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Abstract

The original Pawlak’s rough set approach based on indiscernibility relation (single granularity) has been extended to multi-
granulation rough set structure in the recent years. Multigranulation rough set approach has became a flouring research direction
in rough set theory. This paper considers rough approximation of a fuzzy concept under the framework of multigranulation over
two different universes of discourse, i.e., multigranulation fuzzy rough set models over two universes. We present three types of
multigranulation fuzzy rough set over two universes by the constructive approach, respectively. Some interesting properties of the
proposed models are discussed and also the interrelationships between the proposed models and the existing rough set models are
given. We then propose a new approach to a kind of multiple criteria group decision making problem based on multigranulation
fuzzy rough set model over two universes. The decision rules and algorithm of the proposed method are given and an example of
handling multiple criteria group decision making problem of clothes ranking illustrates this approach. The main contribution of this
paper is twofold. One is to establish the multigranulation fuzzy rough set theory over two universes. Another is to try presenting
a new approach to multiple criteria group decision making based on multigranulation fuzzy rough set over two universes. The
proposed models not only enrich the theory of multigranulation rough set but also make a tentative to provide a new perspective for
multiple criteria group decision making with uncertainty.

Keywords: Rough set, Rough fuzzy set, Rough set over two universes, Multigranulation fuzzy rough set, Multiple criteria group
decision making.

1. Introduction

Recent changes in philosophical ideas (mechanistic reduc-
tionism to evolutionist holism), methodology (from the search
for truth to the search for knowledge), and technology (commu-
nication networks) that have occurred in the knowledge society
have led to use of more open and flexible scientific approaches
to multiactor decision making [32]. These new approaches have
to encompass the integration of intangible and subjective as-
pects associated with the human (subjective) factor in the reso-
lution of problems [2]. Several approaches with the new emerg-
ing mathematical theories, tools, and applications have been
developed in the fields of management science, operational re-
search, and industrial engineering [3, 9, 10, 16, 58, 65]. Rough
set theory [35] is a new mathematical tool for studying intelli-
gent decision systems characterized by insufficient and incom-
plete information. So far rough set theory has became one of
important and effective methods for decision making problem
with incomplete and inaccurate available information [6, 7, 11−
13, 24, 27, 34, 42, 51]. Also, it has established an effective qual-
itative method for dealing with uncertainty in a wide variety of
applications related to knowledge discovery and pattern recog-
nition [17, 30, 46, 62 − 64, 57, 67, 71, 72], etc.

Pawlak rough set deals with the approximation of a sub-

set of universe by the lower and upper approximations based
on an indiscernibility relation determined by attributes. By us-
ing the concept of lower and upper approximations in rough
set theory, knowledge hidden in information systems may be
unraveled and expressed in the form of decision rules. As is
well known, indiscernibility relation on universe is the key con-
cept in constructing on the lower and upper approximations of
an approximated set using the Pawlak rough set theory. How-
ever, the indiscernibility relation on universe may be incapable
to many practical applications, particularly in handling real-
valued, symbolic attribute values and hybrid attribute values.
Facing these problems in application, several important and in-
teresting generalizations of Pawlak rough set model have been
established in the past few years, such as fuzzy rough set model
[31, 43, 65], general binary relation based rough set model [41, 44],
neighborhood rough set model, probabilistic rough set [59],
rough set over two universes [36, 44, 58], decision-theoretic rough
sets (DTRS) [60], dominance-based rough sets approach (DRAS)
[11, 45, 46], composite rough sets (CRS) [68], rough soft set
and soft rough set [70], and etc.

A common characteristic of both Pawlak rough set model
and all extension models is that the approximated set is usually
described by one single granularity (such as an indiscernibil-
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ity relation, tolerance relation, dominance relation or compat-
ible relation) on universe. From the point of view of granu-
lar computing, an indiscernibility relation on universe can be
regarded as a granularity, and then a partition (or a covering)
of the universe can be regarded as a granulation space. As
pointed out in [61], the single granular (or binary relation) on
universe used in the existing rough set models provide an effi-
cient approach to deal with the uncertainty of decision-making
problem and also limits the application of the models. For in-
stance [8, 28, 29, 33], in the practice of comprehensive evalu-
ation group decision making, the decision-makers often need
to acquire the evaluation results of all objects of universe with
respect to different evaluation indices based on their personal
preference. Then different decision-makers may select different
evaluation indices as the optimal combination to express their
preference evaluation. So, the preference evaluations related
to the optimal combination of the selected evaluation indices
given by different decision-makers are made of a multiple gran-
ularity structure of all objects of universe for the same decision-
making problem. For that reason, the existing rough set models
based on one single binary relation are incapable of handling
this type of decision problem.

To more widely apply the rough set theory in practical ap-
plications, Qian et al. [37 − 39] extended Pawlak’s single gran-
ularity rough set model to multigranulation rough set model.
So far multigranulation rough set [39] has become an attractive
topic in artificial intelligence and management science and has
attracted a broad range of studies from both theoretical and ap-
plication aspects [1, 4, 14, 18, 20−23, 25, 26, 40, 54−56, 61, 66, 69].
Detailed review about the existing studying of multigranulation
rough set theory is suggested to refer to Ref. [28, 29, 42]. Now
multigranulation rough set approach has proved to provide a
new kind of information fusion strategy compared to the single
granularity rough sets. With regard to some special information
systems, such as multi-source information systems, distributive
information systems, groups of intelligent agents and multiple
attribute group decision making, the existing single granularity
rough sets can not be used to deal with data from these informa-
tion systems and uncertainty decision making, but multigranu-
lation rough set can.

Though there has been many researches about various gen-
eralized multigranulation rough set models, there has less ef-
fort to study the multigranulation rough set over two universes.
Moreover, many of the existing multigranulation rough set mod-
els are focused on rough approximation of a crisp concept but
less effort to the study of rough approximation of a fuzzy con-
cept of universe. Meanwhile, some uncertainty decision mak-
ing problems could not be solved by the existing single granularity-
based rough set approaches over two universes. Let us consider
an example of multiple criteria group decision making problem
in management science: the decision making of medical diag-
nosis in clinics [39, 42]. In general, a symptom is an uncertainty
index of whether a disease may occur or not. Given a specific
patient in clinic, the patient may show many symptoms, just
as each disease could have many basic symptoms. Symptoms
and diseases belong to two different universes, although they
are interrelated with each other. Thus, uncertainty arises when

describing the interrelations between symptoms and diseases in
clinic. Therefore, two or more different universes are needed
when expressing the decision making problem of the medical
diagnosis in clinics. At the same time, the symptoms of the pa-
tient are usually described by a fuzzy set on the symptom set
in practice. Moreover, suppose there is a critically ill patient
in emergency department, in order to make a exactly diagno-
sis according to the symptoms for the critically ill patient, the
doctor could invite multiple related department experts such as
the surgeon, the physician and the urologist to make a consul-
tation and then gives a reasonable diagnosis decision making.
As is well known, the surgeon, the physician and the urologist
will present their opinions for the critically ill patient that which
disease the patient has based on the domain knowledge of them-
selves in the process of consultation. So, rough approximation
of a fuzzy concept by multiple granularity under the framework
of two different universes could provide a new way to handle
the aforementioned uncertainty decision making problem in re-
alty.

With reference to the requirement of the applications in prac-
tice, as well as the complement of the theoretical aspect of
multigranulation rough set, this paper mainly focuses on rough
approximation of a fuzzy concept in multigranulation (fuzzy)
approximation space over two universes, i.e., multigranulation
rough fuzzy set (fuzzy rough set) models over two universes.
We will define three types of multigranulation rough fuzzy set
(fuzzy rough set) based on a family of arbitrary (fuzzy) binary
relation over two universes, respectively. Moreover, we try to
make an attempt to build up a general framework of the decision
methodology based on multigranulation fuzzy rough set theory
over two universes.

The rest of this paper is organized as follows. Section 2 re-
views some basic concepts used in the following sections. In
Section 3, we investigate the theory of multigranulation rough
fuzzy set over two universes. Section 4 presents fuzzy rough set
on multigranulation fuzzy approximation space over two uni-
verses. In Section 5, we present an application of the multi-
granulation fuzzy rough set approach to multiple criteria group
decision making problem. At last, we conclude our research
and set out further research directions in Section 6.

2. Preliminaries

2.1. Fuzzy set and Pawlak rough set

Let U be a non-empty finite universe. A fuzzy set of uni-
verse U is defined by the mapping A(•) : U −→ [0, 1], where
the A(x) denotes the membership of the element x(x ∈ U) with
the fuzzy set A. We use F(U) stand for all fuzzy subsets of uni-
verse U.

For any A ∈ F(U), the r level set and strong r level set of A
will be denoted by Ar and Ar+, respectively. That is, Ar = {x ∈
U |A(x) ≥ r} and Ar+ = {x ∈ U |A(x) > r}, where r ∈ [0, 1], the
unit interval, A0 = U and A1+ = ∅.

Next, we introduce the concept of Pawlak rough set [36].
Let U be a non-empty finite universe and R be an equiv-

alence relation of U × U. The equivalence relation R induces
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a partition of U, denoted by [x]R or [x], and U/R = {[x]|x ∈
U} stands for the equivalence classes of x. Then (U,R) is the
Pawlak approximation space.

Let (U,R) be the Pawlak approximation space. For any X ⊆
U, the lower and upper approximations of X with respect to
(U,R) are defined as follows, respectively.

R(X) = {x ∈ U |[x] ⊆ X},
R(X) = {x ∈ U |[x] ∩ X , ∅}.
The lower approximation RX is the union of all elementary

sets which are the subset of X, and the upper approximation
RX is the union of all elementary sets which have a non-empty
intersection with X.

2.2. Rough set model over two universes

Next, we review the basic concepts of rough set model on
two universes. A detailed description of the model can be seen
in Wong et al. [52], Yao et al. [58] and Pei and Xu [36, 44].

Definition 2.1 Let U and V be two universes, and R be a
binary relation from U to V, i.e. a subset of U × V. R is said
to be compatible, or a compatibility relation, if, for any u ∈ U;
v ∈ V, there exist t ∈ V and s ∈ U such that (u, t), (s, v) ∈ R.

Definition 2.2 Let U, V be two universes, R be a compati-
bility relation from U to V. The mapping F : U → 2V , u 7→ {v ∈
V |(u, v) ∈ R} is called the mapping induced by R.

Obviously, the above-defined binary relation R can uniquely
determine the mapping F, and vice versa. Then the rough set
over two universes is defined as follows:

Let U and V be two universes, and R be a compatibility
relation from U to V. The ordered triple (U,V,R) is called a
(two-universe) approximation space. The lower and upper ap-
proximations of Y ⊆ V are, respectively, defined as follows:

Apr
F

(Y) = {x ∈ U |F(x) ⊆ Y},

AprF(Y) = {x ∈ U |F(x) ∩ Y , ∅}.
The ordered set-pair (Apr

F
(Y), AprF(Y)) is called a gener-

alized rough set, and the ordered operator-pair (Apr
F
, AprF) is

an interval structure. Particularly, Y is called definable with
(U,V,R) if Apr

F
(Y) = AprF(Y). Otherwise, Y is an indefinable

set. Meanwhile, the model presented above is called rough set
over two universes.

The set Apr
F

(Y) consists of elements of U which are only

compatible with those elements in Y,while the set AprF(Y) con-
sists of elements of U which are compatible with at least one
element in Y. Therefore, the former can be interpreted as the
pessimistic description and the latter as the optimistic descrip-
tion of Y.

