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Summary

Topology optimisation of continuum structures has become mature enough to be
often applied in industry and continues to attract the attention of researchers and
software companies in various engineering fields. Traditionally, most available algo-
rithms for solving topology optimisation problems are based on the global solution
approach and require a large number of costly analyses. An alternative method-
ology, based on cellular automata (CA) and accelerated with a multigrid discreti-
sation scheme, can be a good candidate to solve topology optimisation problems
in a reasonable amount of computational time. The main advantages of using CA
paradigm in structural design are the local analysis and design resolutions, and its
parallel nature. The multigrid acceleration method is used to improve its efficiency.
This innovative approach offers a new paradigm for design and analysis with higher
efficiency compared to existing design optimisation algorithms. In this thesis, the
topology optimisation of continuum structures with design-dependent loads is solved
using a multigrid accelerated cellular automata algorithm.

The CA paradigm is applied to two and three dimensional continuum topology
optimisation problems. An optimisation formulation based on minimum compliance
design subject to a volume constraint is used in the present work. The cellular
automata based design scheme uses local update(s) rules for both field variables
(displacements) and design variables (cell densities). The analysis rules are derived
from the principle of minimum total potential energy, and the design rules are derived
based on continuous optimality criteria interpreted as local Kuhn-Tucker conditions.
Numerical experiments demonstrate the robustness of the proposed CA algorithm
to solve topology optimisation problems at the expense of slow convergence. The
deterioration of CA convergence rate is due to slow propagation of information from
cell to cell as the number of variables increases. A methodology based on multigrid
scheme is used to accelerate the CA design algorithm.

The multigrid acceleration scheme uses different discretisation levels of grids. The
CA iterations on the finest grid are coupled with the iterations of the correction
solution on the coarse grids. The multigrid accelerated CA algorithm is demon-
strated to be a powerful tool for solving topology optimisation problems compared
to other algorithms based on finite element analysis. The computational cost using
this scheme is found to be proportional to the number of cells.

The topology optimisation of continuum structures is also performed under the in-
fluence of design-dependent loads. A direct density based method that does not in-
volve explicit construction of the loading surfaces is developed to define the design-
dependent loads. The optimisation problem is solved by the modified Method of



Moving Asymptotes coupled with line search (MMALS), and by multigrid acceler-
ated CA algorithms. An explicit constraint is added to the formulation to lead a
design to a close pure black/white solution. Numerical examples demonstrate that
the multigrid accelerated CA algorithm convergence is more stable and more robust
than the MMALS algorithm. The proposed algorithms demonstrates the effect of
design-dependent loading onto the topology optimisation problem as illustrated by
creating extra elements, shape modifications or void appearing.



Samenvatting

Topologie-optimalisatie van continue constructies heeft een voldoende volwassen
stadium bereikt om vaak toegepast te worden in de industrie, en blijft de aan-
dacht trekken van onderzoekers en softwarebedrijven in diverse ingenieursdisciplines.
Traditioneel gezien zijn de meeste beschikbare algoritmes voor het oplossen van
topologie-optimalisatie-problemen gebaseerd op de globale oplossing aanpak en verei-
sen een groot aantal kostelijke ana-lyses. Een alternatieve methode, gebaseerd op
cellular automata (CA) en versneld met een multigrid discretiseermethode, kan een
goede kandidaat zijn om topologie-optimalisatieproblemen op te lossen binnen een
redelijke hoeveelheid rekentijd. De belangrijkste voordelen van CA voor structureel
ontwerp zijn de lokale analyse en ontwerpregels, en de parallelle aard. De multi-
grid acceleration methode wordt gebruikt om de efficiëntie te verhogen. Deze inno-
vatieve aanpak creëert een nieuw paradigma voor ontwerp en analyse met een grote
efficiëntie in vergelijking met bestaande optimalisatiealgoritmen. In dit proefschrift
wordt het topologie-optimalisatieprobleem opgelost voor continue constructies met
ontwerpafhankelijke belastingen door gebruik te maken van een cellular automata
algoritme versneld door de multigridtechniek.

Het CA paradigma is toegepast op twee- en driedimensionale continue topologie-
optimalisatieproblemen. Een optimalisatieformulatie gebaseerd op een ontwerp met
minimale flexibiliteit onderhevig aan randvoorwaarden met betrekking tot het vol-
ume is beschreven in dit werk. Het ontwerpschema, gebaseerd op cellular automata,
maakt gebruik van lokale update regels voor zowel veldvariabelen (verplaatsingen)
als ontwerpvariabelen (celdichtheden). De analyseregels zijn afgeleid van continue
optimaliteitscriteria die gëınterpreteerd kunnen worden als lokale Kuhn-Tucker voor-
waarden. Numerieke experimenten tonen de robuustheid aan van het voorgestelde
CA algoritme om topologie-optimalisatieproblemen op te lossen ten koste van trage
convergentie. De verslechtering van de CA convergentiesnelheid komt door de tragere
verspreiding van informatie van de ene cel naar de andere bij toenemend aantal vari-
abelen. Een methodologie, gebaseerd op een multigrid schema, wordt gebruikt om
het CA ontwerpalgoritme te versnellen.

Het multigrid versnellingsschema maakt gebruik van verschillende discretisatieni-
veaus van rasters. De CA iteraties op het fijnste raster zijn gekoppeld met de
iteraties van de correctie-oplossing op de groffere rasters. Het is van het multi-
grid accelerated CA algoritme aangetoond dat het een krachtig instrument is om
topologie-optimalisatieproblemen op te lossen in vergelijking met andere algoritmen
die geba-seerd zijn op een eindige elementenanalyse. De rekenkost gebruik makend
van dit schema is proportioneel met het aantal cellen.



De topologie-optimalisatie van continue constructies is ook uitgevoerd onder invloed
van ontwerpafhankelijke belastingen. Een directe methode, gebaseerd op dichtheid,
die de expliciete constructie van de belastingsvlakken niet behelst, is ontwikkeld om
de ontwerpafhankelijke belastingen te bepalen. Het optimalisatieprobleem wordt
opgelost door de aangepaste Method of Moving Asymptotes gekoppeld aan een Line
Search (MMALS), en door multigrid accelerated CA algoritmen. Een expli-ciete
randvoorwaarde is toegevoegd aan de formulatie om een ontwerp te bekomen dat
dicht aanleunt tegen een zuivere zwart/wit oplossing. Numerieke voorbeelden tonen
aan dat de convergentie van het multigrid accelerated CA algoritme stabieler en
robuuster is dan het MMALS algoritme. Het beschreven algoritme toont het effect
aan van een ontwerpafhankelijke belasting op het topologie-optimalisatieprobleem
zoals wordt gëıllustreerd door het creëren van extra elementen, vormaanpassingen
of het opduiken van leegtes.
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Chapter 1

Introduction

1.1 Background and motivation

In the past the process of determining the optimal design of structures such as
bridges, cars, or airplanes relied heavily on the engineer’s intuition and experience.
The designers tried to find optimal forms with a series of tests on many proto-
types. This type of procedure is very expensive and inaccurate. The introduction
of mathematical optimisation theory into structural design in the early 1960’s [1]
helped to reduce prototyping costs in manufacturing. Since then research has been
carried out, and is intensifying, to find ways to automate the design process. This
increase in research has been made possible in particular by the development of the
Finite Element Method (FEM) promoting fast structural analyses. Also, the use
of multiple optimisation techniques made it possible to reshape or resize structural
elements modelled with thousands of degrees of freedom and with thousands of de-
sign variables. The goal of the optimisation process is to obtain an optimal solution
for a given engineering problem under certain loads and constraints. For more than
twenty years, interest in structure optimisation has continued to increase. Today,
structural optimisation techniques are classified into the three large families given
below.

� Size optimisation, see figure 1.1(a): only the cross-section or the thickness of
the different elements of the structure can be modified while the shape and
the topology are fixed.

1
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� Shape optimisation, see figure 1.1(b): the shape of the structure can be changed
while the topology is fixed. Shape optimisation is characterised by modifying
the border domain regarding the original structure or by changing the transver-
sal dimensions, but modifying the connectivity or the nature of the structural
members is not allowed.

� Topology optimisation, see figure 1.1(c)): fundamental modifications of a struc-
tural nature can be achieved. In this case, the modifications of connectivity
or structural members are possible. Topology optimisation commonly leads to
significant improvements in performance.

(a) Sizing. (b) Shape.

(c) Topology.

Figure 1.1: The three families of the optimisation structural.

These techniques have been used in designing structures for different fields of applica-
tion such as space, aeronautics, automobile, naval architecture, and civil engineering,
for example. A good design is very important for its resistance to various loadings,
its lifespan and its service usage.

In this work, special emphasis is placed on solving, quickly and effectively, the topol-
ogy optimisation problem for two and three dimensional continuum structures with
design-dependent loads on serial computers. The traditional techniques used to solve
this problem, based on a FEM solver for large scale models, require a large memory
for storage and a large number of costly analyses. In this thesis an attempt is made
to use a nontraditional scheme, called Cellular Automata (CA) accelerated with a
Multigrid (MG) discretisation scheme, to find solutions for the topology optimisation
problem with design-dependent loads using a combined analysis/design approach.
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This technique does not require a large amount of memory and may offer additional
computational advantages that offset costly analysis requests.

Three main areas are highlighted in this thesis, namely:

1. cellular automata for topology optimisation of structures

2. multigrid acceleration of cellular automata technique for topology optimisation
of structures

3. design-dependent loads for topology optimisation of structures

1.2 Topology optimisation

Topology optimisation of structures is the most difficult class of problems of struc-
tural design because of its combinatorial character that leads to exponential com-
plexity which requires an exponentially increasing amount of resources (e.g. time,
computer memory) as the problem size increases. In the last decades, effort to solve
the challenge of the increasing complexity of the systems studied, and the capacity
of the optimisation methods used to solve these problems in a reasonable time have
continued to increase. In spite of some recorded progress, the search is continuing
for more powerful and more robust programs that are capable of handling geomet-
ric and material nonlinearities and allowing the integration of multiple disciplines,
including topology, in the design.

The topology optimisation problem of the structural domain is to find the optimal
distribution of structural materials. Starting from given domain, boundary condi-
tions and load cases, the optimiser proceeds to determine where structural material
should be assigned. The complete process is highly automated and thus allows
the designer to quickly explore the design space and generate highly intuitive and
innovative structural designs.

The most commonly used approaches to solve the topology optimisation problem are
the homogenisation approach [2–6] and the SIMP approach (Solid Isotropic Material
with Penalisation) [7–11]. In the homogenisation approach, which was originaly
developed by Bendsøe and Kikuchi [2], the domain in this method is a composite
material made of a periodic microstructure. Each microstructure consists of material
and void. The topology optimisation problem for this approach is solved by finding
the optimal distribution of the voids in the design domain. Bendsøe [7] also proposed

3
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another technique to solve topology optimisation problem called the SIMP approach.
This approach consists of defining one design variable, a fictitious density ρ, in each
finite element. Thus, the elastic modulus of each element is defined as

Ei(xi) = xp
i E0 (p ≥ 1) (1.1)

ρi(xi) = xiρ0 (0 ≤ xi ≤ 1), (1.2)

where E0 is the base elasticity modulus, p is a penalisation parameter, ρi is a local
density variable, xi is a design variable associated to the ith finite element and ρ0 is
the base density.

Fictitious material density variables ρ are associated with the finite elements of
the topology design region. Each fictitious density can assume a value between 1
representing solid material and 0 representing a void region. The stiffness of each
element material is linked to the fictitious density using the SIMP power law (1.1)
such that the converged optimised design topology is driven to crisp black/white
designs where most elements are at the upper or lower limit.

1.3 Cellular automata for topological optimisation

of structures

Recently, there has been a growing interest in solving complex structural problems
using massively parallel algorithms. Most available algorithms are serial in nature
and require a large number of costly analyses, mostly based on the global solution
approach. An alternative methodology, based on the Cellular Automata paradigm,
can be implemented on both traditional and parallel hardware architectures. The
CA is characterised by five properties: lattice geometry, neighbourhood, cell states,
local rules of transition and boundary conditions.

The cellular automata paradigm is a mapping of discrete dynamic systems in time
and space. Each cell of the discrete domain communicates only with its neighbour-
hood through simple local rules of transition. These rules are functions of the states
of the cell itself and its neighbouring cells. Global convergence is sought by applying
the local rules repetitively to the entire domain.

Kita and Toyoda [12] were among the first to use the cellular automata paradigm
for solving topology optimisation problems. They constructed CA design rules to
obtain two-dimensional topologies based on an Evolutionary Structural Optimisation

4
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(ESO) approach [13–15], where the analysis of the structure is performed using the
finite element method.

Another pioneering work is attributed to Gürdal and Tatting [16]. Using the CA
paradigm they performed the analysis and design tasks in an integrated scheme to
solve the topology design of trusses that exhibit linear and geometrically nonlinear
responses. A Stress Ratio (SR) method [17] was chosen for the design update rule.
The analysis rules are derived from local equilibrium, and a simple design rules
that are based on fully stressed design [17] are used to size the truss members, and
the cross sectional areas of the members that connect the neighbouring cells become
design variables. The authors of this article demonstrated the efficiency of CA within
a design environment.

The CA method was extended to encompass the design of two-dimensional contin-
uum structures by the same authors Tatting and Gürdal [18]. The two-dimensional
continuum is modelled at the cell level by a truss layout that is equivalent to the
continuum cell according to an energy criterion. The relationship between the thick-
ness of the continuum structure and the cross sectional areas of the truss members
is established by equating the strain energy of the continuum cell and that of the
truss cell for given nodal displacements. The local analysis rules are derived from
the equilibrium condition of the cell. A fully stressed material condition is selected
to construct the local design rules. Numerical examples are made and compared to
GENESIS software to demonstrate the efficiency of the combined CA analysis and
design.

Encouraged by the success of applying the CA paradigm to structural design, Ab-
dalla and Gürdal [19] extended CA to design Euler-Bernoulli column for minimum
weight under buckling constraint. This problem is solved using two local rules.
One, the analysis rules for CA are derived by minimisation of the total potential
energy in a cell neighbourhood. Two, the design rules are formulated as a local
mini-optimisation problem involving force resultants. The proposed CA algorithm
is shown to converge correctly to an analytical optima for a number of classical test
cases.

Abdalla and Gürdal [20] have also successfully applied CA to treat the problem
of topology optimisation of the elastic plate. In their work, CA design rules are
formulated for the first time using rigorous optimality criteria based on SIMP ma-
terial [7–11] approach. The CA analysis rules were derived from the principle of
minimal total potential energy. An extension of this work was made by Setoodeh
et al. [21] to combine fiber angle and topology design of anisotropic laminae. Fi-
bre angles and density measures at each cell of a domain are updated based on the
optimality criteria for the minimum compliance. Numerical examples for cantilever

5
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plates show the robustness of the implemented algorithm based on the CA paradigm.

Recently, the CA paradigm has been applied to topology optimisation of 2D elastic
continuum structures subject to in plane loads and exhibiting geometric nonlineari-
ties Zakhama et al. [22]. The methodology applied in this paper is based on the SIMP
technique which is successfully defined in the work of Abdalla and Gürdal [20]. The
analysis is based on an equivalent truss model [18]. Relations between the thickness
of the isotropic plate and the cross-sectional areas of the truss members are derived
so that cell strain energy due to in-plane deformation is the same for both models.
It builds on the method developed in Gürdal and Tatting [16] for the topology de-
sign of linear and nonlinear trusses while allowing systems large enough to simulate
continuum domains. Diverse examples are presented to demonstrate the difference
in topology between a linear and nonlinear analysis.

The cellular automata paradigm is also well known to be an inherently massively
parallel algorithm. Slotta et al. [23] have successfully implemented Gürdal and Tat-
ting’s [16] work using standard programming languages and parallelisation libraries.
The domain is decomposed into different groups of cells. Each group is assigned to a
processor and the same local rules are applied for all the processors. Results demon-
strate that the CA method is perfectly suited for parallel computation. Setoodeh
et al. [24] proposed solving topology optimisation for a continuum structure, based
on the work of Abdalla and Gürdal [19], using a pipeline parallel implementation of
cellular automata on distributed memory architecture. Numerical results show that
the pipeline implementation converges successfully and generates optimal designs.

1.4 Multigrid acceleration method for topology op-

timisation

In CA studies, it has been observed that the CA convergence rate deteriorates con-
siderably as the grid is refined. This is due to the slow propagation of information
across the domain. Additionally when a CA algorithm is implemented on a serial ma-
chine it looses its most attractive feature: parallelism [23,24]. A methodology based
on the Multigrid scheme is proposed in this thesis to accelerate the CA convergence
process on serial machines. In earlier papers, it has been demonstrated that the CA
method takes advantage of the acceleration effect of multigrid schemes [25–27]. In
this thesis, the multigrid acceleration scheme is proposed as a means to accelerate
the CA algorithm for traditional hardware architecture. The motivation behind this
incorporation is that the cellular automata paradigm and the multigrid scheme are
closely related in their nature. The main idea in the multigrid concept is to use
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different discretisation levels of grids, where the iterations of a classical iterative
method on the finer grid are coupled with the iterations for the correction of the
solution on the coarser grids. This concept is illustrated in depth by Wesseling [28].
Hackbush [29] presents some applications of the multigrid algorithm such as solving
elliptic partial differential equations and Poisson’s equation.

