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Abstract

We study the problem of computing committees
that perform well according to several different
criteria, which are expressed as committee scor-
ing rules. We analyze the computational complex-
ity of computing such committees and provide an
experimental evaluation of the compromise levels
that can be achieved between several well-known
rules, including k-Borda, SNTV, Bloc, and the
Chamberlin–Courant rule.

1 Introduction

We study the problem of computing committees that perform
well according to several different criteria, expressed as com-
mittee scoring rules [Elkind et al., 2017b]. The following
example illustrates our problem.

Let us consider a setting where a conference organizer
plans a dinner for the participants and asks them to rank
dishes from the catering menu. The organizer intends to use a
multiwinner voting rule to aggregate these preferences and to
form the catering order; at the dinner, the participants would
be able to choose freely among the catered items. If the orga-
nizer used a rule focused on individual excellence of the can-
didates (such as k-Borda [Debord, 1992]), then many people
(let us call them “the majority group”) would have lots of op-
tions to choose from, but some others might not be able to
find anything acceptable. On the other hand, if the organizer
used a rule focused on the diversity of the committee (such as
the Chamberlin–Courant rule, β-CC [Chamberlin and Cou-
rant, 1983]), then everyone would be able to eat something,
but perhaps many participants, possibly including those in the
majority group, would only have one appealing option avail-
able to them. Naturally, the organizer would prefer some sort
of compromise between these two extremes. In this paper we
propose a principled way of finding such compromises.

Our main idea is that given a set of committee scoring
rules—such as k-Borda and β-CC—we seek committees that
achieve high scores (i.e., are judged highly) according to each
of them. More formally, let R be a collection of commit-
tee scoring rules (our approach is not limited to committee
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scoring rules, but they suffice for our purposes and we re-
strict to them for the sake of focus).1 In the R-MULTIGOAL

COMMITTEE problem we are given an election (i.e., a set of
candidates and a collection of voters with their preferences),
a target committee size, and lower bounds on the scores ac-
cording to the rules from R; we ask if there is a committee
that meets or exceeds the respective lower bound with respect
to each of the rules. In particular, by solving a sequence of
such problems, we can find a committee for which it is im-
possible to improve the score under any of the rules without
impairing the scores under the other rules (i.e., we can find a
committee on the Pareto frontier defined by our rules).

Using our framework, the conference organizer would be
able to analyze the full spectrum of possible menus, rang-
ing from the one focused on the majority group (chosen us-
ing k-Borda), through various levels of compromise where
the members of the majority group would have fewer and
fewer options to choose from, but smaller and smaller minori-
ties would be catered for, down to the fully diverse solutions
(computed according to β-CC). Multigoal committee selec-
tion framework would not relieve the organizer from the bur-
den of choosing the final menu—which would require knowl-
edge of the event—but it would allow him or her to make an
informed decision.

1.1 Our Contribution

While we pay special attention to the {k-Borda, β-CC}-
MULTIGOAL COMMITTEE problem, we are also interested
in combinations of other voting rules. Below we summarize
our main contributions:

1. We show that if R is a fixed-sized collection of weakly
separable committee scoring rules (such as SNTV, Bloc,
or k-Borda) and the scores assigned by the rules are
polynomially bounded, then R-MULTIGOAL COMMIT-
TEE is in P. The two conditions—fixed cardinality of R
and polynomially-bounded scores—are necessary, as vi-
olating them may lead to NP-hardness.

2. As the β-CC rule is NP-hard to compute [Procaccia et
al., 2008; Lu and Boutilier, 2011], so is the {k-Borda,
β-CC}-MULTIGOAL COMMITTEE problem. We show

1Readers not familiar with committee scoring rules may think of
R as a collection of functions that evaluate committees.
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that many of the known means of dealing with the com-
putational hardness of β-CC, such as using approxima-
tion algorithms, using FPT algorithms, or considering
restricted domains, are still applicable to the {k-Borda,
β-CC}-MULTIGOAL COMMITTEE problem, but some-
times require new insights.

3. We experimentally evaluate what sorts of committees
appear on the Pareto curves corresponding to pairs of
several well-known rules. E.g., we find that there often
exist committees that achieve k-Borda and β-CC scores
exceeding 90% of the optimal ones. This shows that at
least in some settings the tension between individual ex-
cellence and diversity is lower than one might expect.