2.3. Multigranulation rough set model

Definition 2.3 [37] Let K = (U,R) be a knowledge base and
P,Q be two equivalence relations of universe U. For any X ⊆ U,
the lower and upper approximations of X with respect to P and
Q are defined as follows, respectively.

XP+Q = {x ∈ U |[x]P ⊆ X ∨ [x]Q ⊆ X},

X
P+Q

= (Xc
P+Q)c (where Xc stands for the complementary

of X).

Generally speaking, we call X definable with respect to equiv-
alence relation P and Q if XP+Q = X

P+Q
; Otherwise, X is a

rough set with respect to K = (U,R). Moreover, it is easy to
know that any one equivalence relation will form a partition of
universe U , i.e., any one equivalence relation of the universe
forms a granularity structure of the universe of discourse. So,
we call X the multigranulation rough set when XP+Q , X

P+Q

because the granularity structure of the universe U is generated
by two different equivalence relations P and Q.

Definition 2.4 [42] Let U,V be two non-empty finite uni-
verses. < is a family binary compatibility relation between U
and V induced by binary mapping family Fi : U → 2V , u 7→
{v ∈ V |(u, v) ∈ Ri}, Ri ∈ <, i = 1, 2, · · · ,m. We call triple or-
dered set (U,V,<) the multigranulation approximation space
over two universes.

It can be easily seen that the multigranulation approxima-
tion space (U,V,<) will degenerate into the approximation space
over two universes (U,V,R) if there exists only one binary map-
ping F on universe U and V. So, the concept of multigranulation
approximation space is a natural generalization of the approxi-
mation space over two universes.

Definition 2.5 [50] We call fuzzy subset R ∈ F(U × V) the
binary fuzzy relation from U to V. R(x, y) is the related degree
between elements x and y, where (x, y) ∈ U × V. Particularly,
for any x ∈ U, R is called serial fuzzy binary relation from U to
V if there exists element y ∈ V and satisfies R(x, y) = 1.

Definition 2.6 Let U,V be two non-empty finite universes.
R is a family binary fuzzy relation between U and V, Ri ∈

F(U × V) and Ri ∈ R, i = 1, 2, · · · ,m. We call triple ordered set
(U,V,R) the multigranulation fuzzy approximation space over
two universes.

3. Multigranulation rough fuzzy set over two universes

In this section, we will systematically discuss the rough ap-
proximation of a fuzzy concept with respect to multiple granu-
larity between two different universes. Under the framework of
two universes, we will present the optimistic multigranulation
rough set, pessimistic multigranulation rough set and α vari-
able precision multigranulation rough set over multigranulation
(fuzzy) approximation space over two universes, respectively.

This section considers rough approximation of a fuzzy con-
cept with respect to multigranulation approximation space. We
will give three different multigranulation rough fuzzy set mod-
els over approximation space based on the corresponding deci-
sion making background of management science, respectively.

3.1. Optimistic multigranulation rough fuzzy set over two uni-
verses

The idea of optimistic multigranulation rough set reflects
the decision making of risk preferring decision-maker in prac-
tice of management science [42]. Generally speaking, in the
practice of decision making of management science, there are
many non-determined decision making problems due to the dif-
ficult structure of the decision making problem itself, the com-
plexity of the decision making environment and the inaccuracy
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and incompleteness available information. Also, different pat-
terns of decision making occur because of the different risk
preferences of decision-makers. For instance, consider a de-
cision making problem involving a portfolio investment with
a fuzzy decision making object. In this case, risk preferring
decision-makers may select an investment project that does not
satisfy the pre-determined investment criteria with respect to all
features of the project. The model of optimistic multigranula-
tion rough fuzzy set over two universes can depict this kind of
non-determined decision problem with a fuzzy decision mak-
ing object. Meanwhile, the lower and upper approximations of
this model can be interpreted as a kind of generalized risk de-
cision rule in traditional risk decision making with uncertainty
[42, 46].

Let (U,V,<) be multigranulation approximation space over
two universes. For any A ∈ F(V). The optimistic lower approxi-

mation<O∑m
i=1 Ri

(A) and optimistic upper approximation<
O∑m

i=1 Ri
(A)

of fuzzy set A in (U,V,<) are defined as follows, respectively.
<

O∑m
i=1 Ri

(A)(x) = min{A(y)|y ∈
∨m

i=1 Fi(x), y ∈ V}, x ∈ U;

<
O∑m

i=1 Ri
(A)(x) = max{A(y)|y ∈

∨m
i=1 Fi(x), y ∈ V}, x ∈ U.

Where
∨m

i=1 Fi(x) = F1(x) ∨ F2(x) ∨ · · · ∨ Fm(x) and then
y ∈ F1(x)∨F2(x) means that y ∈ F1(x) or y ∈ F2(x).Meanwhile,
the minimum and maximum become inf and sup when universe
U and V are infinite set.

It is easy to know that <O∑m
i=1 Ri

(A) and <
O∑m

i=1 Ri
(A) are two

fuzzy sets of universe U. Furthermore, A is called a definable
fuzzy set on multigranulation approximation space over two

universes (U,V,<) when <O∑m
i=1 Ri

(A) = <
O∑m

i=1 Ri
(A). Otherwise,

we call the set-pair (<O∑m
i=1 Ri

(A),<
O∑m

i=1 Ri
(A)) the optimistic multi-

granulation rough fuzzy set over two universes.
In fact, from the point of view of risk decision making with

uncertainty, the lower approximation<O∑m
i=1 Ri

(A) can be regarded

as the ” min−max ” rule and the upper approximation<
O∑m

i=1 Ri
(A)

can be regarded as the ” max−max ” rule. So, the upper ap-
proximation of any fuzzy set with respect to multigranulation
approximation space over two universes is the type of optimistic
decision model in traditional risk decision making with uncer-
tainty.

Remark 3.1 Let (U,V,<) be multigranulation approxima-
tion space over two universes. For any A ∈ F(V). Then

(1) If U = V, then Ri ∈ <, i = 1, 2, · · · ,m degenerates
into arbitrary binary relation induced by binary mapping Fi(i =

1, 2, · · · ,m) of universe U. Then optimistic multigranulation rough

fuzzy set over two universes (<O∑m
i=1 Ri

(A),<
O∑m

i=1 Ri
(A)) degener-

ates into optimistic multigranulation rough fuzzy set on single
universe [58].

(2) If R1 = R2 = · · · = Rm, there are
<

O∑m
i=1 Ri

(A)(x) = min{A(y)|y ∈ Fi(x), i = 1, 2, · · · ,m, x ∈
U, y ∈ V} = Ri(A),

<
O∑m

i=1 Ri
(A)(x) = max{A(y)|y ∈ Fi(x), i = 1, 2, · · · ,m, x ∈

U, y ∈ V} = Ri(A).

Then, (<O∑m
i=1 Ri

(A),<
O∑m

i=1 Ri
(A)) degenerates into rough fuzzy

set over two universes [37, 38]. Furthermore, (<O∑m
i=1 Ri

(A),<
O∑m

i=1 Ri
(A))

degenerates into rough fuzzy set based on general binary rela-
tion over the single universe when U = V [42].

(3) If A is a crisp set of the universe V, there is A(y) = 0 or
A(y) = 1 for any y ∈ V, then
<

O∑m
i=1 Ri

(A) = {x ∈ U |F1(x) ⊆ A∨F2(x) ⊆ A∨ · · ·∨Fm(x) ⊆
A},
<

O∑m
i=1 Ri

(A) = <
O∑m

i=1 Ri
(Ac)c = {x ∈ U |F1(x)∩A , ∅∧F2(x)∩

A , ∅ ∧ · · · ∧ Fm(x) ∩ A , ∅}.
Therefore, the (<O∑m

i=1 Ri
(A),<

O∑m
i=1 Ri

(A)) degenerates into the
multigranulation rough set over two universes [41]. Further-

more, the (<O∑m
i=1 Ri

(A),<
O∑m

i=1 Ri
(A)) degenerates into the multi-

granulation rough set on the single universe [31] when U = V
and the general binary relation-based rough set of the single
universe [35] when there are U = V and R1 = R2 = · · · = Rm.

It can be easily seen that multigranulation rough fuzzy set
over two universes is a combination of the existing rough fuzzy
set [53] and multigranulation rough set over two universes [42].
That is, both the rough fuzzy set and multigranulation rough
set over two universes are the special case of multigranulation
rough fuzzy set over two universes. So, the multigranulation
rough fuzzy set over two universes could deal with more com-
plexity decision making problems with inaccuracy and incom-
pleteness available information in management science. Mean-
while, we have the following results.

Proposition 3.1 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V) and x ∈ U,
there are

(1)<O∑m
i=1 Ri

(A)(x) ≤
∨m

i=1 Ri(A)(x),

(2)<
O∑m

i=1 Ri
(A)(x) ≥

∨m
i=1 Ri(A)(x).

Proof. (1) For any x ∈ U and y ∈ V, there is Fi(x) ⊆∨m
i=1 Fi(x). Then we have Ri(A)(x) = min{A(y)|y ∈ Fi(x)} ≥

min{A(y)|y ∈ ∨m
i=1Fi(x)} = <

O∑m
i=1 Ri

(A)(x).

So,<O∑m
i=1 Ri

(A)(x) ≤
∨m

i=1 Ri(A)(x) holds.
(2) For any x ∈ U and y ∈ V, because Fi(x) ⊆

∨m
i=1 Fi(x),

we have Ri(A)(x) = max{A(y)|y ∈ Fi(x)} ≤ max{A(y)|y ∈

∨m
i=1Fi(x)} = <

O∑m
i=1 Ri

(A)(x).

So,<
O∑m

i=1 Ri
(A)(x) ≥

∨m
i=1 Ri(A)(x) holds.

As is well known, the concept of the level set of a fuzzy
set provides an effective method to transform a fuzzy set into
a crisp set. At the same time, the decomposition theorem of
Zadeh fuzzy set theory [53] gives the method how to construct
a fuzzy set by using a family of crisp set on universe. In the fol-
lowing, we investigate the rough approximation of the level set
of a fuzzy concept about multigranulation approximation space
over two universes, and then present another way to construct
the optimistic multigranulation rough fuzzy set over two uni-
verses.

Definition 3.1 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V), the lower
and upper approximations of r(r ∈ [0, 1]) level set of A are de-
fined as follows, respectively.

4



<
O∑m

i=1 Ri
(Ar) = {x ∈ U |F1(x) ⊆ Ar ∨ F2(x) ⊆ Ar ∨ · · · ∨

Fm(x) ⊆ Ar},

<
O∑m

i=1 Ri
(Ar) = <

O∑m
i=1 Ri

(Ac
r)c

= {x ∈ U |F1(x) ∩ Ar , ∅ ∧ F2(x) ∩ Ar , ∅ ∧
· · · ∧ Fm(x) ∩ Ar , ∅}.

It is easy to know that both {<O∑m
i=1 Ri

(Ar)|r ∈ [0, 1]} and

{<
O∑m

i=1 Ri
(Ar)|r ∈ [0, 1]} are binary nest set over universe U with

any fuzzy set A on universe V. Then we can obtain two new
fuzzy sets over universe U based on this two binary nest sets
by using the decomposition theorem of Zadeh fuzzy set theory
[53] as follows:
<
′O∑m

i=1 Ri
(A)(x) = ∨{r|x ∈ <O∑m

i=1 Ri
(Ar)}

= ∨{r|F1(x) ⊆ Ar ∨ · · · ∨ Fm(x) ⊆ Ar},

<
′O∑m

i=1 Ri
(A)(x) = ∨{r|x ∈ <

O∑m
i=1 Ri

(Ar)}
= ∨{r|F1(x)∩Ar , ∅∧F2(x)∩Ar , ∅∧· · ·∧

Fm(x) ∩ Ar , ∅}.
Theorem 3.1 Let (U,V,<) be multigranulation approxima-

tion space over two universes. For any A ∈ F(V) and x ∈ U,
there are

(1)<O∑m
i=1 Ri

(A)(x) = <
′O∑m

i=1 Ri
(A)(x),

(2)<
O∑m

i=1 Ri
(A)(x) = <

′O∑m
i=1 Ri

(A)(x).

