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Abstract

A simple multigranulation rough set approach is to approximate the target through a family of binary rela-
tions. Optimistic and pessimistic multigranulation rough sets are two typical examples of such approach.
However, these two multigranulation rough sets do not take frequencies of occurrences of containments
or intersections into account. To solve such problem, by the motivation of the multiset, the model of the
multiple multigranulation rough set is proposed, in which both lower and upper approximations are mul-
tisets. Such two multisets are useful when counting frequencies of occurrences such that objects belong
to lower or upper approximations with a family of binary relations. Furthermore, not only the concept of
approximate distribution reduct is introduced into multiple multigranulation rough set, but also a heuristic
algorithm is presented for computing reduct. Finally, multiple multigranulation rough set approach is
tested on eight UCI (University of California–Irvine) data sets. Experimental results show: 1. the approx-
imate quality based on multiple multigranulation rough set is between approximate qualities based on
optimistic and pessimistic multigranulation rough sets; 2. by comparing with optimistic and pessimistic
multigranulation rough sets, multiple multigranulation rough set needs more attributes to form a reduct.
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1. Introduction

Back in the early 1980s, Pawlak proposed the rough

set 27 for characterizing the uncertainty. Through

the three decades of the development, rough set has

been demonstrated to be useful in knowledge acqui-

sition 5,10, pattern recognition 3,7,23, machine learn-

ing 6,8,9,11,26, decision support 21,44,46,57 and so on.

In Pawlak’s rough set, indiscernibility relation is

a basic concept, it is an intersection of some equiv-

alence relations in knowledge base 27. An indis-

cernibility relation can induce a partition on the uni-

verse of discourse. Lower, upper approximations

and boundary region in rough set model are then the

unions of some blocks (equivalence classes) in par-

tition with different conditions, respectively. Obvi-

ously, Pawlak’s rough set is constructed on the basis

of one and only one set of the information granules

(set of equivalence classes in a partition), we call

such set a granular structure 29. From this point

of view, Pawlak’s model is referred to as a single–

granulation rough set approach in this paper. Nev-

ertheless, single–granulation is not good enough for

practical problem solving. For example:

1. a map can be explained from different levels of

viewpoints, the coarser perspective is based on

the greater information granules while the finer

perspective is based on the smaller information

granules, i.e. we may explore a map through dif-

ferent levels of granulations;

2. single feature information is not robust for au-

thentication (e.g. fingerprint may be stolen and

copied by criminals) and then multi–biometrics

are needed;

3. single–granulation approach is very time–

consuming in rough set theory since it needs

to do the intersection on more than one binary

relations.

To fill those gaps of single–granulation ap-

proach and further improve the effectiveness of

Pawlak’s rough set theory, Qian and Liang et

al. 15,17,30,31,33,34,35,37,38 proposed the concept of the

multigranulation rough set. Presently, with respect

to different requirements, multigranulation rough set

progressing rapidly 2,18,41,42,45,48,49,50,51,55. We may

classify the existing multigranulation rough sets into

two categories.

1. Firstly, synchronous multigranulation approach:

a lot of the granulations are presented simulta-

neously for problem solving. For instance, in

Qian et al.’s classical multigranulation rough set

approach, the target is approximated through a

set of partitions; Yang et al. 52 and Xu et al. 43

presented the multigranulation fuzzy rough set

through a family of fuzzy relations, respectively;

Lin et al. 14 presented the neighborhood multi-

granulation rough set by using a family of neigh-

borhoods, i.e. neighborhood system 53; Khan

and Banerjee 12 introduced the concept of the

multiple–source approximation systems, which

are multigranulation fusions of Pawlak’s approx-

imation spaces; Abu–Donia 1 studied the rough

approximations based on multi–knowledge; Wu

and Leung 40 investigated the multi–scale infor-

mation system, which reflects the explanation of

same problem at different scales (levels of gran-

ulations); Dou et al. 4 integrated variable pre-

cision rough set 56 with multigranulation rough

sets; She et al. 39 studied the algebraic structure

of multigranulation rough set.

2. Secondly, asynchronous multigranulation ap-

proach: a granulation is constructed or obtained

from the last granulation. For example, Qian et

al. 33,34 proposed a positive approximation ac-

celerator for attribute reduction, which can make

universe smaller step by step; Liang et al. 19 pro-

posed an efficient rough feature selection algo-

rithm for large–scale data sets, which selects a

valid feature subset though dividing big samples

into small samples and fusing the feature selec-

tion results of small samples together, they 20 also

studied the incremental feature selection mech-

anism by considering the monotonic increasing

of samples; Wang et al. presented a dimension

incremental strategy for attribute reduction, in

which the current information entropy can be up-

dated by the last computation result.

The purpose of this paper is to further ex-

plore synchronous multigranulation approach. Qian
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et al.’s optimistic and pessimistic multigranulation

rough sets are two typical examples of such re-

search. Through the investigation of optimistic and

pessimistic multigranulation lower approximations,

we know that optimism needs at least one of the

granular structures (partitions) to be satisfied with

the containment between equivalence class and tar-

get, pessimism needs all of the granular structures to

be satisfied with the containments between equiva-

lence class and target. Obviously, these two multi-

granulation rough sets do not take frequencies of oc-

currences of set containments into account. We have

some practical examples to illustrate such limitation.

1. Take for instance multi-subspace learning prob-

lem, each subspace is corresponding to a world

which can be used to construct approximation. If

Qian et al.’s optimistic approach is used, then it

is confused for us to count how many subspaces

have contributed to the set containments, e.g.,

lower approximations. Therefore, the subspaces

with high contribution may be mixed with sub-

spaces with low contribution.

2. Qian et al.’s optimistic approach is too loose

(Here is a China old saying: One tree does not

make a forest.) while the pessimistic approach is

too strict (Here is also a China old saying: It is

hard to please all.). Voting is a possible strategy

to solve these problems. Therefore, it is required

that the frequencies of occurrences of set contain-

ments should be counted.

To sum up, we will propose the multiple multi-

granulation rough set by using the concept of the

multiset 13,24 in this paper. In our multiple multi-

granulation rough set, both lower and upper approx-

imations are multisets, which can reflect frequencies

of occurrences of objects belonging to lower and up-

per approximations, respectively.

To facilitate our discussions, we present the basic

knowledge about optimistic and pessimistic multi-

granulation rough sets in Section 2. In Section

3, we propose the model of multiple multigranu-

lation rough set, not only the basic properties of

such model are studied, but also the relationships

among multiple and Qian et al.’s multigranulation

rough sets are explored. Since attribute reduction is

one of the key problems in rough set theory, we also

introduce the concept of the approximate distribu-

tion reduct into multiple multigranulation rough set.

Through experimental analyses, the comparisons of

approximation qualities and reducts on three differ-

ent multigranulation rough sets are shown in Section

4. The paper ends with conclusions in Section 5.

2. Preliminary knowledge

2.1. Multigranulation rough sets

Formally, an information system can be denoted as a

pair I =<U,AT >, in which U is a non–empty finite

set of objects called the universe; AT is a non–empty

finite set of attributes. ∀a ∈ AT , Va is the domain

of attribute a. ∀x ∈ U , let a(x) denote the value of

x on attribute a (∀a ∈ AT ). For an information sys-

tem I, one can describe the relationship between two

objects through their values on attributes. For exam-

ple, suppose that A⊆ AT , an indiscernibility relation

IND(A) may be defined as

IND(A) = {(x,y) ∈U2 : a(x) = a(y),∀a ∈ A}. (1)

Since IND(A) is still an equivalence relation,

U/IND(A) is then denoted as the partition deter-

mined by indiscernibility relation IND(A) on U .