We omit some proofs, due to limited space.

1.2 Related Work

The problem of computing compromise committees between
k-Borda and β-CC was recently introduced by Faliszewski et
al. [2017], who defined a parametrized family of rules, with
extreme values of the parameter corresponding, respectively,
to k-Borda and β-CC; thus, their definition was syntactic in
nature. In contrast, we focus on the semantics of the com-
puted committees and guarantee requested score values. A
similar syntactic approach was recently used [Faliszewski and
Talmon, 2018] to define a compromise between β-CC and the
Monroe rule.

Our work is also inspired by that of Lackner and
Skowron [2019], who considered two important approval-
based multiwinner rules (approval voting, which models in-
dividual excellence, and the approval-based Chamberlin–
Courant rule, which models diversity), and investigated
whether other approval-based voting rules offer good perfor-
mance when viewed as approximation algorithms for these
two rules. The difference between our work and theirs is
that they focused on performance of specific voting rules
with respect to their criteria, whereas we seek committees
that perform optimally. Lackner and Skowron considered
the approval setting because they were interested in pro-
portional representation of the voters and the approval set-
ting is more convenient in this context (in particular, due
to the work on justified representation [Aziz et al., 2017;
Sánchez-Fernández et al., 2017]). We use the ordinal set-
ting because it offers a better model of individual excellence
(diversity seems to be modeled equally well in both settings).

Finally, we mention that the idea of studying Pareto opti-
mality for multiwinner elections was recently put forward by
Aziz et al. [2016]. The difference between their work and
ours is that they consider committees that are Pareto optimal
with respect to the preferences of individual voters, whereas
we consider committees that are Pareto optimal with respect
to a set of given voting rules. Our paper is also similar in spirit
to the work of Elkind and Erdélyi [2012] and Erdélyi, Hemas-
paandra and Hemaspaandra [2014], who study the complex-
ity of finding election attacks (such as manipulation, control,
or bribery) that perform well against any (single-winner) vot-
ing rule from a given family of rules. We discuss further re-
lated work throughout the paper, in the relevant contexts.

2 Preliminaries

Let R+ denote the set of non-negative real numbers. For an
integer t, we write [t] to mean {1, . . . , t}. For a logical ex-
pression F , by [F ] we mean 1 if F is true and 0 otherwise.

Elections. An election E = (C, V ) consists of a set of
candidates C = {c1, . . . , cm} and a collection of voters
V = (v1, . . . , vn), where each voter ranks all the candidates
from the most to the least appealing one in his or her pref-
erence order. A multiwinner voting rule R is a function that
takes an election E and an integer k and returns a non-empty
family R(E, k) of size-k sets of candidates, i.e., of size-k
committees that win the election. (We disregard tie-breaking
issues, but point to the works of Obraztsova et al. [2011] and
Obraztsova and Elkind [2011] for some related discussion.)
We focus on committee scoring rules, formally introduced by
Elkind et al. [2017b] and studied axiomatically by Skowron
et al. [2019] and Faliszewski et al. [2019] (see also the works
of Aziz et al. [2017] and Lackner and Skowron [2018] for
their analogues in the approval setting). Among committee
scoring rules, we restrict our attention to (weakly) separable
and representation-focused rules (defined below).

Single-winner scoring functions. Consider an election
E = (C, V ) with m candidates. We write posv(c) to denote
the position of candidate c in the preference order of voter v
(the top-ranked candidate has position 1 and the bottom-
ranked one has position m). A single-winner scoring function
γm : [m] → R+ is a function that maps each possible posi-
tion to a score value. We define the γm-score of a candidate
c ∈ C to be γm-scoreE(c) =

∑
v∈V γm(posv(c)), i.e., to be

the sum of the scores associated with the positions in which c
is ranked. From our point of view, the most important single-
winner scoring functions are the Borda functions, defined as
βm(i) = m − i, and the t-Approval functions, defined for
each positive integer t as αt(i) = [i ≤ t] (α1 is the Plurality
scoring function).

