
MULTIGRID ALGORITHMS FOR COMPRESSIBLE FLOW

CALCULATIONS

Antony Jameson

October 1985

1



1 Introduction

During the last two decades computational methods have transformed the science of aerodynamics. Following
the introduction of panel methods for subsonic flow in the sixties [1, 2], and major advances in the simulation of
transonic flow by the potential flow approximation in the seventies [3–6], the eighties have seen rapid developments
in methods for solving the Euler and Navier Stokes equations [7–11]. Multigrid techniques have penetrated this
rapidly burgeoning field, with some notable successes [12–21], but they have not yet advanced to the point of
gaining general acceptance, nor is their application to non-elliptic problems securely anchored on a firm theoretical
foundation. Multigrid time stepping schemes, which are the subject of this paper, have emerged as a promising way
to extend multigrid concepts to the treatment of problems governed by hyperbolic equations. The paper falls into
two main parts. The first part (Sections 2 and 3) reviews methods of solving the Euler equations of compressible
flow, and discusses the trade-offs which underly the choice of schemes for space and time discretization. The second
part (Sections 4 and 5) discusses multigrid time stepping schemes, and presents a new method of analyzing the
stability of these schemes.

The major considerations in the design of effective methods for the computation of aerodynamic flows are
the capability to treat flows over complex geometrical shapes, proper representation of shock waves and contact
discontinuities, treatment of viscous effects, and computational efficiency. In practice the viscosity of air is so low
that viscous effects are largely confined to thin boundary layers adjacent to the surface. These can only be resolved
by the introduction of tightly bunched meshes. At Reynolds numbers typical of full scale flight, of the order of thirty
million, the flow in the boundary layer also becomes turbulent, and is unsteady on small scales. The representation
of these effects can become prohibitively expensive, and poses a challenge for the future. This paper is restricted to
the treatment of inviscid flow. This is already a sufficiently testing problem, and good inviscid methods are needed
as a platform for the development of sound viscous methods. The immediate application of the present work is the
calculation of steady inviscid transonic flow, and some results are presented for a swept wing. Transonic flow is
important because it is the principal operating regime of both commercial and military aircraft. Similar trade-offs,
however, apply to a broader class of problems, and the multigrid time stepping technique which I describe should
prove useful whenever there is a need to find the steady state solution of a system which is governed by a hyperbolic
equation.

The underlying idea is to integrate the time dependent Euler equations until they reach a steady state. In this
work the discretization is performed in two stages. The problem is first reduced to a set of ordinary differential
equations by subdividing the domain into polygonal or polyhedral cells, and writing the conservation laws in
integral form for each cell. The resulting semi-discrete model can then be integrated in time by a variety of discrete
time stepping schemes; either implicit or explicit. If one assumes that the optimal time step increases with the
space interval, then one can anticipate a faster rate of convergence on a coarser grid. This motivates the concept
of time stepping on multiple grids. The cells of the fine mesh can be amalgmated into larger cells which form a
coarser mesh. In each coarse mesh cell the conservation laws are then represented by summing the flux balances of
its constituent fine mesh cells, with the result that the evolution on the coarse mesh is driven by the disequilibrium
of the fine mesh equations. Finally the corrections on the coarse mesh are interpolated back to the fine mesh.
This process can be repeated through a sequence of meshes in each of which the mesh spacing is doubled from the
previous mesh. If the time step is also doubled each time the process passes to a coarser mesh, then a four level
multigrid cycle consisting of one step on each mesh represents a total advance

∆t + 2∆t + 4∆t + 8∆t = 15∆t

where ∆t is the step on the fine mesh.

The potential for acceleration through the use of large time steps on the coarse grids is apparent. Its realization
in practice is not so easy, and is contingent on ensuring the stability of the composite process, and preventing too
much attrition of the convergence rate from the errors introduced by interpolation from coarser to finer grids.
The results presented in Section 6, however, indeed confirm the power of the method. In fact, three dimensional
solutions of the Euler equations can be obtained in 10-20 multigrid cycles.
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2 Space Discretization of the Euler Equations

Let p, ρ, u, v, w, E and H denote the pressure, density, Cartesian velocity components, total energy and total
enthalpy. For a perfect gas

E =
p

(γ − 1)ρ
+

1
2
(u2 + v2 + w2)

H = E +
p

ρ

where γ is the ratio of specific heats. The Euler equations for flow of a compressible inviscid fluid can be
written in integral form as

∂

∂t

∫∫∫
Ω

wdΩ +
∫∫
∂Ω

F · dS = 0 (2.1)

for a domain Ω with boundary ∂Ω and directed surface element dS. Here w represents the conserved quantity
and F is the corresponding flux. For mass conservation

w = ρ

F = (ρu, ρv, ρw)

For conservation of momentum in the x direction

w = ρu

F = (ρu2 + P, ρuv, ρuw)

with similar definitions for the y and z directions, and for energy conservation

w = ρE

F = (ρHu, ρHv, ρHw)

If we divide the domain into a large number of small subdomains, we can use equation (2.1) to estimate the
average rate of change of w in each subdomain. This is an effective method to obtain discrete approximations
to equation (2.1) which preserve its conservation form. In general the subdomains could be arbitrary, but it is
convenient to use either distorted cubic or tetrahedral cells. Alternative discretizations may be obtained by storing
sample values of the flow variables at either the cell centers or the cell corners. These variations are illustrated in
Figure 2.1 for a two-dimensional case.

Figures 2.1(a) and 2.1(b) show cell centered schemes on rectilinear and triangular meshes [7,18]. In either case
equation (2.1) is written for the cell labelled 0 as

d

dt
(V w) + Q = 0 (2.2)

where V is the cell volume and Q is the net flux out of the cell. This can be approximated as

Q =
∑

k

F0k · S0k (2.3)
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where the sum is over the faces of cell 0, S0k is the directed area of the face separating cell 0 from cell k, and
the flux F0k is evaluated by taking the average of its value in cell 0 and cell k.

F0k =
1
2
(F0 + Fk) (2.4)

An alternative averaging procedure is to multiply the average value of the convected quantity, ρ0k in the case
of the continuity equation, for example, by the transport vector

Q0k =
1
2
(q0 + qk) · S0k

obtained by taking the inner product of the mean of the velocity vector q with the directed face area.

Figures 2.1(c) and 2.1(d) show corresponding schemes on rectilinear and triangular meshes in which the flow
variables are stored at the vertices. We can now form a control volume for each vertex by taking the union of the
cells meeting at that vertex.

Equation (2.1) then takes the form

d

dt
(
∑

k

Vk)w +
∑

k

Qk = 0 (2.5)

where Vk and Qk are the cell volume and flux balance for the kth cell in the control volume. The flux balance
for a given cell is now approximated as

Q =
∑

l

Fl · Sl (2.6)

where Sl is the directed area of the lth face, and Fl is an estimate of the mean flux vector across that face.
Fluxes across internal faces cancel when the sum

∑
k Qk is taken in equation (2.5), so that only the external faces

of the control volume contribute to its flux balance. The flux balance at each vertex can be evaluated directly by
summing either the flux balances of its constituent cells or the contributions of its faces. Alternatively the flux
balance at every vertex can be evaluated indirectly by a loop over the faces. In this case the flux F · S across a
given face is accumulated into the flux balance of those control volumes which contain that face as an external
face. On a tetrahedral mesh each face is shared by exactly two control volumes (centered at the outer vertices ofthe
two tetrahedra which have that face as a common base, as illustrated in Figure (2.2)), and this is a very efficient
procedure [11].