From the viewpoint of granular computing 47, each

equivalence class in U/IND(A) is an information

granule. In other words, by a given indiscernibil-

ity relation, objects are granulated into a set of in-

formation granules, called a granular structure 29.

It should be noticed that partition is only a special

granular structure, granular structure may also be a

set of information granules induced by a general bi-

nary relation.

Definition 1. Let I be an information system in

which A ⊆ AT , ∀X ⊆ U , the lower and upper ap-

proximations of X are denoted by A(X) and A(X),
respectively, such that

A(X) = {x ∈U : [x]A ⊆ X}; (2)

A(X) = {x ∈U : [x]A ∩X �= /0}; (3)

where [x]A = {y∈U : (x,y)∈ IND(A)} is the equiv-

alence class of x in terms of A.

Qian et al.’s classical multigranulation rough set

is different from Pawlak’s rough set since the for-

mer is constructed on the basis of a family of the
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binary relations instead of a single one. In this pa-

per, to simplify our discussions, it is assumed that

each attribute in an information system I is corre-

sponding to an equivalence relation. Therefore, each

attribute in I can induce a partition based granu-

lar structure on the universe of discourse and then

all the attributes in I will induce a partitions based

multigranular structure. In Qian et al.’s multigran-

ulation rough set theory, two different models were

defined. The first one is optimistic multigranulation

rough set 31,37, the second one is pessimistic multi-

granulation rough set 35.

Definition 2. Let I be an information system in

which AT = {a1,a2, · · · ,am}, ∀X ⊆ U , the opti-

mistic multigranulation lower and upper approxima-

tions of X are denoted by AT O(X) and AT
O
(X), re-

spectively, such that

AT O(X) = {x ∈U : [x]a1
⊆ X ∨·· ·∨ [x]am

⊆ X}; (4)

AT
O
(X) =∼ (AT O(∼ X)); (5)

where [x]ai
is the equivalence class of x in terms of

ai , ∼ X is the complement of set X .

The pair [AT O(X),AT
O
(X)] is referred to as an

optimistic multigranulation rough set of X .

Theorem 1. Let I be an information system in which

AT = {a1,a2, · · · ,am}, ∀X ⊆U, we have

AT
O
(X)= {x∈U : [x]a1

∩X �= /0∧·· ·∧[x]am
∩X �= /0}.

(6)

Proof. It can be derived directly from Def. 2.

Definition 3. Let I be an information system

in which AT = {a1,a2, · · · ,am}, ∀X ⊆ U , the pes-

simistic multigranulation lower and upper approxi-

mations of X are denoted by AT P(X) and AT
P
(X),

respectively, such that

AT P(X) = {x ∈U : [x]a1
⊆ X ∧·· ·∧ [x]am

⊆ X}; (7)

AT
P
(X) =∼ (AT P(∼ X)). (8)

The pair [AT P(X),AT
P
(X)] is referred to as a

pessimistic multigranulation rough set of X .

Theorem 2. Let I be an information system in which

AT = {a1,a2, · · · ,am}, ∀X ⊆U, we have

AT
P
(X)= {x∈U : [x]a1

∩X �= /0∨·· ·∨[x]am
∩X �= /0}.

(9)

Proof. It can be derived directly from Def. 3.

Please refer to Refs. 30,31,35,37 for more details

about optimistic and pessimistic multigranulation

rough sets.

2.2. Multiset

Assume that U is the universe of discourse, a crisp

multiset M of U is characterized by the count func-

tion such that

CM : U −→ N = {0,1,2, · · ·}; (10)

in which CM(x) is the number of occurrences of the

object x ∈U in M and N is the set of all natural num-

bers.

In this paper, for technical reasons, we consider

a special multiset, which is a mapping from universe

to a finite set, i.e.,

CM : U −→ {0,1,2, · · · ,m}; (11)

in which m is a fixed natural number.

Similar to classical set theory, it is not difficult to

define some relations and operations on multisets.

Suppose that M and N are two multisets over the

same universe U , then

1. Inclusion: M ⊑ N ⇐⇒CM(x)�CN(x),∀x ∈U ;

2. Equality: M = N ⇐⇒CM(x) =CN(x),∀x ∈U ;

3. Union: M⊔N ⇐⇒CM⊔N(x)=max{CM(x),CN(x)},
∀x ∈U ;

4. Intersection: M ⊓ N ⇐⇒ CM⊓N(x) =
min{CM(x),CN(x)},∀x ∈U ;

5. Complement: ¬M ⇐⇒ C¬M(x) = m −
CM(x),∀x ∈U ;

6. Empty multiset: /00 ⇐⇒C/00(x) = 0,∀x ∈U ;

7. Full multiset: Um ⇐⇒CUm(x) = m,∀x ∈U .

3. Multiple multigranulation rough set

3.1. Definition and properties

By Defs. 2 and 3, we can see that an object be-

longs to optimistic multigranulation lower approxi-

mation if and only if at least one of its equivalence
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classes is contained in the target, an object belongs

to pessimistic multigranulation lower approximation

if and only if all of its equivalence classes are con-

tained in the target. Similar conclusions of upper

approximations can also be drawn by Theorems 1

and 2. In other words, for a given object, it may be-

long to lower approximation one or more times since

it has one or more equivalence classes, which are

contained in the target; it may also belong to upper

approximation one or more times since it has one or

more equivalence classes, which are intersected with

the target. Nevertheless, optimistic and pessimistic

multigranulation rough sets do not take frequencies

of occurrences of such containment or intersection

into consideration. Therefore, in this section, a new

multigranulation rough set will be proposed to solve

such problem. To achieve such goal, we need fol-

lowing definitions of characteristic functions.

Definition 4. Let I be an information system in

which AT = {a1,a2, · · · ,am}, ∀X ⊆ U and ∀x ∈ U ,

two characteristic functions are defined as

f i
X(x) =

{

1: [x]ai
⊆ X

0: otherwise
(12)

gi
X(x) =

{

1: [x]ai
∩X �= /0

0: otherwise
(13)

where ∀ai ∈ AT .

To distinguish with optimistic and pessimistic

multigranulation rough sets, our approach is referred

to as multiple multigranualtion rough set in this pa-

per.

Definition 5. Let I be an information system in

which AT = {a1,a2, · · · ,am}, ∀X ⊆ U , the multiple

multigranulation lower and upper approximations of

X are denoted by AT M(X) and AT
M
(X), respec-

tively, whose frequencies of occurrences for each

x ∈U are:

CAT M(X)(x) = ∑
m
i=1 f i

X(x); (14)

C
AT

M
(X)

(x) = ∑
m
i=1 gi

X(x). (15)

The pair [AT M(X),AT
M
(X)] is referred to as

a multiple multigranulation rough set of X . Ob-

viously, both AT M(X) and AT
M
(X) are multisets.

∀x ∈ U , CAT M(X)(x) ∈ {0,1,2, · · · ,m} is the fre-

quency of occurrences that x in multiple multigran-

ulation lower approximation AT M(X), C
AT

M
(X)

(x) ∈

{0,1,2, · · · ,m} is the frequency of occurrences that

x in multiple multigranulation upper approximation

AT
M
(X).

Different from optimistic and pessimistic multi-

granulation rough sets, in our multiple multigran-

ulation rough set model, an object may belong to

multiple multigranulation lower/upper approxima-

tion more than one times.