(Weakly) separable rules. Let γ = (γm,k)k≤m be a family
of single-winner scoring functions, with one function for each
possible number of candidates m and each possible commit-
tee size k. We define the weakly separable rule Rγ as follows.
Let E = (C, V ) be an election with m candidates and let k
be the given committee size. For each size-k committee S we
define the Rγ-score of S to be the sum of the γm,k-scores
of its members: Rγ-scoreE(S) =

∑
c∈S γm,k-scoreE(c).

Rγ(E, k) is the family of committees with the highest Rγ-
score. If the functions γm,k do not depend on k (i.e., for
each m we have γm,1 = · · · = γm,m), then we refer to Rγ

as separable. We are particularly interested in the following
(weakly) separable rules:

1. the k-Borda rule, based on the Borda functions,

2. the t-Bloc rules, where for each positive integer t, the
t-Bloc rule uses t-Approval functions (1-Bloc is known
as the single non-transferable vote rule, SNTV), and

3. the Bloc rule, which uses k-Approval functions.

Intuitively, the difference between Bloc and the t-Bloc rules is
that under the former each voter names members of his or her
most preferred committee (his or her top-k candidates) and
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each of these candidates gets a single point from the voter;
under the latter, each voter gives points only to his or her t
top-ranked candidates, irrespective of the committee size. As
a consequence, t-Bloc rules—as well as the k-Borda rule—
are separable, and Bloc is only weakly separable.

Example 1. Consider an election E = (C, V ) with C =
{a, b, c, d, e, f} and the following four voters:

v1 : a ≻ b ≻ c ≻ d ≻ e ≻ f v3 : e ≻ a ≻ f ≻ d ≻ b ≻ c

v2 : a ≻ b ≻ c ≻ d ≻ e ≻ f v4 : f ≻ d ≻ a ≻ e ≻ b ≻ c

We consider committees of size 3. According to k-Borda,
committee {a, b, d} wins with score 37; according to SNTV,
committee {a, e, f} wins with score 4; and according to Bloc
there is a 3-way tie between committees {a, b, c}, {a, b, f},
and {a, c, f}, all getting a score of 8.

Representation-focused rules. Representation-focused
rules are variants of β-CC [Chamberlin and Courant, 1983].
Consider some election E = (C, V ) and committee S.
For each voter v ∈ V , we refer to the member of S that v
ranks highest as v’s representative (in S), and we denote
this candidate as repv(S). For a family γ = (γm,k)k≤m of
single-winner scoring functions, an election E = (C, V ),
and committee S, we define the γ-CC score of S to be∑

v∈V γ|C|,|S|(repv(S)) (i.e., each voter contributes exactly
the score of his or her representative); the γ-CC rule outputs
the committees with the highest γ-CC-score. We are mostly
interested in the classic Chamberlin–Courant rule, based
on the Borda scoring function and denoted β-CC, but we
mention that SNTV is representation-focused as well.

Example 2. Consider again the election from Example 1.
The β-CC winning committee is {a, e, f} with score 20 (in-
deed, this is also an SNTV winning committee; this is not
surprising as for this committee all voters rank their repre-
sentatives in the top position, and hence this committee wins
under every representation-focused rule).

Approximate committees. Let R be a multiwinner voting
rule that chooses committees with the highest scores (com-
puted in some way) and let E be an election. For a number
p ∈ [0, 1], we say that a committee S is a p-approximate com-
mittee with respect to R if its R-score is at least a p-fraction
of the score of an R-winning committee.

The complexity of winner determination. SNTV, k-
Borda, Bloc, and all the t-Bloc rules are polynomial-time
computable; i.e., for each of them there is a polynomial-
time algorithm that given an election, a committee size, and a
subset of candidates decides if this subset can be extended
to a committee with at least a given score (indeed, this is
the case for all weakly separable rules, whose scoring func-
tions are polynomial-time computable). On the other hand,
the problem of deciding if there is a β-CC committee with
at least a given score is NP-hard [Procaccia et al., 2008;
Lu and Boutilier, 2011]. Fortunately, there are numerous
ways of circumventing this result, including approximation
algorithms [Lu and Boutilier, 2011; Skowron et al., 2015a],
FPT algorithms [Betzler et al., 2013], polynomial-time al-
gorithms for various restricted domains [Betzler et al., 2013;
Skowron et al., 2015b; Peters, 2018], and heuristics [Fal-
iszewski et al., 2018].

