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkalčec Z, Liang JM, Li GS, Wen TC, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC, Doilom MW (2019) Fungal diversity notes 1036-1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers 96:1-242
- Hywel-Jones NL (2002) Multiples of eight in *Cordyceps* ascospores. Mycol Res 106:2–3
- Jiang L, Bao HY, Yang M (2010) Antitumor activity of a petroleum ether extract from *Paecilomyces hepiali* mycelium. Acta Edulis Fungi 17:58–60
- Johnson D, Sung GH, Hywel-Jones NL, Luangsa-Ard JJ, Bischoff JF, Kepler RM, Spatafora JW (2009) Systematics and evolution of the genus *Torrubiella* (Hypocreales, Ascomycota). Mycol Res 113:279–289
- Kaifuchi S, Nonaka K, Mori M, Shiomi K, Ömura S, Masuma R (2013) Lecanicillium primulinum, a new hyphomycete (Cordycipitaceae) from soils in the Okinawa's main island and the Bonin Islands, Japan. Mycoscience 54:291–296
- Kepler RM, Ban S, Nakagiri A, Bischoff JF, Hywel-Jones NL, Owensby CA, Spatafora JW (2013) The phylogenetic placement of hypocrealean insect pathogens in the genus *Polycephalomyces*: an application of one fungus one name. Fungal Biol 117(9):611–622
- Kepler RM, Humber RA, Bischoff JF, Rehner SA (2014) Clarifcation of generic and species boundaries for *Metarhizium* and related fungi through multigene phylogenetics. Mycologia 106(4):811–829

- Kepler RM, Luangsa-ard JJ, Hywel-Jones NL, Quandt CA, Sung GH, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, Chen M, Li Z, Rossman AY, Spatafora JW, Shrestha B (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8(2):335–353
- Kobayasi Y, Shimizu D (1960) Monographic studies of *Cordyceps* 1. Group parasitic on *Elaphomyces*. Bull Natl Sci Mus Tokyo 5:69–85
- Kobayasi Y (1981) Revision of the genus *Cordyceps* and its allies 1. Bull Natl Sci Mus Tokyo Ser B 7(1):1–13
- Kobayasi Y (1982) Keys to the taxa of the genera Cordyceps and Torrubiella. Trans Mycol Soc Japan 23:329–364
- Kobayasi Y, Shimizu D (1982) Cordyceps species from Japan 5. Bull Natl Sci Mus Tokyo Ser B 8(4):111–123
- Kobayasi Y, Shimizu D (1983) *Cordyceps* species from Japan 6. Bull Natl Sci Mus Tokyo Ser B 9(1):2–21
- Lanfear R, Calcott B, Ho SYW, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29(2):1695–1701
- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948
- Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47(W1):W256-W259
- Liu ZY, Liang ZQ, Whalley AJS, Yao YJ, Liu AY (2001) Cordyceps brittlebankisoides, a new pathogen of grubs and its anamorph, Metarhizium anisopliae var. maius. J Invertebr Pathol 78:178–182
- Luangsa-ard JJ, Hywel-Jones NL, Samson RA (2004) The order level polyphyletic nature of *Paecilomyces* sensu lato as revealed through 18S-generated rRNA phylogeny. Mycologia 96(4):773–780
- Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA (2005) On the relationships of *Paecilomyces* sect. *Isarioidea* species. Mycol Res 109(5):581–589
- Luangsa-ard JJ, Houbraken J, van Doorn T, Hong SB, Borman AM, Hywel-Jones NL, Samson RA (2011) Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett 321(2):141–149
- Luangsa-Ard JJ, Mongkolsamrit S, Thanakitpipattana D, Khonsanit A, Tasanathai K, Noisripoom W, Humber RA (2017) Clavicipitaceous entomopathogens: new species in *Metarhizium* and a new genus *Nigelia*. Mycol Prog 16(4):369–391
- Lou YQ, Liao XM, Lu YC (1986) Cardiovascular pharmacological studies of ethanol extracts of *Cordyceps* mycelia and *Cordyceps* fermentation solution. Chin Tradit Herbal Drugs 17:17–21
- Li DD, Zhang GD, Huang LD, Wang YB, Yu H (2019) Complete mitochondrial genome of the important entomopathogenic fungus *Cordyceps tenuipes* (Hypocreales, Cordycipitaceae). Mitochondrial DNA B 4(1):1329–1331
- Li ZZ, Li CR, Huang B, Fan MZ (2001) Discovery and demonstration of the telemorph of *Beauveria bassiana*, an important entomogenous fungus. Chin Sci Bull 46(6):470–473
- Liang ZQ (1983) A record and description on *Cordyceps pruinosa* Petch and its conidial state. J Guizhou Agric Coll 2:72–80
- Liang ZQ (1991) Verification and identification of the anomorph of *Cordyceps pruinosa* Petch. Acta Mycol Sin 10(2):104–107
- Liang ZQ (2007) Flora fungorum sinicorum vol 32 Cordyceps, vol 32. Science Press, Beijing
- Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Huang SK, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D'souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu JK, Liu ZY, Norphanphoun C, Pang KL, Perera RH, Senanayake IC, Shang QJ, Shenoy BD, Xiao YP, Bahkali AH, Kang JC, Somrothipol S, Suetrong S, Wen TC, Xu