Theorem 3. Let I be an information system in

which AT = {a1,a2, · · · ,am}, ∀X ⊆ U and ∀x ∈ U,

we have

CAT M(X)(x)� 1 ⇐⇒ x ∈ AT O(X); (16)

C
AT

M
(X)

(x) = m ⇐⇒ x ∈ AT
O
(X); (17)

CAT M(X)(x) = m ⇐⇒ x ∈ AT P(X); (18)

C
AT

M
(X)

(x)� 1 ⇐⇒ x ∈ AT
P
(X). (19)

Proof. It can be derived directly from definitions

of three multigranulation rough sets.

In Theorem 3, formulas (16) and (17) show

the relationship between multiple multigranulation

rough set and optimistic multigranulation rough set,

formulas (18) and (19) show the relationship be-

tween multiple multigranulation rough set and pes-

simistic multigranulation rough set.

Since classical set may be considered as a spe-

cial multiset (given a classical set X , if x ∈ X , then

CX(x) = 1, otherwise, CX(x) = 0), we then obtain

the following theorem immediately.

Theorem 4. Let I be an information system in which

AT = {a1,a2, · · · ,am}, ∀X ⊆U, we have

AT O(X)⊑ AT M(X); (20)

AT P(X)⊑ AT M(X); (21)

AT
O
(X)⊑ AT

M
(X); (22)

AT
P
(X)⊑ AT

M
(X). (23)

Proof. We only prove formula (20), and the

others can be proved analogously. Suppose that

AT O(X) �⊑ AT M(X), then there must be x ∈ U such

that CAT O(X)(x)>CAT M(X)(x) by the definition of in-
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clusion of multiset. Since AT O(X) is a classical set

and then CAT O(X)(x) ∈ {0,1}.

1. If CAT O(X)(x) = 0, then x /∈ AT O(X), it follows

that CAT M(X)(x) < 1 by formula (16). Since

CAT M(X)(x) ∈ {0,1,2, · · · ,m}, then we know that

CAT M(X)(x) = 0.

2. If CAT O(X)(x) = 1, then x ∈ AT O(X), it follows

that CAT M(X)(x)� 1 by formula (16).

From discussions above, we obtain CAT O(X)(x)�

CAT M(X)(x), which is contradictive to assump-

tion CAT O(X)(x) > CAT M(X)(x) and then AT O(X) ⊑

AT M(X) holds.

Theorem 4 shows that both optimistic and pes-

simistic multigranulation lower approximations are

smaller than multiple multigranulation lower ap-

proximation, both optimistic and pessimistic multi-

granulation upper approximations are also smaller

than multiple multigranulation upper approxima-

tion.

For the readers’ convenience, the relationships

among three different multigranulation rough sets

are shown in Fig. 1. In Fig. 1, each node denotes a

multigranulation approximation or a target, and each

line connects two nodes, where the lower node is a

multiset inclusion of the upper node.

Figure 1: Relationships among three different multi-

granulation rough sets.

By Fig. 1, some interesting results can be ob-

tained.

1. AT M(X) and X are not comparable, that is to

say, there is no containment between multiple

multigranulation lower approximation AT M(X)
and target X . This is mainly because AT M(X)
is a multiset while X is only a crisp set.

2. Fig. 1 is a lattice, it also shows the results of The-

orem 4. In such lattice, the derived partial order

is the inclusion used in multisets, i.e., ⊑.

Theorem 5. Let I be an information system in which

AT = {a1,a2, · · · ,am}, ∀X ,Y ⊆U, we have

AT M(X)⊑ AT
M
(X); (24)

AT M( /0) = AT
M
( /0) = /00; (25)

AT M(U) = AT
M
(U) =Um; (26)

AT M(X) = ¬AT
M
(∼ X); (27)

AT
M
(X) = ¬AT M(∼ X); (28)

X ⊆ Y =⇒ AT M(X)⊑ AT M(Y ); (29)

X ⊆ Y =⇒ AT
M
(X)⊑ AT

M
(Y ); (30)

AT M(X ∩Y )⊑ AT M(X)⊓AT M(Y ); (31)

AT M(X ∪Y )⊒ AT M(X)⊔AT M(Y ); (32)

AT
M
(X ∩Y )⊑ AT

M
(X)⊓AT

M
(Y ); (33)

AT
M
(X ∪Y )⊒ AT

M
(X)⊔AT

M
(Y ). (34)

Proof.

1. ∀x ∈ U and ∀ai ∈ AT , since [x]ai
⊆ X ⇒

[x]ai
∩ X �= /0, then by Eqs. (12) and (13),

we have f i
X(x) = 1 ⇒ gi

X(x) = 1, it follows

that CAT M(X)(x) � C
AT

M
(X)

(x), i.e. AT M(X) ⊑

AT
M
(X).

2. ∀x ∈ U , since ∀ai ∈ AT , we have x ∈ [x]ai
and

then [x]ai
�⊆ /0, it follows that CAT M( /0) = 0 for each

x ∈U , i.e. AT M( /0) = /00. Similarity, it is not dif-

ficult to prove that AT
M
( /0) = /00.

3. ∀x ∈ U , since ∀ai ∈ AT , we have [x]ai
⊆ U and

then f i
U(x) = 1, it follows that CAT M(U) = m for

each x ∈ U , i.e. AT M(U) = Um. Similarity, it is

not difficult to prove that AT
M
(U) =Um.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 277–292
___________________________________________________________________________________________________________

282



4. ∀x ∈ U and ∀ai ∈ AT , if f i
X(x) = 1, then by

Eq. (12), we know that [x]ai
⊆ X , it follows

that [x]ai
∩ (∼ X) = /0. By Eq. (13), gi

∼X(x) =
0. Similarity, it is not difficult to prove that

if f i
X(x) = 0, then gi

∼X(x) = 1. From discus-

sions above, f i
X(x)+ gi

∼X(x) = 1 holds for each

ai ∈ AT and then ∑
m
i=1 f i

X(x)+∑
m
i=1 gi

∼X(x) = m,

from which we can conclude that CAT M(X)(x) =

m−C
AT

M
(∼X)

(x), i.e. AT M(X) = ¬AT
M
(∼ X).

5. The proof of AT
M
(X) = ¬AT M(∼ X) is same to

that of AT M(X) = ¬AT
M
(∼ X).

6. ∀x ∈ U , since X ⊆ Y , then ∀ai ∈ AT , we have

[x]ai
⊆ X ⇒ [x]ai

⊆ Y , f i
X(x) = 1 ⇒ f i

Y (x) = 1,

it follows that CAT M(X)(x)�CAT M(Y )(x) holds for

each x ∈U , i.e. AT M(X)⊑ AT M(Y ).

7. The proof of AT
M
(X) ⊑ AT

M
(Y ) is same to that

of AT M(X)⊑ AT M(Y ).

8. Suppose that AT M(X ∩ Y ) �⊑ AT M(X) ⊓
AT M(Y ), then there must be x ∈ U such

that CAT M(X∩Y )(x) > CAT M(X)⊓AT M(Y )(x). By

Eq. (14), we know that ∑
m
i=1 f i

X∩Y (x) >
min{∑

m
i=1 f i

X(x),∑
m
i=1 f i

Y (x)}, i.e. ∑
m
i=1 f i

X∩Y (x)>

∑
m
i=1 f i

X(x) and ∑
m
i=1 f i

X∩Y (x)> ∑
m
i=1 f i

Y (x).