In one of the earlier papers Maar and Shulz [30] incorporated the multigrid method to
accelerate the convergence of nonlinear interior point algorithm applied to topology
optimisation problems. Kim and Yoon [31] described the new concept of multi-
resolution multi-scale topology optimisation. The authors formulated the design op-
timisation variable in a wavelet-based variable space, not in a direct density variable
space. Using this method, major numerical instabilities such as mesh-dependencies
and local minima are resolved. Dreyer et al. [32] presented two formulations of
multigrid methods for optimisation problems: the reduced Sequential Quadratic
Programming (SQP) [33–35] with multigrid solution of the linearised model equa-
tion and the simultaneous multigrids for solution of quadratic subproblems in a
SQP-algorithm. Shape optimisation of turbine blades and topology optimisation
of elastic structures are chosen as numerical examples for these two formulations.
Kwon et al. [36] incorporated the multigrid method into a multi-scale method to
improve numerical efficiency.

Only in the work of Kim et al. [25] is the multigrid method applied to accelerate the
convergence of the cellular automata paradigm for structural design optimisation of
a beam. In this paper, equilibrium update rules are derived for a cell-centered and
a vertex centered lattice based on the minimisation of total potential energy, which
makes the update rules general enough to solve any Euler-Bernoulli beam model.
The design update rules are based on local optimality conditions that yield fully
stressed design updates. Simple examples are used to demonstrate the methodology
and various iterative aspects of the update rules are studied.

1.5 Design-dependent loads on the topology opti-

misation

Research into the optimisation of the topology of continuum structures [2] is well
established and continues to attract the attention of researchers and software com-
panies in various engineering fields. However, few researches take into account the
effect of design-dependent loads on topology optimisation problems. This class of
problems is present in different engineering domains: the fluid pressure loading of
structures in hydrostatic problems, snow loading in civil engineering structures, and
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wind and hydrodynamic loading on off-shore structures. In these problems, the
location, direction, and magnitude of loading are dependent on the design of the
structure and cannot be prescribed a priori.

Optimisation of structural topology under design-dependent loads is a comparatively
recent topic. The research in this area focuses on two types of problems: design of
structures under hydrostatic pressure and design of structures under transmissible
loads. Recent interest in structural optimisation for design-dependent loading within
the context of modern topology optimisation can be traced to the publication of the
papers by Hammer and Olhoff [37] on pressure loading, and Fuchs and Moses [38]
on transmissible loads.

1.5.1 Hydrostatic pressure loads

When structures are designed to resist hydrostatic pressure, the magnitude and
the direction of load will change as the topology of the structure is evolved. More
significant is the fact that the location of the applied load is defined by the interface
between the material regions and the void regions. Since the location of the interface
is not known a priori, special techniques and precautions are necessary to properly
model and solve such problems.

In the work of Hammer and Olhoff [37] these problems are addressed for the two-
dimensional case. The approach is based on the popular density-based approach
and the SIMP model discussed earlier (see equations (1.1) and (1.2)). The pressure
loading surface is identified by finding the curve of constant fictitious density corre-
sponding to a chosen cut-off value. The pressure loads are applied on this curve and
they are transformed to nodal forces within each finite element. The iso-volumetric
curve is represented by a set of Bezier cubic splines and approximated by a straight
line within the finite elements that it intersects.

The methodology of Hammer and Olhoff [37] is extended in the work of Du and
Olhoff [39]. The authors modify the isoline technique to make the process of the
identification of the loading surface more robust. The authors also replace the tra-
ditional SIMP model by an energy-based model with weighted unit cost constraints
to realise the topology optimisation process using general design-dependent loads.
The same authors [40] provided an extension of their two-dimensional work [39] to
the three-dimensional case.

In the above cited work, the loading surface was determined from the fictitious
density distribution, thus avoiding the need to introduce additional design variables
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to describe the loading surface. In contrast, Fuchs and Shemesh [41] explicitly
introduce a parameterised loading surface and a set of design variables, independent
of the density distribution, which control the shape of the pressure interface into the
problem of the topology optimisation. In order to maintain continuity and enhance
numerical stability, a very low Young’s modulus is assumed for any material on the
pressure side and a nominal modulus is employed for the material region. Again, the
interface shape is constructed using Bezier splines. The main application described
in their paper is the design of dams subject to hydrostatic water pressure.

Another contribution of the design-dependent loading application for the topology
optimisation problem is attributed to Chen and Kikuchi [42]. In this work, the
authors propose an approach to simulate design-dependent loads using fictitious
thermal loads. The topology optimisation problem is transformed from a two-phase
to a three-phase material distribution problem within the design domain in which
the solid, void, and hydrostatic fluid phases are optimally distributed. More recently,
Sigmund and Clausen [43] have suggested a new way to solve pressure load problems
in topology optimisation by using a mixed displacement-pressure formulation for the
underlying finite element problem.

1.5.2 Transmissible loads

The idea of transmissible loads is best explained by considering the design of a
bridge. The load on the bridge is known in magnitude and direction, but the exact
location of the force along the line of action depends on the topology of the bridge. In
contrast to hydrodynamic loading the direction of the force is not design-dependent.
This is the same situation with hydrodynamic loading where the magnitude and
direction of the load are known, but its point of application is the unknown surface
of the structure. Design of the structural topology when the applied forces are
transmissible along their line of action is first introduced within modern topology
optimisation formulations by Fuchs and Moses [38]. The authors introduce design
variables to parameterise load magnitudes along the line of action. The sum of the
loads along the line of action is prescribed to keep the total magnitude constant. In
this fashion, the net load of each line of action is given but the exact location of it
is a part of the optimisation process.

The main ideas described above are not all applicable to wind or hydrodynamic
water pressure loading problem addressed in this thesis. For example, wind loading
cannot be represented using the method of transmissible loads, especially in three
dimensions, since no wind loading is applied when there is no surface obstructing the
wind. Although the iso-volumetric surface method can be applied, it is interesting
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to develop a direct density based method that does not involve explicit construction
of the loading surfaces [44,45].

1.6 Thesis layout

In this study, the topology optimisation of continuum structures subject to dead
and design-dependent loading is considered. The optimisation problem is solved us-
ing a multigrid accelerated cellular automata algorithm. The optimisation problem
is also solved using the Method of Moving Asymptotes (MMA) [46–49], modified
by including a line search and by changing the formula for the update of asymp-
totes. The multigrid accelerated cellular automata technique for topology optimi-
sation problems is demonstrated to be a valuable tool and may reduce considerably
the computational time compared to other existing methods. Moreover, including
design-dependent loads into the optimisation formulation can lead to a significant
increase in structural stiffness with respect to these loads and can allow the appear-
ance of void (or holes) in the optimal structure facing the loads.

This thesis is organised as follows. In chapter 2, a general overview of cellular
automata is presented followed by a CA application to topology optimisation for
two and three dimensional elastic continua problems. Then, the regularisation of
the topology optimisation problem by the SIMP approach is detailed. The analysis
rules are derived from the principle of minimum total potential energy, and the
design rules are derived based on continuous optimality criteria interpreted as local
Kuhn-Tucker conditions. Finally, the effectiveness of the CA algorithm in solving
topology optimisation problems is demonstrated.

A methodology based on the multigrid scheme to accelerate the CA convergence on
a serial machine for two and three dimensional topology optimisation problems is
presented in chapter 3. The multigrid cellular automata algorithm is demonstrated
to be effective in solving topology optimisation problems in a reasonable time. The
chapter is concluded by an assessment of the computational complexity of the multi-
grid algorithm.

Chapter 4 deals with the inclusion of wind loading in the minimum compliance
topology optimisation for two and three dimensional elastic continua problems. The
wind loading is introduced into the formulation using standard expressions for the
drag force. The modified MMA coupled with Line Search (MMALS) method are
selected as a benchmark solver for the 5th chapter. An explicit constraint that
controls the intermediate densities is introduced to obtain black/white designs. It
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is shown that including wind loading in the formulation has an effect on the final
design.

The same framework of inclusion of wind loading in the minimum compliance, de-
fined in chapter 4, is extended and solved using the multigrid accelerated cellular
automata algorithm in chapter 5. The design update rule is based on optimality cri-
teria for minimum compliance design. The local optimisation problem is convexified
to prevent oscillation in the topology optimisation process and the explicit constraint
is used to control the intermediate densities. Numerical examples demonstrate the
effect of design-dependent loading onto the topology optimisation problems.

A conclusion is presented and the accomplishments of the thesis are summarised in
chapter 6.
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Chapter 2

Cellular Automata for

Topology Design

2.1 Introduction

The cellular automata (CA) paradigm has recently been applied successfully to
several structural design problems [12,16,18–24]. The methodology is based on local
resolution using simple interaction between a lattice of cells, and the CA update is
done using simple local rules. For structural design problems, two local update rules
are used to solve the optimisation problem; these are the update of field variables, e.g.
cell displacements, and design variables, e.g. element thicknesses. This methodology
does not require a large amount of memory storage and it can be easily parallelised
due to its simple structure [23,24].

In this chapter, the cellular automata paradigm is applied to two and three dimen-
sional linearly elastic continua topology optimisation problems. We start by present-
ing an introduction to cellular automata. Formulation of the design problem is posed
as compliance minimisation, which is based on continuous optimality criteria inter-
preted as local Kuhn-Tucker conditions to derive the CA design rules [20, 21]. The
optimality criteria method has been successfully used by many researchers to solve
a variety of structural optimisation problems [50–53]. The topology optimisation
problem is regularised using the SIMP approach [7–11]. However, the analysis rules
are derived from the principle of minimum total potential energy. The approach is
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then used in three-dimensional problems with some necessary technical adaptation
related to the change in dimension but with no modification in the concept. Some
numerical examples are developed to demonstrate the efficiency of the CA algorithm
for solving topology optimisation for two and three dimensional problems.

2.2 Introduction to cellular automata

Cellular automata are generally attributed to John von Neumann and Stanislas
Ulam around 1950 [54]. Originally Stanislas Ulam referred to cellular automata as
cellular space or automata networks. John von Neumann extended Stanislas Ulam’s
work with the aim of building a machine able to solve complex problems [55] based
on human brain operations. He thought that such level of complexity in a machine
would require mechanisms of self-control and self-reproduction. Adopting a more
structural approach, von Neumann was led to wonder about the properties of self-
replicating systems. The objective was to determine extremely simple rules to permit
the building of very complex structures by self-reproducing biological systems.

Stanislas Ulam suggested to von Neumann to use a completely discrete universe
of cells. Each cell characterised by internal states, precisely as a finite number of
bits. This universe of cells evolves over discrete time steps. Each cell of the domain
follows the same evolution rule according to its neighbouring cell states. This discrete
dynamic systems of cells as described by von Neumann is called cellular automata.

Cellular automata are discrete dynamic systems in time and space, and a particu-
lar case of automata network. The automata network can be updated either syn-
chronously or sequentially. For the synchronous mode, which is called the parallel
mode, the entire sites are updated simultaneously in a discrete time step. The
sequential mode is applied only for finite networks: the entire sites are updated suc-
cessively in a prescribed order. The domain size can be increased without increasing
the computational time of the entire system, by associating each processor to a set
of cells. Cellular automata can be classified among the most powerful computational
methods due to their parallelism.

The cellular automata technique has been successfully used in different fields such
as modelling natural systems including biological systems, diffusion of gaseous sys-
tems, solidification, crystallisation, turbulence and hydrodynamic flow [56]. In most
previous applications, the cellular automata can be viewed as a solution technique
(strategy) for partial differential equations, which describe continuous dynamic sys-
tems. The idea is to build complex systems using extremely simple rules, rather

14



Cellular Automata for Topology Design

than using complicated equations. In other words, it is not the complicated equa-
tions that will be used to build complex systems, but the complexity will be emerge
as a result of simple interactions between cells. The cellular automata rule is a micro-
scopic description of reality and an adequate rule can generate a realistic macroscopic
behaviour. Using a sufficiently large number of cells, it is possible to represent a
complex response governed by large number of nonlinear equations. The cellular
automata are characterised by five properties: lattice geometry, neighbourhood, cell
states, local rules of transition and boundary conditions.

2.2.1 Cell states

A cell is the basic element of cellular automata; it is a processor which allows storing
and modification of a state. In the easiest case, the cell state consists of one bit;
each cell can be either in state 1 or in state 0. The cell state can be more complex
and consist of several attributes, but the number of possible states for a cell remains
limited. The update of these states is done using a local rule of transition.

2.2.2 Lattice geometry

(a) One-dimensional lattice.

(b) Rectangular lattice. (c) Triangular lattice. (d) Hexagonal lattice.

Figure 2.1: Lattice geometry.

The form of network depends on the system being modelled. In most of the cases the
form of the network is typically one, two, or three dimensional. A two-dimensional
lattice may consist of the identical juxtaposition of hypercubes as shown in figure
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2.1. The three-dimensional lattice can be built by juxtaposition of several two-
dimensional lattices with the same distance as between two cells in the plane. The
network structures are not limited to one rectangular lattice but can take any other
form such as triangular and hexagonal lattices (see figures 2.1(d) and 2.1(d)). For
example, Wolfram [57,58] uses a hexagonal lattice of cells to model the fluid domain.

2.2.3 Neighbourhood

C

W E

(a) One-dimensional neighbourhood.
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(b) von Neumann Neighbour-
hood.
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(c) Moor neighbourhood.
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(d) MvonN neighbourhood.

Figure 2.2: CA Neighbourhood.

The dynamics of cellular automata requires us to define the concept of cell neigh-
bourhood: this is the set of cells that can interact with each cell of the domain
at a given time. The cell neighbourhood contains all the necessary information re-
quired to update the cell states at each time step. For a two-dimensional lattice, the
neighbourhoods most commonly used in the literature are von Neumann and Moor
neighbourhoods (see figure 2.2). The von Neumann neighbourhood is a neighbour-
hood where each cell communicates only with the four cells that are orthogonally
adjacent to it. For a Moor neighbourhood, each cell communicates with all eight
cells surrounding it. More neighbourhood types can be used other than von Neu-
mann and Moor neighbourhoods where the choice depends on the system that is
being modelled. For example, the “MvonN neighbourhood” combines the eight cells
of the Moor neighbourhood with the four cells orthogonally one space away from
the current cell.
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2.2.4 Local rules of transition

In computer implementation of CA, the update rules are applied for each cell of
the domain using a certain function f . The arguments of this function are the cell
neighbourhood states and the cell state in question, the output value is the new
state of this cell. For example, for a von Neumann neighbourhood, the function
f(C, E,W,N, S) has five arguments. It returns the state value of the cell C at the
moment (t + 1). Since the update rule can be applied simultaneously for each cell
of the domain, the input arguments for this case are the state values of the cells at
the moment (t) and at the moment (t + 1) all the cells have new state values.

2.2.5 Boundary conditions

The discretised design domain being finite, it is necessary to specify the concept
of neighbourhood for the cells at the edges of the domain. A different local rule of
transition then needs to be applied to the cells at the edges. To rather allow a unique
(or single) local rule to be applicable to all cells, the grid is extended beyond the
boundary of the actual design domain. Several boundary conditions can be defined
depending on the nature of the system being studied such as (see figure 2.3)

� Periodic: for a two-dimensional lattice, the left and right edges and the upper
and lower edges are connected, the domain can then be seen as a torus

� Fixed: the neighbourhood is extended with a set of virtual cells, and a constant
state value is assigned for these cells

� Adiabatic: the neighbourhood is extended by duplicating the cells at the edges

� Reflecting: the neighbourhood is extended by duplicating the neighbourhood
cell in the opposite direction

2.3 Minimum compliance design optimality crite-

ria

The problem of topology design is posed according to minimal compliance aimed at
finding the optimal distribution of material subject to the volume constraint. Con-
sequently, the problem is equivalent to the problem of minimising the elastic strain
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Figure 2.3: Boundary conditions.

energy of a structure, or maximising its total potential energy Π at equilibrium.
Thus, the optimisation problem can be written as

min
ρ

W (ρ,u∗) or max
ρ

Π(ρ,u∗), (2.1)

under the constraints:
g(ρ) ≤ 0, (2.2)

and the volume constraint:

V =

∫

Ω

ρ dΩ ≤ η VΩ, (2.3)

where ρ is local density of material (or material distribution), Ω is the prescribed
design domain, u∗ is the displacement vector at equilibrium and g are the local
constraints. The volume V of the structure is limited to an available fraction η of
the total volume of the design material domain VΩ.

The total potential energy at equilibrium is written as follows:

Π =

∫

Ω

Φ(Γ, ρ) dΩ −

∫

Γ

t · u∗ ∂Ω, (2.4)
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where t is the applied surface traction, Φ is the strain energy density of the structure
and Γ is the generalised strain vector.
Thus, the Lagrangian for this problem is written as follows:

L =

∫

Ω

[

−Φ + µ ·
(

ρ − η + c2
)

+ λ ·
(

g + s2
)]

dΩ, (2.5)

where µ is a vector Lagrange multiplier associated with the point constraint (2.3)
and c is the corresponding slack vector variable, λ is a vector of Lagrange multipliers
associated with the local constraints and s is the corresponding slack vector.