In the two dimensional case the mean flux across an edge can be conveniently approximated as the average of
the values at its two end points,

F12 =
1
2

(F1 + F2)

in Figure 2.1(c) or 2.1(d), for example. The sum
∑

Qk in equation (2.5), which then amounts to a trapezoidal
integration rule around the boundary of the control area, should remain fairly accurate even when the mesh is
irregular. This is an advantage of the vertex formulation over the cell centered formulation, in which the midpoint
of the line joining the sample values does not necessarily coincide with the midpoint of the corresponding edge,
with a consequent reduction of accuracy on a distorted or kinked mesh (see Figure (2.3)). Storage of the solution
at the vertices has a similar advantage when a tetrahedral mesh is used in a three dimensional calculation. The
use of a simple average of the three corner values of each triangular face

F =
1
3

(F1 + F2 + F3)

is a natural choice, which is consistent with the assumption that F varies linearly over the face. It can be shown
that the resulting scheme is essentially equivalent to the use of a Galerkin method with piecewise linear basis
functions [11]. If a rectilinear mesh is used in a three dimensional problem, the difficulty arises that the four
corners of a face are not necessarily coplanar. The use of a simple average of the four corner values is a natural
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choice on a smooth mesh, but in order to preserve accuracy on an irregular mesh it may be necessary to use more
complex integration formulas based on local mappings.

The approximations (2.2) or (2.5) need to be augmented by artificial dissipative terms for two reasons. First
there is the possibility of undamped oscillatory modes. For example, when either a cell centered or a vertex
formulation is used to represent a conservation law on a rectilinear mesh, a mode with values ±1 alternately at odd
and even points leads to a numerically evaluated flux balance of zero in every interior control volume. Although
the boundary conditions may suppress such a mode in the steady state solution, the absence of damping at interior
points may have an adverse effect on the rate of convergence to the steady state.

The second reason for introducing dissipative terms is to allow the clean capture of shock waves and contact
discontinuities without undesirable oscillations. Following the pioneering work of Godunov [22], a variety of dissi-
pative and upwind schemes designed to have good shock capturing properties have been developed during the past
decade [23–33]. The one-dimensional scalar conservation law

∂u

∂t
+

∂

∂x
f(u) = 0 (2.7)

provides a useful model for the analysis of these schemes. The total variation

TV =

∞∫
−∞

∣∣∣∣∂u

∂x

∣∣∣∣ dx

of a solution of (2.7) does not increase, provided that any discontinuity appearing in the solution satisfies an entropy
condition [34]. The concept of total variation diminishing (TVD) difference schemes, introduced by Harten [28],
provides a unifying framework for the study of shock capturing methods. These are schemes with the property
that the total variation of the discrete solution

TV =
∞∑
−∞

|vj − vj−1|

cannot increase. The general conditions for a multipoint one-dimensional scheme to be TVD have been stated and
proved by Jameson and Lax [35]. For a semidiscrete scheme expressed in the form

d

dt
vj =

Q−1∑
−Q

cq(j) (vj−q − vj−q−1) (2.8)

these conditions are
c−1(j − 1) > c−2(j − 2) · · · > c−Q(j −Q) > 0 (2.9a)

and
−c0(j) > −c1(j + 1) · · · > −cQ−1(j + Q− 1) > 0 (2.9b)

Specialized to a three point scheme these conditions imply that the scheme

d

dt
vj = cj+1/2(vj+1 − vj)− cj−1/2(vj − vj−1)

is TVD if cj+1/2 > 0, cj−l/2 > 0. A conservative semi-discrete approximation to equation (2.7) can be derived by
subdividing the line into cells. Then the evolution of the value vj in the jth cell is given by

∆x
d

dt
vj + hj+1/2 − hj−1/2 = 0 (2.10)

where hj+l/2 is the estimate of the flux between cells j and j + 1. Conditions (2.9) are satisfied by the upwind
scheme

hj+1/2 =

{
f(vj) if aj+1/2 > 0
f(vj + 1) if aj+1/2 < 0

(2.11)
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Figure 2.1: Alternative Discretization Schemes
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Figure 2.2: Vertex Scheme on a Tetrahedral Mesh
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Figure 2.3: Comparison of discretization schemes on a kinked mesh.
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where aj+1/2 is a numerical estimate of the wave speed a = ∂f/∂u,

aj+1/2 =


fj+1−fj

vj+1−vj
if vj+1 6= vj

∂f
∂v

∣∣∣
v=vj

if vj+1 = vj
(2.12)

More generally, if one sets

hj+1/2 =
1
2
(fj+1 + fj) + αj+1/2(vj+1 − vj) (2.13)

where αj+1/2 is a dissipative coefficient, the scheme is TVD if

αj+1/2 ≥
1
2

∣∣aj+1/2

∣∣ (2.14)

since one can write

hj+1/2 = fj +
1
2
(fj+1 − fj)− αj+1/2(vj+1 − vj)

= fj +
(

1
2
aj+1/2 − αj+1/2

)
(vj+1 − vj)

and

hj−1/2 = fj −
1
2
(fj − fj−1)− αj−1/2(vj − vj−1)

= fj −
(

1
2
aj−1/2 + αj−1/2

)
(vj − vj−1)

A convenient way of applying these ideas to a system of equations was proposed by Roe [26]. Let Aj+1/2 be a
matrix with the property that the flux difference satisfies the relation

f(wj+1)− f(wj) = Aj+1/2(wj+1 −wj) (2.15)

Roe gives a method of constructing of such a matrix, which is a numerical approximation to the Jacobian matrix
∂f/∂w. Its eigenvalues λl are thus numerical estimates of the wave speeds associated with the system. Now
decompose the difference wj+1 −wj as a sum of the eigenvectors rl, of Aj+1/2,

wj+1 −wj =
∑

αlrl (2.16)

fj+1 − fj =
∑

λlαlrl (2.17)

and the desired dissipative term can be constructed as∑
µlαlrl (2.18)

where
µl >

1
2
|λl| (2.19)

This method amounts to constructing separate dissipative terms for the characteristic variables defined by the
eigenvectors of Aj+1/2. It is closely related to the concept of flux splitting first introduced by Steger and Warming
[25], in which the flux vector itself is split into components corresponding to the wave speeds, and backward
differencing is used for the part propagating forwards, while forward differencing is used for the part propagating
backwards. Alternative methods of flux splitting which lead to excellent shock capturing schemes have been
proposed by Osher [27] and VanLeer [31].

These concepts can be applied to two and three dimensional problems by separately applying the one dimen-
sional construction in each coordinate direction. There is no theoretical basis for this, but it generally leads to good
results in practice. The cell centered finite volume formulation is readily adapted to this kind of construction. A
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first order upwind scheme can be constructed by splitting the flux across each face into components corresponding
to forward and backward propagation, and then evaluating each component by taking values from the cell on the
upwind side of the face.