∑
m
i=1 f i

X∩Y (x) > ∑
m
i=1 f i

X(x) means that there

must be ai ∈ AT such that f i
X∩Y (x) = 1 and

f i
X(x) = 0, i.e. [x]ai

⊆ X ∩Y and [x]ai
�⊆ X , such

conclusion is contradictive to the basic property

of set theory. The same is to ∑
m
i=1 f i

X∩Y (x) >

∑
m
i=1 f i

Y (x).

From discussions above, we can conclude that

AT M(X ∩Y )⊑ AT M(X)⊓AT M(Y ).

9. The proofs of formulas (32), (33) and (34) are

similar to that of formula (31).

Theorem 5 shows some basic properties of mul-

tiple multigranulation rough set.

Theorem 6. Let I be an information system

in which AT = {a1,a2, · · · ,am}, suppose that B =
{b1,b2, · · · ,bn} ⊆ AT , ∀X ⊆U, we have

BM(X)⊑ AT M(X); (35)

B
M
(X)⊑ AT

M
(X). (36)

Proof. It can be derived directly from Def. 5.

Theorem 6 shows the monotonic variation of

multiple multigranulation lower and upper approx-

imations with the monotonic increasing or decreas-

ing of number of equivalence relations, the details

are: if the number of used equivalence relations

is increasing, then both multiple multigranulation

lower and upper approximations are increasing. It

should be noticed that such result is different from

those of optimistic and pessimistic multigranulation

rough sets. In optimistic multigranulation rough set,

with the monotonic increasing of number of equiva-

lence relations, the lower approximation is increas-

ing while the upper approximation is decreasing;

in pessimistic multigranulation rough set, with the

monotonic increasing of number of equivalence re-

lations, the lower approximation is decreasing while

the upper approximation is increasing.

3.2. Approximate quality

Following Pawlak’s rough set theory, Qian et al.

have presented the definitions of approximate qual-

ities based on optimistic and pessimistic multigran-

ulation rough sets. Since in this paper, the multiple

multigranulation lower approximation is a multiset

rather than a classical set, we need to further present

new definition of approximate quality.

Definition 6. Let I =< U,AT ∪{d} > be a deci-

sion system in which AT = {a1,a2, · · · ,am}, parti-

tion U/IND({d}) = {X1, · · · ,Xk} is the set of deci-

sion classes determined by decision attribute d, ap-

proximate qualities of d based on optimistic, pes-

simistic and multiple multigranulation rough sets are

defined as γO(AT,d), γP(AT,d) and γM(AT,d), re-

spectively, such that

γ
O(AT,d) =

|∪k
j=1 AT O(X j)|

|U |
; (37)

γ
P(AT,d) =

|∪k
j=1 AT P(X j)|

|U |
; (38)

γ
M(AT,d) =

#(⊔k
j=1AT M(X j))

#(Um)
; (39)

where |X | is the cardinal number of classical set X ,

#(Y ) is the cardinal number of multiset Y such that
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#(Y ) =CY (x1)+ · · ·+CY (x|U |).

Theorem 7. Let I =<U,AT ∪{d}> be a decision

system in which AT = {a1,a2, · · · ,am}, we have

γ
P(AT,d)� γ

M(AT,d)� γ
O(AT,d). (40)

Proof. Firstly, let us prove C∪k
j=1AT P(X j)

(x) �

C
⊔k

j=1
AT M (X j)

(x)

m
for each x ∈ U . Since pessimistic

multigranulation lower approximation is a classical

set, we then know that C∪k
j=1AT P(X j)

(x) ∈ {0,1}.

1. If C∪k
j=1AT P(X j)

(x) = 1, then there must be X j ∈

U/IND({d}) such that x ∈ AT P(X j). By The-

orem 3, CAT M(X j)
(x) = m holds. By union

operation defined on multiset, we know that

C⊔k
j=1AT M(X j)

(x) = m and then
C
⊔k

j=1
AT M (Xj)

(x)

m
= 1.

2. If C∪k
j=1AT P(X j)

(x) = 0, then ∀X j ∈ U/IND({d}),

x /∈ AT P(X j). By Theorem 3, 0 � CAT M(X j)
(x) <

m holds and then 0 �

C
⊔k

j=1
AT M (Xj)

(x)

m
< 1.

From discussions above, we obtain

C∪k
j=1AT P(X j)

(x)�
C
⊔k

j=1
AT M (X j)

(x)

m
. Finally, by Eq. (38),

γP(AT,d) =
|∪k

j=1AT P(X j)|

|U |

=
C∪k

j=1AT P(X j)
(x1)+ · · ·+C∪k

j=1AT P(X j)
(x|U |)

|U |

�

C⊔k
j=1AT M(X j)

(x1)+ · · ·+C⊔k
j=1AT M(X j)

(x|U |)

m · |U |

= γM(AT,d).

Similarity, it is not difficult to prove that

γM(AT,d)� γO(AT,d).

Theorem 7 tells us that the approximation qual-

ity based on multiple multigranulation rough set is

between those based on optimistic and pessimistic

multigranulation rough sets.

3.3. Approximate distribution reducts

Attribute reduction 16,25,28,36 plays a crucial role in

the development of rough set theory. In Pawlak’s

rough set theory, reduct is a minimal subset of at-

tributes, which is independent and has the same dis-

cernibility power as all of the attributes. In recent

years, with respect to different requirements, differ-

ent types of reducts have been proposed. In this pa-

per, we will introduce the concept of approximate

distribution reduct 22,54 into our multiple multigran-

ulation rough set. Such goal is to preserve frequen-

cies of occurrences that objects belong to multiple

multigranualtion lower or upper approximations.

Definition 7. Let I =<U,AT ∪{d}> be a decision

system in which AT = {a1,a2, · · · ,am}, partition

U/IND({d}) = {X1, · · · ,Xk} is the set of decision

classes determined by decision attribute d, MLAT =
{AT M(X1), · · · ,AT M(Xk)} is the set of multiple

multigranulation lower approximations of all deci-

sion classes, MUAT = {AT
M
(X1), · · · ,AT

M
(Xk)} is

the set of multiple multigranulation upper approxi-

mations of all decision classes, then

1. B = {b1,b2, · · · ,bn} ⊆ AT is referred to as a mul-

tiple multigranulation lower approximate distri-

bution reduct in I if and only if MLB = MLAT and

∀B′ ⊂ B, MLB′ �= MLAT ;

2. B = {b1,b2, · · · ,bn} ⊆ AT is referred to as a mul-

tiple multigranulation upper approximate distri-

bution reduct in I if and only if MUB = MUAT

and ∀B′ ⊂ B, MUB′ �= MUAT .

Specially, in Definition 7, if only MLB = MLAT

or MUB = MUAT hold, then B is referred to as the

multiple multigranulation lower or upper approxi-

mate distribution consistent attributes sets in I. Ob-

viously, multiple multigranulation lower or upper

approximate distribution reducts in I are the min-

imal subsets of attributes, which preserve multiple

multigranulation lower or upper approximations of

all the decision class, i.e. multiple multigranula-

tion lower or upper approximate distribution reducts

can be used to preserve the distributions of multiple

multigranulation lower or upper approximations.

Theorem 8. Let I =< U,AT ∪ {d} > be a deci-

sion system in which AT = {a1,a2, · · · ,am}, if B =
{b1,b2, · · · ,bn} ⊆ AT , then

1. MLB = MLAT ⇐⇒ CBM(X j)
(x) = CAT M(X j)

(x),

∀x ∈U, ∀X j ∈U/IND({d});
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2. MUB = MUAT ⇐⇒ C
B

M
(X j)

(x) = C
AT

M
(X j)

(x),

∀x ∈U, ∀X j ∈U/IND({d}).