Proof. (1) Suppose r0 = <
′O∑m

i=1 Ri
(A)(x) for any x ∈ U. Then

there exists Fi(i = 1, 2, · · · ,m) satisfies Fi(x) ⊆ Ar0 . This im-
plies that A(y) ≥ r0 for any y ∈ V and

∧
y∈Fi(x) A(y) ≥ r0. Fur-

thermore, there is min{A(y)|y ∈ ∨m
i=1Fi(x), y ∈ V} ≥ r0, i.e.,

<
O∑m

i=1 Ri
(A)(x) ≥ r0.

So, we prove<O∑m
i=1 Ri

(A)(x) ≥ <
′O∑m

i=1 Ri
(A)(x).

On the other hand, suppose r0 = <
O∑m

i=1 Ri
(A)(x) for any

x ∈ U. There exists Fi(i = 1, 2, · · · ,m) satisfies min{A(y)|y ∈
∨m

i=1Fi(x), y ∈ V} = r0. This implies A(y) ≥ r0 for any y ∈ V,
i.e., y ∈ Fi(x) ⊆ Ar0 (i = 1, 2, · · · ,m). By the definition of
<
′O∑m

i=1 Ri
(A), there is<

′O∑m
i=1 Ri

(A)(x) ≥ r0.

So, we prove<O∑m
i=1 Ri

(A)(x) ≤ <
′O∑m

i=1 Ri
(A)(x).

Hence, we prove that<O∑m
i=1 Ri

(A)(x) = <
′O∑m

i=1 Ri
(A)(x) for any

x ∈ U holds.
It is similar to prove that <

O∑m
i=1 Ri

(A)(x) = <
′O∑m

i=1 Ri
(A)(x)

holds.
Theorem 3.1 not only presents another way to construct the

lower and upper approximations for optimistic multigranula-
tion rough fuzzy set but also interprets the relationship with the
optimistic multigranulation rough set over two universes [42].

We then investigate the relationship between the level set of
a fuzzy concept and its lower and upper approximations with
respect to multigranulation approximation space over two uni-
verses.

Let (U,V,<) be multigranulation approximation space over
two universes. For any A ∈ F(V), 0 < β, α ≤ 1. We define
<

O∑m
i=1 Ri

(A)α = {x ∈ U |<O∑m
i=1 Ri

(A)(x) ≥ α}, and

<
O∑m

i=1 Ri
(A)β = {x ∈ U |<

O∑m
i=1 Ri

(A)(x) ≥ β}
the α level set and β level set of the lower and upper approx-
imations of A with respect to (U,V,<), respectively. Here the

way of selection the thresholds α and β is same to the method
given by Wu and Zhang [53].

By this definition, the relationship between the level set of a
fuzzy set and its lower and upper approximations about multi-
granulation approximation space over two universes are as fol-
lows.

Proposition 3.2 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V), 0 < β ≤
α ≤ 1. We have

(1)<O∑m
i=1 Ri

(A)α ⊇ <
O∑m

i=1 Ri
(Aα);

(2)<
O∑m

i=1 Ri
(A)β ⊇ <

O∑m
i=1 Ri

(Aβ);

(3)<O∑m
i=1 Ri

(Aα) ⊆ <
O∑m

i=1 Ri
(Aα);

(4)<O∑m
i=1 Ri

(A)α ⊆ <
O∑m

i=1 Ri
(A)β.

Proof. (1) For any x ∈ U, and x ∈ <O∑m
i=1 Ri

(Aα), there exists
Fi(i = 1, 2, · · · ,m) and satisfies

∨m
i=1 Fi(x) ⊆ Aα. Then, for any

y ∈ V, there is y ∈
∨m

i=1 Fi(x) ⊆ Aα, i.e., A(y) ≥ α. This implies
min A(y) ≥ α for any y ∈

∨m
i=1 Fi(x). So, <O∑m

i=1 Ri
(A)(x) ≥ α,

i.e., x ∈ <O∑m
i=1 Ri

(A)α.

This proves<O∑m
i=1 Ri

(A)α ⊇ <
O∑m

i=1 Ri
(Aα).

(2) can be proved with the similar way of (1).
(3) and (4) can be derived directly by the definitions.
In what follows, we present the approximate precision of

optimistic multigranulation rough fuzzy set over two universes.
Definition 3.2 Let (U,V,<) be multigranulation approxi-

mation space over two universes. For any A ∈ F(V), 0 < β ≤
α ≤ 1. Then the accuracy and roughness of A about multigran-
ulation approximation space over two universes are as follows:

ρO
A (α, β) =

|<
O∑m

i=1 Ri
(A)α|

|<
O∑m

i=1 Ri
(A)β|

,

σO
A (α, β) = 1 −

|<
O∑m

i=1 Ri
(A)α|

|<
O∑m

i=1 Ri
(A)β|

= 1 − ρO
A (α, β).

In particular, we convention that ρO
A (α, β) = 1 when there is

<
O∑m

i=1 Ri
(A)β = ∅.

It is easy to know the method of defining the accuracy of
any target set in multigranulation approximation space over two
universes is similar to the general relation-based rough fuzzy set
[42]. Furthermore, the following properties are clear.

Proposition 3.3 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V) and x ∈ U,
0 < β ≤ α ≤ 1. Then

(1) 0 ≤ ρO
A (α, β) ≤ 1, 0 ≤ σO

A (α, β) ≤ 1;
(2) ρO

A (α, β) is non-increasing for α and non-decreasing for
parameter β;

(3) σO
A (α, β) is non-decreasing for α and non-increasing for

parameter β.
Proposition 3.4 Let (U,V,<) be multigranulation approx-

imation space over two universes. For any A, B ∈ F(V) and
x ∈ U, 0 < β ≤ α ≤ 1. Then

(1) ρO
A∪B(α, β)|<

O∑m
i=1 Ri

(A)β ∪<
O∑m

i=1 Ri
(B)β| ≥
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ρO
A (α, β)|<

O∑m
i=1 Ri

(A)β| + ρO
B |<

O∑m
i=1 Ri

(B)β| −ρO
A∩B(α, β)

|<
O∑m

i=1 Ri
(A)β ∩<

O∑m
i=1 Ri

(B)β|,

(2) σO
A∪B(α, β)|<

O∑m
i=1 Ri

(A)β ∪<
O∑m

i=1 Ri
(B)β| ≤

σO
A (α, β)|<

O∑m
i=1 Ri

(A)β| + σO
B |<

O∑m
i=1 Ri

(B)β| −σO
A∩B(α, β)

|<
O∑m

i=1 Ri
(A)β ∩<

O∑m
i=1 Ri

(B)β|.
Proof. The proof are similar to the Ref. [36].
Proposition 3.4 reveals the relationship between the inter-

section and union of the accuracy and roughness of any two
fuzzy concepts with respect to multigranulation approximation
space over two universes. In order to verify the validity of lower
and upper approximations of optimistic multigranulation rough
fuzzy set over two universes, consider a numerical example as
follows.

Example 3.1 Let U = {x1, x2, x3} and V = {y1, y2, y3} be
two non-empty universes. Ri(i = 1, 2, 3) are binary relations in-
duced by binary compatibility relations Fi : U 7→ V(i = 1, 2, 3).
The elements of Ri(i = 1, 2, 3) are given as follows, respec-
tively.

F1(x1) = {y1, y2}, F1(x2) = {y2}, F1(x3) = {y1, y3},
F2(x1) = {y2}, F2(x2) = {y3}, F2(x3) = {y1};
F3(x1) = {y2, y3}, F3(x2) = {y3}, F3(x3) = {y1, y3}.
Suppose the fuzzy set A on universe V as:

A =
0.4
y1

+
0.6
y2

+
0.9
y3
.

We calculate the optimistic multigranulation lower and up-
per approximations of A as follows:
<

O∑3
i=1 Ri

(A)(x1) = min{A(y1), A(y2), A(y3)}
= {0.4, 0.6, 0.9} = 0.4,

<
O∑3

i=1 Ri
(A)(x1) = max{A(y1), A(y2), A(y3)}

= {0.4, 0.6, 0.9} = 0.9.
Similarly, we can calculate that

<
O∑3

i=1 Ri
(A)(x2) = 0.6, <

O∑3
i=1 Ri

(A)(x2) = 0.9.

<
O∑3

i=1 Ri
(A)(x3) = 0.4, <

O∑3
i=1 Ri

(A)(x3) = 0.9.
So, there are

<
O∑m

i=1 Ri
(A) =

0.4
x1

+
0.6
x2

+
0.4
x3

and
<

O∑m
i=1 Ri

(A) =
0.9
x1

+
0.9
x2

+
0.9
x3
.

Taking α = 0.6 and β = 0.5. We have

ρO
A (0.6, 0.5) =

|<
O∑m

i=1 Ri
(A)0.6|

|<
O∑m

i=1 Ri
(A)0.5|

=
1
3
,

σO
A (0.6, 0.5) =

2
3
.

From Definition 2.4, for any two non-empty finite universes
U and V, < is a family binary compatibility relation between
U and V induced by binary mapping family Fi : U → 2V , u 7→
{v ∈ V |(u, v) ∈ Ri}, Ri ∈ <, i = 1, 2, · · · ,m. Then

⋃m
i=1 Fi and

⋂m
i=1 Fi (i = 1, 2, · · · ,m) also are binary mappings between U

and V, i.e., both
⋃m

i=1 Fi and
⋂m

i=1 Fi : U → 2V , u 7→ {v ∈
V |(u, v) ∈

⋃m
i=1 Ri}, and vice versa.

In fact, it is easy to know that the operations of
⋃m

i=1 Fi and⋂m
i=1 Fi define two new binary relation between universe U and

V, respectively. Meanwhile, the
∨m

i=1 Fi means that the union
operation of m binary relations between universe U and V. That
is to say, the operations of

⋃m
i=1 Fi and

⋂m
i=1 Fi represent two

new subsets of universe V, respectively. The
∨m

i=1 Fi represents
a family of subsets on the universe V. We use an example to
illustrate the differences between

∨m
i=1 Fi(x) and

⋃m
i=1 Fi(x) in

the follows.
Example 3.2 (Continued from Example 3.1) According

to the Example 3.1, we have the following results:⋃m
i=1 Fi(x1) = F1(x1) ∪ F2(x1) ∪ F3(x1) = {y1, y2, y3},⋃m
i=1 Fi(x2) = F1(x2) ∪ F2(x2) ∪ F3(x2) = {y2, y3},⋃m
i=1 Fi(x3) = F1(x3) ∪ F2(x3) ∪ F3(x3) = {y1, y3}.

At the same time, we have∨m
i=1 Fi(x1) = F1(x1) ∨ F2(x1) ∨ F3(x1)

= {y1, y2} ∨ {y2} ∨ {y2, y3},∨m
i=1 Fi(x2) = F1(x2)∨ F2(x2)∨ F3(x2) = {y2} ∨ {y3} ∨ {y3},∨m
i=1 Fi(x3) = F1(x3) ∨ F2(x3) ∨ F3(x3)

= {y1, y3} ∨ {y1} ∨ {y1, y3}.
That is, there are⋃m

i=1 Fi(x1) = {y1, y2, y3},⋃m
i=1 Fi(x2) = {y2, y3},⋃m
i=1 Fi(x3) = {y1, y3},

and∨m
i=1 Fi(x1) = {{y1, y2}, {y2}, {y2, y3}},∨m
i=1 Fi(x2) = {{y2}, {y3}, {y3}},∨m
i=1 Fi(x3) = {{y1, y3}, {y1}, {y1, y3}}.