An alternative approach is as follows. Consider a two-dimensional scalar conservation law of the form

∂v

∂t
+

∂

∂x
f(v) +

∂

∂y
g(v) = 0 (2.20)

The mesh may be either rectilinear or triangular, as sketched in Figure 2.1. Assume that the evolution equation
at the mesh point 0 depends on contributions from the nearest neighbors, numbered as in the figure. Suppose that
this is expressed in the form

dv0

dt
=
∑

k

ck(vk − v0) (2.21)

where the sum is over the neighbors. Then we require all the coefficients to be nonnegative

ck > 0, k = 1, 2 · · · (2.22)

This condition on the signs of the coefficients, which is a direct generalization of the conditions for a one dimensional
three point scheme to be TVD, assures that a maximum cannot increase. Finite volume approximations to equatlon
(2.20) can be reduced to the form (2.21) by making use of the fact that the sums

∑
k

∆x and
∑
k

∆y taken around

the perimeter of the control area are zero, so that a multiple of f(v0) or g(v0) can be subtracted from the flux.
Consider, for example, a formulation in which v is stored at the vertices of a rectilinear mesh, as in Figure 2.1(c).
Then equation (2.20) is replaced by

S
dv0

dt
+

1
2

∑
k

{(fk + fk−1) (yk − yk−1)− (gk + gk−1) (xk − xk−1)} = 0 (2.23)

where k ranges from 1 to 8. This can be rearranged as

S
dv0

dt
+
∑

k

{f(vk)∆yk − g(vk)∆xk} = 0

where
∆xk =

1
2
(xk+1 − xk−1),∆yk =

1
2
(yk+1 − yk−1)

and this is equivalent to

S
dv0

dt
+
∑

k

{(f(vk)− f(v0))∆yk − (g(vk)− g(v0))∆xk} = 0 (2.24)

Define the coefficient ak0 as

ak0 =


(fk−f0)∆yk−(gk−g0)∆xk

vk−v0
, vk 6= v0(

∂f
∂v ∆yk − ∂g

∂v ∆xk

)∣∣∣
v=v0

, vk = v0
(2.25)

Then equation (2.24) reduces to

S
dv0

dt
+
∑

k

ak0(vk − v0) = 0

To produce a scheme satisfying the sign condition (2.22), add a dissipative term on the right hand side of the form∑
k

αk0(vk − v0)

where the coefficients αk0 satisfy the condition
αk0 > |ak0| (2.26)
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The definition (2.25) and condition (2.26) correspond to the definition (2.12) and condition (2.14) in the one
dimensional case. The extension to a system can be carried out with the aid of Roe’s construction. Now ak0 is
replaced by the corresponding matrix Ak0 such that

Ak0(wk −w0) = (fk − f0)∆yk − (gk − g0)∆xk

Then wk−w0 is expanded as a sum of the elgenvectors of Ak0, and a contribution to the dissipative term is formed
by multiplying each eigenvector by a positive coefficient with a magnitude not less than that of the corresponding
eigenvalue.

The use of flux splitting allows precise matching of the dissipative terms to introduce the minimum amount
of dissipation needed to prevent oscillations. This in turn reduces the thickness of the numerical shock layer to
the minimum attainable, one or two cells for a normal shock. In practice, however, it turns out that shock waves
can be quite cleanly captured without flux splitting by using adaptive coefficients. The dissipation then has a
low background level which is increased in the neighborhood of shock waves to a peak value proportional to the
maximum local wave speed. The second difference of the pressure has been found to be an effective measure for
this purpose. The dissipative terms are constructed in a similar manner for each dependent variable by introducing
dissipative fluxes which preserve the conservation form. For a three dimensional rectilinear mesh the added terms
have the form

di+1/2,j,k − di−1/2,j,k + di,j+1/2,k − di,j−1/2,k + di,j,k+1/2 − di,j,k−1/2 (2.27)

These fluxes are constructed by blending first and third differences of the dependent variables. For example, the
dissipative flux in the i direction for the mass equation is

di+1/2,j,k = R(ε(2) − ε(4)δ2
x)(ρi+1,j,k − ρi,j,k) (2.28)

where δ2
x is the second difference operator, ε(2) and ε(4) are the adaptive coefficients, and R is a scaling factor

proportional to an estimate of the maximum local wave speed. For an explicit scheme the local time step limit
∆t∗ is a measure of the time it takes for the fastest wave to cross a mesh interval, and R can accordingly by made
proportional to 1/∆t∗. The coefficient ε(4) provides the background dissipation in smooth parts of the flow, and
can be used to improve the capability of the scheme to damp high frequency modes. Shock capturing is controlled
by the coefficient ε(2), which is made proportional to the normalized second difference of the pressure

vi,j,k =
∣∣∣∣pi+1,j,k − 2pi,j,k + pi−1,j,k

pi+1,j,k + 2pi,j,k + pi−1,j,k

∣∣∣∣
in the adjacent cells.

Schemes constructed along these lines combine the advantages of simplicity and economy of computation, at
the expense of an increase in thickness of the numerical shock layer to three or four cells. They have also proved
robust in. calculations over a wide range of Mach numbers (extending up to 20 in recent studies [36]).
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3 Time Stepping Schemes

The discretization procedures of Section (2) lead to a set of coupled ordinary differential equations, which can be
written in the form

dw
dt

+ R(w) = 0 (3.1)

where w is the vector of the flow variables at the mesh points, and R(w) is the vector of the residuals, consisting
of the flux balances defined by equations (2.2) or (2.5), together with the added dissipative terms. These are to be
integrated to a steady state. Since the unsteady problem is used only as a vehicle for reaching the steady state,
alternative iterative schemes might be contemplated. Two possibilities in particular are the least squares method,
which has been successfully employed to solve a variety of nonlinear problems byGlowinski and his co-workers [6],
and the Newton iteration, which has recently been used to solve the two dimensional Euler equations by Giles [37].
The strategy of the present work, however, is to rely upon the simplest possible method, and to attempt to obtain
a fast rate of convergence by the use of multiple grids.

Since the objective is simply to reach the steady state and details of the transient solution are immaterial,
the time stepping scheme may be designed solely to maximize the rate of convergence without having to meet any
constraints imposed by the need to achieve a specified level of accuracy, provided that it does not interfere with
the definition of the residual R(w). Figure 3.1 indicates some of the principal time stepping schemes which might
be considered. The first major choice is whether to use an explicit or an implicit scheme.

A number of popular explicit schemes are based on the Lax Wendroff formulation, in which the change δw
during a time step is calculated from the first two terms of the Taylor series

δw = ∆t
∂w
∂t

+
∆t2

2
∂2w
∂t2

In a two dimensional case for which R(w) approximates ∂
∂x f(w) + ∂

∂yg(w), the the second derivative is then
estimated by substituting

∂2w
∂t2

= − ∂

∂t
R(w)

= −∂R
∂w

∂w
∂t

=
(

∂

∂x
A +

∂

∂y
B

)
R(w)

where A and B are the Jacobian matrices
A =

∂f
∂w

, B =
∂g
∂w

In a variation which has been successfully used to drive multigrid calculations by Ni [16], and Hall [20], the flow
variables are stored at the cell vertices. The correction at a vertex is then calculated from the average of the residuals
in the four neighbouring cells, augmented by differences in the x and y directions of the residuals multiplied by the
Jacobian matrices. Accordingly

δw = −
{

µxµy −
∆t

2

(
1

∆x
µyδxA +

1
∆y

µxδyB

)}
∆tQ(w) (3.2)

where µ and δ denote averaging and difference operators, and Q(w) is the flux balance in one cell, calculated in
the manner described in Section 2. Ni views this is a rule for distributing a correction calculated at the center of
each cell unequally to its four corners. As it stands, the distribution rule is consistent with a steady state solution
Q(w) = 0, but it does not damp a high frequency mode with alternate signs at odd and even points. In shock
capturing applications it has proved necessary to augment the correction with a dissipative term ∆tD(w). The
steady state solution then depends on the time step ∆t because the second term in the expansion is multiplied
by ∆t2. Consequently the time stepping procedure cannot be regarded as an iterative scheme independent ofthe
equations to be solved.
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Figure 3.1: Time stepping schemes.
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The same is true of a number of two step Lax Wendroff schemes in which ∆t∂w
∂t + ∆t2

2
∂2w
∂t2 is replaced by an

estimate of ∂w
∂t at the time t + ∆t

2 . In the widely used MacCormack scheme, the predictor and corrector steps are

(1) w∗ = wn −∆t
(
D+

x fn + D+
y gn

)
and

(2) wn+1 = wn − ∆t

2
(
D+

x fn + D+
y gn

)
− ∆t

2
(
D−

x f∗ + D−
y g∗

)
where D+

x , D−
x , D+

y and D−
y are forward and backward difference operators approximating ∂/∂x and ∂/∂y. Here

the use of different approximations for ∂f/∂x + ∂g/∂y in the two stages leads to a dependence of the steady state
solution on ∆t. If one regards equation (3.1) as a set of ordinary differential equations in which R(w) has a fixed
form, then the steady state solution is unambiguously R(w) = 0. Explicit schemes which might be considered
include linear multistep methods such as the leap frog and Adams-Bashforth schemes, and one step multistage
methods such as the classical Runge-Kutta schemes. The one step multistage schemes have the advantages that
they require no special start up procedure, and that they can readily be tailored to give a desired stability region.
They have proved extremely effective in practice as a method of solving the Euler equations [7, 8, 11].