Proof. “⇒”: If MLB = MLAT , by Definition

7, we know that BM(X j) = AT M(X j) for each

X j ∈ U/IND({d}). By Definition 5, CBM(X j)
(x) =

CAT M(X j)
(x) holds for each x ∈U obviously.

“⇐”: If CBM(X j)
(x) = CAT M(X j)

(x), ∀x ∈ U ,

∀X j ∈ U/IND({d}), then by Definition 5, we

know that BM(X j) = AT M(X j) holds for each X j ∈
U/IND({d}), it follows that MLB = MLAT through

Definition 7.

Similarity, it is not difficult to prove that MUB =
MUAT ⇐⇒C

B
M
(X j)

(x) =C
AT

M
(X j)

(x), ∀x ∈U , ∀X j ∈

U/IND({d}).

Theorem 8 tells us that multiple multigranulation

lower or upper approximate distribution consistent

attributes sets can be used to preserve frequencies

of occurrences that objects belong to multiple multi-

granulation lower or upper approximations, repsec-

tively.

Based on the result shown in Theorem 6, we

know that multiple multigranulation rough lower

and upper approximations are monotonic variations

with the monotonic increasing or decreasing at-

tributes. Therefore, let I =<U,AT ∪{d}> be a de-

cision system in which AT = {a1,a2, · · · ,am}, sup-

pose that B = {b1,b2, · · · ,bn} ⊆ AT , ∀b ∈ B, we de-

fine the following two coefficients for two approxi-

mate distribution reducts, respectively:

SigL
in(b,B,d) = #(⊔k

j=1BM(X j))−

#(⊔k
j=1B−{b}M(X j)); (41)

SigU
in(b,B,d) = #(⊔k

j=1B
M
(X j))−

#(⊔k
j=1B−{b}

M
(X j)); (42)

as the significance of b in B relative to decision d.

SigL
in(b,B,d) reflects the changes of multiple multi-

granulation lower approximations if attribute b is

eliminated from B while SigU
in(b,B,d) reflects the

changes of multiple multigranulation upper approx-

imations if attribute b is eliminated from B. Accord-

ingly, we can also define

SigL
out(b,B,d) = #(⊔k

j=1B−{b}M(X j))−

#(⊔k
j=1BM(X j)); (43)

SigU
out(b,B,d) = #(⊔k

j=1B−{b}
M
(X j))−

#(⊔k
j=1B

M
(X j)); (44)

where ∀b ∈ AT −B.

SigL
out(b,B,d) measures the change of multiple

multigranulation lower approximations if attribute

b is introduced into B, SigU
out(b,B,d) measures the

change of multiple multigranulation upper approxi-

mations if attribute b is introduced into B.

By above measures, a forward greedy attribute

reduction algorithm for computing reduct can be de-

signed as following.

Algorithm Attribute reduction based on multiple

multigranulation rough set in I.

Input: Decision system I;

Output: A multiple multigranulation lower ap-

proximate distribution reduct B.

Step 1: B ← /0, compute MLAT ;

Step 2: Compute the significance of each ai ∈
AT with SigL

in(ai,AT,d);
Step 3: B ← a j where SigL

in(a j,AT,d) =
max{SigL

in(ai,AT,d) : ∀ai ∈ AT};

Step 4: Do

∀ai ∈ AT − B, compute

SigL
out(ai,B,d);

If SigL
out(a j,AT,d)=max{SigL

out(ai,AT,d) :

∀ai ∈ AT}
B = B∪{a j};

End

Until MLB = MLAT ;

Step 5: ∀ai ∈ B

If MLB−{ai} = MLB

B = B−{ai};

End

Step 6: Return B.

If SigL
in and SigL

out are replaced by SigU
in and

SigU
out , respectively, then the above algorithm can be

used to compute a multiple multigranulation upper

approximate distribution reduct.

The above forward greedy attribute reduction al-

gorithm is starting with the attribute with maximal

change of significance when eliminating a single at-

tribute, we then take the attribute with the maximal
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significance into the attribute subset in each loop

until the entire approximate distribution of this at-

tribute subset satisfies the target requirement, and

then we can get a attribute subset. Step 5 is to delete

the redundant attribute in the obtained attribute sub-

set.

In the above algorithm, in the worst case, all at-

tributes should be checked for comparing the ap-

proximation equalities. Moreover, an attribute is

never checked twice. Therefore the number of

checking steps is bounded by |AT |. Moreover, the

time consuming of computing approximation qual-

ity is O(|U |2), therefore, the time complexity of

this algorithm is O(|U |2 ∗ |AT |). Such complexity

if same to Qian et al.’s pessimistic multigranulation

rough set based attribute reduction 32 and lower than

Qian et al.’s optimistic multigranulation rough set

based attribute reduction
(

O(|U |2 ∗ |AT | ∗2|AT |)
)

37.

4. Experimental results

In the following, through experimental analysis, we

illustrate the differences among three multigranula-

tion rough sets mentioned in this paper. All the ex-

periments have been carried out on a personal com-

puter with Windows 7, Intel Core 2 Duo T5800 CPU

(2.00 GHz) and 2.00 GB memory. The program-

ming language is Matlab 2010.

Table 1: Data sets description.

Data ID Data sets ObjectsAttributesDecision

classes

1 Zoo 101 16 7

2 German Credit 1000 20 2

3 Car 1728 6 4

4
Contraceptive

1473 9 3
Method Choice

5
Breast Cancer

569 30 2
Wisconsin

6 Libras Movement 360 90 15

7
Glass

214 9 6
Identification

8 Ionosphere 351 34 2

We have downloaded eight public data sets from

UCI Repository of Machine Learning databases,

which are described in Tab. 1. In our experiment,

we assume that each attribute in a data set can in-

duce an equivalence relation and then all attributes

in a data set will induce a family of equivalence re-

lations on the universe of discourse.

4.1. Comparison among approximate qualities

Fig. 2 shows the experimental results of approxi-

mate qualities on eight data sets, each sub–figure

in Fig. 2 is corresponding to the computing re-

sult on one data set. For each sub-figure, the

x–coordinate pertains to the number of attributes

while the y–coordinate concerns obtained approxi-

mate quality. The tagging “OMGRS” is the com-

puting result based on optimistic multigranulation

rough set, the tagging “MMGRS” is the computing

result based on multiple multigranulation rough set

and the tagging “PMGRS” is the computing result

based on pessimistic multigranulation rough set.

It is not difficult to note from Fig. 2 that no

matter how many attributes are used, approximate

qualities based on multiple multigranulation rough

set are between those based on optimistic and pes-

simistic multigranulation rough sets. Such exper-

imental results demonstrate the theoretical result

shown in Theorem 7. Moreover, it should be noticed

that different from optimistic and pessimistic multi-

granulation rough sets, approximate quality based

on multiple multigranulation rough set is not neces-

sarily monotonic increasing or decreasing with the

increasing of attributes. Though for each decision

class X j in a data set, its multiple multigranulation

lower approximation is consistently increasing (see

Theorem 6), the denominator of approximate qual-

ity is also increasing since #(Um) = m · |U | (m is the

number of used attributes) and then such approxi-

mate quality is not necessarily monotonic.

4.2. Comparison among approximate

distribution reducts

Tabs. 2–4 show the results of approximate distri-

bution reducts and reduction ratios based on op-

timistic, pessimistic and multiple multigranulation

rough sets, respectively.

By comparing with Tabs. 2 and 3, we can ob-

serve following.
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Figure 2: Approximate qualities based on three multigranulation rough sets.

Table 2: Reducts of optimistic multigranulation rough set.