Furthermore, for any y ∈
⋃m

i=1 Fi(x2) means that y ∈ {y2, y3} =⋃m
i=1 Fi(x2) and y ∈

∨m
i=1 Fi(x2) means that y ∈ F1(x2) or y ∈

F2(x2) or y ∈ F3(x2).
Then, Based on this results, we discuss the relationship for

rough approximation of a fuzzy set between
⋃m

i=1 Fi,
⋂m

i=1 Fi

and
∨m

i=1 Fi.
Definition 3.3 Let (U,V,R) be multigranulation approxima-

tion space over two universes. < is a family binary compatibil-
ity relation between U and V induced by binary mapping family
Fi : U → 2V , u 7→ {v ∈ V |(u, v) ∈ Ri}, Ri ∈ <, i = 1, 2, · · · ,m.
For any A ∈ F(V), the lower approximation R⋃m

i=1 Ri
(A) and up-

per approximation R⋃m
i=1 Ri (A) of A with respect to approxima-

tion space over two universes (U,V,R) are defined as follows,
respectively.

R⋃m
i=1 Ri

(A)(x) = min{A(y)|y ∈
⋃m

i=1 Fi(x), y ∈ V}, x ∈ U;

R⋃m
i=1 Ri (A)(x) = max{A(y)|y ∈

⋃m
i=1 Fi(x), y ∈ V}, x ∈ U.

By the definition of R⋃m
i=1 Ri

(A) and R⋃m
i=1 Ri (A), the following

assertions are clear.
Proposition 3.5 Let (U,V,<) be multigranulation approxi-

mation space over two universes. For any A ∈ F(V) and x ∈ U,
there are

(1)<O∑m
i=1 Ri

(A)(x) ≥ R⋃m
i=1 Ri

(A)(x),

(2)<
O∑m

i=1 Ri
(A)(x) ≤ R⋃m

i=1 Ri (A)(x),
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Proof. It is easy to know that there is y ∈ ∨m
i=1Fi(x) ⇒ y ∈

∪m
i=1Fi(x) for any y ∈ V. Then the results in (1) and (2) are clear.

Proposition 3.6 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V) and x ∈ U,
there are

(1)<O∑m
i=1 Ri

(A)(x) ≤ R⋂m
i=1 Ri

(A)(x),

(2)<
O∑m

i=1 Ri
(A)(x) ≥ R⋂m

i=1 Ri (A)(x),
Proof. It is easy to know that there is y ∈ ∩m

i=1Fi(x) ⇒ y ∈
∨m

i=1Fi(x) for any y ∈ V. Then the results in (1) and (2) are clear.
Moreover, it is easy to verify that the strict inequalities are

established under the condition of
⋂m

i=1 Fi ⊂
∨m

i=1 Fi. This can
be verified by the follow example.

Example 3.3 (Continued from Example 3.1) From exam-
ple 3.1, we have the following results:⋂m

i=1 Fi(x1) = {y1, y2} ∩ {y2} ∩ {y2, y3}{y2} = {y2},∨m
i=1 Fi(x1) = {y1, y2} ∨ {y2} ∨ {y2, y3}.

That is,∨m
i=1 Fi(x1) = {{y1, y2}, {y2}, {y2, y3}}.

At the same time, it is to verify that
⋂m

i=1 Fi(x1) ⊂
∨m

i=1 Fi(x1).
Furthermore, we have
<

O∑3
i=1 Ri

(A)(x1) = min{A(y1), A(y2), A(y3)} = 0.4,

<
O∑3

i=1 Ri
(A)(x1) = max{A(y1), A(y2), A(y3)} = 0.9,

and
R⋂m

i=1 Ri
(A)(x) = min{A(y2)} = 0.6,

R⋂m
i=1 Ri (A)(x) = max{A(y2)} = 0.6.

So, there are
<

O∑3
i=1 Ri

(A)(x1) = 0.4 < R⋂m
i=1 Ri

(A)(x) = min{A(y2)} = 0.6,
and
<

O∑3
i=1 Ri

(A)(x1) = 0.9 > R⋂m
i=1 Ri (A)(x) = max{A(y2)} = 0.6.

This completes the example.
Meanwhile, we can prove the following properties for the

approximation operators of optimistic multigranulation rough
fuzzy set over two universes.

Theorem 3.2 Let (U,V,<) be multigranulation approxima-
tion space over two universes. For any A, B ∈ F(V). Then there
are

(1)<O∑m
i=1 Ri

(A) ⊆ <
O∑m

i=1 Ri
(A) ⊆ U,

(2)<O∑m
i=1 Ri

(Ac) = (<
O∑m

i=1 Ri
(A))c,

<
O∑m

i=1 Ri
(Ac) = (<O∑m

i=1 Ri
(A))c,

(3) If A ⊆ B, then<O∑m
i=1

(A) ⊆ <O∑m
i=1

(B),

<
O∑m

i=1 Ri
(A) ⊆ <

O∑m
i=1 Ri

(B).
Theorem 3.3 Let (U,V,<) be multigranulation approxima-

tion space over two universes. For any A j ∈ F(V)( j = 1, 2, · · · , k).
Then there are

(1)<O∑m
i=1 Ri

(
⋂k

j=1 A j) ⊆
⋂k

j=1<
O∑m

i=1 Ri
(A j),

<
O∑m

i=1 Ri
(
⋃k

j=1 A j) ⊇
⋃k

j=1<
O∑m

i=1 Ri
(A j),

(2)<O∑m
i=1 Ri

(
⋃k

j=1 A j) ⊇
⋃k

j=1<
O∑m

i=1 Ri
(A j),

<
O∑m

i=1 Ri
(
⋂k

j=1 A j) ⊆
⋂m

j=1<
O∑m

i=1 Ri
(A j).

The proof of Theorem 3.2 and Theorem 3.3 can be directly
derived by the definition.

3.2. Pessimistic multigranulation rough fuzzy set over two uni-
verses

Similar to the optimistic multigranulation rough fuzzy set,
we also can systematically investigate the properties and the
relationship between pessimistic and variable precision multi-
granulation rough fuzzy set over two universes and the existing
rough set models.

Because there are the same way to discuss the properties
and the similar results for pessimistic and variable precision
multigranulation rough fuzzy set with optimistic multigranu-
lation rough fuzzy set over two universes, then we only present
the background of management science and the definitions for
these two models.

We first establish pessimistic multigranulation rough fuzzy
set model over two universes.

Pessimistic multigranulation rough fuzzy set model describes
the decision making process of conservative type decision-makers
or risk-averse decision-makers. For example, given an optimal
alternative selecting decision making of multiple criteria deci-
sion making problem, a risk-averse decision-maker will select
those alternatives that satisfy all considered criteria as the opti-
mal selection decision making. Actually, many decision mak-
ing problems in practice of management science such as medi-
cal diagnosis, pattern recognition and emergency decision mak-
ing of unconventional emergency events require that the opti-
mal decision making results must be satisfy all required condi-
tions because the characteristic of the decision making problem
itself. These types of decision making problems only can be
depicted by using pessimistic multigranulation rough fuzzy set
model when the decision making objects are a fuzzy concept.
So, research on pessimistic multigranulation rough fuzzy set is
necessity and valuable.

Definition 3.4 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V). The pes-
simistic lower approximation<P∑m

i=1 Ri
(A) and pessimistic upper

approximation <
P∑m

i=1 Ri
(A) of fuzzy set A in (U,V,<) are de-

fined as follows, respectively.
<

P∑m
i=1 Ri

(A)(x) = min{A(y)|y ∈
∧m

i=1 Fi(x), y ∈ V}, x ∈ U;

<
P∑m

i=1 Ri
(A)(x) = max{A(y)|y ∈

∧m
i=1 Fi(x), y ∈ V}, x ∈ U.

The minimum and maximum become inf and sup when uni-
verse U and V are infinite set. Where

∧m
i=1 Fi(x) = F1(x) ∧

F2(x) ∧ · · · ∧ Fm(x) and then y ∈ F1(x) ∧ F2(x) means that
y ∈ F1(x) and y ∈ F2(x).

It is easy to know that <P∑m
i=1 Ri

(A) and <
P∑m

i=1 Ri
(A) are two

fuzzy sets of universe U. Furthermore, A is called a definable
fuzzy set on multigranulation approximation space over two

universes (U,V,<) when <P∑m
i=1 Ri

(A) = <
P∑m

i=1 Ri
(A). Otherwise,

we call the set-pair (<P∑m
i=1 Ri

(A),<
P∑m

i=1 Ri
(A)) pessimistic multi-

granulation rough fuzzy set over two universes.
Meanwhile, from the point of view of risk decision mak-

ing with uncertainty, the lower approximation <P∑m
i=1 Ri

(A) can
be regarded as the ” min−min ” rule and the upper approxima-

tion <
P∑m

i=1 Ri
(A) can be regarded as the ” max−min ” rule. So,
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the upper approximation of any fuzzy set with respect to multi-
granulation approximation space over two universes is the type
of pessimistic decision model in traditional risk decision mak-
ing with uncertainty.

3.3. Variable precision multigranulation rough fuzzy set over
two universes

Let us re-consider the definition of optimistic multigranu-
lation rough fuzzy set and pessimistic multigranulation rough
fuzzy set over two universes. On the one hand, for any x ∈ U
and y ∈ V, if there exists at least one binary mapping Fi(x) in m
binary mappings Fi(i = 1, 2, · · · ,m) which satisfies y ∈ Fi(x),
then we can obtain the lower and upper approximations of a
given fuzzy set A of universe V with respect to multigranula-
tion approximation space over two universes. This constructs
the optimistic multigranulation rough fuzzy set model over two
universes. On the other hand, for any x ∈ U and y ∈ V, if and
only if all of the m binary mappings F1(x), F2(x), · · · , Fm(x) sat-
isfy y ∈ Fi(x)(i = 1, 2, · · · ,m), then we can obtain the lower and
upper approximations of a given fuzzy set A of universe V with
respect to multigranulation approximation space over two uni-
verses. This constructs the pessimistic multigranulation rough
fuzzy set model over two universes.

It can be easily seen that optimistic multigranulation rough
fuzzy set and pessimistic multigranulation rough fuzzy set over
two universes only consider two extremely cases of a decision
making process: completely risk-preferring and completely risk-
averse. Although both optimistic multigranulation rough fuzzy
set and pessimistic multigranulation rough fuzzy set over two
universes can deal with many uncertainty decision making prob-
lems in practice, there has a limitation for modelling the uncer-
tainty decision making problems because there only two ex-
tremely cases are considered in the existing two models. So,
an improved model of the established multigranulation rough
fuzzy set over two universes is needed. In the following, we
define a new version of the multigranulation rough fuzzy set
over two universes by introducing the precision parameter in the
existed models, i.e., variable precision multigranulation rough
fuzzy set model over two universes.

We first give the characteristic function for binary mapping
between two different universes.

Definition 3.5 Let (U,V,<) be multigranulation approxi-
mation space over two universes. F is any arbitrary binary map-
ping from universe U to V. For any x ∈ U and y ∈ V, the char-
acteristic function of F with respect to universe V is defined as
follows:

χF
V (y) =

{
1, y ∈ F(x);
0, Others;

By the definition of characteristic function for any binary
mapping from universe U to V, we present variable precision
multigranulation rough fuzzy set over two universes as follows.