3 The R-MULTIGOAL COMMITTEE Problem

We first define our problem formally, then consider its com-
putational complexity, and finally show experimental results.

Definition 1. Let R = {R1, . . . , Rd} be a set of d committee
scoring rules. In the R-MULTIGOAL COMMITTEE problem
we are given an election E = (C, V ), a committee size k,
and a vector (t1, . . . , td) of non-negative numbers; we ask if
there is a committee S of size k such that for each i ∈ [d] the
score of S with respect to Ri is at least ti.

This definition has a few subtle points and requires some
discussion. First, while the definition is phrased for general
committee scoring rules, we restrict our attention to (weakly)
separable and representation-focused rules. Second, we note
that it is necessary to specify how the scores are computed for
each of the rules from R, because each rule can be defined in
many different ways. Whenever we speak of the rules from
Section 2, we use the scores from their definitions.

Third, we view the R-MULTIGOAL COMMITTEE problem
as a computational tool that allows us to analyze the (scores
of the) committees that lie on the Pareto frontier stretched be-
tween the winning committees of the rules from R. E.g., let
R contain the rules R1, R2 and R3. Using R-MULTIGOAL

COMMITTEE, we may look for a committee that achieves
some scores t1, t2, and t3 according to these rules. If such
a committee exists, then—e.g., using binary search—we can
find the largest value t∗1 such that a committee with scores at
least t∗1, t2, and t3 exists. We can do the same for the other
rules to eventually obtain scores t∗1, t∗2, and t∗3 such that for
each i we have t∗i ≥ ti and there is no committee with at
least as high scores for all the rules and a strictly higher score
for at least one of them. Depending on the order in which
we consider the rules and on the strategy for increasing the
scores, we may reach different points of the Pareto frontier.
In our experiments, we focus on pairs of rules (e.g., k-Borda
and β-CC or SNTV and Bloc) and explore the entire Pareto
curve between their winning committees.

Fourth, it may not be obvious what values t1, . . . , td to use
at the beginning of the procedure from the previous para-
graph. One possibility is to find the largest p ∈ [0, 1] for
which there is a committee which is p-approximate for each
of the rules in R.

Example 3. Consider again the election from Example 1.
Committee {a, d, e} has k-Borda score 36 and β-CC score
19. As the highest possible k-Borda score is 37 and the
highest possible β-CC score is 20 (recall Example 1 and 2),
our committee is 97%-approximate for k-Borda and 95%-
approximate for β-CC.

4 The Case of (Weakly) Separable Rules

We say that a weakly separable rule, defined through a family
γ = (γm,k)k≤m of single-winner scoring functions, is poly-
nomially restricted if the functions in γ are both polynomial-
time computable and polynomially bounded (i.e., there is a
polynomial p such that for each m, k, and i ∈ [m] we
have γm,k(i) ≤ p(m)). It turns out that if R is a fixed set
of polynomially-restricted weakly separable rules, then R-
MULTIGOAL COMMITTEE can be solved in polynomial time.
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Theorem 1. Let R = {R1, . . . , Rd} be a family of poly-
nomially restricted, weakly separable rules. Then, R-
MULTIGOAL COMMITTEE is in P.

Proof sketch. Let γ(1), . . . , γ(d) be the families of scoring
functions used by the rules in R. Consider an instance of
R-MULTIGOAL COMMITTEE with election E = (C, V ),
C = {c1, . . . , cm}, committee size k, and vector (t1, . . . , td)
of the lower bounds for scores under the respective rules.
Now, for each rule Ri and each candidate cj , let si,j be the

γ(i)-score of cj . Our problem then boils down to deciding if
there is a committee S of size k such that for each i ∈ [d]
we have

∑
cj∈S si,j ≥ ti. This problem can be solved in

time O(m · k · Πd
ℓ=1tℓ) using dynamic-programming (the

algorithm is analogous to the pseudo-polynomial algorithm
for KNAPSACK, but extended to d dimensions; see, e.g., the
overview of Kellerer et al. [2004]). Since each ti is polynomi-
ally bounded in m (as our rules are polynomially restricted),
this suffices to establish polynomial running time.