Data ID Attributes in lower approximate Reduction ratio Attributes in upper approximation Reduction ratio

distribution reduct distribution reduct

1 2,4,14 81.25% 4,5,6,9,12,13,14 56.25%

2 5,13 90.00% 5,13 90.00%

3 4,6 66.67% 1,2,4,5,6 16.67%

4 4 88.89% 1,4 77.78%

5 1,16 93.33% 1,16 93.33%

6 1,3,12,28,65,85,89 92.22% 1,18,71 96.67%

7 1,2,4,5,7 44.44% 1,2,7 66.67%

8 1,4,6,7,18,25 82.36% 1,4,6,7,18,25 82.36%
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Table 3: Reducts of pessimistic multigranulation rough set.

Data ID Attributes in lower approximate Reduction ratio Attributes in upper approximation Reduction ratio

distribution reduct distribution reduct

1 1 93.75% 7 93.75%

2 1 95.00% 1 95.00%

3 1 83.33% 3 83.33%

4 1 88.89% 2 88.89%

5 1,· · · ,10,12,13,14,16,· · · ,30 6.67% 1,· · · ,10,12,13,14,16,· · · ,30 93.33%

6 1,3,10,42,52 94.44% 1,2,4,· · · ,7,9,10,12,13,15,· · · ,18,20,· · ·42, 11.11%

44,· · · ,68,70,71,72,74,75,76,78,· · · ,89

7 1,5,8,9 55.56% 2,· · · ,9 11.11%

8 2 97.06% 2 97.06%

Table 4: Reducts of multiple multigranulation rough set.

Data ID Attributes in lower approximate Reduction ratio Attributes in upper approximation Reduction ratio

distribution reduct distribution reduct

1 2,4,13 81.25% 1,· · · ,16 0.00%

2 2,5,13 85.00% 1,· · · ,20 0.00%

3 4,6 66.67% 1,· · · ,6 0.00%

4 4 88.89% 1,· · · ,9 0.00%

5 1,· · · ,30 0.00% 1,· · · ,30 0.00%

6 1,· · · ,90 0.00% 1,· · · ,90 0.00%

7 1,· · · ,9 0.00% 1,· · · ,9 0.00%

8 1,3,· · · ,34 2.94% 1,· · · ,34 0.00%

1. For lower approximate distribution reduct, reduc-

tion ratios of optimistic multigranulation rough

set are equal or lower than those of pessimistic

multigranulation rough set except the 5th data

set.

2. For upper approximate distribution reduct, reduc-

tion ratios of optimistic multigranulation rough

set are equal or lower than those of pessimistic

multigranulation rough set except the 5th and 6th

data sets.

Through experimental analysis, though reduc-

tion ratios of pessimistic multigranulation rough set

may be higher than those of optimistic multigranu-

lation rough set, the limitation of pessimistic multi-

granulation rough set is stricter than that of opti-

mistic multigranulation rough set (such case can be

observed by comparing Definitions 2 and 3), it fol-

lows that we obtain empty set for pessimistic multi-

granulation lower approximation (see Fig. 2, the ap-

proximate quality is zero on eight data sets) and full

universe for pessimistic multigranulation upper ap-

proximation frequently in our experiment. From this

point of view, pessimism is meaningless since we

obtain nothing of certainty or uncertainty.

Furthermore, by comparing with Tabs. 2 and 4,

we can observe following.

1. For both lower and upper approximate distribu-

tion reducts, reduction ratios of multiple multi-

granulation rough set are lower than those of op-

timistic multigranulation rough set. Such differ-

ence is coming from the difference between opti-

mistic and multiple multigranulation rough sets.

Multiple multigranulation rough set is stricter

than optimistic multigranulation rough set since

the former needs to compute frequencies of oc-

currences such that objects belong to lower or

upper approximations. To preserve such frequen-

cies of occurrences for each object in the uni-

verse, more attributes are required.

2. The reducts of optimistic multigranulation rough

set are included into those of multiple multi-

granulation rough set. This is mainly because

if frequencies of occurrences for each object in

lower/upper approximations are preserved, then
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belonging or not belonging to optimistic multi-

granulation lower/upper approximations are also

preserved.

From discussions above, we may obtain the fol-

lowing theorem.

Theorem 9. Let I be a decision system in which

AT = {a1,a2, · · · ,am}, partition U/IND({d}) =
{X1, · · · ,Xk} is the set of decision classes deter-

mined by decision attribute d, suppose that B =
{b1,b2, · · · ,bn} ⊆ AT , then
1. MLB = MLAT ⇒ OLB = OLAT ;

2. MUB = MUAT ⇒ OUB = OUAT ;
where OLAT = {AT O(X1), · · · ,AT O(Xk)} and

OUAT = {AT
O
(X1), · · · ,AT

O
(Xk)}.

Proof. If MLB = MLAT , then by Theorem 8, we

have CBM(X j)
(x) = CAT M(X j)

(x) for each x ∈ U and

each X j ∈U/IND({d}). Therefore,

1. ∀x ∈U , ∀X j ∈U/IND({d}), if x ∈ AT O(X j), i.e.

CAT M(X j)
(x) � 1, then we also have CBM(X j)

(x) �

1, it follows that x ∈ BO(X j) and then AT O(X j)⊆
BO(X j).

2. ∀x ∈U , ∀X j ∈U/IND({d}), if x /∈ AT O(X j), i.e.

CAT M(X j)
(x) = 0, then we also have CBM(X j)

(x) =

0, it follows that x /∈ BO(X j) and then BO(X j) ⊆
AT O(X j).

To sum up, we know that AT O(X j) = BO(X j) for

each X j ∈U/IND({d}), i.e., OLB = OLAT .

Similarity, it is not difficult to prove that MUB =
MUAT ⇒ OUB = OUAT .

Theorem 9 tells us that multiple multigranulation

lower or upper approximate distribution consistent

attributes sets are also optimistic multigranulation

lower or upper approximate distribution consistent

attributes sets, respectively.

Finally, by comparing with Tabs. 3 and 4, we can

observe following.
1. For both lower and upper approximate distribu-

tion reducts, reduction ratios of multiple multi-

granulation rough set are lower than those of

pessimistic multigranulation rough set. Similar

to optimistic case, such difference is also com-

ing from the difference between pessimistic and

multiple multigranulation rough sets. For ex-

ample, suppose that B ⊆ AT is a pessimistic

multigranulation lower approximate distribution

reduct, if an object belongs to the lower approx-

imation of a target, then all of the attributes in

B support the containment between equivalence

classes and target. However, B cannot be always

satisfied with the preserving of frequencies of oc-

currences for such object in multiple multigranu-

lation lower approximations. In other words, pes-

simistic multigranulation lower approximate dis-

tribution reduct can only guarantee all the equiv-

alence classes (w.r.t. all attributes in reduct) of

an object are contained in the target, it cannot

always preserve the invariance of frequencies of

occurrences for objects in multiple multigranula-

tion lower approximations.

2. The pessimistic multigranulation upper approxi-

mate distribution reducts are included into those

of multiple multigranulation upper approximate

distribution reducts. This is mainly because if

in multiple multigranulation rough set, frequen-

cies of occurrences for each object in upper ap-

proximations are preserved, then belonging or

not belonging to upper approximations are also

preserved. For example, if the frequency of oc-

currences for an object in lower approximations

is m (m is the number of original attributes), then

to preserve such frequency of occurrences, no at-

tribute can be deleted, which also preserve the be-

longing of such object to pessimistic multigranu-

lation upper approximation.