Let wn be the result after n steps. The general form of an m stage scheme is

w(0) = wn (3.3)
w(1) = w(0) − α1∆tR(0)

· · ·
w(m−1) = w(0) − αm−1∆tR(m−2)

w(m) = w(0) −∆tR(m−1)

wn+1 = w(m)

The residual in the (q + 1)st stage is evaluated as

R(q) =
q∑

r=0

βqrR(w(r)) (3.4a)

where
q∑

r=0

βqr = 1

In the simplest case
R(q) = R(w(q))

It is then known how to choose the coefficients αq to maximize the stability interval along the imaginary axis, and
consequently the time step [38]. Since only the steady state solution is needed, it pays, however, to separate the
residual R(w) into its convective and dissipative parts Q(w) and D(w). Then the residual in the (q + 1)st stage
is evaluated as

R(q) =
q∑

r=0

βqrQ(w(r))− γqrD(w(r)) (3.4b)

where
q∑

r=0

βqr = 1,

q∑
r=0

γqr = 1

Blended multistage schemes of this type, which have been analyzed in reference [39], can be tailored to give large
stability intervals along both the imaginary and negative real axes.

Instead of recalculating the residuals at each stage it is possible to estimate the change in the residual by the
first term of a Taylor expansion

R(w + δw) = R(w) +
∂R
∂w

δw + · · ·
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If R(w) approximates ∂
∂x f(w) + ∂

∂yg(w) and the dissipative terms are frozen, this leads to the following reformu-
lation of the multistage scheme:

δw(1) = −α1∆tR(w(0))
δw(2) = −α2∆tR(w(0)) + (DxA + DyB) δw(1)

δw(3) = −α3∆tR(w(0)) + (DxA + DyB) δw(2)

· · ·

This formulation in which the current estimate of the correction is repeatedly multiplied by the Jacobians to
produce an improved estimate, resembles the Lax Wendroff scheme. It differs from the Lax Wendroff scheme,
however, in applying the difference operator DxA + DyB to the actual δwj calculated at the mesh points xj in the
previous stage. Accordingly it has the stability properties of the multistage scheme.

The properties of multistage schemes can be further enhanced by residual averaging [8]. Here the residual at
a mesh point is replaced by a weighted average of neighboring residuals. The average is calculated implicitly. In a
one dimensional case R(w) is replaced by R̄(w), where at the jth mesh point

−εR̄j−1 + (1 + 2ε)R̄j − εR̄j+1 = Rj

It can easily be shown that the scheme can be stabilized for an arbitrarily large time step by choosing a sufficiently
large value for ε. In a nondissipative one dimensional case one needs

ε >
1
4

((
∆t

∆t∗

)2

− 1

)
where ∆t∗ is the maximum stable time step of the basic scheme, and ∆t is the actual time step. The method can
be extended to three dimensions by using smoothing in product form

(1− εxδ2
x)(1− εyδ2

y)(1− εzδ
2
z)R̄ = R (3.5)

where δ2
x, δ2

y and δ2
z are second difference operators in the coordinate directions, and εx, εy and εz are the corre-

sponding smoothing coefficients. Residual averaging can also be used on triangular meshes [11, 19]. The implicit
equations are then solved by a Jacobi iteration.

One can anticipate that implicit schemes will yield convergence in a smaller number of time steps, since the
time step is no longer constrained by a stability limit. This will only pay, however, if the decrease in the number
of time steps outweighs the increase in the computational effort per time step consequent upon the need to solve
coupled equations. The prototype implicit scheme can be formulated by estimating ∂w/∂t at t + µ∆t as a linear
combination of R(wn) and R(wn+1) The resulting equation

wn+1 = wn −∆t
{
(1− µ)R(wn) + µR(wn+1)

}
(3.6)

can be linearized as
(I + µ∆t

∂R
∂w

)δw + ∆tR(wn) = 0 (3.7)

Equation (3.7) reduces to the Newton iteration if one sets µ = 1 and lets ∆t → ∞. In a three-dimensional case
with an NxNxN mesh its bandwidth is of order N2. Direct inversion requires a number of operations proportional
to the number of unknowns multiplied by the square of the bandwidth, that is O(N7). This is prohibitive, and
forces recourse to either an approximate factorization method or an iterative solution method.

The main possibilities for approximate factorization are the alternating direction and LU decomposition meth-
ods. The alternating direction method, which may be traced back to the work of Gourlay and Mitchell [40], was
given an elegant formulation for nonlinear problems by Beam and Warming [41]. In a two dimensional case equation
(3.7) is replaced by

(I + µ∆tDxA)(I + µ∆tDyB)δw + ∆tR(w) = 0 (3.8)

where Dx and Dy are difference operators approximating ∂/∂x and ∂/∂y, and A and B are the Jacobian matrices.
This may be solved in two steps:

(I + µ∆tDxA)δw∗ = −∆tR(w)
(I + µ∆tDyB)δw = δw∗
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Each step requires block tridiagonal inversions, and may be performed in O(N2) operations on an N x N mesh.
The algorithm is amenable to vectorization by simultaneous solution of the tridiagonal equations along parallel
coordinate lines. The method has been refined to a high level of efficiency by Pulliam and Steger [9], and Yee has
extended it to incorporate a TVD scheme [32]. Its main disadvantage is that its extension to three dimensions is
inherently unstable according a Von Neumann analysis.

The idea of the LU decomposition method [42] is to replace the operator in equation (3.3) by the product of
lower and upper block triangular factors L and U ,

LUδw + ∆tR(w) = 0 (3.9)

Two factors are used independent of the number of dimensions, and the inversion of each can be accomplished
by inversion of its diagonal blocks. The method can be conveniently illustrated by considering a one dimensional
example. Let the Jacobian matrix A = ∂f/∂w be split as

A = A+ + A−

where the eigenvalues of A+ and A− are positive and negative respectively. Then we can take

L = I + µ∆tD−
x A+, U = I + µ∆tD+

x A− (3.10)

where D+
x and D−

x denote forward and backward difference operators approximating ∂/∂x. The reason for splitting
A is to ensure the diagonal dominance of L and U , independent of ∆t. Otherwise stable inversion of both factors
will only be possible for a limited range of ∆t. A crude choice is

A± =
1
2
(A± ρI)

where ρ is at least equal to the spectral radius of A. If flux splitting is used in the calculation of the residual, it
is natural to use the corresponding splitting for L and U . An interesting variation is to combine an alternating
direction scheme with LU decomposition in the different coordinate directions [43,44].