Definition 3.6 Let (U,V,<) be multigranulation approxi-
mation space over two universes. For any A ∈ F(V). The vari-
able precision lower approximation <α∑m

i=1 Ri
(A) and upper ap-

proximation <
α∑m

i=1 Ri
(A) of fuzzy set A in (U,V,<) are defined

as follows, respectively.

<
α∑m

i=1 Ri
(A)(x) = min{A(y)|

∑m
i=1 χ

Fi
V (y)

m ≥ α, y ∈ V}, x ∈ U;

<
α∑m

i=1 Ri
(A)(x) = max{A(y)|

∑m
i=1 χ

Fi
V (y)

m ≥ α, y ∈ V}, x ∈ U.
The minimum and maximum become inf and sup when uni-

verse U and V are infinite set.
It is easy to know that <α∑m

i=1 Ri
(A) and <

α∑m
i=1 Ri

(A) are two
fuzzy sets of universe U. Furthermore, A is called a definable
fuzzy set on multigranulation approximation space over two
universes (U,V,<) when <α∑m

i=1 Ri
(A) = <

α∑m
i=1 Ri

(A). Otherwise,

we call (<α∑m
i=1 Ri

(A),<
α∑m

i=1 Ri
(A)) variable precision multigranu-

lation rough fuzzy set over two universes.
At the same time, based on the definition of variable pre-

cision multigranulation rough fuzzy set over two universes, the
following results are clear.

Remark 3.2 If α = 1
m , for any x ∈ U, then we have

<
α∑m

i=1 Ri
(A)(x) = min{A(y)|

∑m
i=1 χ

Fi
V (y)

m ≥ 1
m , y ∈ V}

= min{A(y)|
∑m

i=1 χ
Fi
V (y) ≥ 1, y ∈ V}

= min{A(y)|y ∈ ∨m
i=1Fi(x), y ∈ V}

= <
O∑m

i=1 Ri
(A)(x),

<
α∑m

i=1 Ri
(A)(x) = max{A(y)|

∑m
i=1 χ

Fi
V (y)

m ≥ 1
m , y ∈ V}

= max{A(y)|
∑m

i=1 χ
Fi
V (y) ≥ 1, y ∈ V}

= max{A(y)|y ∈ ∨m
i=1Fi(x), y ∈ V}

= <
O∑m

i=1 Ri
(A)(x).

So, there is

<
α∑m

i=1 Fi
(A) = <

O∑m
i=1 Fi

(A) and <
α∑m

i=1 Ri
(A) = <

O∑m
i=1 Ri

(A).

That is, variable precision multigranulation rough fuzzy set
degenerates into optimistic multigranulation rough fuzzy set
over two universes. Moreover, we also can verify that

<
α∑m

i=1 Fi
(A) = <

O∑m
i=1 Fi

(A) and <
α∑m

i=1 Ri
(A) = <

O∑m
i=1 Ri

(A)

hold for α ∈ (0, 1
m ].

Remark 3.3 If α = 1, for any x ∈ U, then we have

<
α∑m

i=1 Ri
(A)(x) = min{A(y)|

∑m
i=1 χ

Fi
V (y)

m ≥ 1, y ∈ V}

= min{A(y)|
∑m

i=1 χ
Fi
V (y) ≥ m, y ∈ V}

= min{A(y)|y ∈ ∧m
i=1Fi(x), x ∈ U, y ∈ V}

= <
P∑m

i=1 Ri
(A)(x),

<
α∑m

i=1 Ri
(A)(x) = max{A(y)|

∑m
i=1 χ

Fi
V (y)

m ≥ 1, y ∈ V}
= max{A(y)|

∑m
i=1 χ

Fi
V (y) ≥ m, y ∈ V}

= max{A(y)|y ∈ ∧m
i=1Fi(x), y ∈ V}

= <
P∑m

i=1 Ri
(A)(x).

So, there is

<
α∑m

i=1 Fi
(A) = <

P∑m
i=1 Fi

(A) and <
α∑m

i=1 Ri
(A) = <

P∑m
i=1 Ri

(A).

That is, variable precision multigranulation rough fuzzy set
degenerates into pessimistic multigranulation rough fuzzy set
over two universes.

8



From the point of view of risk decision making with uncer-
tainty, both the lower approximation <P∑m

i=1 Ri
(A) and upper ap-

proximation <
P∑m

i=1 Ri
(A) can be regarded as the weighted deci-

sion rule (or the equality possibility rule) in the theory of tradi-
tional risk decision making with uncertainty, which the weight
is 1

m for every criterion Fi(i = 1, 2, · · · ,m) and parameter α is
the expected precision for considered decision making prob-
lem. Meanwhile, it can be easily seen that variable precision
multigranulation rough fuzzy set model has included optimistic
and pessimistic multigranulation rough fuzzy set models over
two universes. That is, optimistic and pessimistic multigran-
ulation rough fuzzy set models are the special case of vari-
able precision multigranulation rough fuzzy set model over two
universes. Also, we can easy to know that variable precision
multigranulation rough fuzzy set model describes the gradu-
ally changing process from optimistic multigranulation rough
fuzzy set to pessimistic multigranulation rough fuzzy set over
two universes when the values of parameter α increasing in
interval [ 1

m , 1]. Therefore, the limitation which only consid-
ers the completely risk-preferring and completely risk-averse
cases for a decision making problem in optimistic and pes-
simistic multigranulation rough fuzzy set over two universes
is improved by introducing precision parameter α. Then vari-
able precision multigranulation rough fuzzy set models over
two universes can adapt to solve any kind of decision making
problems with uncertainty in management science.

So far there are several approaches to rough set approx-
imations in a multigranulation space and also many various
generalized multigranulation rough set models are established
[26, 28, 29, 42, 49, 61]. In the existing literatures, Yao and She
[61] analysis the existing studies of the multigranulation rough
set models and propose a unified framework to classify and
compare the existing studies about various multigranulation rough
set models. They classify two distinct directions/classes of re-
search on rough set approximations in multigranulation spaces.
One class constructs approximations based on the combined
granulations. The other class combines approximations from
individual granulations [61]. It is easy to know that the three
multigranulation rough set models defined in this section be-
long to the latter class. The aims of this paper is try to construct
a kind of multiple criteria group decision making model and
method by using the idea of multigranulation rough set theory.
In the defined three multigranulation models of this section, the
individual granulation is regarded as the criterion of the group
decision making problem. So, different decision-makers will
select different criteria flexibility according to their preferences
and domain knowledge in the process of group decision mak-
ing. This also is the advantage of the approach to multiple cri-
teria group decision making problems comparing to the tradi-
tional group decision making methods [2, 5, 16, 47]. Therefore,
the three models given in this paper are defined by the way of
constructing a family of approximations, i.e., the combination
of approximation from individual granulations.

4. Multigranulation fuzzy rough set over two universes

This section considers rough approximation of a fuzzy con-
cept with respect to multigranulation fuzzy approximation space.
We will give three different multigranulation fuzzy rough set
models over two universes based on the corresponding decision
making background of management science, respectively.

In Section 3, we discuss rough approximation of a fuzzy
concept in multigranulation approximation space over two uni-
verses which determined by a family of binary compatibility
mappings between universe U and V. However, there may be
a family of binary fuzzy relation over two different universes
because the increasing complexity of the socio-economic en-
vironment in reality. Then, multigranulation fuzzy approxima-
tion space over two universes arisen. This section will focus
on rough approximation of a fuzzy concept in multigranulation
fuzzy approximation space over two universes, then optimistic
multigranulation fuzzy rough set, pessimistic multigranulation
fuzzy rough set and two types of variable precision multigran-
ulation fuzzy rough sets on multigranulation fuzzy approxima-
tion space over two universes will be established in detail.

First, we present the definition of optimistic and pessimistic
multigranulation fuzzy rough set models over two universes,
respectively.

Definition 4.1 Let triple ordered set (U,V,R) be multigran-
ulation fuzzy approximation space over two universes. For any
A ∈ F(V) and x ∈ U, the optimistic lower approximation RO∑m

i=1 Ri
(A)

and optimistic upper approximation R
O∑m

i=1 Ri
(A) of A in (U,V,R)

are defined as follows, respectively.

RO∑m
i=1 Ri

(A)(x) =
m∨

i=1

∧
y∈V

[(1 − Ri(x, y)) ∨ A(y)],

R
O∑m

i=1 Ri
(A)(x) =

m∧
i=1

∨
y∈V

[Ri(x, y) ∧ A(y)].

Particular, the operator
∨

and
∧

become inf and sup when
universe U and V are infinite set.

It is easy to know that RO∑m
i=1 Ri

(A) and R
O∑m

i=1 Ri
(A) are two

fuzzy sets of universe U. Furthermore, A is called a definable
fuzzy set on multigranulation fuzzy approximation space over
two universes (U,V,R) when RO∑m

i=1 Ri
(A) = R

O∑m
i=1 Ri

(A). Other-

wise, we call (RO∑m
i=1 Ri

(A),R
O∑m

i=1 Ri
(A)) optimistic multigranula-

tion fuzzy rough set over two universes.
Definition 4.2 Let triple ordered set (U,V,R) be multigran-

ulation fuzzy approximation space over two universes. For any
A ∈ F(V) and x ∈ U, the pessimistic lower approximation
RP∑m

i=1 Ri
(A) and pessimistic upper approximation R

P∑m
i=1 Ri

(A) of
A in (U,V,R) are defined as follows, respectively.

RP∑m
i=1 Ri

(A)(x) =
m∧

i=1

∧
y∈V

[(1 − Ri(x, y)) ∨ A(y)],

R
P∑m

i=1 Ri
(A)(x) =

m∨
i=1

∨
y∈V

[Ri(x, y) ∧ A(y)].

Similarly, we call A is a definable fuzzy set on multigran-
ulation fuzzy approximation space over two universes (U,V,R)
when R∑m

i=1 Ri
(A) = R

P∑m
i=1 Ri

(A), and we call (RP∑m
i=1 Ri

(A),R
P∑m

i=1 Ri
(A))

pessimistic multigranulation fuzzy rough set over two universes
when RP∑m

i=1 Ri
(A) , R

P∑m
i=1 Ri

(A).
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Remark 4.1 If R is a family of binary compatibility relation
between U and V, ∀x ∈ U, then

RO∑m
i=1 Ri

(A)(x) =
m∨

i=1

∧
y∈V

[(1 − Ri(x, y)) ∨ A(y)]

=
∧

y∈
∨m

i=1 Fi(x)
A(y)

= <
O∑m

i=1 Ri
(A)(x),

R
O∑m

i=1 Ri
(A)(x) =

m∧
i=1

∨
y∈V

[Ri(x, y) ∧ A(y)] = R
O∑m

i=1 Ri
(Ac)(x)c

=
∨

y∈
∨m

i=1 Fi(x)
A(y)

= <
O∑m

i=1 Ri
(A)(x);

RP∑m
i=1 Ri

(A)(x) =
m∧

i=1

∧
y∈V

[(1 − Ri(x, y)) ∨ A(y)]

=
∧

y∈
∧m

i=1 Fi(x)
A(y)

= <
P∑m

i=1 Ri
(A)(x),

R
P∑m

i=1 Ri
(A)(x) =

m∨
i=1

∨
y∈V

[Ri(x, y) ∧ A(y)] = R
P∑m

i=1 Ri
(Ac)(x)c

=
∨

y∈
∧m

i=1 Fi(x)
A(y)

= <
P∑m

i=1 Ri
(A)(x).