Setting the variation of the Lagrangian function to zero, we obtain the following
optimality conditions [21]:

1. Stationarity condition is written as

−
∂Φ

∂ρ
+ µ + λ ·

∂g

∂ρ
= 0. (2.6)

2. Constraints
V ≤ η VΩ, (2.7)

g(ρ) ≤ 0. (2.8)

3. Complementarity conditions
λi si = 0, (2.9)

µi ci = 0, (2.10)

λi ≥ 0, (2.11)

µi ≥ 0. (2.12)

We introduce the Legendre transformation to define the complementary energy den-
sity, given by

Φ̂(σ, ρ) = σ · Γ − Φ(Γ, ρ), (2.13)

where σ is the generalised stress defined by

σ =
∂Φ

∂Γ
. (2.14)

From the properties of Legendre transformations (2.13), the derivative of the com-
plementary energy density with respect to the density ρ at constant stress can be
written as

∂Φ̂

∂ρ

∣

∣

∣

∣

∣

σ

= σ ·
∂Γ

∂ρ
−

∂Φ

∂Γ
·
∂Γ

∂ρ
−

∂Φ

∂ρ

∣

∣

∣

∣

Γ

∂ρ

∂ρ
. (2.15)
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Consequently, from the definition of the generalised stress (2.14), it can be shown
that:

∂Φ̂

∂ρ

∣

∣

∣

∣

∣

σ

= −
∂Φ

∂ρ

∣

∣

∣

∣

Γ

. (2.16)

This equation shows that maximising the strain energy density for a given strain
and minimising the complementary energy at constant stress are equivalent.
Using (2.16), we can infer that the first order conditions (2.6), (2.8), (2.9) and
(2.11) are equivalent to the optimality conditions of the following local minimisation
problem:

min
ρ

Φ̂(σ, ρ) + µρ, (2.17a)

subject to,

g(ρ) ≤ 0. (2.17b)

The Lagrange multiplier µ, associated with the volume constraint, is the only global
quantity that is involved in this local problem. It serves in updating the material
densities in the domain. It is updated at the global level by satisfying the total
volume constraint.

The topology optimisation design of two and three dimensional elastic continua is
considered in this thesis. The material behaviour is assumed to be linear elastic and
to obey plane stress law:

N = Q · Γ, (2.18)

where N is the vector of in-plane stress resultants and Q is the reduced stiffness
matrix obtained after normalisation with respect to the initial elastic modulus E0.

In the specialisation of the SIMP method, the local stiffness of the structure is
a function of a fictitious local density distribution ρ, which is chosen as a design
variable (0 < ρ < 1). Thus, the expression of the strain energy density is written:

Φ =
1

2
ρp Γ · Q · Γ, (2.19)

where p ≥ 1 is a penalisation parameter that is introduced to lead the design to
a black and white topology, by assigning sufficiently high values to p. The effect
of this parameter is to penalise intermediate values of the density without causing
numerical difficulties. The recommended value is p = 3.

With these definitions, the generalised stresses are obtained easily from (2.14):

σ = ρp N, (2.20)
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and then the strain vector Γ can be expressed as function of the generalised stress
σ as

Γ =
1

ρp
Q

−1
· σ. (2.21)

Therefore, the complementary energy density Φ̂ is obtained using (2.13), (2.19) and
(2.21),

Φ̂ =
1

2

1

ρp
σ · Q

−1
· σ. (2.22)

Thus, the complementary energy density Φ̂ can be written as

Φ̂ =
Φ∗

ρp
, (2.23)

where

Φ∗ =
1

2
σ · Q

−1
· σ. (2.24)

The optimisation problem (2.17) is reduced to

min
ρ

Φ∗

ρp
+ µρ, (2.25a)

subject to,

ǫ ≤ ρ ≤ 1, (2.25b)

where ǫ > 0 is a very small number, set as a lower bound on ρ to avoid numerical
instability that may result from structural underdeterminacy when zero density is
allowed.

This one-dimensional minimisation problem is convex. Its unconstrained solution is
obtained analytically:

ρ̂ =

(

Φ∗

µ̄

)
1

p+1

, (2.26)

where µ̄ = µ/p is a modified Lagrange multiplier that has units of energy density.

The solution of the local minimisation problem (2.25) is given by

ρ =







ρ̂ ε < ρ̂ < 1
ε ρ̂ ≤ ε
1 ρ̂ ≥ 1

(2.27)
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2.4 CA implementation for structural design

In the previous section, optimality based local rules for updating the material den-
sity were derived. In this section, the CA discretisation of two and three dimensional
structural domains is described. The elastic continuum domain (see figure 2.4(a)) is
discretised by a lattice of regular cells which are equally spaced in the x and y direc-
tions (see figure 2.4(b)), or x, y and z for a three-dimensional structural domain (see
figure 2.4(c)). Traditional Moore neighbourhood is used to define the connectivity
of the lattice as shown in figures 2.4(d) and 2.4(e). Each cell i communicates with
its neighbours by a local rule and its state is denoted as φk

i where k is the iteration
number. For topology design in two and three dimensions, the state of the ith cell
is defined as

φi = {(ui(1...m)
), (fi(1...m)

), ρi}, (2.28)

where m corresponds to the dimensionality of the domain, m = 2 or 3 for two or
three dimensional, respectively. The components (ui(1...m)

) are the cell displacements

in the directions (1...m) , (fi(1...m)
) the external forces acting on the ith cell in the

respective (1...m) directions. Each cell of the discretised domain has its own density
measure ρi at the node point independently of the densities of the elements that
define the neighbourhood.

The update of the cells can be done simultaneously, which corresponds to the Jacobi
scheme, as follows:

φk+1
C = f(φk

C , φk
NM ), (2.29)

or sequentially, which corresponds to Gauss-Seidel scheme:

φk+1
C = f

(

φk
C , φk+1

M , φk
NM

)

, (2.30)

where M is the set of neighbouring cells whose states have been modified in the
current iteration and NM is the set of remaining cells, which have not yet been
modified.
The Gauss-Seidel method is used for the analysis update. For the design update,
the Jacobi method is the appropriate one to use to preserve the symmetry on the
solution [20].

2.4.1 Analysis update rule

The local analysis rule is derived from the equilibrium condition of the cell. The
total potential energy associated with a cell is the sum of the strain energy in each
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Figure 2.4: CA domain.

element of the neighbourhood structure, added to the potential energy due to the
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external forces applied directly to the cell:

Πi =

Nelement
∑

k=1

Uik
− fi · ui, (2.31)

where Nelement is the number of elements surrounding a cell, Uik
is the strain energy

for the kth element, fi is the applied force vector and ui is the displacement vector
for all the cell’s neighbourhood including the cell itself.
The strain energy of an element is expressed in terms of the strain energy of the
base material as follows:

Uk = ρ̄pŨ , (2.32)

where

Ũ =
1

2

∫

element

Γ · Q · Γ dxdydz, (2.33)

is the strain energy of the base material, Γ is the small-strain tensor, and Q is
the reduced in-plane stiffness for isotropic materials. The elements densities ρ̄ are
obtained by an average density interpolation [20] given by

1

ρ̄p
=

1

Ncell

Ncell
∑

i=1

1

ρp
i

, (2.34)

where ρi’s are the density measures of the cells surrounding the element, and Ncell

is the number of cells defining the element. For the two-dimensional neighbourhood
structure Ncell = 4 and for the three-dimensional neighbourhood structure Ncell = 8.
Using this scheme checkerboard patterns are suppressed automatically during the
optimisation process.

Thus, the equilibrium equations are obtained by minimising the total potential en-
ergy with respect to the cell displacements:

min
uC

Πi. (2.35)

The resulting equilibrium equations for each cell are written in a residual form:

RC(uC ,uN ) =

{

GC(uC ,uN )
GN (uC ,uN )

}

+

{

fC
fN

}

= 0, (2.36)

where uC and uN are the displacement vectors of the cell and the neighbourhood,
respectively, GC and GN are the vectors of the internal forces, fC and fN are the
vector of the applied forces relative to the cell and the vector of the internal forces
relative to the neighbourhood, respectively.
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Differentiating the vector RC with respect to the components of uC , the linear
stiffness matrix can be written as

K = −
∂RC

∂uC

(uC ,uN ). (2.37)

The stiffness matrix K can also be expressed as the Hessian of the total potential
energy:

Kpq =
∂2Πi

∂up ∂uq

. (2.38)

Thus, the cell displacements are updated as follows:

ut+1
C = ut

C + △uC , (2.39)

△uC = (KC)−1 · (GC(ut+1
N ) + fC), (2.40)

where KC is the cell stiffness matrix, KC is a (2 × 2) or (3 × 3) matrix for two
or three dimensional cases, respectively (see Appendix A for details).

2.4.2 Design update rule

The update of each cell density of the continuum structure is done using (2.27)
where Φ∗ can be written as an average among the Nelement elements of the Moore
neighbourhood structure:

Φ∗
c =

1

nVC

Nelement
∑

i=1

ρ̄2 p
i Ũi, (2.41)

where n is the number of non-shadow elements with nonzero density. Since the CA
algorithm should handle irregular domains, some cells will have shadow neighbours
that lie outside the computational domain. Shadow cells are treated by setting their
density ρ to zero. The value VC is the volume of a cell, VC = a2 or a3 for two or
three dimensional case, respectively, and a is the distance between two immediate
neighbour cells.

2.4.3 Updating the Lagrange multiplier

The proposed solution algorithm is of the primal-dual type. Therefore, the Lagrange
multiplier associated with the volume constraint plays a central role in the iterative
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process (see algorithm 2.1). In each iteration its value µ̄ in equation (2.26) is modified
according to a simple update rule derived using Newton’s method. The volume
constraint is obtained by setting to zero the derivative of the Lagrangian function
(2.5) with respect to µ̄:

∂L

∂µ̄
= 0. (2.42)

The volume constraint, (2.3), is approximated as

∑

cells

ρC VC − η
∑

cells

VC = 0. (2.43)

Although there are several iterative methods to solve equation (2.42), the Newton-
Raphson method is chosen to solve it, due to its quadratic convergence. Thus, the
update rule of the Lagrange multiplier, based on the solution given by (2.27), is as
follows:

µ̄k+1 = µ̄k + △µ̄, (2.44)

where,

△µ̄ = −

∂L
∂µ̄

∂2L
∂µ̄2

. (2.45)

2.4.4 Cellular automata scheme

In this chapter, the analysis and design iterations are nested. A flowchart of the CA
design algorithm is presented in 2.1. Starting from a structure with zero displace-
ments and from densities set to volume fraction η, analysis updates are performed
repeatedly until the norm of the force imbalance (residual (2.46)) reaches a pre-
specified tolerance εr.

R =
∑

cells

RC . (2.46)

Next, the design is updated over the whole domain, then the volume constraint
is checked. If the volume constraint is not satisfied, the Lagrange multipliers are
updated and so is the design. The process continues until the relative difference
between five successive compliance values is less than a pre-specified tolerance εc

and the variation in cell densities is less than a tolerance εd.
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Algorithm 2.1 CA design algorithm

input

u, f , ρ
output

u, ρ
% Initialisation
k = 0, µ(0)

repeat

for each element do

% Element density interpolation

% ρ̄
(k+1)
e

end for

repeat

for each cell do

% Analysis update rule

% u
(k+1)
C

end for

until
‖R‖
‖R0‖

≤ ǫr

repeat

for each cell do

% Design update rule

% ρ
(k+1)
C

if ‖V (k+1)

η VG
− 1‖ > ∆V then

% Update Lagrange Multiplier
% µ(k+1)

end if

end for

until |V
(k+1)

η VG
− 1| ≤ ∆V

W (k+1) = u(k+1) · f
k = k + 1

until (five successive |W
(k+1)

W (k) − 1| ≤ ǫc) and (|ρ(k+1) − ρ(k)| ≤ ǫ)

2.4.5 Multiple load cases

In many fields the structures are subjected to multiple load cases such as in aerospace,
civil engineering, and the automotive industry. Multiple loads are handled in the
present work by minimising the weighted average of the compliances of all load cases.
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The optimisation formulation including multiple load cases is as follows:

min
ρ

M
∑

k=1

ωk Wk(ρ,u∗
k), (2.47a)

subject to,

V =

∫

Ω

ρ dΩ ≤ η VΩ, (2.47b)

ǫ ≤ ρ ≤ 1, (2.47c)

where M corresponds to the number of load cases and ωk is the weighting factor.
These parameters, ωk, are normalised so that their sum is equal to one.

In this formulation the displacement fields for each load case are independent, there-
fore, based on the formulation for a simple load case (2.25), the problem (2.47)
becomes:

min
ρ

M
∑

k=1

ωk

Φ∗
k

ρp
+ µρ, (2.48a)

subject to,

ǫ ≤ ρ ≤ 1. (2.48b)

2.5 Numerical examples

In this section, we present some examples of two and three dimensional topology
problems to show the effectiveness of the proposed cellular automata scheme and the
capabilities of this method. The algorithm described previously (see algorithm 2.1)
is implemented in a Linux C++ environment. In all runs the penalisation parameter
is set by default to 3. The tolerance for the residual ratio is set to 10−2, the design
tolerance is set to 0.05 and a lower bound of 10−3 is adopted for the density. The
relative compliance tolerance is fixed at 10−3. The value of the Lagrange multiplier
is calculated at each redesign step to satisfy the volume constraint within 10−3. The
Poisson ratio is set to 0.3 and the Young modulus E used is 1000 N/mm2.

The chosen problem is a classical cantilever problem with a tip load P = 100 N
applied at the bottom and clamped from the left edge (see figure 2.5(a)). The plate
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Figure 2.5: Unsymmetric cantilever 2D problem.

dimensions are 300 mm in length, 300 mm in width and 100 mm in thickness. The
two-dimensional domain is discretised with 31 × 31 cells and the volume fraction is
set to η=0.3.

The two-dimensional optimum topology obtained for this problem is given in figure
2.5(b). Note that the optimal structure is a truss of three members that carry the
tip load. The solution is obtained after 46 design iterations in about 18 seconds.
The compliance of the final design is 4.57 Nmm. Figure 2.6 shows the compliance
history and the evolution of the solution with respect to the design iterations. The
compliance convergence is reasonably smooth.
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Figure 2.6: Compliance and evolution of unsymmetric cantilever 2D problem.
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P

Figure 2.7: Unsymmetric cantilever 3D topology.

The same problem is studied for the three-dimensional case. The domain is discre-
tised using 31 × 11 × 31 cells. The volume fraction and the tip load are kept the
same. Figure 2.7 illustrates the optimum topology for the three-dimensional case.
The solution is converged after 36 design iterations in about 826 seconds with a
compliance of 7.84 Nmm. The topology obtained for the three-dimensional case is
seen to be very similar to the topology obtained for the two-dimensional case.

L

L

P1

?

P2L/3

x

z
y

Figure 2.8: Cantilever domain for two load cases.

The classical cantilever problem is extended to study two load cases for two and
three dimensional cases. The problem is defined as shown in figure 2.8. The loads
have the same magnitude as defined for the one load case problem. The weighting
factors are chosen to be equal to 0.5. For the two and three dimensional domains the
discretisation and the volume fraction are kept the same as before. The topology
for two and three dimensional cases are represented in figures 2.9(a) and 2.9(b),
respectively. The compliances for both optimum structures are 7 Nmm for the two-
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(a) Cantilever 2D topol-
ogy.

(b) Cantilever 3D
topology.

Figure 2.9: Cantilever for two load cases.

dimensional problem and 9.27 Nmm for the three-dimensional problem. The higher
compliance in the 3D problem is obviously due to the larger set of possible topologies
allowed by the variability of the thickness.

2.6 Concluding remarks

A cellular automata implementation for two and three dimensional topology opti-
misation of linear elastic structures has been presented. The optimality criteria,
interpreted as local Kuhn-Tucker condition, were used to construct the local design
rule and the analysis rule was derived from the principle minimum total potential
energy. Multiple load cases are considered in the optimisation formulation. Some
examples have been treated that illustrate the successes of the CA technique in solv-
ing topology optimisation problems. When CA is implemented on a serial machine
it loses its most attractive feature: parallelism. The propagation of the information
has to travel from neighbour to neighbour throughout the domain which causes a
deterioration in rate of convergence. A traditional method to accelerate the rate
of convergence, for a serial machine is to use the multigrid scheme [25], which is
discussed in the following chapter.
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Multigrid Accelerated

Cellular Automata

3.1 Introduction

The convergence of the cellular automata algorithm described in the previous chap-
ter (see algorithm 2.1) for topology optimisation problems deteriorates considerably
as the number of cells is increased. This deterioration is due mainly to the slow
propagation of information across the domain. Each cell of a domain communicates
only with its direct neighbours. This means, for each iteration, the cell level infor-
mation where the loads are applied has to travel from neighbour to neighbour. As
the grid is refined, it takes longer and longer for cell level displacements to propagate
to the support and reach “steady state” values, which leads to a poor rate of conver-
gence. A traditional solution to this problem is to use Multigrid (MG) acceleration
scheme [23].