Theorem 1 is very useful, as it allows us to solve R-
MULTIGOAL COMMITTEE for fixed combinations of rules
such as k-Borda, SNTV, and Bloc. Yet, if the rules in R
are not polynomially restricted or the size of R may grow
with the instance size, then Theorem 1 does not apply and R-
MULTIGOAL COMMITTEE may become NP-hard. Below we
show two such examples.

Let δ = (δm,k)k≤m and ρ = (ρm,k)k≤m be two families
of single-winner scoring rules, defined for each even number
2m of candidates and each committee size k as follows (the
case of odd number of candidates is irrelevant for our proof):

δ2m,k(i) = 2m−i−1[i < m],

ρ2m,k(i) = 2m−2[i ≤ m] + 22m−i−1[m < i < 2m].

Intuitively, for i between 1 and m the values of δ2m,k change
exponentially and the values of δ2m,k stay constant, and for i
between m+ 1 and 2m this behavior is reversed. Both func-
tions are polynomial-time computable but neither is polyno-
mially bounded, and so the rules Rδ and Rρ are not polyno-
mially restricted (but both are separable).

Theorem 2. {Rδ, Rρ}-MULTIGOAL COMMITTEE is NP-
complete.

The proof of Theorem 2 (omitted) follows by a reduction
from KNAPSACK (see, e.g., [Kellerer et al., 2004]). The main
idea is to use the δ2m,k- and ρ2m,k-scores to implement the
(binary-encoded) weights and profits of the items from the
KNAPSACK instance in a bit-by-bit manner.

Theorem 2 shows that indeed we need the rules in R to
be polynomially restricted for Theorem 1 to hold. Now we
show that we also need R to be fixed. For a positive integer ℓ,
let ℓ-MULTIBLOC be the {1-Bloc, . . . ℓ-Bloc}-MULTIGOAL

COMMITTEE problem. Intuitively, under ℓ-MULTIBLOC we
ask if there is a committee with a given number of first po-
sitions, a given number of top-two positions, and so on, up
to the ℓ-th position. Let MULTIBLOC be the ℓ-MULTIBLOC

problem where ℓ is part of the input.

Theorem 3. MULTIBLOC is NP-complete.

5 k-Borda and Chamberlin–Courant

We now focus on the {k-Borda, β-CC}-MULTIGOAL COM-
MITTEE problem. The idea is to compute committees of
individually very good candidates (as measured by their
Borda scores) that cover the preferences of all the voters as
well as possible (as measured by the Chamberlin–Courant
scores). Since deciding if there is a committee with at least
a given β-CC score is NP-hard, so is the {k-Borda, β-CC}-
MULTIGOAL COMMITTEE problem; thus, we seek algorith-
mic workarounds to bypass this issue.

5.1 Approximation Algorithms

Perhaps the simplest idea for an approximation algorithm is
to combine the polynomial-time winner-determination algo-
rithm of k-Borda with an approximation algorithm for β-CC,
choosing some candidates according to the former and the
remaining ones according to the latter. Formally, our algo-
rithm proceeds as follows. Let E = (C, V ) be an election
with m candidates and n voters, let k be the desired com-
mittee size, and let k′ and k′′ be two non-negative integers
such that k = k′ + k′′ (we may try all possible combina-
tions of k′ and k′′ and choose one that gives the best result).
Let S′ be a size-k′ committee of candidates with the highest
Borda scores (i.e., S′ ∈ k-Borda(E, k′)), and let S′′ be a
size-k′′ committee computed using Algorithm P of Skowron
et al. [2015a] (this is the best known polynomial-time ap-
proximation algorithm for β-CC). Our algorithm returns the
committee S = S′ ∪ S′′ (if S′ and S′′ are not disjoint then
we complement the committee with sufficiently many arbi-
trary candidates). Carefully choosing the values of k′ and k′′,
based on Skowron et al.’s analysis of Algorithm P, we obtain
the following result.

Proposition 1. For each positive value ε, there is a
polynomial-time algorithm that, given an election E =
(C, V ) and a positive integer k, k ≤ |C|, computes a size-
k committee S that is (1 − ε)-approximate with respect to
both k-Borda and β-CC.