If one chooses to adopt the iterative solution technique, the principal alternatives are variants of the Gauss-
Seidel and Jacobi methods. These may be applied to either the nonlinear equation (3.6) or the linearized equation
(3.7). A Jacobi method of solving (3.6) can be formulated by regarding it as an equation

w −w(0) + µ∆tR(w) + (1− µ)∆tR(w(0)) = 0

to be solved for w. Here w(0) is a fixed value obtained as the result of the previous time step. Now using bracketed
superscripts to denote the iterations, we have

w(0) = wn

w(1) = w(0) + ∆tR(w(0))

and for k > 1
w(k+1) = w(k) + σk+1

{(
w(k) −w(0) + µ∆tR(w(k)) + (1− µ)∆tR(w(0))

)}
where the parameters σk+l can be chosen to optimize convergence. Finally, if we stop after m iterations,

wn+1 = w(m)

We can express w(k+1)

w(k+1) = w(0) + (1 + σk+1)(w(k) −w(0)) + σk+1

{(
µ∆tR(w(k)) + (1− µ)∆tR(w(0))

)}
Since

w(1) −w(0) = σ1∆tR(w(0))

it follows that for all k we can express (w(k)−w(0)) as a linear combination of R(w(j)), j < k. Thus this scheme is
a variant of the multi-stage time stepping scheme described by equations (3.3) and (3.4a). It has the advantage that
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it permits simultaneous or overlapped calculation of the corrections at every mesh point, and is readily amenable
to parallel and vector processing.

A symmetric Gauss-Seidel scheme has been successfully employed in several recent works [10,21,45]. Consider
the case of a flux split scheme in one dimension, for which

R(w) = D+
x f−(w) + D−

x f+(w)

where the flux is split so that the Jacobian matrices

A+ =
∂f+

∂w
and A− =

∂f−

∂w

have positive and negative eigenvalues respectively. Now equation (3.7) becomes{
I + µ∆t

(
D+

x A− + D−
x A+

)}
δw + ∆tR(w) = 0

At the jth mesh point this is{
I + α

(
A+

j −A−j
)}

δwj + αA−j+1δwj+1 − αA+
j−1δwj−1 + ∆tRj = 0

where
α = µ

∆t

∆x

Set δw(0)
j = 0. A two sweep symmetric Gauss-Seidel scheme 1s then{

I + α
(
A+

j −A−j
)}

δw(1)
j − αA+

j−1δw
(1)
j−1 + ∆tRj = 0{

I + α
(
A+

j −A−j
)}

δw(2)
j + αA−j+1δw

(2)
j+1 − αA+

j−1δw
(1)
j−1 + ∆tRj = 0

Subtracting (1) from (2) we find that{
I + α

(
A+

j −A−j
)}

δw(2)
j + αA−j+1δw

(2)
j+1 =

{
I + α

(
A+

j −A−j
)}

δw(1)
j

Define the lower triangular, upper triangular and diagonal operators L, U and D as

L = I − αA− + µtD−
x A+

U = I + αA+ + µtD+
x A−

D = I + α(A+ −A−)

It follows that the scheme can be written as

LD−1Uδw = −∆tR(w)

Commonly the iteration is terminated after one double sweep. The scheme is then a variation of an LU implicit
scheme.

Some of these interconnections are illustrated in Figure (3.1). Schemes in three main classes appear to be the
most appealing:

1. Variations of multi-stage time stepping, including the application of a Jacobi iterative method to the implicit
scheme, (indicated by a single asterisk).

2. Variations of LU decomposition, including the application of a Gauss-Seidel iterative method to the implicit
scheme (indicated by a double asterisk).

3. Alternating direction schemes, including schemes in which an LU decomposition is separately used in each
coordinate direction (indicated by a triple asterisk).
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Schemes of all three classes have been successfully used in conjunction with multigrid techniques [17–19,21,46–48].
The optimal choice may finally depend on the computer architecture. One might anticipate that the Gauss-Seidel
method of iteration could yield a faster rate of convergence than a Jacobi method, and it appears to be a particularly
natural choice in conjunction with a flux split scheme which yields diagonal dominance. The efficiency of this
approach has been confirmed in the recent work of Hemker and Spekreijse [21]. This class of schemes, however,
restricts the use of vector or parallel processing. Multistage time stepping, or Jacobi iteration of the implicit
scheme, allow maximal use of vector or parallel processing. The alternating direction formulation removes any
restriction on the time step (at least in the two dimensional case), while permitting vectorization along coordinate
lines. The ADI-LU scheme is an interesting compromise.

Viewed in the broader context of Runge-Kutta methods for solving ordinary differential equations, the coeffi-
cients of a multi-stage scheme can be tailored to optimize the stability region without any requirement of diagonal
dominance. As has been noted by Hall, multigrid time stepping methods also expand the domain of dependence
of the discrete scheme in a way that corresponds to signal propagation of the physical system. This allows a large
effective time step to be attained by a multigrid cycle without the need to introduce an implicit time stepping
scheme. The results presented in Section 6 confirm that rapid convergence can indeed be obtained by explicit
multi-stage methods in conjunction with a multigrid scheme.

18



4 Multigrid Time Stepping Schemes

The discrete equations (3.1) describe the local evolution of the system in the neighborhood of each mesh point.
The underlying idea of a multigrid time stepping scheme is to transfer some of the task of tracking the evolution
of the system to a sequence of successively coarser meshes. This has two advantages. First, the computational
effort per time step is reduced on a coarser mesh. Second, the use of larger control volumes on the coarser grids
tracks the evolution on a larger scale, with the consequence that global equilibrium can be more rapidly attained.
In the case of an explicit time stepping scheme, this manifests itself through the possibility of using successively
large time steps as the process passes to the coarser grids, without violating the stability bound.

Suppose that successively coarser auxiliary grids are introduced, with the grids numbered from 1 to m, where
grid 1 is the original mesh. Then after one or more time steps on grid l one passes to grid 2. Again, after one or
more steps one passes to grid 3, and so on until grid m is reached. For k > 1, the evolution on grid k is driven by
a weighted average of the residuals calculated on grid k− 1, so that each mesh simulates the evolution that would
have occurred on the next finer mesh. When the coarsest grid has been reached, changes in the solution calculated
on each mesh are consecutively interpolated back to the next finer mesh. Time steps may also be included between
the interpolation steps on the way back up to grid 1. In practice it has been found that an effective multigrid
strategy is to use a simple saw tooth cycle, with one time step on each grid on the way down to the coarsest grid,
and no Euler calculations between the interpolation steps on the way up.

In general one can conceive of a multigrid scheme using a sequence of independently generated coarser meshes
which are not associated with each other in any structured way. Here attention will be restricted to the case
in which coarser meshes are generated by eliminating alternate points in each coordinate direction. Accordingly
each cell on grid k coincides either exactly or approximately with a group of four cells on grid k − 1 in the two
dimensional case, or eight cells in the three dimensional case. This allows the formulation of simple rules for the
transfer of data between grids.

In order to give a precise description of the multigrid scheme it is convenient to use subscripts to indicate the
grid. Several transfer operations need to be defined. First the solution vector on grid k must be initialized as

w(0)
k = Tk,k−1wk−1

where wk−1 is the current value on grid k− 1, and Tk,k−1 is a transfer operator. Next it is necessary to transfer a
residual forcing function such that the solution on grid k is driven by the residuals calculated on grid k − 1. This
can be accomplished by setting

Pk = Qk,k−1Rk−1(wk−1)−Rk(w(0)
k )

where Qk,k−1 is another transfer operator. Then Rk(wk) is replaced by Rk(wk) + Pk in the time stepping scheme.
For example, the multi-stage scheme defined by equation (3.3) is reformulated as

w(1)
k = w(0)

k − α1∆tk

(
R(0)

k + Pk

)
· · ·

w(q+1)
k = w(0)

k − αq+1∆tk

(
R(q)

k + Pk

)
· · ·

The result w(m)
k then provides the initial data for grid k + 1. Finally the accumulated correction on grid k has to

be transferred back to grid k − 1. Let w+
k be the final value of wk resulting from both the correction calculated in

the time step on grid k and the correction transferred from grid k + 1. Then one sets

w+
k−1 = wk−1 + Ik−1,k

(
w+

k −w0
k

)
where wk−1 is the solution on grid k− 1 after the time step on grid k− 1 and before the transfer from grid k, and
Ik−1,k is an interpolation operator.