That is, optimistic and pessimistic multigranulation fuzzy
rough set models degenerate into optimistic and pessimistic multi-
granulation rough fuzzy set models over two universes, respec-
tively. Therefore, we illustrate the relationship between multi-
granulation rough fuzzy set and multigranulation fuzzy rough
set over two universes: the optimistic and pessimistic multi-
granulation rough fuzzy sets are the special case of the opti-
mistic and pessimistic multigranulation fuzzy rough sets over
two universes.

Note that if R1 = R2 = · · · = Rm, then optimistic and pes-
simistic multigranulation fuzzy rough sets over two universes
will degenerate into fuzzy rough set over two universes [21, 56];
Furthermore, optimistic and pessimistic multigranulation fuzzy
rough sets over two universes will degenerate into the classical
fuzzy rough set on single universe [7, 21, 61, 68] when there are
R1 = R2 = · · · = Rm and U = V.

So, we establish the relationship between multigranulation
fuzzy rough set over two universes and the existing rough set
models, i.e., multigranulation fuzzy rough set is a natural exten-
sion of the existing rough set models. Moreover, the following
theorems characterize the relationship between optimistic and
pessimistic multigranulation fuzzy rough set and fuzzy rough
set over two universes [53].

Theorem 4.1 Let triple ordered set (U,V,R) be multigranu-
lation fuzzy approximation space over two universes. For any
A ∈ F(V), we have

(1) RO∑m
i=1 Ri

(A) =
m⋃

i=1
Ri(A), R

O∑m
i=1 Ri

(A) =
m⋂

i=1
Ri(A).

(2) RP∑m
i=1 Ri

(A) =
m⋂

i=1
Ri(A); R

P∑m
i=1 Ri

(A) =
m⋃

i=1
Ri(A).

Proof. It can be easily derived from Definition 4.1, 4.2 and
Definition 4 of Ref. [45].

By Definition 4.1 and 4.2, the following properties for the
approximation operators of optimistic and pessimistic multi-
granulation fuzzy rough sets over two universes are clear.

Theorem 4.2 Let triple ordered set (U,V,R) be multigranu-
lation fuzzy approximation space over two universes. For any
A, B ∈ F(V), and A ⊆ B, we have

(1) RO∑m
i=1 Ri

(A),R
O∑m

i=1 Ri
(A) ⊆ U, RP∑m

i=1 Ri
(A),R

P∑m
i=1 Ri

(A) ⊆ U,

(2) RO∑m
i=1 Ri

(Ac) = (R
O∑m

i=1 Ri
(A))c, RP∑m

i=1 Ri
(Ac) = (R

P∑m
i=1 Ri

(A))c,

(3) R
O∑m

i=1 Ri
(Ac) = (RO∑m

i=1 Ri
(A))c, R

P∑m
i=1 Ri

(Ac) = (RP∑m
i=1 Ri

(A))c,

(4) RO∑m
i=1

(A) ⊆ RO∑m
i=1

(B), RP∑m
i=1

(A) ⊆ RP∑m
i=1

(B),

R
O∑m

i=1 Ri
(A) ⊆ R

O∑m
i=1 Ri

(B), R
P∑m

i=1 Ri
(A) ⊆ R

P∑m
i=1 Ri

(B).
Theorem 4.3 Let (U,V,R) be multigranulation approxima-

tion space over two universes. For any A j ∈ F(V)( j = 1, 2, · · · , k).
Then there are

(1) RO∑m
i=1 Ri

(
⋂k

j=1 A j) ⊆
⋂k

j=1 RO∑m
i=1 Ri

(A j),

RP∑m
i=1 Ri

(
⋂k

j=1 A j) ⊆
⋂k

j=1 RP∑m
i=1 Ri

(A j),

(2) R
O∑m

i=1 Ri
(
⋃k

j=1 A j) ⊇
⋃k

j=1 R
O∑m

i=1 Ri
(A j),

R
P∑m

i=1 Ri
(
⋃k

j=1 A j) ⊇
⋃k

j=1 R
P∑m

i=1 Ri
(A j),

(3) RO∑m
i=1 Ri

(
⋃k

j=1 A j) ⊇
⋃k

j=1 RO∑m
i=1 Ri

(A j),

RP∑m
i=1 Ri

(
⋃k

j=1 A j) ⊇
⋃k

j=1 RP∑m
i=1 Ri

(A j),

(4) R
O∑m

i=1 Ri
(
⋂k

j=1 A j) ⊆
⋂m

j=1 R
O∑m

i=1 Ri
(A j),

R
P∑m

i=1 Ri
(
⋂k

j=1 A j) ⊆
⋂m

j=1 R
P∑m

i=1 Ri
(A j).

The proof of Theorem 4.2 and 4.3 can be directly derived
by Definition 4.1 and 4.2.

Next, we present variable precision multigranulation fuzzy
rough set model over two universes. The model will be con-
structed by introducing a precision parameter into the multi-
granulation fuzzy rough set model over two universes. Then
we will present two types of variable precision multigranula-
tion fuzzy rough set model by introducing precision parameter
into optimistic and pessimistic multigranulation fuzzy rough set
models, respectively.

Definition 4.3 Let triple ordered set (U,V,R) be multigran-
ulation fuzzy approximation space over two universes. For any
A ∈ F(V) and parameter α ∈ [0, 1), the α−lower approximation
(I)Rα∑m

i=1 Ri
(A) and α−upper approximation (I)R

α∑m
i=1 Ri

(A) of A in
(U,V,R) with parameter α are defined as follows, respectively.

(I)Rα∑m
i=1 Ri

(A)(x) =

m∨
i=1

[
∧

A(y)≤α

((1−Ri(x, y))∨α)∧

∧
A(y)>α

((1 − Ri(x, y)) ∨ A(y))], x ∈ U, y ∈ V,

(I)R
α∑m

i=1 Ri
(A)(x) =

m∧
i=1

[
∨

A(y)≥1−α

(Ri(x, y)∧(1−α))∨

∨
A(y)<1−α

(Ri(x, y) ∧ A(y))], x ∈ U, y ∈ V.

The α−lower approximation (I)Rα∑m
i=1 Ri

(A) and α−upper ap-

proximation (I)R
α∑m

i=1 Ri
(A) are two fuzzy sets of universe U. We

call A a definable fuzzy set on multigranulation fuzzy approx-
imation space over two universes (U,V,R) with parameter α
when (I)Rα∑m

i=1 Ri
(A) = (I)R

α∑m
i=1 Ri

(A), and we call the set-pair
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((I)Rα∑m
i=1 Ri

(A), (I)R
α∑m

i=1 Ri
(A)) the type-I variable precision multi-

granulation fuzzy rough set over two universes.
Definition 4.4 Let triple ordered set (U,V,R) be multigran-

ulation fuzzy approximation space over two universes. For any
A ∈ F(V) and parameter α ∈ [0, 1), the α−lower approxima-
tion (II)Rα∑m

i=1 Ri
(A) and α−upper approximation (II)R

α∑m
i=1 Ri

(A)
of A in (U,V,R) with parameter α are defined as follows, re-
spectively.

(II)Rα∑m
i=1 Ri

(A)(x) =

m∧
i=1

[
∧

A(y)≤α

((1−Ri(x, y))∨α)∧

∧
A(y)>α

((1 − Ri(x, y)) ∨ A(y))], x ∈ U, y ∈ V,

(II)R
α∑m

i=1 Ri
(A)(x) =

m∨
i=1

[
∨

A(y)≥1−α

(Ri(x, y)∧(1−α))∨

∨
A(y)<1−α

(Ri(x, y) ∧ A(y))], x ∈ U, y ∈ V.

The α−lower approximation (II)Rα∑m
i=1 Ri

(A) and α−upper ap-

proximation (II)R
α∑m

i=1 Ri
(A) are two fuzzy sets of universe U.

We call A a definable fuzzy set on multigranulation fuzzy ap-
proximation space over two universes (U,V,R) with parameter
α when (II)Rα∑m

i=1 Ri
(A) = (II)R

α∑m
i=1 Ri

(A), and we call the set-

pair ((II)Rα∑m
i=1 Ri

(A), (II)R
α∑m

i=1 Ri
(A)) the type-II variable preci-

sion multigranulation fuzzy rough set over two universes.
Remark 4.2 If α = 0, for any x ∈ U, y ∈ V, then we there

are
(I)Rα∑m

i=1 Ri
(A)(x) =

m∨
i=1

[
∧

A(y)≤α
((1 − Ri(x, y)) ∨ α)∧∧

A(y)>α
((1 − Ri(x, y)) ∨ A(y))]

=
m∨

i=1
[
∧
y∈V

((1 − Ri(x, y)) ∨ 0) ∧
∧

A(y)>0
((1 − Ri(x, y)) ∨ A(y))]

=
m∨

i=1
[
∧
y∈V

(1 − Ri(x, y)) ∧
∧
y∈V

((1 − Ri(x, y)) ∨ A(y))]

=
m∨

i=1

∧
y∈V

((1 − Ri(x, y)) ∨ A(y))

= RO∑m
i=1 Ri

(A)(x),

(I)R
α∑m

i=1 Ri
(A)(x) =

m∧
i=1

[
∨

A(y)≥1−α
(Ri(x, y) ∧ (1 − α))∨∨

A(y)<1−α
(Ri(x, y) ∧ A(y))]

=
m∧

i=1
[
∨

A(y)≥(1−0)
(Ri(x, y)∧ (1− 0))∨

∨
A(y)<(1−0)

(Ri(x, y)∧ A(y))]

=
m∧

i=1
[
∨

A(y)≥1
Ri(x, y) ∨

∨
y∈V

(Ri(x, y) ∧ A(y))]

=
m∧

i=1

∨
y∈V

(Ri(x, y) ∧ A(y))]

= R
O∑m

i=1 Ri
(A)(x).

Similarly, we can obtain that

(II)Rα∑m
i=1 Ri

(A)(x) = (II)RP∑m
i=1 Ri

(A)(x)

and
(II)R

α∑m
i=1 Ri

(A)(x) = (II)R
P∑m

i=1 Ri
(A)(x)

when the precision parameter α = 0.
That is, the type-I and type-II variable precision multigran-

ulation fuzzy rough set models will degenerate into optimistic
and pessimistic multigranulation fuzzy rough set models over
two universes, respectively.

Remark 4.3 In general, the lower approximation included
into the upper approximation for the above multigranulation
rough set models if and only if binary fuzzy relation Ri(i =

1, 2, 3) are serial relation over U and V.
In order to verify the validity of lower and upper approxi-

mations of optimistic multigranulation fuzzy rough set over two
universes and illustrate the assertion of Remark 4.3, considering
a numerical example as follows.

Example 4.1 Let U = {x1, x2, x3} and V = {y1, y2, y3} be
two non-empty universes. Ri(i = 1, 2, 3) ∈ F(U × V) are three
binary fuzzy relations between universe U and V, respectively.

R1 =

 0.2 0.5 0.2
0.7 0.3 0.1
0.4 0.3 0.6


R2 =

 0.3 0.6 0.2
0.4 0.4 0.3
0.2 0.5 0.3


R3 =

 0.5 0.4 0.3
0.8 0.5 0.3
0.3 0.5 0.4


Suppose a fuzzy set on universe V as follows:

A =
0.4
y1

+
0.6
y2

+
0.9
y3
.