5.2 Fixed-Parameter Tractability

If approximate solutions are not acceptable in a given set-
ting, then we may resort to fixed-parameter tractable (FPT)
algorithms. For the parametrization by the committee size al-
ready the β-CC rule is W[2]-hard [Betzler et al., 2013], and
so the same holds for {k-Borda, β-CC}-MULTIGOAL COM-
MITTEE. Yet, for the parametrizations by the number of can-
didates and by the number of voters we do find FPT algo-
rithms. The former one tries all possible committees; for the
latter we need new ideas.

Proposition 2. {k-Borda, β-CC}-MULTIGOAL COMMIT-
TEE is in FPT for the parametrization by the number of can-
didates, but it is W[2]-hard for the parametrization by the
committee size.

We now focus on the parametrization by the number of vot-
ers. The algorithm for β-CC, due to Betzler et al. [2013], pro-
ceeds by guessing a partition of the voters into groups, based
on their representatives, and choosing the Borda winner of
each group as its representative. We use a similar approach,
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but in our case the representatives do not need to be the Borda
winners, and we need to explicitly ensure that each group has
a different representative.

Theorem 4. There is an FPT algorithm for {k-Borda,
β-CC}-MULTIGOAL COMMITTEE parametrized by the num-
ber of voters.

Proof. Consider an instance of {k-Borda, β-CC}-MULTI-
GOAL COMMITTEE with election E = (C, V ), where C =
{c1, . . . , cm} and V = (v1, . . . , vn), committee size k, and
lower bounds tkB and tCC on the k-Borda and β-CC scores,
respectively. Before describing the algorithm, we introduce
some notation: Let ≺ be an order such that c1 ≺ c2 ≺ · · · ≺
cm. For a size-r committee S = {d1, . . . , dr}, where d1 ≺
· · · ≺ dr, and a partition V ′ = (V ′

1 , . . . , V
′
k′) of V into k′

groups, we define scoreV′(S) to be
∑r

i=1 β-score(C,Vi)(di).
I.e., scoreV′(S) is the β-CC score of committee S in the elec-
tion (C, V1 ∪ · · · ∪ Vr), provided that d1 is the representative
of the voters in V1, d2 is the representative of the voters in V2,
and so on (note that this is a lower bound on the actual β-CC
score of S in this election).

Our algorithm works as follows (we explain Step 2 below):

1. We guess a number k′ ≤ min{k, n}, a partition V =
(V1, . . . , Vk′) of V into k′ voter groups, and a permuta-
tion V ′ = (V ′

1 , . . . , V
′
k′) of V .

2. Among all size-k′ committees S′ with scoreV′(S′) ≥
tCC we pick one with the highest k-Borda score; we
try another guess if no such committee exists.

3. We extend committee S′ to committee S by adding k −
k′ not-yet-included candidates with the highest k-Borda
scores. If the k-Borda score of S is at least tkB then we
accept (its β-CC score must be at least tCC by defini-
tion). Otherwise, we try another guess.

We reject if we ran out of guesses without accepting. To
compute committee S′ from Step 2, we use dynamic pro-
gramming: For each r ∈ [k′], ℓ ∈ [m], and x ∈ [n(m−1)] we
define f(r, ℓ, x) to be the highest k-Borda score that can be
achieved by a committee of the form {d1, . . . , dr} such that
(1) d1 ≺ · · · ≺ dr = cℓ and (2) scoreV′({d1, . . . , dr}) = x;
we define f(r, ℓ, x) to be −∞ if a required committee does
not exist, and we define it to be 0 if r = ℓ = x = 0. Intu-
itively, r is the size of the subcommittee under consideration,
ℓ is the index of its last member with respect to the order ≺ (cℓ
is intended as a representative of the voters in group V ′

r ), and
x is the expected β-CC score of the committee (computed
using the scoreV′(·) function). One can verify that for given
values of r, ℓ, and x, we can express f(r, ℓ, x) recursively as

f(r, ℓ, x) = max
0≤ℓ′<ℓ

f(r − 1, ℓ′, x− β-score(C,V ′

r )
(cℓ)).