In the case of a cell centered scheme the solution transfer operator Tk,k−1 is defined by the rule

Tk,k−1wk−1 =
∑

Vk−1wk−1

Vk
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where the sum is over the constituent cells on grid k − 1, and V is the cell area or volume. This rule conserves
mass, momentum and energy. The residual transferred to grid k is the sum of the residuals in the constituent cells

Qk,k−1Rk−1 =
∑

Rk−1

The corrections are transferred up using either bilinear or trilinear interpolation for the operator Ik−1,k.

When the flow variables are stored at the cell vertices the solution transfer rule is simply to set w(0)
k to wk−1

at the coincident mesh point in grid k−1. The residual transfer rule is a weighted sum over the 9 nearest points in
two dimensions, or the 27 nearest points in three dimensions. The corresponding transfer operator Qk,k−1 can be
expressed as a product of summation operators in the coordinate directions. Let µx denote an averaging operator
in the x direction:

(µxR)i+1/2,j,k =
1
2

(Ri,j,k + Ri+1,j,k)

and
(µ2

xR)i,j,k =
1
4
Ri−1,j,k +

1
2
Ri,j,k +

1
4
Ri+1,j,k

Then in the three dimensional case
Qk,k−1 = 8µ2

xµ2
yµ2

z

The interpolation operator Ik−l,k transfers the corrections at coincident mesh points, and fills in the corrections at
intermediate points by bilinear or trilinear interpolation.

In this formulation the residuals on each mesh should be re-evaluated after the time step to provide a proper
estimate of the current value Rk(w+

k ) for transfer to the next mesh k + 1 in the sequence. Just as the multistage
time stepping scheme can be modified to eliminate the recalculation of the residuals by substituting a one term
Taylor expansion for R(w + δw), so can the multigrid scheme be modified by a similar substitution to allow
the unmodified residuals to be passed to the coarser mesh. This requires the collection operator Qk,k−1 to be
constructed so that Qk,k−1Rk−1(wk−1) approximates a weighted average of the residuals Rk−1(wk−1 + δwk−1).
If R(w) approximates ∂/∂x f(w) + ∂/∂y g(w), and the change in the dissipative term is ignored, Qk,k−1 should
then be a nonsymmetric operator approximating a multiple of I + ∆tk(DxA + DyB), where A and B are the
Jacobian matrices. Hall uses a procedure of this type in his formulation of a multigrid scheme with Lax Wendroff
time stepping [20].
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5 Analysis of Multigrid Time Stepping Schemes

The analysis of multigrid schemes is complicated by the nonuniformity of the process. If a mesh point is common
to two meshes then corrections can be directly transferred from the coarse to the fine mesh. On the other hand
the correction at a point of the fine mesh which is not contained in the coarse mesh has to be interpolated from
the corrections at neighboring points. It is proposed here to circumvent this difficulty by modeling the multigrid
process as a combination of two processes. The first is a uniform process in which every mesh point is treated in
the same way, and the second is a nonlinear filtering scheme which eliminates the data from alternate points. For
the sake of simplicity the analysis will be restricted to a one dimensional model. It also proceeds on the assumption
that each coarser mesh is produced by eliminating alternate points of the finer mesh, so that there exists a set of
points which are common to all the meshes.

Figure 5.1(a) illustrates the data flow of a two level scheme in which grid 1 is the finer mesh and grid 2 is the
coarser mesh. Suppose that the calculation is simulating an equation of the form

duj

dt
= Rj(u) (5.1)

where uj is the dependent variable at mesh point j of grid 1, and R(uj) is the residual. Here it will be convenient
to use bracketed superscripts to indicate the grid level, and to reserve the use of subscripts for the indication of
the location of the mesh point in the fine grid. Suppose that the points 0, 2, 4... are common to both meshes, while
the points 1, 3, 5... are eliminated in grid 2. A simple multigrid scheme can be described as follows. On grid 1 uj

is updated by a correction
δu

(1)
j = −∆t(1)f(Rj(u)) (5.2)

where the function f depends on the time stepping scheme. On grid 2 corrections are calculated as

δu
(2)
j = −∆t(2)f(R(2)

j ), j = 1, 2, 3 · · · (5.3)

where the residual R
(2)
j is calculated by accumulating the residuals at the nearest neighbors after first allowing for

the correction introduced on grid 1. For example,

R
(2)
j = εR+

j−1 + (1− 2ε)R+
j + εR+

j+1 (5.4)

where
R+

j = Rj(u + δu(1)) (5.5)

Then on interpolating the corrections on grid 2 back to grid 1, the total correction of the complete multigrid scheme
is

δuj = δu
(1)
j + δu

(2)
j , j even

δuj = δu
(1)
j +

1
2
(δu(2)

j−1 + δu
(2)
j+1), j odd

This process can be broken down into two stages as illustrated in Figure 5.1(b). First the corrections δu
(2)
j are

calculated for all points of grid 1 by formulas 5.3,5.4,5.5 for j both even and odd. In effect the two level process is
now calculated uniformly on the original fine grid. In the second stage δu

(2)
j is then replaced by

δū
(2)
j = δu

(2)
j , j even

δū
(2)
j =

1
2
(δu(2)

j−1 + δu
(2)
j+1), j odd

This nonlinear filtering process eliminates the need to calculate δu
(2)
j at the odd points, allowing these calcu-

lations to be shifted to a coarser grid. It introduces an additional error

ej = 0, j even

ej =
1
2
(δu(2)

j−1 − 2δu
(2)
j + δu

(2)
j+1), j odd
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Figure 5.1: Data flow of multigrid and uniform schemes
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Assuming the mesh to be uniform, this can be written as

ej =
1
4
(δu(2)

j−1 − 2δu
(2)
j + δu

(2)
j+1)(1− cos

π

∆x
xj) (5.6)

where ∆x is the mesh interval of the fine mesh, and xj = j∆x are its mesh points. Thus the filter introduces
additional errors in the form of a carrier wave at the mesh frequency π/∆x of the fine mesh, modulated by the
second difference of the corrections δu

(2)
j which would be calculated in the second stage of the uniform scheme.

If we make the usual assumptions of linearity and periodicity, the multilevel uniform scheme can be analyzed
by the Fourier method. If the multilevel uniform scheme is unstable, we can anticipate that the corresponding
multigrid scheme will be unsound. Because of the injection of additional errors at various mesh frequencies by the
interpolation process of the multigrid scheme, a reasonable criterion is to require the multilevel uniform scheme
to have a substantial stability margin at the mesh frequencies of all the meshes above the coarsest mesh in the
sequence.

The following paragraphs address the question of the stability of the multilevel uniform scheme. The analysis
is carried out for an initial value problem on an infinite interval governed by an equation of the form

∂v
∂t

+ Av = 0 (5.7)

where A is a linear differential operator in one space dimension. The operator A may contain a forcing term, so
that v is not zero when the system reaches a steady state. Let the vector u with elements uj represent the discrete
solution. The residual is

R = Pu (5.8)

where P is a difference operator approximating ∆tA. In the case of a pth order accurate scheme, if P is applied to
the values vj = v(xj) of the exact solution, then

Pv = ∆t(Av + O(∆xp))

Using supercripts to denote the time steps,
un+1 = un + δu

where the correction δu depends on the residual through the action of a time stepping operator F, corresponding
to equation 5.2. For example, if we use the multi-stage scheme

u(0) = un

u(1) = u(0) − α1Pu(0)

u(2) = u(0) − α2Pu(1)

u(3) = u(0) − α3Pu(2)

un+1 = u(3)

we find that
u(3) = u(0) − α3(I − α2P + α2α1P

2)Pu(0)

Consequently
F = α3(I − α2P + α2α1P

2)