From discussions above, similar to Theorem 9,

we may also obtain the following theorem.

Theorem 10. Let I be a decision system in which

AT = {a1,a2, · · · ,am}, partition U/IND({d}) =
{X1, · · · ,Xk} is the set of decision classes deter-

mined by decision attribute d, suppose that B =
{b1,b2, · · · ,bn} ⊆ AT , then

1. MLB = MLAT ⇒ PLB = PLAT ;

2. MUB = MUAT ⇒ PUB = PUAT ;

where PLAT = {AT P(X1), · · · ,AT P(Xk)} and

PUAT = {AT
P
(X1), · · · ,AT

P
(Xk)}.

Proof. The proof of Theorem 10 is similar to that

of Theorem 9.
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Theorem 10 tells us that multiple multigranula-

tion lower or upper approximate distribution consis-

tent attributes sets are also pessimistic multigranula-

tion lower or upper approximate distribution consis-

tent attributes sets, respectively.

4.3. Related discussions

In this subsection, we summarize the differences be-

tween multiple and classical multigranulation rough

set approaches.

1. Approximate quality of multiple multigranula-

tion rough set is equal or smaller than that of opti-

mistic multigranulation rough set; it is also equal

or higher than that of pessimistic multigranula-

tion rough set. In Section 4.1, we have also

noticed that different from optimistic and pes-

simistic multigranulation rough set approaches,

approximate quality of multiple multigranulation

rough set is not necessarily monotonic with the

increasing or decreasing of used attributes.

2. By comparing with Qian et al.’s two multigran-

ulation rough sets, our multiple multigranulation

rough set requires more attributes to construct a

reduct. In Section 4.2, we have explained that

such difference is coming from the stricter lim-

itation of multiple multigranulation rough set.

Such rough set needs to count frequencies of oc-

currences that objects belong to lower/upper ap-

proximations. Therefore, fewer attributes can be

deleted.

3. In our experimented data sets, multiple multi-

granulation lower or upper approximate distri-

bution reducts include optimistic multigranula-

tion lower or upper approximate distribution

reducts, respectively; multiple multigranulation

upper approximate distribution reduct includes

pessimistic multigranulation upper approximate

distribution reduct. In Section 4.2, we have de-

rived two theorems (Theorems 9 and 10) based

on such experimental results.

5. Conclusions

To count frequencies of occurrences that objects be-

long to lower or upper approximations under multi-

granulation environment, we have presented a gen-

eral framework for the study of multiple multigran-

ulation rough set in this paper. Based on this frame-

work, a general heuristic algorithm is presented to

compute multiple multigranulation lower/upper ap-

proximate distribution reducts. Experimental stud-

ies pertaining to eight UCI data sets show the differ-

ences of approximate qualities and reducts between

our and Qian et al.’s multigranulation rough sets.

The following research topics deserve further in-

vestigation:

1. The construction of multiple multigranulation

rough set in fuzzy environment.

2. Dynamic updating of multiple multigranulation

rough set and dynamic computing of reducts

when multigranulation environment is dynamic

variation.

3. Using multiple multigranulation rough set ap-

proach to design classifier.

Acknowledgment

This work is supported by the Natural Science

Foundation of China (Nos. 61572242, 61503160,

61305058, 61373062, 61502211, 61471182), Key

Program of Natural Science Foundation of China

(No. 61233011), Qing Lan Project of Jiangsu

Province of China, Postdoctoral Science Foundation

of China (No. 2014M550293), Philosophy and So-

cial Science Foundation of Jiangsu Higher Educa-

tion Institutions (No. 2015SJD769).

References

1. H. M. Abu–Donia, Multi knowledge based rough
approximations and applications, Knowledge–Based
Systems 26 (2012) 20–29.

2. Y. Chen, An adjustable multigranulation fuzzy rough
set, International Journal of Machine Learning and
Cybernetics 7 (2016) 267–274.

3. D. G. Chen, Q. H. Hu, Y. P. Yang, Parameterized at-
tribute reduction with Gaussian kernel based fuzzy
rough sets, Information Sciences 181 (2011) 5169–
5179.

4. H. L. Dou, X. B. Yang, J. Y. Fan, S. P. Xu, The mod-
els of variable precision multigranulation rough sets,
in: Rough Sets and Knowledge Technology– 7th Inter-
national Conference, Chengdu, China, 17–19 August,
2012, pp. 465–473.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 277–292
___________________________________________________________________________________________________________

290



5. L. Feng, G. Y. Wang, X. X. Li, Knowledge acquisi-
tion in vague objective information systems based on
rough sets, Expert Systems 27 (2010) 129–142.

6. T. Herawan, M. M. Deris, J. H. Abawajy, A
rough set approach for selecting clustering attribute,
Knowledge–Based Systems 23 (2010) 220–231.

7. Q. H. Hu, S. An, D. R. Yu, Soft fuzzy rough sets for ro-
bust feature evaluation and selection, Information Sci-
ences 180 (2010) 4384–4400.

8. Q. H. Hu, X. J. Che, L. Zhang, D. Zhang, M. Z. Guo,
D. R. Yu, Rank entropy based decision trees for mono-
tonic classification, IEEE Transactions on Knowledge
and Data Engineering 24 (2012) 2052–2064.

9. Q. H. Hu, W. W. Pan, L. Zhang, D. Zhang, Y. P. Song,
M. Z. Guo, D. R. Yu, Feature selection for monotonic
classification, IEEE Transactions on Fuzzy Systems
20 (2012) 69–81.

10. B. Huang, D. K. Wei, H. X. Li, Y. L. Zhuang, Us-
ing a rough set model to extract rules in dominance–
based interval–valued intuitionistic fuzzy information
systems, Information Sciences 221 (2013) 215–229.

11. X. Y. Jia, W. H. Liao, Z. M. Tang, L. Shang, Minimum
cost attribute reduction in decision–theoretic rough set
models, Information Sciences 219 (2013) 151–167.

12. M. A. Khan, M. Banerjee, Formal reasoning with
rough sets in multiple–source approximation systems,
International Journal of Approximate Reasoning 49
(2008) 466–477.

13. D. E. Knuth, The art of computer programming, Vol-
ume 2, Addison–Wesley, 1969.

14. G. P. Lin, Y. H. Qian, J. J. Li, NMGRS:
Neighborhood–based multigranulation rough sets, In-
ternational Journal of Approximate Reasoning 53
(2012) 1080–1093.

15. G. P. Lin, J. Y. Liang, Y. H. Qian, Topological ap-
proach to multigranulation rough sets, International
Journal of Machine Learning and Cybernetics 5
(2014) 233–243.

16. G. M. Lang, Q. G. Li, T. Yang, An incremental ap-
proach to attribute reduction of dynamic set-valued in-
formation systems, International Journal of Machine
Learning and Cybernetics 5 (2014) 775–788.

17. X. Liu, Y. H. Qian, J. Y. Liang, A rule–extraction
framework under multigranulation rough sets, Inter-
national Journal of Machine Learning and Cybernet-
ics 5 (2014) 319C-326.

18. J. H. Li, Y. Ren, C. L. Mei, Y. H. Qian, X. B. Yang,
A comparative study of multigranulation rough sets
and concept lattices via rule acquisition, Knowledge–
Based Systems 91 (2016) 152–164.

19. J. Y. Liang, F. Wang, C. Y. Dang, Y. H. Qian, An effi-
cient rough feature selection algorithm with a multi–
granulation view, International Journal of Approxi-
mate Reasoning 53 (2012) 912–926.