Based on this formula, and using standard dynamic program-
ming techniques, we can compute committee S′ in Step 2
in polynomial time. Thus, the algorithm runs in FPT-time
with respect to the number of voters (in particular, we have
O(k · n! · nn) guesses; all other steps are polynomial-time
computable). For correctness, note that whenever the algo-
rithm accepts, it means that it has found a committee satis-
fying the given constraints. For the other direction, let us

assume that W = {d1, . . . dk} is a committee witnessing that
we have a yes-instance; for the sake of brevity, let us assume
that k ≤ n, that every voter is represented by some commit-
tee member from W , and, w.l.o.g., that d1 ≺ · · · ≺ dk. For
each i ∈ [k], we define U ′

i to be a set of voters whose rep-
resentative in W is di. We see that our algorithm considers
V ′ = (U ′

1, . . . U
′
k) in Step 2 and then accepts (or accepts even

before considering this V ′). This completes the proof.

In fact, Theorem 4 holds for every pair of rules where the
former is representation-focused and the latter is (weakly)
separable, provided that both rules use polynomial-time-
computable scoring functions and that the functions used
for the former are polynomially bounded. Further, it also
holds for weighted elections, provided that the weights are
represented in unary. Yet, if the scoring rule used for the
representation-focused rule is not polynomially bounded or
the weights are not represented in unary, then our proof does
not go through: In such cases our dynamic program requires
exponential time. Formally, we have the following theorem
(which can be extended to weighted elections):

Theorem 5. There is a representation-focused rule R (de-
fined using polynomial-time computable scoring functions)
such that {R, k-Borda}-MULTIGOAL COMMITTEE is W[1]-
hard when parametrized by the number of voters.

It is interesting to contrast Theorem 5 with the fact that
the FPT algorithm of Betzler et al. [2013] works for every
representation-focused rule defined by polynomial-time com-
putable scoring functions, even if they are not polynomially
bounded. This shows that our R-MULTIGOAL COMMITTEE

problem can be strictly more difficult than each of the winner
determination problems for the rules in R.

5.3 Restricted Domains

If our FPT algorithms are too slow, then we may hope
that our elections at least have some convenient structure.
It is known that β-CC is tractable when voters’ prefer-
ences are single-peaked [Betzler et al., 2013] or single-
crossing [Skowron et al., 2015b]. We show that these results
extend to {k-Borda, β-CC}-MULTIGOAL COMMITTEE. We
start by defining the respective restricted domains—see also
the survey by Elkind et al. [2017c]—and then we show
tractability for both domains.

Definition 2. Let ⊳ be a total order on a set of candidates
C. An election E = (C, V ) is single-peaked with respect
to axis ⊳ if for every voter vi and every triple of candidates
a, b, c such that a⊳b⊳c it holds that b is not the least preferred
candidate of voter vi in {a, b, c}. An election is single-peaked
if it is single-peaked with respect to some axis.

Definition 3. An election E = (C, V ) with V =
(v1, . . . , vn) is single-crossing if for every pair of candidates
a, b such that v1 prefers a to b there exists a value j ∈ [n] such
that voters v1, . . . , vj prefer a to b and voters vj+1, . . . , vn
prefer b to a.

Theorem 6. {k-Borda, β-CC}-MULTIGOAL COMMITTEE

is in P when the input election is either single-peaked or
single-crossing.
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6 Experimental Results

We experimentally test what levels of compromise exist for
pairs of rules from the set {SNTV, Bloc, k-Borda, β-CC}.

We consider elections generated according to the 2D Eu-
clidean model (see the work of Enelow and Hinch [1984]):
Each candidate and each voter is represented by a point in
a 2D Euclidean space, and each voter forms his or her pref-
erence order by sorting the candidates’ points with respect
to their distance from his or her point (from the closest to
the farthest one). We generate the candidate points and the
voter points by drawing them uniformly at random from a
[−3, 3] × [−3, 3] square. We consider elections with 100
candidates and 100 voters, and we consider committees of
size 10. We chose these parameters as either they or simi-
lar ones are often used in the literature [Elkind et al., 2017a;
Faliszewski et al., 2017; Celis et al., 2018].