For the Crank Nicolson scheme
un+1 = un − 1

2
(Pun+1 + Pun)

we obtain
F = (I +

1
2
P )−1

If we set

û(ξ) = ∆x
∞∑
−∞

uje
−iξxj/∆x
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then the Fourier transform of the residual (5.8) is P̂ û where P̂ (ξ) is the Fourier symbol of the difference operator.
Suppose, for example, that

A = a
∂

∂x

and that we use a central difference scheme with added dissipative terms. Then

(Pu)j =
λ

2
(uj+1 − uj−1)− λµ2(uj+1 − 2uj + uj−1) + λµ4(uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2) (5.9)

where λ is the Courant number,

λ = a
∆t

∆x

and µ2 and µ4 are dissipative coefficients. Also

P̂ (ξ) = λi sin ξ + 2λµ2(1− cos ξ) + 4λµ4(1− cos ξ)2

Similarly if F̂ (ξ) is the Fourier symbol of the time stepping operator, then

δû(ξ) = −F̂ (ξ)P̂ (ξ)ûn(ξ)

and
ûn+1(ξ) = g(ξ)ûn(ξ) (5.10)

where g(ξ) is the amplification factor
g(ξ) = I − F̂ (ξ)P̂ (ξ) (5.11)

Suppose that we have a nested set of grids with successively doubled mesh intervals. It is now convenient to revert
to denoting the grids by subscripts 1, 2, 3 · · · (Since the individual elements of the solution vector do not appear in
the analysis this leads to no confusion). Consider a multigrid time stepping scheme in which time steps are taken
on successive grids sequentially down to the coarsest grid, and the cycle is then repeated. In order to produce the
same final steady state as a scheme using only the fine grid, the evolution on every grid except grid 1 should driven
by the residuals calculated on the next finer grid. Let R+

1 be the residual on grid 1 after the change δu1 and let
R2 be the residual calculated on grid 2. Also let Q21 be the operator transferring residuals from grid 1 to grid 2,
so that Q21R1 is a weighted sum of fine grid residuals corresponding to the coarse grid residual R2. Then on grid
2 replace R2 by

R̄2 = R2 + S2

where
S2 = Q21R+

1 −R2

and on grid 3 replace R3 by
R̄3 = R3 + S3

where

S3 = Q32R+
2 −R3

= Q32(Q21R+
1 + R+

2 −R2)−R3

With a single stage time stepping scheme δu2 is determined by substituting the corresponding fine grid residual
Q21R+

1 for R2. but R2 needs to be calculated because R+
2 −R2 appears in S3. With a multi-stage time stepping

scheme R2 would be recalculated several times while S2 would be frozen at its initial value on grid 2. If we examine
the action of an m stage scheme on one of the coarser grids, we have

u(0)
k = u+

k−1

u(1)
k = u(0)

k − α1(Qk,k−1R+
k−1)

u(2)
k = u(0)

k − α2(R
(1)
k + Qk,k−1R+

k−1 −R(0)
k )

· · ·
u(m)

k = u(0)
k − (R(m−1)

k + Qk,k−1R+
k−1 −R(0)

k )

u+
k = u(m)

k
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Here in the second stage

R(1)
k −R(0)

k = Pk(u(1)
k − u(0)

k )
= −α1PkQk,k−1R+

k−1

whence
u(2)

k − u(0)
k = −α2(I − α1Pk)Qk,k−1R+

k−1

Following through the remaining stages, we find that

δuk = u(m)
k − u(0)

k = −FkQk,k−1R+
k−1 (5.12)

where Fk is the time stepping operator on grid k as it would appear for a single grid.

Now consider the evolution of all quantities in the multigrid process, assuming that it is uniformly applied at
every mesh point of grid 1. Suppose that the collection operators Q21, Q32 all have the same generic form. On the
fine grid denote this by Q, with corresponding Fourier symbol Q̂(ξ). For example, if

(QR)j =
1
2
Rj−1 + Rj +

1
2
Rj+1 (5.13)

then
Q̂(ξ) = 1 + cos ξ

On grid 1 denote the Fourier symbols of the residual and time stepping operators by

p1 = P̂ (ξ), f1 = F̂ (ξ) (5.14a)

and the symbol of the first collection operator by

q21 = Q̂(ξ) (5.14b)

For a system of equations these symbols will be matrices. On the subsequent levels the corresponding symbols are

pk = P̂ (2k−1ξ), fk = F̂ (2k−1ξ) (5.14c)

and
qk,k−1 = Q̂(2k−1ξ) (5.14d)

Now on the first grid
δû1 = −f1r1

where r1 is the Fourier transform of the residual

r1 = p1û1

On subsequent grids it follows from equation (5.12) that

δûk = −fkrk

where
rk = qk,k−1r+

k−1

Since the system is linear
r+
k−1 = rk−1 + pk−1δûk−1

(but in general r+
k−1 is not equal to pk−1u+

k−1 when k > 2). Substituting for δûk−1 we find that

rk = qk,k−1(I − pk−1fk−1)rk−1 (5.15)

Finally for an m level scheme

û(+)
m = û1 =

m∑
1

fkrk (5.16)
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Equations (5.14,5.15,5.16) define the stability of the complete multilevel scheme. The final formula may be evaluated
directly as a sum in which each new term is obtained recursively from the previous term, or as a nested product
by the loop

Zm = fm

for k = m− 1 to 1.
Zk = fk + zk+1qk+1,k(I − pkfk)

and
ûm = (1− Z1p1)û1

If the operators F and P commute, then equation (5.15) may be simplified by the substitution

I − pkfk = I − fkpk = gk

where gk is the amplification factor of the basic time stepping scheme applied on level k. This will be the case for
any scheme applied to a scalar equation, and for typical multi-stage schemes applied to a system of equations.

In the special case that
Qk,k−1Pk−1 = Pk

for example, if at the jth mesh point

Rj =
λ

2
(uj+1 − uj−1)

(QR)j = Rj−1 + Rj+1

equation (5.16) reduces to
û(+)

m = gmgm−1 · · · g1û1

In general it does not. This result can be proved by noting that

r2 = q21r
(+)
1 = q21p1û

(+)
1 = p2û

(+)
1 = p2û2

and
r(+)
2 = p2û2 + p2δû2 = p2û+

2

Then
r3 = q32r

(+)
2 = q32p2û

(+)
2 = p3û

(+)
2 = p3û3

and so on. Consequently it follows that

û(+)
k = (I − fkqk,k−1pk−1)û

(+)
k−1 = gkû

(+)
k−1

Formulas (5.14,5.15,5.16) can easily be evaluated for any particular choices of residual operator, time stepping
operator and collection operator with the aid of a computer program. Figures 5.2 and 5.3 show typical results for the
dissipative central difference scheme (5.9), with the collection operator (5.13). Both results are for blended multi-
stage time stepping schemes of the class defined by equations (3.3) and (3.4b). Figure 5.2 shows the amplification
factor of a three stage scheme in which the dissipative terms are evaluated once. The Courant number is 1.5 and
the coefficients are

α1 = 0.6, α2 = 0.6 (5.17)
βqq = 1, βqr = 0, q > r

γq0 = 1, γqr = 0, r > 0

As the number of levels is increased the stability curve defined by the amplification factor is compressed to the left,
retaining a large margin of stability at all high frequencies. Thus the scheme should be resistant to the injection of
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interpolation errors. Figure 5.3 shows the amplification factor of a five stage scheme in which the dissipative terms
are evaluated twice. In this case. the coefficients are

α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 (5.18)
βqq = 1, βqr = 0, q > r

γ00 = 1, γq1 = 1, γqr = 0, r 6= 1

Residual averaging is also included with a coefficient of .75, and the Courant number is 7.5. Although the stability
curve exhibits a bump, there is still a substantial margin of safety, and this scheme has proved very effective in
practice [39].