Here we only present the results of pessimistic multigranu-
lation fuzzy rough set and Type-I variable precision multigran-
ulation fuzzy rough set over two universes by using this numer-
ical example. Then we have

RP∑m
i=1 Ri

(A)(x1) = ([(1 − 0.2) ∨ 0.4] ∧ [(1 − 0.5) ∨ 0.6]
∧[(1 − 0.2) ∨ 0.9]) ∧ ([(1 − 0.3) ∨ 0.4]
∧[(1 − 0.6) ∨ 0.6] ∧ [(1 − 0.2) ∨ 0.9])
∧([(1 − 0.5) ∨ 0.4] ∧ [(1 − 0.4) ∨ 0.6]
∧[(1 − 0.3) ∨ 0.9])
= 0.5,

R
P∑m

i=1 Ri
(A)(x1) = [(0.2 ∧ 0.4) ∨ (0.5 ∧ 0.6) ∨ (0.2 ∧ 0.9)]

∨[(0.3 ∧ 0.4) ∨ (0.6 ∧ 0.6) ∨ (0.2 ∧ 0.9)]
∨[0.5 ∧ 0.4) ∨ (0.4 ∧ 0.6) ∨ (0.3 ∧ 0.9)]
= 0.5 ∨ 0.6 ∨ 0.4
= 0.6.

Similarly, we can obtain the lower and upper approxima-
tions of A are

RP∑m
i=1 Ri

(A) =
0.5
x1

+
0.4
x2

+
0.6
x3

and
R

P∑m
i=1 Ri

(A) =
0.6
x1

+
0.5
x2

+
0.6
x3
.

Let α = 0.7. We have
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(I)R0.7∑m
i=1 Ri

(A)(x1) = ([(1 − 0.2) ∨ 0.7] ∧ [(1 − 0.5) ∨ 0.7]
∧[(1 − 0.2) ∨ 0.9]) ∧ ([(1 − 0.3) ∨ 0.7]
∧[(1 − 0.6) ∨ 0.7] ∧ [(1 − 0.2) ∨ 0.9])
∧([(1 − 0.5) ∨ 0.7] ∧ [(1 − 0.4) ∨ 0.7]
∧[(1 − 0.3) ∨ 0.9])
= 0.7,

(I)R
0.7∑m

i=1 Ri
(A)(x1) = [(0.2 ∧ (1 − 0.7)) ∨ (0.5 ∧ (1 − 0.7)))

∨(0.2 ∧ (1 − 0.7))] ∨ [(0.3 ∧ (1 − 0.7))
∨(0.6 ∧ (1 − 0.7)) ∨ (0.2 ∧ (1 − 0.7))]
∨[0.5 ∧ (1 − 0.7)) ∨ (0.4 ∧ (1 − 0.7))
∨(0.3 ∧ (1 − 0.7))]
= 0.3.

Then we have

(I)R0.7∑m
i=1 Ri

(A) =
0.7
x1

+
0.7
x2

+
0.7
x3

and
(I)R

0.7∑m
i=1 Ri

(A) =
0.3
x1

+
0.3
x2

+
0.3
x3
.

Meanwhile, it is easy to see that there are

RP∑m
i=1 Ri

(A) * R
P∑m

i=1 Ri
(A), (I)R0.7∑m

i=1 Ri
(A) * (I)R

0.7∑m
i=1 Ri

(A)

because binary fuzzy relation Ri(i = 1, 2, 3) are not serial rela-
tion over U and V.

Meanwhile, we also can prove the following properties hold
for type-I and type-II variable precision multigranulation fuzzy
rough sets over two universes.

Theorem 4.4 Let triple ordered set (U,V,R) be multigranu-
lation fuzzy approximation space over two universes. For any
A, B ∈ F(V) and α ∈ [0, 1), A ⊆ B, we have

(1) (I)Rα∑m
i=1 Ri

(A), (I)R
α∑m

i=1 Ri
(A) ⊆ U,

(II)Rα∑m
i=1 Ri

(A), (II)R
α∑m

i=1 Ri
(A) ⊆ U,

(2) (I)Rα∑m
i=1 Ri

(Ac) = ((I)R
α∑m

i=1 Ri
(A))c,

(II)Rα∑m
i=1 Ri

(Ac) = ((II)R
α∑m

i=1 Ri
(A))c,

(3) (I)R
α∑m

i=1 Ri
(Ac) = ((I)Rα∑m

i=1 Ri
(A))c,

(II)R
α∑m

i=1 Ri
(Ac) = ((II)Rα∑m

i=1 Ri
(A))c,

(4) (I)Rα∑m
i=1

(A) ⊆ (I)Rα∑m
i=1

(B),
(II)Rα∑m

i=1
(A) ⊆ (II)Rα∑m

i=1
(B),

(I)R
α∑m

i=1 Ri
(A) ⊆ (I)R

α∑m
i=1 Ri

(B),

(II)R
α∑m

i=1 Ri
(A) ⊆ (II)R

α∑m
i=1 Ri

(B).
Theorem 4.5 Let (U,V,R) be multigranulation approxima-

tion space over two universes. For any A j ∈ F(V)( j = 1, 2, · · · , k).
Then there are

(1) (I)Rα∑m
i=1 Ri

(
⋂k

j=1 A j) ⊆
⋂k

j=1(I)Rα∑m
i=1 Ri

(A j),

(II)Rα∑m
i=1 Ri

(
⋂k

j=1 A j) ⊆
⋂k

j=1(II)Rα∑m
i=1 Ri

(A j),

(2) (I)R
α∑m

i=1 Ri
(
⋃k

j=1 A j) ⊇
⋃k

j=1(I)R
α∑m

i=1 Ri
(A j),

(II)R
α∑m

i=1 Ri
(
⋃k

j=1 A j) ⊇
⋃k

j=1(II)R
α∑m

i=1 Ri
(A j),

(3) (I)Rα∑m
i=1 Ri

(
⋃k

j=1 A j) ⊇
⋃k

j=1(I)Rα∑m
i=1 Ri

(A j),

(II)Rα∑m
i=1 Ri

(
⋃k

j=1 A j) ⊇
⋃k

j=1(II)Rα∑m
i=1 Ri

(A j),

(4) (I)R
α∑m

i=1 Ri
(
⋂k

j=1 A j) ⊆
⋂m

j=1(I)R
α∑m

i=1 Ri
(A j),

(II)R
α∑m

i=1 Ri
(
⋂k

j=1 A j) ⊆
⋂m

j=1(II)R
α∑m

i=1 Ri
(A j).

The proof of Theorem 4.4 and 4.5 can be directly derived
by Definition 4.3 and 4.4.

So far we have defined the models of multigranulation rough
fuzzy set and multigranulation fuzzy rough set systematically
by approximating of a fuzzy concept on multigranulation ap-
proximation space and multigranulation fuzzy approximation
space over two universes, respectively. By the above discus-
sion, the family of arbitrary compatibility binary relation is the
special case of arbitrary fuzzy binary relation between universe
U and V, then multigranulation fuzzy rough set has included
multigranulation rough fuzzy set over two universes. There-
fore, we establish the theory of multigranulation fuzzy rough
set over two universes.

As far as the optimistic and pessimistic decision models de-
fined in this section, Li and Zhou [19] also proposed the idea of
optimistic and pessimistic decisions based on decision-theoretic
rough set [60]. From the viewpoint of decision making with un-
certainty, the idea of optimistic and pessimistic decision for a
given decision-maker is similar for both Li and Zhou’s model
and the models in this paper. The differences are Li and Zhou’s
decision model based on Bayesian risk decision and three-way
decision with single granularity but the models in this paper lay
on multiple granularity and the traditional two-way decision.

5. Multigranulation fuzzy rough set over two universes based
multiple criteria group decision making method

The increasing complexity of the socio-economic environ-
ment, operational research, and industrial engineering force hu-
mans to tackle problems crossing many disciplines. Group de-
cision making (GDM)[3, 5], as one of effectively approaches
to handle the complexity decision making problems, is defined
as a decision problem in which several experts provide their
judgment over a set of alternatives. The aim is to reconcile (or
comprehensive) differences of opinion expressed by individual
experts to find an alternative (or set of alternatives) that is most
acceptable by the group of experts as a whole. In a complex so-
ciety, group decision making (GDM) processes must inevitably
take many criteria (or factors) into account. Thus, research
on group decision making (GDM) that explicitly incorporates
multiple criteria has been a major direction, and has made sig-
nificant progress with the rapid development of operations re-
search, management science, systems engineering, and other
disciplines. Hwang and Lin [16] first study to explore system-
atically how multiple criteria could be used in group decision
making (GDM).

In general, multiple criteria group decision making prob-
lems (MCGDM) involve selecting or ranking from all of the
feasible alternatives among multiple, conflicting, and interac-
tive criteria. For example, in a decision recruitment problem for
engaging a new young employee, the alternatives are the can-
didates and the criteria are some characteristics useful to give
a comprehensive evaluation of the candidates such as educa-
tional degree, professional experience, age and job interview.
At the same time, several experts are invited to give the com-
prehensive evaluation for all candidates according to the given
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criteria in advance. Then, aggregating all comprehensive eval-
uation given by the experts based on a determined method and
then obtain the ranking for all candidates. Finally, the expected
candidate with the highest ranking will be selected, i.e., the op-
timal decision making is given for this multiple criteria group
decision making problem.

In this section, we try to establish a new approach to mul-
tiple criteria group decision making problems based on multi-
granulation fuzzy rough set over two universes. We present the
basic description of a multiple criteria group decision making
problem under the framework of multigranulation over two uni-
verses, and then give a general decision making methodology
for multiple criteria group decision making problem by using
the multigranulation fuzzy rough set theory over two universes.

5.1. Problem statement
We firstly give the basic description of considered multi-

ple criteria group decision making problem in this paper. We
present the description by using a multiple criteria group deci-
sion making problem in the case of clothes ranking.

Let V = {x1, x2, · · · , xm} be the criteria set which xi(i =

1, 2, · · · ,m) are m given criteria, e.g., x1 denotes pattern and
color, x2 denotes style, x3 denotes durability, · · · , and xm de-
notes price. Let U = {y1, y2, · · · , yn} be the decision set (i.e., the
evaluation for the criteria), in which y1 denotes very welcome,
y2 denotes welcome, y3 denotes less welcome, · · · , and yn de-
notes not welcome. Suppose that R1,R2, · · · ,Rk are k invited
experts in group. Like the classical group decision making,
every expert provides his evaluation for all criteria xi(xi ∈ V)
with respect to decision set elements y j(y j ∈ U). Generally
speaking, the evaluation R1,R2, · · · ,Rk are fuzzy relation be-
tween criteria set V and decision evaluation set U, i.e., there are
R1,R2, · · · ,Rk ∈ F(U×V). That is, Rl(y j, xi)(i = 1, 2, · · · ,m; j =

1, 2, · · · , n; l = 1, 2, · · · , k) is the evaluation of criteria xi with
evaluation element y j given by expert l according to their ex-
perience and professional knowledge of himself. Let A be a
category customer with right weight for each criterion in V. Ob-
viously, A is a fuzzy set of criteria set V. Then the decision mak-
ing for this multiple criteria group decision making problem is
how to obtain the evaluation of this particular costume for this
category customer.

In the following, we give an approach to decision making
for this kind of multiple criteria group decision problem with
the above described characteristic by using the theory of multi-
granulation fuzzy rough set over two universes. In this paper,
we use the model of optimistic multigranulation fuzzy rough set
over two universes to present the decision method for multiple
criteria group decision making. Actually, all models of opti-
mistic multigranulation fuzzy rough set, pessimistic multigran-
ulation fuzzy rough set and variable precision multigranulation
fuzzy rough set over two universes established in Section 4 can
be used to discuss the above multiple criteria group decision
making problem.