For each ordered pair of rules (R(1), R(2)) from the set
{SNTV, Bloc, k-Borda, β-CC}, we proceed as follows. First,
we generate 100 elections as described above. Then, for each
value p between 0 and 1 (with step 0.01) and for each election
E that we generated, we compute the highest value q such that
there is a committee S that is at least p-approximate with re-

spect to R(1) and q-approximate with respect to R(2) (to this
end, we use simple ILP formulations of our problems; this is
necessary when β-CC is involved, for other cases Theorem 1
would suffice). Finally, for each point p we report the average
of the computed values of q. We note that the results for pairs

(R(1), R(2)) and (R(2), R(1)) are not necessarily symmetric.
For example, consider committees that achieve at least 80%
of the k-Borda score and maximize the Bloc score; on aver-
age, such committees are about 95%-approximate for Bloc.
However, not all of these committees are 95%-approximate
for Bloc, and so we would not use them all if we reversed the
roles of k-Borda and Bloc in this example.

We show our results in Figure 1. The results are surpris-
ingly positive. For example, for k-Borda and β-CC (irre-
spective of the order in which they are considered) we can
typically find committees that are 95%-approximate with re-
spect to both rules. For the other pairs of rules the results
are slightly worse, but it is always possible to find a commit-
tee that achieves a fairly high score according to both of the
rules. SNTV is least compatible with Bloc and k-Borda, but
this is hardly surprising as SNTV assigns points only to those
committee members that are ranked in top positions.

To verify the robustness of our results, we considered a few
other variants of the Euclidean model, the impartial culture
model, and Mallow’s model [Mallows, 1957]. In each case,
the results were either similar or even better.

Following Elkind et al. [2017a], we also show 2D his-
tograms for the committees that we compute (see their work
for details of the methodology). Briefly put, for each pair of
rules, we have computed 5000 elections and for each elec-
tion we have computed a committee S such that S is p-
approximate for both rules, for p as large as possible. We
partition our [−3, 3] × [−3, 3] square into 120 × 120 cells,
and count how many members of our committees fall in each
cell. We show the results in Figure 2. The darker a given
point is, the more members of our committees fell into it.

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

k-Borda approx. ratio

ap
p

ro
x

.
ra

ti
o

β-CC
SNTV
Bloc

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Bloc approx. ratio

ap
p

ro
x

.
ra

ti
o

β-CC
SNTV
k-Borda

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

SNTV approx. ratio

ap
p

ro
x

.
ra

ti
o

β-CC
Bloc

k-Borda

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

β-CC approx. ratio

ap
p

ro
x

.
ra

ti
o

Bloc
SNTV
k-Borda

Figure 1: Pareto curves between pairs of rules from the set {SNTV,
Bloc, k-Borda, β-CC}. A (p, q) point in a plot in the top-left figure
means that committees that are at least p-approximate for k-Borda
and maximize the score under a given rule, are, on average, q-
approximate for this rule. The next figures are analogous, but for
Bloc (top-right), SNTV (bottom-left), and β-CC (bottom-right).

Bloc β-CC SNTV

k-Borda {k-Borda, Bloc} {k-Borda, β-CC} {k-Borda, SNTV}

Figure 2: Histograms for MULTIGOAL COMMITTEE variants in-
volving k-Borda.

7 Conclusions

We have studied the problem of computing committees that
perform well with respect to given sets of committee scoring
rules. Our problem is polynomial-time computable for fixed-
size combinations of weakly separable rules (including rules
such as SNTV, Bloc, and k-Borda) and we have found ways
of computing committees that perform well according to both
k-Borda and β-CC (even though the problem is NP-hard).
We have also shown experimentally that achieving good com-
promises between our rules is often possible. Natural future
work is to consider other rule sets, and to analyze axiomatic
properties of committees computed using our framework.
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Jesús A. Fisteus, Pablo Basanta Val, and Piotr Skowron.
Proportional justified representation. In Proceedings of
AAAI-17, pages 670–676, 2017.

[Skowron et al., 2015a] Piotr Skowron, Piotr Faliszewski,
and Arkadii Slinko. Achieving fully proportional repre-
sentation: Approximability result. Artificial Intelligence,
222:67–103, 2015.

[Skowron et al., 2015b] Piotr Skowron, Lan Yu, Piotr Fal-
iszewski, and Edith Elkind. The complexity of fully
proportional representation for single-crossing electorates.
Theoretical Computer Science, 569:43–57, 2015.

[Skowron et al., 2019] Piotr Skowron, Piotr Faliszewski, and
Arkadii Slinko. Axiomatic characterization of committee
scoring rules. Journal of Economic Theory, 180:244–273,
2019.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

391