In this chapter, an alternative methodology based on the multigrid scheme is pro-
posed to accelerate the CA convergence on a serial machine for two and three di-
mensional topology optimisation problems. The methodology of multigrid scheme
and cellular automata paradigm are closely related in their nature. The concept of
multigrid is to use different discretisation levels of grids, in which the iterations of
the cellular automata algorithm performed on the finest grid are coupled with the
iterations of the correction solution on the coarse grids. The topology optimisation
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problem is regularised using the traditional SIMP approach [7–11] as described in
chapter 2. The update rules used in this chapter are the ones derived in chapter
2. Two versions of the algorithm are implemented: a baseline multigrid for analy-
sis acceleration and a full multigrid design algorithm. In the context of this study
full multigrid refers to acceleration of both the analysis and design iterations. It is
shown that the multigrid accelerated cellular automata scheme is a powerful tool
for solving topology optimisation problems. This is demonstrated quantitatively by
comparing the convergence time of the multigrid algorithm for different discretisa-
tion levels, with that of the same design algorithm where the analysis is performed
by a commercial finite element code.

3.2 Idea of multigrid

The convergence rate of a classical iterative schemes, such as Gauss-Seidel and Ja-
cobi, for solving linear systems deteriorates considerably as the number of variables
increases. The iteration of these schemes acts with the greatest efficiency on prop-
agation/convergence of short wavelength, high frequency components of the field
information, while it is the components of low frequency information which persist
that destroy the rate of convergence [59]. In order to improve the performance of
an iterative procedure, an initial approximation of the solution can be used, for ex-
ample, by relaxation on a coarse grid using a classical iterative method. Since the
variables on a coarse grid are fewer, the low frequency components of the field in-
formation can be reduced without losing much precision and the computational cost
for one relaxation is also much smaller than that on the fine grid. This relaxation
method can then be used in order to obtain a better approximation for the finest
grid solution.

The basic idea underlying the multigrid implementation is to use different discreti-
sation levels of grids (see figure 3.1); where the iterations of the classical iterative
method (or the CA analysis method presented in this thesis) on the finest grid are
coupled with the iterations of the correction solution on the coarser grids [28]. It is
well known that the classical iterative methods act directly on the high frequency
components in the error e = u − v of an approximation v for the solution u of
the equation A · u = b. The error e which is obtained from the residual equation
A · e = r where r = b − A · v can be eliminated after a few iterations on the finest
grid. However, after few iterations on the finest grid the convergence rate deterio-
rates due to the low frequency components [59]. By using the relaxation scheme on
a coarse grid one obtains an approximation to the error e which corrects the fine
grid approximation solution, thus the low frequency components will be eliminated.
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The coarse grid correction scheme is defined as follows:

� Relax on A · u = b over Ωk in order to obtain vk, where Ωk is a grid finer
than Ωk−1.

� Compute the residual r = b − A · vk.

� Relax on A · e = r over Ωk−1 to obtain an approximation to the error ek−1.

� Correct the approximation obtained on Ωk with the error estimate on Ωk−1

by vk = vk + ek−1.

8h

4h

2h

h

Figure 3.1: Multi-level grids for MG for two-dimensional problems.

In this work, the multigrid scheme is used to accelerate the CA convergence for two
and three dimensional topology optimisation problems. The main difference between
the MG design algorithm described in this work and the CA design algorithm de-
scribed in Abdalla and Gürdal [20] (see chapter 2) is the acceleration of the analysis
convergence. The strategies most used to visit the different grids are the V and W

cycles [28]. Figure 3.2 shows the order in which the grids are visited. A parameter
γk represents the number of visiting times to a grid, γk = 1 is assigned for the V

cycle and γk = 2 is assigned for the W cycle, respectively. A dot filled circle is used
to represent a smoothing operation which corresponds to few CA analysis iterations.
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Figure 3.2: Multigrid strategies.

3.3 Transfer operators

The relaxation scheme, also called multigrid scheme, is based on transformation
operators between coarse and fine grids. Two operators, called prolongation and
restriction operators, define the multigrid scheme (see figure 3.2). The prolongation,
or interpolation, operator denoted by Ik

k−1 transforms functions from coarse grid
Ωk−1 to a fine grid Ωk. It maps the error ek−1 obtained from the coarse grid Ωk−1

onto the fine grid Ωk. The restriction operator, denoted by Ik−1
k , is needed for

transferring residual rk = b − A · vk from a fine grid Ωk to a coarse grid Ωk−1.

In this work, the prolongation and the restriction operators for the displacement
fields are obtained by using bilinear interpolation between two generic grids Ωk−1

and Ωk. In particular, the prolongation operator maps corrections e of a solution in
a coarse grid onto a fine grid as

eh = Ih
2h · e2h, (3.1)

where the superscript h indicates the fine grid and 2h indicates the coarse one.

The prolongation operator for a two-dimensional grid is illustrated in figure 3.3. The
correction of a cell on a coarse grid is projected unchanged onto a matching cell on
a fine grid as

uh(3, 3) = u2h(2, 2), (3.2)

where u represents the displacement vector of a cell.
The corrections of a fine grid cell which belongs to an edge of a coarse grid element
are approximated as

uh(3, 4) =
1

2

[

u2h(2, 2) + u2h(2, 3)
]

. (3.3)
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uh(3,3) uh(3,4)

uh(1,1)

uh(2,2)

u2h(1,1)
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u2h(1,3)

Figure 3.3: Two-dimensional prolongation.

The corrections of a fine grid cell which is located at the middle of a coarse element
are approximated using the bilinear interpolation as

uh(2, 2) =
1

4

[

u2h(1, 1) + u2h(2, 2) + u2h(2, 1) + u2h(1, 2)
]

. (3.4)

Thus, the prolongation operator can be written in stencil notation as

Ih
2h =





1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4



 . (3.5)

Similarly, the prolongation operator in three-dimensions is obtained and can be
written in stencil notation as follows:

Ih
2h

(−1)
=
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1
4

1
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 , Ih
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(0)
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 ,

Ih
2h

(1)
=





1
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1
8
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1
2
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4

1
8

1
4

1
8



 . (3.6)

where the superscript (−1), (0) or (1) refers to the position of the matrix in the
three-dimensional stencil Ih

2h.
The restriction operator is needed for transferring the residual from a fine grid to a
coarse grid as

r2h = I2h
h · rh. (3.7)

By means of Galerkin’s approximation, the restriction operator is defined by

I2h
h =

(

Ih
2h

)T

. (3.8)

37



Chapter 3

However, the design is only performed on the finest grid. Then, the density in the fine
grid is transformed by restriction to that in the coarse grid. For a two-dimensional
problem, the density of each element in a coarse grid is determined by averaging the
densities of the matching four elements in the finer grid:

ρ̄p
2h =

1

4

4
∑

i=1

ρ̄i
p
h. (3.9)

For a three-dimensional case, the density for each element in a coarse grid is obtained
as

ρ̄p
2h =

1

8

8
∑

i=1

ρ̄i
p
h. (3.10)

3.4 Multigrid design algorithm

The multigrid design algorithm is very similar to the CA design algorithm described
in chapter 2. The main difference is that in the former the structural analysis update
is implemented according to a multigrid enhanced CA method instead of the base
CA method. The multigrid algorithm starts from the finest grid and visits all the
hierarchy of coarse grids (see algorithm 3.1). Starting from a fine grid Ωh, the CA
analysis update is applied S pre-relaxations times. The residual r obtained from a
fine grid Ωh is then mapped onto a coarse grid using the restriction operator Ih

2h.
The density of each element in a coarse grid is also restricted using equation (3.9)
(resp. equation (3.10)) for a two-dimensional (resp. three-dimensional) problem.
Arriving to the coarsest grid, the CA analysis update is executed until the residual
ratio reaches a pre-specified tolerance or an exact solution is obtained if possible.
Next, the corrections obtained from a coarse grid Ω2h are mapped onto a fine grid
Ωh using the prolongation operator I2h

h followed by S post-relaxations. This scheme
is repeated until the residual ratio reaches a pre-specified tolerance.
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Algorithm 3.1 MG analysis algorithm

input

uh, fh, ρh, h
output

uh

if h = coarsest grid then

repeat

CA analysis(uh, fh, ρh)

until
‖rh‖

‖rh
0 ‖

≤ ǫr

else

for i=1 to S do

CA analysis(uh, fh, ρh)
end for

for each cell do

% Compute the residual forces for each cell
% rh

C

f2h
C = I2h

h · rh
C

u2h
C = 0

end for

for each element do

% Restrict the element densities by using equation (3.9) or (3.10)
% ρ2h

end for

for i=1 to γ do

MG analysis(u2h, f2h, ρ2h, 2h)
end for

for each cell do

uh
C = uh

C + Ih
2h · u2h

C

end for

for i=1 to S do

CA analysis(uh, fh, ρh)
end for

end if

3.5 Full multigrid design algorithm

The idea behind the full multigrid (FMG) algorithm is to use an initial approxi-
mation to the solution of analysis and design for each given grid level in order to
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Figure 3.4: Full Multigrid strategy.

accelerate the convergence process. The full multigrid strategy for V cycle is shown
in figure 3.4. Starting from the coarsest grid (i = 1) which requires less computa-
tional time to converge, the displacements and the design variables are interpolated
recursively to a fine grid using the prolongation operator I2h

h . At a given fine grid in
the FMG algorithm, the multigrid scheme and the design update rule are applied,
whereas in the MG algorithm the design process is carried out only at the finest grid
level (see algorithm 3.2)).

Algorithm 3.2 FMG design algorithm

input

f

output

u, ρ
% CA design algorithm for the coarsest grid
CA design(f cg, ρcg)
for i = 2 to finest grid do

% Interpolation of the displacements and densities
for each cell do

uh
C = Ih

2h u2h
C

ρh
C = Ih

2h ρ2h
C

end for

MG design(uh, fh, ρh, h)
end for
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3.6 Numerical examples

In this section, some examples of topology optimisation are considered and the effi-
ciency of the multigrid accelerated algorithm is examined. All algorithms described
in this chapter are implemented under a Linux C++ environment and tested on a
Dual core AMD Opteron(tm) machine with a processor frequency of 2400 Mhz and
8 GByte memory. In all runs, the penalisation parameter is set to 3. The tolerance
for the compliance and the design is set to 10−3 and 0.05, respectively, and a lower
bound of 10−3 is adopted for the density.

3.6.1 Comparison

Table 3.1: Optimal topologies and compliances.

Cell number
Optimal topology

using NASTRAN

Optimal topology

using MG

Optimal topology

using FMG

129× 33

4273.6 4258.7 4189.3

257× 65

4064.1 4062.7 3859.6

513× 129

3985.7 3984.2 3727.9

1025× 257

3983 3980.9 3668.8

2049× 513

3994 3992 3642

4097× 1025 lack of memory

3998.4 3634.3

To demonstrate the efficiency of the multigrid accelerated CA algorithm in solving
the topology optimisation problem, it is compared with existing methods. Since the
same CA design update rule is used in all tested algorithms, the comparison con-
cerns design algorithms based on different analysis processes, namely the different

41



Chapter 3

multigrid schemes and the commercial NASTRAN code. The example studied is
a symmetric cantilever with 1000 mm in length, 250 mm in height and 1 mm in
thickness. The volume fraction is set to 0.5, the tip load considered is P = 100 N,
the Poisson ratio is 0.4 and the Young modulus E used is 1000 N/mm2. The tol-
erance for the residual ratio is set to 0.1 and 0.5 for the finest and the coarsest
grids, respectively. The W-cycle is used for the multigrid process. The smoothing
parameter is set to S = 2. These values were chosen arbitrarily; however, the effect
of these different parameters on the multigrid accelerated CA algorithm in solving
the topology optimisation problem are discussed in Section 3.6.2.
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Figure 3.5: Convergence time using NASTRAN, MG accelerated CA and FMG.

Different discretisation levels are used for the comparison; the results are generated
for 11 grid levels, starting from the coarsest grid level of 9× 3 cells, up to the finest
grid level of 4097×1025 cells. Convergence time for the FEM-CA solution using the
commercial NASTRAN code and for both the multigrid accelerated CA algorithm
and the full multigrid design algorithm are illustrated in figure 3.5. The vertical and
horizontal axes represent the convergence time and the number of cells, respectively,
on a log-log scale. First, it is observed that the curves corresponding to the MG
accelerated CA algorithm and the FMG design algorithm have approximately the
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same slope with some time gain for the FMG algorithm when the number of variables
is large enough. The commercial NASTRAN code showed a higher convergence
time than the other two algorithms. Moreover, the commercial NASTRAN code
suffers lack of memory while running the grid level of 4097 × 1025 cells. On the
contrary, the cellular automata paradigm can handle large problems because of its
local nature which makes the storage of the global stiffness matrix unnecessary. The
run time to convergence relative to the MG and FMG algorithms appears to be
nearly proportional to the number of cells, which reveals a computational effort in
the order of O(N). As for the optimal topologies, from table 3.1 it can be seen
that those obtained by the MG algorithm and by the use of NASTRAN for analysis
are practically the same with a slightly (0.005% to 0.03%) but persistently lower
compliance in the MG results. The FMG algorithm, however, produces a remarkably
distinct topology, with a gain between 2% and 9% in compliance, compared to the
topologies given by the former algorithms. This performance is mainly attributed
to the fact that the FMG algorithm starts successively from a better design as the
grid level goes up.

3.6.2 Parametric studies

In this section, we consider the influence of different parameters on the convergence of
MG and FMG acceleration algorithms. The control parameters which are considered
here are the parameter γ to select either the V or W cycle, the smoothing parameter
S, the number of grid levels used NG, and the tolerances for the residual ratio for
the finest and the coarsest grids. These parameters are actually the most influential
on the performance of the MG acceleration algorithm.

The symmetric cantilever problem of the previous example 3.6.1 was chosen as the
example for the parametric studies. The finest grid level is 1025 × 257 cells. The
parameter γ to select either V or W cycle for MG or FMG algorithms is first exam-
ined by varying different parameters while some parameters are kept as constants
(see section 3.6.1). The V and W cycles results for MG and FMG algorithms are
presented in figure 3.6 where the vertical axis is log scale and represents the total
number of cell updates Nt. From these figures we can remark that the performance
of the FMG algorithm with V cycle is better than the other three algorithms with
respect to the variation of different parameters. In general, the computational efforts
of MG with V and W cycles appear to be almost the same for various combinations
of parameters. However, in case where the tolerance of residual ratio for the finest
grid ǫrf is increased (see figure 3.6(b)), the MG algorithm with W cycle is more
efficient than with V cycle. Figure 3.6(c) shows that when the tolerance of the
coarsest grid is decreased, the performance of MG with V cycle is better than the
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Figure 3.6: Efficiency of MG and FMG algorithms with V or W cycles: influence
of parameters.

MG with W cycle.

Next, the influence of the rest of the parameters is analysed solely on the MG
acceleration algorithm with the W cycle, which will be used to solve the example
problems of the next sections. The influence of the smoothing parameter S is shown
in figure 3.7 for various combinations of ǫrf , ǫrc and NG. The vertical axe represents
the total number of cell updates Nt on a log scale. As can be seen from this figure,
the total number of cell updates for S = 1 and S = 2 are almost the same for the
various combinations of these parameters, except for ǫrf = ǫrc = 0.5. When S = 1
and ǫrf = 0.5, convergence is obtained with less computational effort. Moreover, the
total number of cell updates increases exponentially with the smoothing parameter
regardless of the values of the different parameters. When S = 1 (figure 3.8), the plot
is slightly unstable, especially for coarsely discretised problems, hence, the choice of
S = 2 is a good compromise between efficiency and stability of convergence.
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Figure 3.7: The total number of cell updates Nt for MG with S variations.

The influence of the tolerance ratio for the finest grid ǫrf on the performance of
the MG accelerated CA algorithm with W cycle is illustrated in figure 3.9. The
results show that beyond the value ǫrf = 0.3 the total number of cell updates Nt

becomes constant. Therefore, we can conclude that a value of ǫrf = 0.2 is sufficient
to obtain convergence. Nevertheless, to be conservative, and to preserve convergence
the value of 0.1 is chosen as a tolerance ratio for the finest grid. The influence of
the tolerance ratio for the coarsest grid ǫrc on the total number of cell updates Nt

is shown in figure 3.10. As can be seen, ǫrc = 0.6 is the minimum value that assures
convergence with less computational efforts. The choice of ǫrc = 0.6 is confirmed by
varying the number of grids NG (see figure 3.11). The total number of cell updates
decreases as the number of grids increases as depicted in figure 3.11, consequently,
as the discretisation of the coarsest grid becomes small enough less computational
effort is needed to obtain the convergence.