JC (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301

- Mains EB (1949) New species of *Torrubiella*, *Hirsutella* and *Gibellula*. Mycologia 41:303–310
- Mains EB (1958) North American entomogenous species of *Cordyceps*. Mycologia 50:169–222
- Mongkolsamrit S, Noisripoom W, Thanakitpipattana D, Wutikhun T, Spatafora JW, Luangsa-ard JJ (2018) Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia 110(1):230–257
- Petch T (1924) Studies in entomogenous fungus. IV. Some Ceylon Cordyceps. Trans Br Mycol Soc 10:28–45
- Quandt CA, Kepler RM, Gams W, Araújo JPM, Ban S, Evans HC, Hughes D, Humber R, Hywel-Jones NL, Li ZZ, Luangsa-ard JJ, Rehner SA, Sanjuan T, Sato H, Shrestha B, Sung GH, Yao YJ, Zare R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in *Tolypocladium*. IMA Fungus 5(1):121–134
- Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of *Glio-cladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98(6):625–634
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574
- Rossman AY, Samuels GJ, Rogers JS, Lowen R (1999) Genera of Bionectriaceae, Nectriaceae and Hypocreaceae (Hypocreales, Ascomycetes). Stud Mycol 42:1–248
- Samson RA, Evans HC (1974) Notes on entomogenous fungi from Ghana. II. The genus Akanthomyces. Acta Bot Neerl 23:28–35
- Samson RA (1974) *Paecilomyces* and some allied hyphomycetes. Stud Mycol 6:1–119
- Shrestha B, Tanaka E, Han JG, Oh J, Han SK, Lee KH, Sung GH (2014) A brief chronicle of the genus *Cordyceps* Fr., the oldest valid genus in Cordycipitaceae (Hypocreales, Ascomycota). Mycobiology 42(2):93–99
- Spatafora JW, Quandt CA, Kepler RM, Sung GH, Shrestha B, Hywel-Jones NL, Luangsa-ard JJ (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6(2):357–362
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690
- Su CH, Wang HH (1986) *Phytocordyceps*, a new genus of the Clavicipitaceae. Mycotaxon 26:337–344
- Su L, Zhu H, Guo YX, Du XP, Guo JG, Zhang L, Qin C (2019) Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa 387:55–62
- Sukarno N, Kurihara Y, Ilyas M, Mangunwardoyo W, Yuniarti E, Sjamsuridzal W, Park JY, Saraswati R, Inaba S, Widyastuti Y, Ando K, Harayama S (2009) *Lecanicillium* and *Verticillium* species from Indonesia and Japan including three new species. Mycoscience 50(5):369–379
- Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. Stud Mycol 57:5–59
- Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729
- Treschew D (1941) The Verticillium diseases of cultivated mushrooms. Dansk bot Ark 11(1):1–31
- Tsang CC, Chan JFW, Pong WM, Chen JHK, Ngan AHY, Cheung M, Lai CKC, Tsang DNC, Lau SKP, Woo PCY (2016) Cutaneous hyalohyphomycosis due to *Parengyodontium album* gen. et comb. Nov. Med Mycol 54:699–713

- Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds.) (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. [Regnum Vegetabile no. 159.] Glashütten: Koeltz Botanical Books.
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246
- Wang DW, Huang MM (1988) Studies on immunopharmacology of Cordyceps (Fr.) Link V. Influence of artificial fermentative substance of Paecilomyces hapiali Chen on the function of T cell and its subgroup in mice. Acta Univ Med Tongji 5:332–334
- Wang YB, Yu H, Dai YD, Wu CK, Zeng WB, Yuan F, Liang ZQ (2015a) Polycephalomyces agaricus, a new hyperparasite of *Ophiocordyceps* sp. infecting melolonthid larvae in southwestern China. Mycol Prog 14:70
- Wang YB, Yu H, Dai YD, Chen ZH, Zeng WB, Yuan F, Liang ZQ (2015b) Polycephalomyces yunnanensis (Hypocreales), a new species of Polycephalomyces parasitizing Ophiocordyceps nutans and stink bugs (hemipteran adults). Phytotaxa 208:034–044
- White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322
- Yan JQ, Bau T (2015) Cordyceps ningxiaensis sp. nov., a new species from dipteran pupae in Ningxia Hui Autonomous Region of China. Nova Hedwigia 100:251–258
- Yang JK, Huang XW, Tian BY, Sun H, Duan JX, Wu WP, Zhang KQ (2005) Characterization of an Extracellular Serine Protease Gene from the Nematophagous Fungus *Lecanicillium psalliotae*. Biotechnol Lett 27(17):1329–1334
- Xiang M, Tang J, Chu T, Zhang CL, Zou XL (2006) Hypoglycemic effect and mechanism study on streptozocin induced diabetes in mice by *Paecilomyces hepiali* Chen mycelium. Chin J Hosp Pharm 26:556–559
- Yang ZL, Yu H, Chen ZH, Wang YB (2012) Study on the Biological and Ecological Habits of Populations of *Cordyceps militaris* in Middle of Yunnan Edible Fungi of China. Edible Fungi China 30(5):43–47
- Zhang ZF, Liu F, Zhou X, Liu X, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39(1):1–31
- Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73(1):1–50
- Zare R, Gams W (2008) A revision of the *Verticillium fungicola* species complex and its affinity with the genus *Lecanicillium*. Mycol Res 112(7):811–824
- Zare R, Gams W (2016) More white verticillium-like anamorphs with erect conidiophores. Mycol Prog 15:993–1030
- Zhou YM, Zhi JR, Ye M, Zhang ZY, Yue WB, Zou X (2018) Lecanicillium cauligalbarum sp. nov. (Cordycipitaceae, Hypocreales), a novel fungus isolated from a stemborer in the Yao Ren National Forest Mountain Park. MycoKeys 43:59–74
- Zou WP, Huang MM (1993) Primary studies on the mechanism of Paecilomyces hepiali Chen against the rejection reaction. Acta Univ Med Tongji 22:282–284

Affiliations

Yuan-Bing Wang^{1,2,3} · Yao Wang^{1,2,4} · Qi Fan^{1,2} · Dong-E Duan^{1,2} · Guo-Dong Zhang^{1,2,3} · Ru-Qin Dai⁶ · Yong-Dong Dai^{1,2,4} · Wen-Bo Zeng⁷ · Zi-Hong Chen⁸ · Dan-Dan Li^{1,2} · De-Xiang Tang^{1,2} · Zhi-Hong Xu^{1,2} · Tao Sun^{1,2,4} · Thi-Tra Nguyen² · Ngoc-Lan Tran⁹ · Van-Minh Dao⁹ · Can-Ming Zhang¹⁰ · Luo-Dong Huang¹ · Yong-Jun Liu¹¹ · Xiao-Mei Zhang^{1,2,3,12} · Da-Rong Yang¹³ · Tatiana Sanjuan¹⁴ · Xing-Zhong Liu¹⁵ · Zhu L. Yang^{4,5} · Hong Yu^{1,2}

- ¹ Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- ² The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
- ³ The Research Center of Cordyceps Development and Utilization of Kunming, Yunnan Herbal Biotech Co. Ltd., Kunming 650106, China
- ⁴ CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- ⁵ Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming 650201, China
- ⁶ Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- ⁷ College of Evironment and Resources, Wenshan University, Wenshan 663099, China

- ⁸ Institute of Biological Resources of Gaoligong Mountains, Baoshan University, Baoshan 678000, China
- ⁹ Institute of Regional Research and Development, Ministry of Science and Technology, Hanoi, Vietnam
- ¹⁰ YiKangBao Biotech Co., Ltd, Shangri-La 674400, China
- ¹¹ School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
- ¹² College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
- ¹³ Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- ¹⁴ Laboratorio de Taxonomíay Ecología de Hongos, Universidad de Antioquia, calle 67 No. 53–12 108, A.A. 1226, Medellin, Colombia
- ¹⁵ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China