The formulas of this section can be modified to allow for alternative multigrid strategies, including more
complicated V and W cycles. Nor is it necessary to use the same time stepping and residual operators on every
grid. It may pay, for example, to use a simplified lower order scheme on the coarse grids. This method of analysis,
in which the multigrid process is regarded as a multilevel uniform process on a single grid, subject to the injection
of additional interpolation errors, is also easily extended to two and three dimensional problems.
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Figure 5.2: Amplification Diagrams for a 3 Stage Scheme for 1-6 Grid Levels
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Figure 5.3: Amplification Diagrams for a 5 Stage Scheme with 2 Evaluations of the Dissipative Terms and Residual
Averaging for 1-6 Grid Levels
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6 Some Results for an Explicit Multi-stage Scheme

This section presents some results for a simple multigrid method in which an explicit multistage scheme was used
for time stepping. The application is the calculation of three dimensional transonic flow past a swept wing. The
vertex formulation described by equations (2.5) was used for the discretization of the Euler equations. A five stage
time stepping scheme with the coefficients defined by equations (5.18) was used in conjunction with a simple saw
tooth multigrid cycle. Implicit residual averaging as defined by equation (3.5) was also used.

The mesh was of C type in streamwise vertical planes, generated by the introduction of sheared parabolic
coordinates. This was accomplished by a two stage mapping procedure. The first stage introduces parabolic
coordinates by the transformation

(X̄ + iȲ )2 = x− x0(z) + i(y − y0)/t(z)
Z̄ = z

where z is the spanwise coordinate, t(z) is a scaling factor which can be used to control the number of cells covering
the wing, and x0(z) and y0(z) are the coordinates of a singular line lying just inside the leading edge. The effect
of this transformation is to unwrap the wing to a shallow bump Y = S(X, Z). The second stage is a shearing
transformation

X = X, Y = Y − S(X, Z), Z = Z

which maps the wing to the coordinate surface Y = 0. The mesh is then constructed by the reverse sequence of
mappings from a rectangular grid in the X, Y, Z coordinate system. Meshes of this type contain badly distorted
cells in the neighborhood of the singular line where it passes into the flowfield beyond the wing tip. These cells,
which have a very high aspect ratio and a triangular cross section, present a severe test of the robustness of the
multigrid scheme.

Figure 6.1 shows a typical result for the well known ONERA M6 wing at a Mach number of .840 and an angle
of attack of 3.06 degrees 1. The mesh contained 96 cells in the chordwise direction, 16 cells in the direction normal
to the wing, and 16 cells in the spanwise direction, and the calculation was performed in two stages. A result
was first obtained on a 48x8x8 mesh using three levels in the multigrid scheme. This was then used to provide
the initial state for the calculation on the 96x16x16 mesh in which four levels were used in the multigrid scheme.
Table 6 shows the rate of convergence over 100 multigrid cycles on the 96x16x16 mesh, measured by the average
rate of change of density, together with the development of the lift and drag coefficients CL and CD. It can be
seen that these are converged to four figures within 20 cycles. Table 6 shows the result of a similar calculation
using a sequence of three meshes containing 32x8x8, 64x16x16 and 128x32x32 cells respectively. Three levels were
used in the multigrid scheme on the first mesh, four on the second, and five on the third. After 10 cycles on the
32x8x8 mesh, 10 cycles on the 64x16x16 mesh and 5 cycles on the 128x32x32 mesh, the calculated force coefficients
were CL = .3145, and CD = .0167. These are barely different from the final converged values CL = .3144 and
CD = .0164. The discretization errors, which may be estimated by comparing fully converged results on the
sequence of three meshes, are in fact substantially larger than these differences, confirming that convergence well
within the discretization error can be obtained in 5− 10 cycles. In assessing these results it should be noted that
the computational effort of one step of the 5 stage scheme is substantially greater than that of a Lax Wendroff
scheme but appreciably less than that required by an alternating direction or LU decomposition scheme. Measured
by a work unit consisting of the computational effort of one time step on the fine grid, the work required for one
multigrid cycle with five levels is

1 +
1
8

+
1
64

+
1

512
+

1
4096

plus the work required for additional residual calculations, which is of the order of 25 percent. Using a single
processor of a Cray XMP computer, the time required for a multigrid cycle on a 96x16x16 mesh is about 1.3
seconds, and a complete solution on such a mesh can be obtained in about 15 seconds. This is fast enough that
iteractive analysis of alternative wing designs at the prelimi nary design stage is now within the realm of possibility.

1Calculated on a Cray 1 computer at Grumman: I am indebted to G. Volpe for his assistance in optimizing the computer program
to run on the Cray and preparing the graphic display of the result.
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Figure 6.1: Constant pressure contours of flow over the ONERA M6 wing
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Cycle Average dρ/dt CL CD
1 .916 10−1

10 .158 10−2 0.3110 0.0205
20 .243 10−3 0.3118 0.0203
30 .245 10−4 0.3118 0.0203
40 .353 10−5 0.3118 0.0203
50 .528 10−6 0.3118 0.0203
60 .772 10−7 0.3118 0.0203
70 .124 10−8 0.3118 0.0203
80 .241 10−9 0.3118 0.0203
90 .363 10−9 0.3118 0.0203
100 .528 10−10 0.3118 0.0203

Table 1: Calculation of the flow past the ONERA M6 wing at Mach 0.840, and 3.060 angle of attack on a 96x16x16
mesh. Average reduction of dρ/dt per multigrid cycle: 0.807

CL CD
Result after 10 cycles on 32x8x8 mesh .2956 .0373

Result after 10 cycles on 64x16x16 mesh .3167 .0263
Result after 5 cycles on 128x32x32 mesh .3145 .0167

Final Converged Result on a 128x32x32 mesh .3144 .0164

Table 2: Result for the ONERA M6 Wing with a sequence of 3 meshes
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7 Conclusions

Multigrid techniques for the Euler equations are by now solidly established, and a variety of rapidly convergent
methods have been demonstrated. The concept of a multigrid time stepping scheme provides an alternative
framework for the analysis of these methods. In contrast to the more classical view of the multigrid process based
upon assumptions of ellipticity, this concept emphasizes the role of the coarse grids in increasing the speed at which
disturbances can be propagated through the domain. It leads rather naturally to the method of analysis proposed
in Section 5, which may prove useful for screening alternative multigrid strategies, and identifying those which are
most promising.

While the successes which have been achieved to date are enough to indicate the potential of multigrid methods,
much work remains to be done. Several particularly important topics of investigation may be singled out. First, the
extreme geometrical complexity of the configurations which need to be treated in many engineering applications
may well dictate the use of patched and unstructured meshes. The use of an unstructured tetrahedral mesh appears,
for example, to be one of the more promising ways to calculate the flow past a complete aircraft [11]. If multigrid
methods are to be more widely used, I believe, therefore, that it will be necessary to develop effective methods for
unstructured meshes. Second, accurate simulations of real flows must include the effects of viscosity and turbulence,
and will accordingly require the treatment of the Reynolds averaged Navier Stokes equations. The need to use
meshes with very high aspect ratio cells in the boundary layer region accentuates the difficulties in obtaining rapid
convergence. While some acceleration has been demonstrated with multigrid techniques, the speed of convergence
still falls far short of the rates achieved in Euler calculations. A third direction of improvement which needs to be
pursued is the integration of multigrid solution strategies with procedures for automatic grid refinement. Results
which have already been obtained in two dimensional calculations clearly show the potential advantages of such an
approach, which could be the key to better resolution of both shock waves and boundary layers [49,50].

The realization of these improvements will bring us closer to the ultimate goal of accurate and economical
prediction of flows over complete con figurations. Computational methods may then finally fulfill their proper role
as a reliable guide for the design of aeroplanes, cars, and any other devices whose performance significantly depends
on aerodynamic efficiency.
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