In all next runs, the multigrid accelerated cellular automata algorithm with W cycle
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Figure 3.9: Total number of cell updates Nt as a function of ǫrf for MG with W

cycle.

is used to solve the topology optimisation problem for two and three dimensional
problems. The smoothing parameter is set to S = 2. The tolerance ratios for the
finest grid and the coarsest grid are set to 0.1 and 0.6, respectively. The coarsest
grid is defined by the grossest discretisation permitted by the geometry of the design
domain. These parameters are fixed to obtain a fast and a stable convergence.
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3.6.3 Compression bridge

In this example, the objective is to find an optimal topology for a bridge which crosses
a river and supports a uniformly distributed traffic loading. The design domain,
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Figure 3.12: Compression bridge domain.

the loading and the boundary conditions of the bridge problem are represented in
figure 3.12. Requirements of waterway traffic underneath and road traffic on the
bridge translate into the definition of imposed zones: an empty (white) zone for the
waterway and a dense (black) one for the deck, as represented in figure 3.12. The
design domain is discretised with 257 × 65 cells for the two-dimensional case and
with 257 × 65 × 33 for the three-dimensional case including the empty zone. The
volume fraction is set to 0.1 and the Poisson ratio to 0.3.

Figure 3.13: 2D topology of compression bridge.

The final topology for the two-dimensional case performed by the MG design al-
gorithm is represented in figure 3.13. It corresponds to a compression arch which
holds a three span deck. The first and the third spans are cantilevers which are
supported each by a compression member, whereas the central span is suspended
via a series of tension members. Different views for the three-dimensional version
of the topology of the bridge are shown in figure 3.14. The topology obtained with
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the three-dimensional model presents some similarity, in the XZ plane, with the
topology generated by the two-dimensional model (see figures 3.14(a) and 3.13) and
with the design of the compression arch bridge reported in [60]. The algorithm for
two-dimensional case converges in a total of 57 design updates in 30 seconds, and
for the three-dimensional case converges in a total of 56 design updates and the run
time is 7973 seconds.

(a) XZ view. (b) YZ view

(c) XYZ view.

Figure 3.14: 3D topology of compression bridge.

3.6.4 Arch bridge

The problem definition is similar to the previous example, except that the deck is
located at the top of the cuboid structure. The bridge structure is simply supported
at the lower outer left and right edges, with a uniformly distributed traffic loading
applied at the top surface as shown in figure 3.15. The void volume should allow
passage of boats under the bridge.

The MG design algorithm is run with 257×65 cells for the two-dimensional case and
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Figure 3.15: Arch bridge domain.

257 × 65 × 33 cells for the three-dimensional case. The two-dimensional converged
design for a Poisson ratio ν = 0.3 and a volume fraction η = 0.15 is shown in figure
3.16. The converged topology corresponds to a compression arch that supports
the deck by means of compression members. The two-dimensional final topology is
shown in figure 3.16. Its layout is similar to that of the XZ view of the final three-
dimensional topology presented in figure 3.17. The converged topology in figure 3.16
requires 57 design iterations in 21 seconds, and the topology in figure 3.17 requires
59 design updates for a run time of 2673 seconds.

Figure 3.16: 2D topology of arch bridge.
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(a) XZ view. (b) YZ view.

(c) XYZ view.

Figure 3.17: 3D topology of arch bridge.

3.6.5 Multiple arch bridge

In the following example, we try to find a suitable design for a bridge that crosses
a river. This bridge is designed to support road traffic and no waterway traffic is
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Figure 3.18: Multiple arch bridge domain.
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Figure 3.19: 2D topology of multiple arch bridge.

allowed on this river. The bridge domain is shown in figure 3.18. The structure
should support a uniformly distributed traffic loading at the top surface and is
clamped at the bottom surface. The deck is represented as a dense zone (see figure
3.18).

(a) XZ view. (b) YZ view.

(c) XYZ view.

Figure 3.20: 3D topology of multiple arch bridge.

The design domain is discretised with 257 × 65 and 257 × 65 × 33 cells for the two
and three dimensional cases respectively. The Poisson ratio used is ν = 0.3 and
the volume fraction is set to 0.1. The topology for two-dimensional case is shown
in figure 3.19. The topology corresponds to a four arch bridge that holds a deck.
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The three-dimensional version of this bridge with different views is depicted in figure
3.20. It is almost similar to the two-dimensional topology but with five arches. The
multigrid accelerated cellular automata algorithm for the two-dimensional problem
converges in a total of 94 design updates in 51 seconds, and it converges in a total
of 72 design updates in 8352 seconds for the three-dimensional problem.

3.7 Concluding remarks

Combined multigrid cellular automata implementations for the topology optimisa-
tion of continuum structures have been presented in this work. Two design al-
gorithms have been proposed, a multigrid and a full multigrid design algorithms.
Numerical tests for a symmetric cantilever example illustrate the efficiency of the
combined multigrid cellular automata design algorithm in solving the topology op-
timisation problem compared to the use of the commercial NASTRAN code for the
analysis phase. The multigrid scheme is shown to accelerate the convergence of the
analysis phase and the full multigrid to improve convergence of both analysis and
design in the topology optimisation problem. The computational cost for the multi-
grid algorithms is indeed found to be proportional to the number of cells, that is an
effort of order O(N). Applied to 2D and 3D topology optimisation of example bridge
structures, the multigrid accelerated cellular automata design algorithm generates
realistic topologies such as the familiar compression arch bridge architectures.
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Wind Load Effect in

Topology Optimisation

Problems

4.1 Introduction

In the last two decades, increasing interest has been observed in solving the topology
optimisation of continuum structures [2]. However, optimisation of structural topol-
ogy under design-dependent loads is a comparatively recent topic. Few researchers
take into account the effects of design-dependent loads on the topology optimisation
problem. Most of the available work consists of design for structures under hydro-
static pressure [37, 39–43] and design for structures under transmissible loads [38].
Much of this work is not applicable to the wind loading problem, given that no wind
loading is applied when there is no surface obstructing the wind.

In this chapter, we propose a scheme that does not involve explicit construction of the
loading surfaces. The topology optimisation of two and three dimensional structures
subject to dead and wind loading is considered. The wind loading is introduced into
the formulation using standard expressions for the drag force, and a strategy is
devised so that wind pressure is ignored where there is no surface obstructing the
wind. A design problem formulation is constructed for a minimum compliance design
subject to a volume constraint, and using the popular SIMP material model [7–11].
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The Method of Moving Asymptotes (MMA) [46–49] is a well known solver that is
commonly used to solve the topology optimisation problem [61–63], in this chapter
it is used as a benchmark solver for the next chapter. The MMA is modified by
including line search and changing formula for the update of asymptotes. In order
to obtain black/white design, intermediate density values, which are used as design
variables, are controlled by imposing an explicit constraint. Numerical examples are
used to demonstrate that the proposed formulation is successful in incorporating the
effect of wind loading into the topology optimisation problem.

4.2 Topology design with wind loading

In this chapter, the topology optimisation problem is posed following the commonly
used minimum compliance formulation, with a material volume constraint as de-
scribed in chapter 2 (see equations (2.1)-(2.3)); the formulation can be written as

min
ρ

W (u∗) = F · u∗, (4.1a)

subject to,

V =

∫

Ω

ρ dΩ ≤ V ∗, (4.1b)

0 ≤ ρ ≤ ρ ≤ 1, (4.1c)

where W is the compliance of the structure which can be written either as the work
done by the external forces or as twice the total elastic energy at equilibrium. The
vector F denotes the external forces, and u∗ is the displacement field of the domain Ω
at equilibrium. The local density distribution of material ρ of the discretised model
is chosen as a design variable, and ρ is a small number set as a lower bound on ρ
to avoid numerical instability. The bound V ∗ is the allowable limit on the material
volume V of the structure.

The well known SIMP approach [7–11] was selected to achieve a black/white topology
design. Local material stiffness E is defined as

E = ρp E0, (4.2)

where E0 is the base elasticity modulus, and p is a penalisation parameter p ≥ 3. In
the present formulation the local density measures ρi of the discretised structure are
associated with the nodes of the finite element mesh. The element densities ρ are
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obtained by an average compliance interpolation [20] for the m nodes surrounding
the element and given by

1

ρp =
1

m

m
∑

i=1

1

ρp
i

. (4.3)

Using this scheme checkerboard patterns are suppressed automatically during the
optimisation process.

This section begins with an explanation of how the wind loading is introduced into
the topology optimisation problem. A sensitivity analysis is then carried out. Fi-
nally, the optimisation problem is solved using the modified Method of Moving
Asymptotes (MMA) [46] coupled with Line Search (MMALS).

4.2.1 Wind loading function

Wind typically blows in many directions at varying speeds. Ideally multiple load
cases need to be considered in the topology optimisation process to account for the
consequent variabilities in wind forces acting on a structure. However, in this study
only one load case is considered for simplicity; with uni-directional incoming wind
blowing from the West (see Figure 4.1(a)). This assumption remains valid for any
incoming wind directions.

Wind CW E

Node

Element

x

z

a

a

(a) Wind direction.

ρ

g

0

0

-1
-1

1

1

(b) Peak function.

Figure 4.1: Wind direction and peak function.

Wind loading is included in the formulation using a direct density based method
that does not involve explicit construction of the loading surfaces. The wind load is
defined at each node of the discretised domain by introducing a loading function g
using the standard formula for drag forces:

FWindC
= CD Q∞ A g, (4.4)
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where FWindC
is the wind load value at the node C, Q∞ is the incoming wind

dynamic pressure, CD is the drag coefficient, and A is the area of the surface side
facing the wind in YZ directions. Computation of the area A depends on the node
position of C, i.e. whether the node is at a corner, a side, or the middle of the
discretised domain. For example for a middle node, in the 2D case, A is equal to a
times the thickness of the structure and in the 3D case it is equal to a2 where a is
the distance between the nodes of a uniform mesh. The factor g is a peak function
interpolation [64] given by

g = e−
[1−(ρC−ρN )]2

2 σ2 , (4.5)

where ρC is the density of the node C and ρN is the density of the neighbouring
node in the direction opposite to wind direction (ρN = ρW when the incoming
wind flows from the West), and σ is a standard deviation parameter. The force
FWindC

is applied at every node of the domain. However, the use of a peak function
interpolation for g, see Figure 4.1(b), ensures that the wind loading is applied only
at nodes where a large change in density occurs, indicating a structural surface, and
that the loading is unidirectional. In other words, the load is applied only when the
node C is in a solid region and the node N is in void. In the present formulation, we
are interested in truss like structures. Thus, we make the assumption that no wind
shadowing is present.

4.2.2 Sensitivity analysis

The sensitivity of the compliance with respect to the design variables, which are the
node densities in this case, is obtained from:

dW

dρ
=

dF

dρ
· u + F ·

du

dρ
. (4.6)

The sensitivity of the displacement in the above equation can be obtained by differ-
entiating the equilibrium equation with respect to the node densities and is expressed
as

du

dρ
= K−1 · (

dFWind

dρ
−

dK

dρ
· u), (4.7)

where K is the global stiffness matrix and FWind is the wind load vector. Thus, the
sensitivity of the compliance is given by

dW

dρ
= 2 u ·

dFWind

dρ
− u ·

dK

dρ
· u. (4.8)

As can be observed from equation (4.8), the sensitivity of the compliance is decom-
posed into two terms; the first term is due to the dependence of external forces on
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the design variables, and the second one is due to the dependence of the stiffness on
the same variables. We denote these two terms by ψ and φ, respectively. Further-
more, external forces applied to a given structure can be decomposed into two parts,
which are the static loads and the incoming wind forces. Dead loads are assumed to
be independent of the structural configuration. Thus, the expression of ψ for each
node C depends only on wind loading and simplifies to

ψC =
CDQ∞A

σ2

{[

[1 − (ρC − ρW )]e−
[1−(ρC−ρW )]2

2 σ2

]

uC −

[

[1 − (ρE − ρC)]e−
[1−(ρE−ρC )]2

2 σ2

]

uR

}

,

(4.9)

where the subscripts W and E refer to the nodal points to the West and to the East
of node C, respectively, and the wind direction is assumed to be from West to East.
Using the same notation, uC and uE are the horizontal displacement at node C and
its East neighbour, respectively.

4.2.3 Optimisation

The optimisation problem is solved by the Method of Moving Asymptotes (MMA)
[46]. According to [46], the compliance is approximated as

W (k)(ρ) = r
(k)
0 +

n
∑

j=1

(

p
(k)
0j

U
(k)
j − ρj

+
q
(k)
0j

ρj − L
(k)
j

)

, (4.10)

where k is the MMA iteration index, n is the total number of nodes of the discre-

tised domain, r
(k)
0 is a correction term to ensure that the approximating objective

function equals the original function at the current iteration point, p
(k)
0j and q

(k)
0j are

determined by a first-order approximation of the first Kuhn-Tucker condition as

p
(k)
0j =

{

(U
(k)
j − ρ

(k)
j )2 ∂Wj/∂ρj , ∂Wj/∂ρj > 0

0, ∂Wj/∂ρj ≤ 0
(4.11)

q
(k)
0j =

{

0, ∂Wj/∂ρj ≥ 0

−(ρ
(k)
j − L

(k)
j )2 ∂Wj/∂ρj ∂Wj/∂ρj < 0,

(4.12)

and L
(k)
j and U

(k)
j are the lower and upper asymptotes respectively, defined by a

heuristic strategy proposed by Svanberg [46] as

L
(k)
j = ρ

(k)
j − s

(

ρ
(k−1)
j − L

(k−1)
j

)

(4.13)
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U
(k)
j = ρ

(k)
j + s

(

U
(k−1)
j − ρ

(k−1)
j

)

, (4.14)

where the coefficient value s is equal to 0.5 for the iterations k = 1 and k = 2. For

k ≥ 2, the coefficient value s is chosen as 0.7 when the sign of (ρ
(k)
j − ρ

(k−1)
j ) and

(ρ
(k−1)
j − ρ

(k−2)
j ) are opposed. However, when (ρ

(k)
j − ρ

(k−1)
j ) and (ρ

(k−1)
j − ρ

(k−2)
j )

have the same sign, s is chosen equal to 1.2.

It is observed that, in some cases, the optimisation process tends to oscillate when

the MMA solver tries to update the asymptotes L
(k)
j and U

(k)
j . The convergence is

stabilised by modifying the lower asymptote according to the continuous optimality
criteria interpreted as local Kuhn-Tucker conditions [20]. The update of the upper
asymptote is kept the same as suggested by Svanberg [46]. Using the continuous
optimality criteria interpreted as local Kuhn-Tucker conditions the objective function
is approximated as

W (k) =

n
∑

j=1

φ
(k)
j

(

ρ
(k)
j

)p . (4.15)

This approximation can be convexified by linearising the stiffness coefficient ρp
j

around the most recent design point to obtain:

W (k) =

n
∑

j=1

q
(k)
0j

ρ
(k)
j − Lj

, (4.16)

where Lj = (1 − 1
p
)ρ

(k−1)
j is the modified formula for the lower asymptote.

With the modifications discussed above the MMA solver does not always converge
monotonously and in some cases it diverges, especially for strong wind loadings.

To improve its performance, the calculation of the coefficients p
(k)
0j and q

(k)
0j defined

in [46] is modified by considering the sensitivity contributions from the φ and ψ
terms independently:

p
(k)
0j =

{

(U
(k)
j − ρ

(k)
j )2ψj , ψj > 0

0, ψj ≤ 0
(4.17)

q
(k)
0j = (ρ

(k)
j − L

(k)
j )2φj +

{

0, ψj ≥ 0

−(ρ
(k)
j − L

(k)
j )2ψj ψj < 0.

(4.18)

Moreover, it is also observed that the objective function does not always decrease
after an MMA step and that the constraints are violated in some cases. In an earlier
paper, Zillober [47] demonstrated that, by adding a line search in the optimisation
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process the behaviour of the MMA method can be stabilised. Therefore, a line search
is used in the present work to ensure satisfaction of the constraints and decrease in
the objective value. Let the solution produced by MMA after the kth iteration be
denoted by ρ∗. A solution is sought in the form:

ρ(k+1) =
(

ρ∗ − ρ(k)
)

α + ρ(k), (4.19)

where α ∈ [0, 1] is a parameter that needs to be determined such that the constraints
be satisfied and the objective function be decreased. The value of α is found by
solving a one-dimensional approximate optimisation problem constructed from the
original problem by using approximate cubic polynomial approximations for the
objective and the constraints as functions of the independent variable α.