20. J. Y. Liang, F. Wang, C. Y. Dang, Y. H. Qian, A group

incremental approach to feature selection applying
rough set technique, IEEE Transactions on Knowl-
edge and Data Engineering 26 (2012) 294–308.

21. F. Y. Meng, X. H. Chen, Q. Zhang, An approach
to interval-valued intuitionistic uncertain linguistic
multi-attribute group decision making, International
Journal of Machine Learning and Cybernetics 6
(2015) 859–871.

22. J. S. Mi, W. X. Zhang, An axiomatic characterization
of a fuzzy generalization of rough sets, Information
Sciences 160 (2004) 235–249.

23. D. Q. Miao, C. Gao, N. Zhang, Z. F. Zhang, Diverse
reduct subspaces based co–training for partially la-
beled data, International Journal of Approximate Rea-
soning 52 (2011) 1103–1117.

24. S. Miyamoto, Generalizations of multisets and rough
approximations, International Journal of Intelligent
Systems 19 (2004) 639–652.

25. J. M. Ma, Y. Leung, W. X. Zhang, Attribute reductions
in object-oriented concept lattice, International Jour-
nal of Machine Learning and Cybernetics 5 (2014)
789–813.

26. F. Min, W. Zhu, Attribute reduction of data with error
ranges and test costs, Information Sciences 211 (2012)
48–67.

27. Z. Pawlak, Rough sets–theoretical aspects of reason-
ing about data, Kluwer Academic Publishers, 1992.

28. D. Pei, J. S. Mi, Attribute reduction in decision formal
context based on homomorphism, International Jour-
nal of Machine Learning and Cybernetics 2 (2011)
289–293.

29. Y. H. Qian, J. Y. Liang, W. Z. Wu, C. Y. Dang, Infor-
mation granularity in fuzzy binary GrC model, IEEE
Transactions on Fuzzy Systems 19 (2011) 253–264.

30. Y. H. Qian, J. Y. Liang, Rough set method based on
multi–granulations, in: 5th IEEE International Confer-
ence on Cognitive Informatics, Beijing, China 17–19
July, 2006, pp. 297–304.

31. Y. H. Qian, J. Y. Liang, C. Y. Dang, Incomplete multi-
granulation rough set, IEEE Transactions on Systems,
Man and Cybernetics, Part A 20 (2010) 420–431.

32. Y. H. Qian, S. Y. Li, J. Y. Liang, Z. Z. Shi, F.
Wang, Pessimistic rough set based decisions: A multi-
granulation fusion strategy, Information Sciences 264
(2014) 196–210.

33. Y. H. Qian, J. Y. Liang, W. Pedrycz, C. Y. Dang, Posi-
tive approximation: an accelerator for attribute reduc-
tion in rough set theory, Artificial Intelligence 174
(2010) 597–618.

34. Y. H. Qian, J. Y. Liang, W. Pedrycz, C. Y. Dang, An ef-
ficient accelerator for attribute reduction from incom-
plete data in rough set framework, Pattern Recognition
44 (2011) 1658–1670.

35. Y. H. Qian, J. Y. Liang, W. Wei, Pessimistic rough de-
cision, in: Second International Workshop on Rough

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 277–292
___________________________________________________________________________________________________________

291



Sets Theory, Zhoushan, China 19–21 Octber, 2010,
pp. 440–449.

36. Y. H. Qian, J. Y. Liang, W. Wei, Consistency-
preserving attribute reduction in fuzzy rough set
framework, International Journal of Machine Learn-
ing and Cybernetics 4 (2013) 287–299.

37. Y. H. Qian, J. Y. Liang, Y. Y. Yao, C. Y. Dang, MGRS:
a multi–granulation rough set, Information Sciences
180 (2010) 949–970.

38. Y. H. Qian, H. Zhang, Y. L. Sang, J. Y. Liang,
Multigranulation decision-theoretic rough sets, Inter-
national Journal of Approximate Reasoning 55 (2014)
225–237.

39. Y. H. She, X. L. He, On the structure of the multigran-
ulation rough set model, Knowledge–Based Systems
36 (2012) 81–92.

40. W. Z. Wu, Y. Leung, Theory and applications of gran-
ular labelled partitions in multi–scale decision tables,
Information Sciences 181 (2011) 3878–3897.

41. W. H. Xu, W. X. Sun, X. Y. Zhang, W. X. Zhang, Mul-
tiple granulation rough set approach to ordered infor-
mation systems, International Journal of General Sys-
tems 41 (2012) 475-501.

42. W. H. Xu, X. T. Zhang, Q. R. Wang, A general-
ized multi–granulation rough set approach, in: 7th
International Conference on Intelligent Computing,
Zhengzhou, China, 11–14 August, 2011, pp. 681–689.

43. W. H. Xu, Q. R. Wang, X. T. Zhang, Multi–
granulation fuzzy rough sets in a fuzzy tolerance
approximation space, International Journal of Fuzzy
Systems 13 (2011) 246–259.

44. Y. Y. Yao, The superiority of three–way decisions in
probabilistic rough set models, Information Sciences
181 (2011) 1080–1096.

45. Y. Y. Yao, Y. H. She, Rough set models in multigranu-
lation spaces, Information Sciences 327 (2016) 40–56.

46. Y. Y. Yao, Y. Zhao, Attribute reduction in decision–
theoretic rough set models, Information Sciences 178
(2008) 3356–3373.

47. Y. Y. Yao, N. Zhang, D. Q. Miao, F. F. Xu, Set–
theoretic approaches to granular computing, Funda-
menta Informaticae 115 (2012) 247–264.

48. X. B. Yang, Y. H. Qian, J. Y. Yang, Hierarchical struc-
tures on multigranulation spaces, Journal of Computer
Science and Technology 27 (2012) 1169–1183.

49. X. B. Yang, Y. Qi, H. L. Yu, X. N. Song, J. Y. Yang,
Updating multigranulation rough approximations with
increasing of granular structures, Knowledge–Based
Systems 64 (2014) 59–69.

50. X. B. Yang, J. Y. Yang, Incomplete information sys-
tem and rough set theory: models and attribute reduc-
tions, Science Press & Springer, 2012.

51. X.B. Yang, X.N. Song, Z.H. Chen, J.Y. Yang, On
multigranulation rough sets in incomplete informa-
tion system, International Journal of Machine Learn-
ing and Cybernetics 3 (2012) 223-232.

52. X. B. Yang, X. N. Song, H. L. Dou, J. Y. Yang, Multi–
granulation rough set: from crisp to fuzzy case, An-
nals of Fuzzy Mathematics and Informatics 1 (2011)
55–70.

53. X. B. Yang, M. Zhang, H. L. Dou, J. Y. Yang,
Neighborhood systems-based rough sets in incom-
plete information system, Knowledge–Based Systems
24 (2011) 858–867.

54. X. B. Yang, J. Y. Yang, D. J. Yu, C. Wu, Dominance–
based rough set approach and knowledge reductions
in incomplete ordered information system, Informa-
tion Sciences 178 (2008) 1219–1234.

55. X. B. Yang, Y. Q. Zhang, J. Y. Yang, Local and global
measurements of MGRS rules, International Journal
of Computational Intelligence Systems 5 (2012) 1010-
1024.

56. W. Ziarko, Variable precision rough set model, Journal
of Computer and System Science 46 (1993) 39–59.

57. Y. H. Zhai, D. Y. Li, K. S. Qu, Decision implications:
a logical point of view, International Journal of Ma-
chine Learning and Cybernetics 5 (2014) 509–516.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 277–292
___________________________________________________________________________________________________________

292