5.2. Decision making methodology
Firstly, we construct the multigranulation fuzzy decision in-

formation systems over two universes for the considered multi-

ple criteria group decision problem.
From the description of the multiple criteria group decision

making problem in Section 5.1, we know that the judgment of
every invited expert provides a binary fuzzy relation between
criteria set and decision set. Then there is a family of binary
fuzzy relation R between criteria set V and decision set U given
by all experts, i.e., Rl ∈ R, l = 1, 2, · · · , k. So, we obtain multi-
granulation fuzzy decision information systems over two uni-
verses (U,V,R) for the multiple criteria group decision making
problem.

Secondly, we calculate optimistic multigranulation fuzzy
lower approximation RO∑k

l=1 Rl
(A) and optimistic multigranula-

tion fuzzy upper approximation R
O∑k

l=1 Rl
(A) for the given cate-

gory customer A (described by a fuzzy set of universe V) with
respect to multigranulation fuzzy decision information systems
over two universes (U,V,R).

As is discussed in Section 4, both RO∑k
l=1 Rl

(A) and R
O∑k

l=1 Rl
(A)

are fuzzy set of decision set U. Then we can obtain the ranking
of the given category customers with respect to decision set,
i.e., RO∑k

l=1 Rl
(A)(y j) and R

O∑k
l=1 Rl

(A)(y j), j = 1, 2, · · · , n. Denote

k∑
l=1

Rl(A) = λRO∑k
l=1 Rl

(A) + (1 − λ)R
O∑k

l=1 Rl
(A) λ ∈ [0, 1].

It is easy to know that
∑k

l=1 Rl(A) ∈ F(U), i.e.,
∑k

l=1 Rl(A) is
a fuzzy set on decision set U.

Finally, based on the value of
∑k

l=1 Rl(A), we give the rank-
ing for the given category customer by using the principle of
maximum membership in Zadeh’s fuzzy set theory.

Remark 5.1 It can be easily obtained

k∑
l=1

Rl(A) = RO∑k
l=1 Rl

(A)

when λ = 1 and
k∑

l=1

Rl(A) = R
O∑k

l=1 Rl
(A)

when λ = 0. Then we can present an interpretation of the deci-
sion rule given in above according to the definition of RO∑k

l=1 Rl
(A)

and R
O∑k

l=1 Rl
(A) as follows.

From the point of view of risk decision making with uncer-
tainty,

k∑
l=1

Rl(A) = RO∑k
l=1 Rl

(A)

can be regarded as the ” min−min ” rule,

k∑
l=1

Rl(A) = R
O∑k

l=1 Rl
(A)

can be regarded as the ” max−min ” rule and

k∑
l=1

Rl(A) = λRO∑k
l=1 Rl

(A) + (1 − λ)R
O∑k

l=1 Rl
(A) (0 < λ < 1)
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can be regarded the compromise rule with a right weight λ.
In practice, the parameter λ also reflects the preference of

decision-maker for risk of decision making. Generally speak-
ing, the larger the value of parameter λ when decision-maker
is risk-preferring. The smaller the value of parameter λ when
decision-maker is risk-averse. So, the value of parameter λ is
given by decision-maker’s preference or the empirical studies
in advance.

Therefore, we establish an approach to multiple criteria group
decision making by using the theory of multigranulation fuzzy
rough set over two universes. The application of this method
will be given by using a clothes ranking decision making prob-
lem.

5.3. Algorithm for the proposed multiple criteria group deci-
sion making method

In this section, we present the algorithm for the established
method of considered multiple criteria group decision making
problem in Section 5.1.

Input Multigranulation fuzzy decision information sys-
tems over two universes (U,V,R).

Output The ranking of the given category customer.
Step 1 Computing multigranulation lower approxima-

tion RO∑k
l=1 Rl

(A) and multigranulation upper approximation R
O∑k

l=1 Rl
(A)

of fuzzy subset A of universe V about multigranulation fuzzy
decision information systems over two universes (U,V,R);

Step 2 Determining the value of λ;
Step 3 Computing

∑k
l=1 Rl(A);

Step 4 Present the ranking according to the decision
principle given in Section 5.2.

5.4. A test example

In this section, we consider a multiple criteria group de-
cision making problem in the case of clothes to illustrate the
decision method proposed in Section 5.2.

Let V = {x1, x2, x3, x4} be criteria set, in which x1 denotes
pattern and color, x2 denotes style, x3 denotes durability and x4
denotes price. Let U = {y1, y2, y3, y4} be decision set (i.e., the
evaluation for the criteria), in which y1 denotes very welcome,
y2 denotes welcome, y3 denotes less welcome and y4 denotes
not welcome.

Suppose that R1,R2 and R3 are three invited experts. They
provides his evaluation for all criteria xi(xi ∈ V)(i = 1, 2, 3, 4)
with respect to decision set elements y j(y j ∈ U)( j = 1, 2, 3, 4).
As is discussed in Section 4.1, the evaluation R1,R2 and R3 are
fuzzy relation between criteria set V and decision evaluation set
U. i.e., there are R1,R2,R3 ∈ F(V × U).

So, we construct multigranulation fuzzy decision informa-
tion systems over two universes (U,V,R) for this multiple crite-
ria group decision making problem.

Suppose three experts present their judgment (the binary
fuzzy matrix R1, R2 and R3) for the criteria and decision set

are as follows:

R1 =


0.1 0.4 0.2 0.5
0.3 0.2 0.6 0.1
0.4 0.1 0.1 0.1
0.2 0.3 0.1 0.3



R2 =


0.3 0.4 0.1 0.5
0.1 0.2 0.4 0.1
0.3 0.1 0.1 0.3
0.3 0.3 0.4 0.1


R3 =


0.2 0.5 0.4 0.3
0.5 0.2 0.3 0.3
0.2 0.1 0.2 0.1
0.1 0.2 0.1 0.3


Let A and B be two different category customers with right

weights for each criterion in V are as follows:

A =
0.4
x1

+
0.35
x2

+
0.15
x3

+
0.1
x4

and
B =

0.1
x1

+
0.2
x2

+
0.3
x3

+
0.4
x4
.

Taking λ = 0.2. Then, the multiple criteria group decision
making of the first category customer A can be obtained as fol-
lows:

RO∑k
l=1 Rl

(A) =
0.7
y1

+
0.6
y2

+
0.6
y3

+
0.7
y4

and
R

O∑k
l=1 Rl

(A) =
0.3
y1

+
0.4
y2

+
0.35
y3

+
0.3
y4
.

So, we have

k∑
l=1

Rl(A) = 0.2RO∑k
l=1 Rl

(A) + (1 − 0.2)R
O∑k

l=1 Rl
(A)

=
0.38
y1

+
0.44
y2

+
0.4
y3

+
0.38
y4

.

Then, according to the principle of maximum membership
in Zadeh’s fuzzy set theory, this particular costume is ”wel-
come” for the first category customer.

Similarly, we can obtain the following results for the second
category customer B.

RO∑k
l=1 Rl

(B) =
0.7
y1

+
0.6
y2

+
0.6
y3

+
0.7
y4

and
R

O∑k
l=1 Rl

(B) =
0.2
y1

+
0.2
y2

+
0.2
y3

+
0.3
y4
.

So, we have

k∑
l=1

Rl(B) = 0.2RO∑k
l=1 Rl

(B) + (1 − 0.2)R
O∑k

l=1 Rl
(B)

=
0.3
y1

+
0.28
y2

+
0.28
y3

+
0.38
y4

.
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Then, according to the principle of maximum membership
in Zadeh’s fuzzy set theory, this particular costume is ”not wel-
come” for the second category customer.

If necessary, we can normalize
∑k

l=1 Rl(A) and
∑k

l=1 Rl(B) as
follows, respectively.

k∑
l=1

Rl(A) =
0.2375

y1
+

0.275
y2

+
0.25
y3

+
0.2375

y4
,

k∑
l=1

Rl(B) =
0.242

y1
+

0.226
y2

+
0.226

y3
+

0.306
y4

.

As is well known, the consensus measurement and aggrega-
tion of all preference relations given by whole experts [2, 44, 45,
47, 65] are two important issues of multiple criteria group deci-
sion making problem. So far many different methods for han-
dling consensus measurement and preference relation aggrega-
tion for multiple criteria group decision making problems have
established in the past few years [2, 15, 43]. This paper makes a
tentative investigation to deal with multiple criteria group de-
cision making problems by using the multigranulation fuzzy
rough set theory over two universes. The important contribu-
tion is establishing a new way to handle with expert preference
(or expert opinions) by using the multiple granularity approach
to group decision making problems.

6. Conclusions

Rough set theory over two universes and multigranulation
rough set are two interesting generalizations of Pawlak rough
set theory. This paper studies multigranulation fuzzy rough set
theory over two universes by combing this two generalized the-
ories. Comparing the existing literatures [14, 18, 20 − 26, 36 −
40, 49, 55, 56, 66], the new contributions can be concluded as
follows: (1) We systematically discuss rough approximation of
a fuzzy concept on multigranulation approximation space and
multigranulation fuzzy approximation space under the frame-
work of two universes. At the same time, we present two types
of multigranulation fuzzy rough set models over two universes.
The existing literatures [38− 40, 45, 56] are discuss the approx-
imations of a crisp concept about the multigranulation approxi-
mation space based on the single universe, or discuss the single-
granulation rough set models over two universes [42, 44 − 46].
As is discussed in Section 3.1, the multigranulation fuzzy rough
set over two universes are more generalized model which have
included the existing models on the single universe and the
single-granulation models over two universes. (2) Different rea-
sonable background description from the point of view of the
classical risk decision making with uncertainty and the detailed
theory basis investigation are given for the proposed multigran-
ulation models over two universes. (3) A new approach to mul-
tiple criteria group decision making problem based on multi-
granulation fuzzy rough set over two universes is established.
The published papers are mainly focus on the discussion of the
mathematical properties and the feature selection for the multi-
granulation models [14, 18, 20 − 26, 42, 49, 55, 56, 66] and the

uncertainty decision making based on rough set models over
two universes [42−46], less effort on the discussion of multiple
criteria group decision making methods based on multigranu-
lation rough sets on single universe or two different universes.
This paper makes a meaningful attempt to apply the multigran-
ulation fuzzy rough set over two universes to multiple criteria
group decision making problems with uncertainty. As is well
known, the opinions or preferences of all decision-makers (or
experts) aggregation is the critical step for the traditional group
decision making methods [2, 5, 16, 47]. In our proposed deci-
sion making method, every decision-maker is regarded as a bi-
nary granulation defined on two different universes and then
all opinions given by decision-makers are aggregated by using
the multigranulation lower and upper approximations under the
framework of two universes, and then a compromise optimal
proposal is obtained based on the multigranulation lower and
upper approximations over two universes. So, the multigranu-
lation fuzzy rough set approach to multiple criteria group de-
cision making under the framework of two different universes
provides another way to aggregate the preferences of decision-
makers. Therefore, the proposed decision making method also
presents a new tool and perspective to explore group decision
making problems in reality.

For further study, the primary theory and characterization
of multigranulation fuzzy rough sets over two universes are
needed. On the other hand, the attribute reduction of multigran-
ulation fuzzy approximation space over two universes should
be studied and detailed experimental investigation and compar-
ison with existing approaches should be discussed. Although
this paper focuses on the basic theory of multiple criteria group
decision making principal with multigranulation fuzzy rough
set over two universes, it is recommended that the further im-
proved of the proposed method to apply more complexity de-
cision making problems as mentioned in above possible areas
and the real-life data be used to test the approach established in
this paper.
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