4.3 Explicit constraint

Preliminary results for a numerical example illustrating an off-shore wind turbine
support structure exhibit a grey design as the optimal topology (see Figure 4.2(a))
as opposed to a black/white one as expected. The explanation for this is related
to the distribution of the wind loads over the nodes as shown in Figure 4.2(b).
Each column in the figure is a histogram of the magnitude of the loads on nodes
along a specific vertical line. Note that the wind loads are distributed throughout
the domain, but have significant magnitude only for a few nodes at the bottom
of the structure; but, the distribution of the wind loads must be uniform on a
surface facing the wind, which is not the case. To generate a black/white designs,
an explicit constraint [65–68] was added to the formulation of problem (4.1) as a
means to control the intermediate densities. The explicit constraint is defined as

h(ρ) =

∫

Ω

(1 − ρ)(ρ − ρ)dΩ ≤ ǫp. (4.20)

In its numerical implementation the explicit constraint (4.20) is enforced gradually
as follows. Initially, it is ignored, which results in a grey design. The value of the

constraint function for this design is denoted by ǫ
(0)
p . Next, a sequence of problems

Pj are solved, each subject to the additional constraint (4.20) where the right hand

side ǫp is the jth term of an associated decreasing sequence initialised at ǫ
(0)
p and

updated according to the formula:

ǫ(j)p = ǫ(j−1)
p (1 − β). (4.21)
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Algorithm 4.1 MMALS algorithm

input

u, f , ρ
output

u, ρ
% Initialisation
k = 0, j = 0
% Update wind forces

% f
(1)
Wind

FEM Analysis(u(0), f (1), ρ(1))
% u(1)

h(ρ) =
∑Ncells

c=1 (1 − ρc)(ρc − ρ)V̄c

ǫ
(0)
p = h(ρ)

W (1) = u(1) · f (1)

repeat

repeat

if W (k+1) ≤ W (k) and constraints are satisfied then

Modified MMA solver(ρ(k))
% ρ(k+1)

else

Line search(ρ(k))
% ρ(k+1)

end if

for each element do

% Element density interpolation

% ρ̄
(k+1)
e

end for

% Update wind forces

% f
(k+1)
Wind

FEM Analysis(u(k), f (k+1), ρ(k+1))
% u(k+1)

W (k+1) = u(k+1) · f (k+1)

k = k + 1
until (five successive |W

(k+1)

W (k) − 1| ≤ ǫc) and (|ρ(k+1) − ρ(k)| ≤ ǫ)

h(ρ) =
∑Ncells

c=1 (1 − ρc)(ρc − ρ)V̄c

if
h(ρ)
VT

≤ ǫj
p then

ǫ(j+1) = ǫ(j)(1 − β)
else

Break
end if

j = j + 1
until j = 101
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where the reduction β is defined by the user.
The process continues until the solver fails to converge for the updated value of ǫp

(see algorithm 4.1).

(a) Topology with wind. (b) Wind load distribution among nodes.

Figure 4.2: Off-shore wind turbine problem without explicit constraint.

4.4 Numerical examples

To evaluate the influence of wind loading on the optimum topology, the numerical
example of an off-shore wind turbine support structure is considered. The design
domain is a parallelepiped volume as shown in figure 4.3 which reduces to a rectan-
gular domain in the 2D case. The hub and rotor weight PWR, and the rotor thrust
FW are considered as dead loads with values of 2.55 MN and 0.125 MN, respectively.
The spatial design domain considered is box shaped with dimensions of 120 m in
height, 12 m in length and 12 m in width. The structure is clamped at the bottom.
The incoming wind is assumed to flow from the West with a wind speed of 25 m/s.
The problem is studied in both two and three dimensional cases with the assump-
tion of linear small deformations. The material used is steel with Young’s modulus
E = 200000 MPa, and Poisson’s ratio ν = 0.3. The penalisation parameter is set to
3, the volume fraction is set to be 0.3, and a lower bound ρ = 10−3 is adopted for

the density. The value of 2σ2 for the peak function is fixed at 0.1 and the value of
β to 0.05.
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Figure 4.3: Domain.

4.4.1 Two-dimensional example

z

x

(a) Optimum topology without wind.

z

x

(b) Optimum topology with wind.

Figure 4.4: 2D topology of an Off-shore wind turbine.

A 2D problem is first considered to investigate the topology optimisation of the
wind turbine support structure. The results of this problem were generated with a
discretised grid of 15 × 141 nodes in the x and z directions, respectively. The final
designs are represented in figures 4.4(a) and 4.4(b) for the cases with and without
wind loading, respectively, while maintaining the hub and rotor weight PWR, and
the rotor thrust FW for the both cases. It can be observed that the topology without
wind is a column that supports only the dead loads. On the other hand, the topology

64



Wind Load Effect in Topology Optimisation Problems

subject to wind loads requires more elements. The compliance calculated for the
design in figure 4.4(a) is 2.29 10−2 MNm, while the compliance for the design in
figure 4.4(b), where dead and wind loadings are applied, is 1.39 10−2 MNm. Thus,
including wind loading in the design formulation leads to 40% increase in structural
stiffness for the same material volume.

(a) after 20 iterations. (b) after 100 iterations.

(c) after 300 iterations. (d) after 600 iterations.

(e) after convergence.

Figure 4.5: Evolution of the wind turbine support topology.
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Figure 4.5 shows the evolution of the wind turbine support topology. The algorithm
converges to a black/white topology in about 884 analysis iterations. It can be
observed that the topology starts from a grey column design and ends up with a
black/white design with apparition of an element that supports the loads coming
from the wind.

Figure 4.6(a) shows the distribution of wind loads for the design obtained consider-
ing wind loading. It can be observed that the wind loads are uniformly distributed
throughout the design domain. In some cases, especially for strong wind (Zakhama
et al. [44]), the wind loads may be not uniformly distributed in some parts of the

domain. This is due mainly to the way the coefficients p
(k)
0j and q

(k)
0j of the compli-

ance approximation are updated and the parameter ǫp of the explicit constraint is
reduced. Further investigation is needed to determine an appropriate update scheme
for these coefficients. Figure 4.6(b) shows the convergence history. The convergence
is reasonably smooth with jumps in compliance corresponding to tightened toler-
ance on grey density. Although the introduction of the explicit constraint leads to
an increased number of iterations to convergence, the obtained solution is physically
more meaningful.

(a) Wind load distribution among nodes.
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(b) Convergence history.

Figure 4.6: Wind load distribution and convergence history.

4.4.2 Three-dimensional example

The off-shore wind turbine domain (see figure 4.3) is now discretised with 15 × 15 × 141
nodes. Figure 4.7 shows the different views of the optimal topology of wind turbine
support with and without wind loads. To compare the compliances of the two
solutions, the designs obtained without and with wind loads are postprocessed to
force exact black/white topologies. The compliance without considering wind loads
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(a) XZ view without wind. (b) XZ view with wind.

(c) YZ view without wind. (d) YZ view with wind.

(e) 3D view without wind. (f) 3D view with wind.

Figure 4.7: 3D topology of the wind turbine support.

is 2.39 10−2 MNm and the compliance considering wind loads is 1.51 10−2 MNm,
which corresponds to 37% difference between the two solutions.

The topologies obtained for the 3D case are seen to be very similar to the topologies
obtained for the 2D case in XZ plane (see figures 4.7(a), 4.7(b) and 4.4). The
topology of the wind turbine support considering wind loading is supported by two
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frames at the bottom of the structure. Figure 4.7(d) shows that, by including wind
loading in the formulation, the topology allowed a larger hole facing the wind loads
than the topology without wind. In the literature, most techniques for topology
optimisation with design-dependent loads do not allow the formation of holes on a
surface facing the wind.

4.5 Concluding remarks

A formulation for the inclusion of wind loading in the minimum compliance topology
optimisation problem has been proposed. The method does not require the explicit
construction of loading surfaces. The MMA method has been modified and a line
search has been added to the process to guarantee the global convergence of the
topology optimisation problem. An explicit constraint has been added into the
topology optimisation formulation to control the intermediate density values and
to ensure black/white topology. Numerical examples demonstrate the effect of the
wind loads on the optimised topologies. Taking the wind loads into account in the
formulation gives stiffer designs, with respect to these loads, with the same material
volume and can allow holes facing the wind loads. Thus, the implementation of this
method in the preliminary design phase can lead to significant reduction in structural
weight which is reflected on the total cost of off-shore wind farms especially given
the rising steel prices.
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Multigrid Accelerated

Cellular Automata with

Design-Dependent Loads

5.1 Introduction

The inclusion of wind loading in the minimum compliance topology optimisation
was presented in chapter 4. The modified method of moving asymptotes [46] and
its coupling with a line search method were proposed to solve the topology optimi-
sation problem. The same framework, which includes wind loading in the minimum
compliance topology optimisation problem, can be extended and solved using the
multigrid accelerated cellular automata algorithm described in chapter 3.

In the present chapter, the topology optimisation of two and three dimensional
structures subject to design-dependent loading is solved using the multigrid acceler-
ated cellular automata algorithm. The optimality criteria for topology optimisation
subject to design-dependent loading are developed using again the SIMP material
model [7–11] to derive the local CA design rules. In the previous chapter there was
no need to develop optimality criteria since topology optimisation was solved using
the modified MMA method coupled with Line Search (MMALS) algorithm. On
the other hand, the optimality criteria have been derived in chapter 2 but without
considering the design-dependent loading in the formulation. The local optimisation
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problem is convexified to prevent oscillation in the topology optimisation process.
The Jacobi over relaxation scheme (JOR) [69,70] is used to update the design vari-
ables and to help establish convergence. The intermediate densities are controlled
by an explicit constraint [65–68], to obtain a black/white design. Some numerical
examples are shown to highlight the efficiency of the multigrid accelerated cellular
automata in solving the topology optimisation problem subject to design-dependent
loading. Besides, the algorithm based on the multigrid accelerated cellular automata
is seen to be more robust than the MMALS algorithm, and can lead a design to an
almost pure black/white solution.

5.2 Minimum compliance design optimality crite-

ria

The minimum compliance design optimisation problem used in this chapter is de-
scribed earlier in chapter 4 (see problem (4.1) and is included here for completeness:

min
ρ

W (u∗) = F · u∗, (5.1a)

subject to,

V =

∫

Ω

ρ dΩ ≤ V ∗, (5.1b)

0 ≤ ρ ≤ ρ ≤ 1. (5.1c)

However, in chapter 4 there was no need for the optimality conditions since the prob-
lem was solved by using MMALS method. Although the optimality conditions have
been derived in chapter 2 for a similar problem formulation, the previous formula-
tion lacked the design-dependent loads which are included in the present chapter.
The Lagrangian for this optimisation problem can be written as

L = F · u∗ + µ(V − V ∗ + c2) + λ1 ·
(

ρ − 1 + s2
1

)

+ λ2 ·
(

ρ − ρ + s2
2

)

, (5.2)

where µ is a Lagrange multiplier associated with the volume constraint and c is the
corresponding slack variable. The Lagrange multipliers λ1 and λ2 are associated
with the bounds on the design variable vector, and s1 and s2 are the corresponding
vectors of slack variables, respectively.

Setting the variation of the Lagrangian to zero, we obtain the first order necessary
conditions as
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1. Stationarity
∂F

∂ρ
· u + F ·

∂u

∂ρ
+ µ

∂V

∂ρ
+ λ1 − λ2 = 0. (5.3)

2. Constraints
V ≤ V ∗, (5.4)

ρ ≤ ρ ≤ 1. (5.5)

3. Complementarity conditions
µ c = 0, (5.6)

λ1i
s1i

= 0, λ2i
s2i

= 0, (5.7)

µ ≥ 0, (5.8)

λ1i
≥ 0, λ2i

≥ 0. (5.9)

Assuming that the lower and upper side constraints are not active, we obtain λ1 =
λ2 = 0. When they are active, they can be excluded from the Lagrangian formulation
(5.2). Thus, the stationarity condition can be written as

∂L

∂ρ
=

∂F

∂ρ
· u + F ·

∂u

∂ρ
+ µ

∂V

∂ρ
= 0. (5.10)

From the sensitivity of the displacement (4.7), the stationarity condition becomes:

∂L

∂ρ
= u ·

∂F

∂ρ
− F · K−1 ·

∂K

∂ρ
· u + F · K−1 ·

∂F

∂ρ
+ µ

∂V

∂ρ
= 0, (5.11)

where K is the global stiffness matrix.
Therefore, from the equilibrium equation K·u = F, and the external forces which can
be decomposed into the static loads and the design-dependent loads, the stationarity
condition can be written as

∂L

∂ρ
= 2u ·

∂Fd

∂ρ
− u ·

∂K

∂ρ
· u + µ

∂V

∂ρ
= 0, (5.12)

where Fd is the design-dependent load vector defined in chapter 4 (4.4).
The stiffness matrix for an element of the cellular automata discretisation is Ki =
ρ̄p

i K0, where ρ̄i is the element density obtained by an average density interpolation
(2.34) for the Ncell cells surrounding the element. The parameter p represents the
penalisation parameter (p ≥ 3) defined by the well known SIMP approach [7–11]
and K0 is the base stiffness matrix of en element. The cell volume can be written
as VC = ρC V̄C , where ρC is the cell density and V̄C is the base cell volume.
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The local optimality for the cellular automata discretisation is obtained from the
stationarity of the Lagrangian function (5.2) with respect to design variables:

∂L

∂ρC

= 0, for C = 1...Ncells. (5.13)

From the stiffness matrix relation Ki = ρ̄p
i K0 and the average density interpolation

definition (2.34), we can remark that only the Nelement elements of the Moore neigh-
bourhood structure (see figures 2.4(d) and 2.4(e)) are directly dependent on the cell
density ρC . Moreover, from the relation of the design-dependent load defined in
equation (4.4) it can be seen that only the forces applied at the cell C in question
and its direct East cell neighbour E, when the design-dependent load direction is
assumed to be from West, are dependent on the the cell density ρC . Thus, the
derivative of the Lagrangian function (5.2) with respect to the design variable ρC

becomes:

∂L

∂ρC

=

Nelement
∑

i=1

(

−UCi
·
∂KCi

∂ρC

· UCi

)

+2 ux
E

∂F x
dE

∂ρC

+2 ux
C

∂F x
dC

∂ρC

+µV̄C = 0, (5.14)

where the vector UCi
represents the displacements of all N cells surrounding the

element Ci, ux
C and ux

E are the cell displacements in x direction of the center cell C
and the East cell E of the Moore neighbourhood structure, respectively. The forces
F x

dC
and F x

dE
are the design-dependent loads (4.4) applied at the center cell c and

the East cell E of the Moore neighbourhood structure, respectively.

Using the stiffness matrix relation KCi
= ρ̄p

Ci
K0, equation (5.14) becomes:

∂L

∂ρC

=

Nelement
∑

i=1

(

−
∂ρ̄p

Ci

∂ρC

UCi
· K0 · UCi

)

+ 2 ux
E

∂F x
dE

∂ρC

+ 2 ux
C

∂F x
dC

∂ρC

+ µV̄C = 0.

(5.15)

From the average density interpolation (2.34), the derivative of the element density
ρ̄p

Ci
with respect to the cell density ρC can be expressed as

∂ρ̄p
Ci

∂ρC

=
p

Ncell

ρ̄2p
Ci

ρp+1
C

. (5.16)

Expressing the Lagrangian as a function of the design variable ρC , the stationarity
condition (5.15) becomes:

∂L

∂ρC

= −
p

Ncell

1

ρp+1
C

Nelement
∑

i=1

(

2ρ̄2p
Ci

ŨCi

)

+2 ux
E

∂F x
dE

∂ρC

+2 ux
C

∂F x
dC

∂ρC

+µV̄C = 0, (5.17)

72



Multigrid Accelerated Cellular Automata with Design-Dependent Loads

where ŨCi
is the element strain energy of the base material defined as

ŨCi
=

1

2
UCi

· K0 · UCi
. (5.18)

Based on the first order conditions (5.3) and (5.5), the optimisation problem (5.1)
is equivalent to the following local minimisation problem:

min
ρC

Φ∗

ρp
C

+ Ψ∗(ρC) +
µ

2
ρC , (5.19a)

subject to,

ρ ≤ ρC ≤ 1. (5.19b)

where Φ∗ is the cell strain energy density which is calculated based on the design
variable values of the previous iteration and is expressed by

Φ∗ =
1

Ncell V̄C

Nelement
∑

i=1

(

ρ̄2p
Ci

ŨCi

)

, (5.20)

similarly to the expression (2.41) in chapter 2. The function Ψ∗(ρC):

Ψ∗(ρC) =
1

V̄C

(

ux
E F x

dE
+ ux

C F x
dC

)

. (5.21)

depends on the design variables.

The design update rules are derived from the solution of the local optimisation
problem (5.19). This problem (5.19) is equivalent to the convex local minimisation
problem (2.25) when the forces are independent of design variables. Its solution is
given by (2.27). In the general case, when design-dependent loads are present, the
local problem (5.19) is solved using a Brent method [71].

The Lagrange multiplier µ is the only global quantity that is involved in the lo-
cal problem (5.19) and it plays a key role in enforcing satisfaction of the volume
constraint. The updating of this parameter is done iteratively (see chapter 2).

5.3 Convex approximations

From several numerical examples, it is observed that the solution tends to oscillate
from one iteration to another and does not converge. As can be observed from the
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plots of the local objective function (5.19) expressed in the design variable ρ1, see
figure 5.1, the solution of the local minimisation problem (5.19) for cell 1 of the
example treated in numerical section 5.7.2.1 jumps from ρ1 = ρ at iteration 2 to
ρ1 = 1 at iteration 3. Moreover, from the topologies represented in figure 5.1, it
is clear that about half of the left edge and some cells at the top of the structure
jump from low cell density solutions at iteration 2 to ρC = 1 at iteration 3. This
manifestation of divergence can be explained by the possible non-convexity of the
objective function.
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Figure 5.1: Non-convexity of local objective function and reversal of variation be-
tween iterations.

The objective function of the local minimisation problem (5.19) is convex when
fixed loads are applied or the derivative of Ψ∗(ρC) with respect to design variable
ρC vanishes. The solution for this type of local minimisation problem is given
by (2.27), and the optimisation problem (5.1) converges for any given structure
problems. However, when design-dependent loads are taken into account in the
formulation, the derivative of the term Ψ∗(ρC) with respect to design variable ρC no
longer vanishes. Therefore the local minimisation problem with respect to the design
variable ρC (5.19) can non-convex and oscillation may appear in the optimisation
process. To avoid this convergence difficulty, the function Ψ∗(ρC) is convexified
with respect to the design variable ρC . The major factors that may cause the
non-convexity of the function Ψ∗(ρC) are the peak function interpolation g, see
equation(4.5), and the work ux F x

d of the load dependent forces. From the plot
of the peak function interpolation g, see figure 4.1(b), it can be seen that it is
almost convex as the parameter 2σ2 is large enough (e.g. 2σ2 = 0.1). When the
displacement ux is positive the work ux F x

d is convex, and when it is negative the
work ux F x

d becomes concave and needs to be convexified. A linear approximation
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is chosen to approximate the work ux F x
d when the displacements are negative. The

function Ψ∗(ρC) becomes:

Ψ∗(ρC) =
1

V̄C

({

ux
E F x

dE
, ux

E F x
dE

≥ 0

ρC ux
E

∂F x
dE

(ρold
C )

∂ρC
+ O(ρ2

C), ux
E F x

dE
< 0

+

{

ux
C F x

dC
, ux

C F x
dC

≥ 0

ρC ux
C

∂F x
dC

(ρold
C )

∂ρC
+ O(ρ2

C), ux
C F x

dC
< 0

)

.

(5.22)

5.4 Relaxation

The design variables are updated using a Jacobi scheme to preserve a symmetry on
the solution (see chapter 2). It is observed that the optimisation process, in some
cases, fails to converge. An alternative way to ensure convergence of a diverging
Jacobi iterative process is to use the Jacobi Over Relaxation scheme (JOR) [69,70].
The JOR scheme is defined as

ρk+1 = βρ∗ + (1 − β)ρk, (5.23)

where ρ∗ is the solution produced by a Jacobi scheme and β is the relaxation factor
(0 < β < 2).
The value of β can affect the rate of convergence. The choice of this factor is not
necessarily easy, and depends on many parameters of the optimisation process. In
this chapter, we are interested in convergence rather than faster convergence. The
value β > 1 is used to speed up convergence while the value β < 1 is used to help
establish convergence, evidently the JOR scheme is reduced to Jacobi scheme for
β = 1.

5.5 Explicit constraint

Optimal topologies based on design-dependent loads exhibit a grey design as ob-
served in chapter 4. To obtain a black/white design, the intermediate densities are
controlled by an explicit constrain [65–68] (see equation (4.20) in chapter 4) defined
as

h(ρ) =

∫

Ω

(1 − ρ)(ρ − ρ)dΩ ≤ ǫp, (5.24)

where ǫp is the allowable grey level.
The Lagrangian function (5.2) for the present optimisation problem (5.1) including
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the explicit constraint (5.24) can be rewritten as

L = F · u∗ + µ
(

V − V ∗ + c2
)

+ λ1 ·
(

ρ − 1 + s2
1

)

+

λ2 ·
(

ρ − ρ + s2
2

)

+ κ
(

h − ǫp + m2
)

,
(5.25)

where κ ≥ 0 is a Lagrange multiplier associated with the explicit constraint and m
is the corresponding slack variable.
Thus, the local minimisation problem (5.19) becomes:

min
ρC

Φ∗

ρp
C

+ Ψ∗(ρC) +
µ

2
ρC +

κ

2
(1 − ρC)(ρC − ρ), (5.26a)

subject to,

ρ ≤ ρC ≤ 1. (5.26b)

The term (1−ρC)(ρC−ρ) in the local objective function (5.26) is a concave function.
To convexify this function, a linear approximation around the most recent design
is adopted. Therefore the local minimisation problem with respect to the design
variable ρC can be written as

min
ρC

Φ∗

ρp
C

+ Ψ∗(ρC) +
µ

2
ρC +

κ

2
ρC(1 + ρ − 2ρold

C ), (5.27a)

subject to,

ρ ≤ ρC ≤ 1. (5.27b)

In an early paper [66], it is proven that a solution of the optimisation problem (5.1)
including the explicit constraint (5.24) exists. The choice of an appropriate value of
the initial parameter κ and its update to get a black/white design are not obvious,
a simple way to update the parameter κ is selected as follows:

κj+1 = κj(1 + γ), (5.28)

where γ is defined by the user.

5.6 Algorithm

The algorithm starts without including the explicit constraint (5.24) in the formu-
lation. Then, the penalisation parameter p is increased from an initial value pi to
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Algorithm 5.1 Multigrid design algorithm with design-dependent loading

input

u, f , ρ
output

u, ρ
% Initialisation
k = 0, j = 0, µ(0), κ(0) = 0
repeat

κ(j+1) = κ(j)(1 + γ)
if j = 1 then

pi = pf , κ(1) = κi

end if

for p = pi to pf do

repeat

for each element do

% Element density interpolation
% ρ̄(k+1)

end for

% Update forces

% f
(k+1)
d

repeat

MG Analysis(u(k), f (k+1), ρ(k+1))
% u(k+1)

until
‖R‖
‖R0‖

≤ ǫr

repeat

for each cell do

% Design update rule (5.27), ρ∗C
if ‖V (k+1)

η VG
− 1‖ > ∆V then

% Update Lagrange Multiplier
% µ(k+1)

end if

end for

until |V
(k+1)

η VG
− 1| ≤ ∆V

% Relaxation
ρk+1 = βρ∗ + (1 − β)ρk

W (k+1) = u(k+1) · f (k+1)

k = k + 1
until (five successive |W

(k+1)

W (k) − 1| ≤ ǫc) and (|ρ(k+1) − ρ(k)| ≤ ǫ)
end for

h(ρ) =
∑Ncells

C=1 (1 − ρC)(ρC − ρ)V̄C

j = j + 1

until
h(ρ)
VT

≤ ǫp or j = 101
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a desirable penalisation value pf via a continuation method to avoid local minima.
The topology is obtained using the multigrid algorithm described in section 3.4 by
including the updating of the forces that depend on the design variables. Next, the
parameter κ is updated using (5.28). The process continues until the explicit con-
straint (5.24) is satisfied or a maximum of 100 iterations is reached (see algorithm
5.1).

5.7 Numerical examples

Some numerical examples of two and three dimensional topology optimisation prob-
lems with design-dependent loading are presented in the following. The obtained
solutions are compared to results given by the MMALS algorithm described in chap-
ter 4. In this section, wind loading and hydrodynamic water pressure loading are
considered as design-dependent loadings. The same wind load function defined in
equation (4.4) is used to define the hydrodynamic water pressure load function. The
algorithm 5.1 is implemented in a Linux C++ environment and tested on a Dual core
AMD Opteron(tm) machine with a processor frequency of 2400 Mhz and 8 GByte
memory.

For all applications the penalisation parameter p is increased from 1 up to 3 by
increments of 0.1 to avoid local minima. The tolerance for the design and for the
compliance were set to 0.05 and 10−3 respectively, and a lower bound of 10−3 was
adopted for the density. The multigrid accelerated cellular automata algorithm with
W cycle is used to solve the topology optimisation problem for two and three dimen-
sional problems. The smoothing parameter is set to S = 2. The residual tolerance
ratio for the finest and the coarsest grids are set to 0.1 and 0.6 respectively. The peak
function defined in chapter 4 is again used to regularise the design-dependent load
function. The value of 2σ2 is fixed at 0.1, and the relaxation factor β of equation
(5.23) is set to 0.1. The initial Lagrange multiplier κi associated to the explicit con-
straint, the increment γ and the allowable grey level ǫp are obtained from numerical
experiments and set to 3 10−9, 0.2 and 10−6, respectively.

5.7.1 Clamped column

To further illustrate the influence of design-dependent loads on topology, we consider
a bi-clamped column of aspect ratio 8 as shown in figure 5.2. The column dimensions
are 120 m in height, 15 m in length and 15 m in width. The structure is clamped
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Wind
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Figure 5.2: Domain.

from the top and bottom, and a uniform load is applied to the middle of the structure
with a magnitude of 8.33 10−3 MN/m. The column is subjected to a wind coming
from the West with a speed of 25 m/s. The material used is steel with a Young’s
modulus E = 200000 MPa, and Poisson’s ratio ν = 0.3. The volume fraction is set
to η = 0.5.

(a) Topology without wind loading. (b) Topology with wind loading.

Figure 5.3: 2D topology of the bi-clamped column.
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5.7.1.1 Clamped two-dimensional column

In this example the problem is treated as a two-dimensional case in the XZ plane. In
the next example, a three-dimensional version of this problem will be studied. The

Figure 5.4: Wind distribution.
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(a) Without wind loading.
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(b) With wind loading.

Figure 5.5: Compliance history.

algorithm was run on a 33 × 257 cells mesh. The converged topologies are shown
in figure 5.3. The converged topology in figure 5.3(a) requires 616 design iterations
in 63 seconds, and the topology in figure 5.3(b) requires 3103 design updates for a
run time of 424 seconds. The topology without wind loading (see figure 5.3(a)) is
a symmetric design that carries the force F . It is composed of two cantilever like
support structures at the top and bottom and a truss structure at the middle of
the column. The topology with wind loading (see figure 5.3(b)) is an asymmetric
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design. It consists of two cantilevers and a compression arch structure at the middle
to support the incoming wind. Figure 5.4 shows the distribution of the wind loads
over all the cells of the structure. The compliances computed with wind loads
for both optimum structures are 3.81 10−5 MNm for the topology without wind
loading and 2.78 10−5 MNm for the topology with wind loading, respectively, which
corresponds to a 27% difference between the two solutions. Figure 5.5 shows the
history of compliance for the cases with and without wind loading. It can be seen
from figure 5.5(b) that the compliance is increased with respect to the number of
designs, this is due mainly to the explicit constraint that leads the solution from a
grey design to a black/white design, therefore, the wind loads at the surface facing
the wind increase in value with respect to the formulation defined in equation (4.4).

5.7.1.2 Comparison with the MMALS algorithm

To make a comparison with the actual algorithm, based on multigrid accelerated
CA, the same example was run using the MMALS algorithm. The value of β used
is 0.05 and the penalisation parameter is fixed at 3. The optimum topologies for the
cases without and with wind loading are represented in figures 5.6(a) and 5.6(b),
respectively. The algorithm converged within a total of 1463 design updates for the
case without wind loading and 2046 for the case considering wind loading. The run
time for the MATLAB implementation is 13011 seconds without considering wind
loading and 28104 seconds with wind loading. The huge difference in time between
the designs given by the multigrid accelerated CA and the MMALS algorithms is
due to the different programming environment.

(a) Topology without wind loading. (b) Topology with wind loading.

Figure 5.6: 2D topology of the bi-clamped beam obtained with MMALS solver.
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As can be seen, the optimum topologies without wind loading, using MMALS and
multigrid accelerated CA algorithms, are approximately the same (see figures 5.3(a)
and 5.6(a)). However, the topology obtained by considering wind loading in the
formulation, obtained using MMALS algorithm, shows a pure compression arch at
the middle of the structure (see figure 5.6(b)) as opposed to that shown in figure
5.3(b) where two extra elements connect the compression arch with the cantilevers.
Figure 5.7 shows the history of compliance for the cases with and without wind
loading. The compliance for the design in figure 5.6(a) is 3.65 10−5 MNm and
for the design in figure 5.6(b) it is 1.75 10−5 MNm, this corresponds to a 52%
difference. It can be seen from the compliance comparisons that the MMALS solver
gives stiffer designs than the multigrid accelerated CA solver. However, the results
of the numerous numerical examples tested reveal that the multigrid accelerated CA
solver is more robust than the MMALS solver.
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(a) Without wind loading.
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(b) With wind loading.

Figure 5.7: Compliance history obtained with MMALS solver.

5.7.1.3 Clamped three-dimensional column

The bi-clamped column example is now studied in the three-dimensional case. The
problem is run with 33 × 33 × 257 cells using the multigrid accelerated CA
algorithm for design-dependent. Figure 5.8 shows different views of the optimum
topology for the cases with and without wind loading. Without wind loading the
algorithm converges in a total of 445 design updates in 5382 seconds, and with wind
loading it converges in a total of 1903 design updates in a run time of 28783 seconds.

From figures 5.8(a) and 5.8(b), it can be seen that the outer shapes of the optimum
3D topology design are close to those obtained for the 2D case (see figure 5.3). How-
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(a) XZ view without wind. (b) XZ view with wind.

(c) YZ view without wind. (d) YZ view with wind.

(e) 3D view without wind. (f) 3D view with wind.

Figure 5.8: 3D topology of the bi-clamped column.

ever, the interior designs look different. The compliance for the design without wind
loading is 8.45 10−4 MNm, while for the design with wind loading is 1.25 10−5 MNm.
This means that including wind loading in the formulation increases structural stiff-
ness by 98%. This huge difference in structural stiffness can be explained by the
fact that including wind loads in the formulation tends to reduce the contact surface
of the structure with wind (see figures 5.8(b) and 5.8(f)) . Changing the value of
volume fraction to η = 0.2 gives a rather truss like structure that is closer to the 2D
solution (see figure 5.9). The compression arch can be clearly seen on the sides of
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the structure in figure 5.9(f). These sides are connected with a truss structure and
two bar elements at the middle and at the west side of the structure, respectively
(see figures 5.9(d) and 5.9(f)). As reported in chapter 4, including wind loading
in the formulation can allow for holes facing the wind loads (see figures 5.8(d) and
5.9(d)) as opposed to the transmissible loads method [38].

(a) XZ view without wind. (b) XZ view with wind.

(c) YZ view without wind. (d) YZ view with wind.

(e) 3D view without wind. (f) 3D view with wind.

Figure 5.9: 3D topology of the bi-clamped column with η = 0.2.
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5.7.1.4 Clamped three-dimensional column with multiple loads
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Figure 5.10: Domain.

The bi-clamped example will now be considered for design subject to two load cases.
The different loads are represented in figure 5.10. The first load case is composed
from a concentrated load applied at the middle of the structure in x direction with
a magnitude of 0.125 MN, and a wind coming from West with a speed of 25 m/s.
The second load case is defined by a concentrated load applied at the middle of the
structure in the y direction with the same magnitude (0.125 MN) as defined in the
first load case and a wind coming from the South with a speed of 30 m/s.

The algorithm is run with the same discretisation as defined earlier for the 3D
case and with a volume fraction η = 0.2. The optimum topologies with and without
wind loading are represented in different views in figure 5.11. The optimum topology
without wind loading converges after 659 design updates in 15489 seconds, and with
wind loading the topology converges after 3253 design updates in 76596 seconds.
The compliances of the topologies with and without wind loads are 2.61 10−3 MNm
and 8.92 10−3 MNm, respectively. An explanation of this difference in compliance,
which is about 71%, is that including wind loading in the formulation causes the
algorithm to try to minimise the wind contact on the structure by allowing the wind
to go through the domain (see figure 5.11).
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(a) XY view without wind. (b) XY view with wind.

(c) XZ view without wind. (d) XZ view with wind.

(e) YZ view without wind. (f) YZ view with wind.

(g) 3D view without wind. (h) 3D view with wind.

Figure 5.11: 3D topology of the bi-clamped beam with two load cases.

86



Multigrid Accelerated Cellular Automata with Design-Dependent Loads

5.7.2 Off-shore wind turbine support structure
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Figure 5.12: Domain.

The example of the off-shore wind turbine support structure studied in chapter 4 is
reconsidered here (see figure 5.12) with the domain dimensions are 120 m in height,
13.34 m in length and 13.34 m in width. The base dimensions of the structural
domain have been modified due to the multigrid discretisation requirement. The
same hub and rotor weight PWR, and the same rotor thrust FW are considered in
this example. The structure is clamped at the bottom. The incoming wind flows
from West with a speed of 25 m/s. The material used is steel with a Young’s modulus
E = 200000 MPa, and Poisson’s ratio ν = 0.3. The volume fraction is set to η = 0.5.

5.7.2.1 Two-dimensional off-shore wind turbine support structure

The multigrid design algorithm with design-dependent loads is run for a 17 × 145
cell grid model. The optimal topologies of the off-shore wind turbine support struc-
ture without and with wind loading are represented in figure 5.13. The algorithm
without explicit constraint and without wind loading converges in a total of 240
design updates and the run time is 16 seconds. With wind loading the algorithm
converges in a total of 255 design updates in 18 seconds. It can be observed that the
topologies without and with wind loading but not including the explicit constraint
(5.24) in the formulation are almost the same (see figures 5.13(b) and 5.13(a)). The
grey elements appear more in the topology with wind loading at the surface facing
the wind loads direction (see figure 5.13(b)). This means including wind loads in
the formulation favours a grey design. Moreover, the wind forces acting on the grey
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elements according to the wind load formulation defined in equation (4.4) are very
small (see figure 5.14(a)).

(a) Topology without wind loading and with-
out explicit constraint.

(b) Topology with wind loading and without
explicit constraint.

(c) Topology without wind loading and with
explicit constraint.

(d) Topology with wind loading and with ex-
plicit constraint.

Figure 5.13: 2D topology of the wind turbine support.

However, by considering the explicit constraint (5.24) in the formulation, the grey ar-
eas disappear and this gives more realistic solutions (see figures 5.13(c) and 5.13(d)).
The converged solution without wind loading requires 716 design iterations with a
run time of 60 seconds, and the solution with wind loading requires 2621 design up-
dates in 216 seconds. It can be observed that the topology without wind is a simple
column (see figure 5.13(c)), whereas the topology subject to wind loads is a column
supported by extra elements at the bottom of the structure (see figure 5.13(d)).
Moreover, the wind loads are distributed throughout the surface facing the wind
with an approximately constant magnitude (see figure 5.14(b)). The compliance of
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the design without considering wind loads is 4.39 10−3 MNm and the compliance
of the design with wind is 1.41 10−3 MNm, which corresponds to 68% of differ-
ence. Figure 5.15 shows the compliance history. It is remarked that the compliance
considering wind loading kept increasing with the number of design iterations (see
figure 5.15(b)). This is due mainly to the elimination of grey areas by the explicit
constraint (5.24).

(a) Without explicit constraint. (b) With explicit constraint.

Figure 5.14: Wind distribution.
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(a) Without wind loading.
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(b) With wind loading.

Figure 5.15: Compliance history.

For some cases, it occurred that the topology produced without design-dependent
loading was stiffer than the topology generated considering design-dependent loading
in the formulation (see figure 5.16). The volume fraction used for this specific case is
η = 0.3. The compliance for the topology in figure 5.16(a) is 8.12 10−3 MNm, while
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for the topology in figure 5.16(b) it is 2.09 10−2 MNm. In this specific example, the
optimisation process probably could not avoid a local minimum for the problem with
design-dependent loading and gave a weaker design than expected. A suggested idea
to be explored to avoid being trapped at local minima while taking design-dependent
loading into account is to consider two load cases: one without design-dependent
loading and one with design-dependent loading.

(a) Topology without wind loading. (b) Topology with wind loading.

Figure 5.16: 2D topology of the wind turbine support with η = 0.3.

5.7.2.2 Three-dimensional off-shore wind turbine support structure

The same off-shore wind turbine support structure example is studied in the three-
dimensional case. The domain is discretised with 17 × 17 × 145 cells. The multigrid
accelerated cellular automata algorithm without considering wind loads in the for-
mulation converges in a total of 308 design updates in 524 seconds, and it converges
in a total of 1682 design updates in 3826 seconds with wind loading. The optimum
topologies of the off-shore wind turbine support structure designed with and with-
out wind loading are represented in figure 5.17. The obtained topologies are almost
similar to those obtained in the 2D case (see figure 5.13). The topology without
considering wind loading is a simple column. With wind loading considered, the
topology is a column held by extra elements at the base. The compliance calculated
for the design subject to wind loads is 1.30 10−3 MNm, while the compliance for the
design without wind loads is 4.88 10−3 MNm, this corresponds to 73% difference in
stiffness between the two solutions. The compliances calculated for 2D and 3D are
reasonably close.
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(a) XZ view without wind. (b) XZ view with wind.

(c) YZ view without wind. (d) YZ view with wind.

(e) 3D view without wind. (f) 3D view with wind.

Figure 5.17: 3D topology of the wind turbine support.

5.7.2.3 Comparison with the MMALS algorithm

The same example was run using the MMALS algorithm. The value of β used is
0.05 and the penalisation parameter is fixed at 3. The optimum two-dimensional
topologies for the case without and with wind loading are represented in figures
5.18(a) and 5.18(b), respectively. The obtained topologies are simple columns for
both cases. The compliances after postprocessing the designs are 1.17 10−2 MNm for
the topology in figure 5.18(a) and 9.71 10−3 MNm for the topology in figure 5.18(b),
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respectively, this corresponds to a 17% difference between the two compliances. The
solution obtained using multigrid accelerated CA algorithm onsidering wind loading
(see figure 5.13(d)) in the formulation 85% stiffer with respect to wind loading than
the solution obtained using the MMALS algorithm (see figure 5.18(b)).

(a) Topology without wind loading. (b) Topology with wind loading.

Figure 5.18: 2D topology of the wind turbine support obtained with MMALS solver.

For the three-dimensional case, the topologies obtained using the MMALS algorithm
are represented in figure 5.19. The topology without wind loading (see figure 5.19(e))
is seen to be very similar to the topology obtained using the multigrid accelerated
CA algorithm (see figure 5.17(e)). However, the topology considering wind loading
is a column supported by two frames at the bottom of the structure (see figure
5.19(f)). To compare the compliances, the designs are postprocessed to force exact
black/white topologies. The compliance of the design without considering wind loads
is 5.63 10−3 MNm and the compliance with wind loads is 1.09 10−3 MNm, which
corresponds to 80% difference between the two solutions. For this case, the topology
in figure 5.19(f) obtained using the MMALS algorithm is stiffer by 16%, with respect
to wind load, than the design in figure 5.17(f) given by the multigrid accelerated CA
algorithm. Although the solutions obtained using the MMALS algorithm are stiffer
than the solution given by the multigrid accelerated CA algorithm, the convergence
for the latter is more stable. Moreover, the multigrid accelerated CA algorithm
converges to a pure black/white solution, whereas the MMALS algorithm sometimes
fails to converge to a black/white design (see figure 5.18(b)).

Figure 5.20 represents the deflection in XZ view of the three-dimensional topologies
of the wind turbine support structure considering wind loading for the multigrid
accelerated CA, and the MMALS algorithms. The maximum deflection for both
designs is at the tip of the structure where the dead loads are assumed to be applied.
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(a) XZ view without wind. (b) XZ view with wind.

(c) YZ view without wind. (d) YZ view with wind.

(e) 3D view without wind. (f) 3D view with wind.

Figure 5.19: 3D topology of the wind turbine support.

The corresponding values are 4.01 10−3 m for the topology obtained using multigrid
accelerated CA algorithm and 2.82 10−3 m for the topology obtained using MMALS
algorithm.
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(a) Multigrid accelerated CA algorithm. (b) MMALS algorithm.

Figure 5.20: 3D topology deflection of the wind turbine support structure considering
wind loading.
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Figure 5.21: Domain.

5.7.2.4 Three-dimensional off-shore wind turbine support structure sub-

ject to hydrodynamic water pressure loads

The off-shore wind turbine support structure is considered again to evaluate the
influence of water depth combined with the wind effect. The structure is submerged
by 30 m of sea water with 0.6 m/s water velocity (see figure 5.21). The hydrodynamic
effect of water pressure is considered in this example. The same wind load function
is used to define the water load function. The topology obtained subject to wind
and water loads is represented in figure 5.22. The topology produced is almost the
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same as the topology found when considering only wind loading in the formulation
(see figure 5.17(f)) but with a larger base for the extra elements at the bottom of
the structure. The compliance calculated without considering wind/water loading is
6.15 10−3 MNm and the compliance with wind and water loading is 1.27 10−3 MNm,
which corresponds to 80% difference in structural stiffness with respect to these
loads.

(a) XZ view with wind and water. (b) YZ view with wind and water.

(c) 3D view with wind and water.

Figure 5.22: 3D topology of the wind turbine support with wind and water loading.

5.7.3 Multiple arch bridge

In this example, we study the multiple arch bridge problem defined in chapter 3 under
the influence of hydrodynamic water pressure. The design domain is a cuboid with
120 m in length, 15 m in depth and 30 m in height. The considered bridge is clamped
at the bottom of the domain and supports only a uniformly distributed traffic loading
in addition to its own weight of magnitude 0.15 MN/m

2
(see figure 5.23). The

structure is submerged 7.5 m in the river where the water velocity is 3.5 m/s. The
material used for the bridge is steel with a Young’s modulus E = 200000 MPa, and
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Figure 5.23: Domain.

Poisson’s ratio ν = 0.3. The residual tolerance ratio for the finest grid is fixed for
this example at 0.07.

The domain is discretised into 257 × 33 × 65 cells and the volume fraction considered
is η=0.1. The optimum bridges with and without the hydrodynamic water pressure
influence are represented in figure 5.24. The solution in figure 5.24(e) converged
after 977 design updates in 20813 seconds. However, the solution in figure 5.24(f)
converged after 1418 design iterations for a run time of 30401 seconds. As can
be observed from figure 5.24 there are slight differences between the two solutions.
The topology under hydrodynamic water pressure produces larger columns at the
surface facing the water flow with a slight difference in the shape of the columns
at the base. The elements connecting the columns on both sides of the bridge are
horizontal in the design without water flow and visibly oblique in the design with
water flow. The compliance under the hydrodynamic water pressure influence is
9.39 10−2 MNm and the compliance without considering the hydrodynamic water
pressure influence is 0.1 MNm, which corresponds to 6% in structural stiffness with
respect to hydrodynamic loads.

Changing the initial Lagrange multiplier κi associated to the explicit constraint to
3 10−3 produced another local optimum (see figure 5.25). The compliance calculated
for the topologies of figures 5.11(g) and 5.11(h) under the hydrodynamic water
pressure influence are 3.33 MNm and 0.115 MNm, respectively. From these values it
is clear that the local solutions given by κi = 3 10−9 are stiffer designs, with respect
to hydrodynamic loading, than those produced with κi = 3 10−3.
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(a) XZ view without water flow. (b) XZ view with water flow.

(c) YZ view without water flow. (d) YZ view with water flow.

(e) 3D view without water flow. (f) 3D view with water flow.

Figure 5.24: 3D topology of the multiple arch bridge with κi = 3 10−9.
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(a) XZ view without water flow. (b) XZ view with water flow.

(c) YZ view without water flow. (d) YZ view with water flow.

(e) 3D view without water flow. (f) 3D view with water flow.

Figure 5.25: 3D topology of the multiple arch bridge with κi = 3 10−3.
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5.8 Concluding remarks

Multigrid accelerated cellular automata with design-dependent loading algorithm
was implemented in this chapter. The optimality criteria interpreted as a local
Kuhn-Tucker condition were formulated and used to construct the local design rule.
The local optimisation problem was convexified to prevent convergence oscillation.
The Jacobi over relaxation scheme was used instead of the Jacobi scheme to ensure
convergence of the optimisation process. An explicit constraint was added to the
optimisation formulation to control the intermediate density and lead the final design
to almost pure black/white solutions. Optimal designs were generated under wind
loading and hydrodynamic water pressure influences. It was shown that properly
taking into account the design-dependent nature of loads such as wind pressure
and hydrodynamic forces in the topology optimisation formulation may significantly
influence the design solution. In particular, it leads to stiffer designs, with respect to
these loads, by judiciously placing holes or elements in the structure, and tailoring
the shape of these elements to simultaneously reduce the impact of these loads and
better oppose this impact. The compliance difference between the designs with and
without considering design-dependent loads can reach up to 98 percent in structural
stiffness. It was observed from these numerical examples that the convergence of the
multigrid accelerated cellular automata algorithm is more stable than the MMALS
algorithm described in chapter 4. Further research is needed to avoid local minimum
solutions.
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Conclusions

6.1 Summary

Research into topology optimisation of continuum structures has become increasingly
popular. In spite of this recorded progress, further research has to be done to find
more powerful and more robust programs to solve topology optimisation problems in
a reasonable amount of computational time. In this thesis, a multigrid accelerated
cellular automata (CA) scheme was selected as the method to solve the problems
of topology optimisation of continuum structures. The multigrid scheme and the
cellular automata paradigm are closely related in their nature. Moreover, the design-
dependent character of loads such as wind and hydrodynamic pressure was carefully
incorporated into the design problem formulation, and the influence of these loads
on the optimum topology is demonstrated.

The dissertation started with an introductory chapter consisting outlining the back-
ground and motivation for the work and providing a list of the different structural
optimisation techniques. This was followed by a literature reviews of the following
topics:

� topology optimisation of structures

� previous applications of cellular automata in structural design

� multigrid technique for topology optimisation of structures
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� topology optimisation of structures subject to design-dependent loads such as
hydrostatic pressure and transmissible loads

The cellular automata paradigm is a recent methodology that has been used in
structural design [12,16,18–24]. It is a local technique that is well known for its par-
allelism. In chapter 2, a background and basic of cellular automata were presented,
followed by an application of cellular automata to topology optimisation of contin-
uum structures [20]. The cellular automata elements are lattice geometry, neigh-
bourhood, cell states, local rules of transition and boundary conditions. The elastic
continuum domain was discretised using a lattice of regular cells. The topology
optimisation problem was regularised using the traditional SIMP approach [7–11].
The analysis rules were derived from the principle of minimum total potential en-
ergy, and the design rules were formulated based on continuous optimality criteria
interpreted as local Kuhn-Tucker conditions.

The proposed cellular automata design algorithm was verified to be robust in solving
topology optimisation problems. The drawback, however, is that the CA analysis
convergence tends to be rather slow. This deterioration in convergence rate is due
to the slow propagation of information across the domain as the grid is refined. Ab-
dalla and Gürdal [20] suggest using a direct finite element analysis of the structure to
accelerate the analysis process, followed by CA design rules. This scheme was orig-
inally proposed by Kita and Toyoda [12]. The present thesis, the cellular automata
analysis convergence was accelerated using multigrid method for serial machines.

The acceleration of CA convergence using a multigrid approach was presented in
chapter 3. It was observed that the convergence rate of cellular automata scheme
deteriorated considerably as the number of variables increases. The iteration of the
CA scheme acts with greatest efficiency on the propagation of short wavelength error
components, while long wavelength error components are slowly damped. Using
multigrid technique, long wavelength error components can be reduced on coarse
grids without losing too much precision with a computational cost for one relaxation
much smaller than that on the fine grid. The numerical examples given in chapter 3
demonstrate the computational cost for the multigrid algorithms to be proportional
to the number of cells. Moreover, the multigrid accelerated CA algorithm was shown
to be an interesting candidate for solving topology optimisation for two and three
dimensional continuum structures in a reasonable time.

In chapter 4, the study of topology optimisation of continuum structures was ex-
tended to investigate the effect of design-dependent loads on the optimal design. The
finite element method was selected to determine the displacement fields, while the
optimisation problem was solved using the Method of Moving Asymptotes (MMA)
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[46–49]. This algorithm was also used as a benchmark later in the 5th chapter given
the robustness of the well known MMA method in solving topology optimisation
problems. In chapter 4, wind loading was introduced into the topology optimisation
formulation for two and three dimensional problems as design-dependent loading by
using a standard formula for drag forces (Zakhama et al. [44]).

Furthermore, the MMA method was modified by changing the formula for the update
of asymptotes. Another modification is made in the MMA based algorithm by adding
line search phase to the optimisation process to enhance the global convergence of the
topology optimisation problem. To obtain a black/white design, the intermediate
density values were controlled using an explicit constraint added into the topology
optimisation formulation. It was demonstrated that taking the wind loads into
account in the formulation tends to generate stiffer designs, with respect to these
loads for the same volume and can lead to the apparition holes facing the incoming
wind.

Encouraged by the success of the modified MMA method coupled with the Line
Search (MMALS) algorithm in solving effectively the topology optimisation prob-
lems with design-dependent loads, the multigrid accelerated cellular automata al-
gorithm was extended in chapter 5 to incorporate design-dependent loads. The
optimality criteria for minimum compliance with design-dependent loads subject to
a volume constraint were used to derive local design rules. The local objective func-
tion was convexified to prevent oscillation in the topology optimisation process, and
the Jacobi Over Relaxation scheme (JOR) [69, 70] was used instead of the Jacobi
scheme to update the design variables and to ensure convergence of the optimisation
process. The explicit constraint was appended to the optimisation formulation, as
done in chapter 4, to obtain near black/white design. The proposed algorithm was
demonstrated to be quite fast and more robust than the MMALS to solve the topol-
ogy optimisation problems with design-dependent loads. The numerical examples
presented in chapter 5 showed the effect of design-dependent loading, such as wind
and hydrodynamic water pressure loading, on the topology. It was shown, from the
designs obtained, that taking into account the design-dependent loads in the formu-
lation leads to stiffer designs with respect to these loads by allowing holes facing the
loads, creating extra elements where needed or adapting shape.

6.2 Future work

The multigrid accelerated cellular automata algorithm presented in this thesis have
been developed and implemented to solve topology optimisation for two and three di-

103



Chapter 6

mensional linearly elastic continua with design-dependent loads. However, the small
deformation assumption is not always valid. Such is the case of compliant mech-
anisms [72]. To accommodate the algorithms to more realistic designs, geometric
nonlinearities of continuum structures must be considered for continuum structures
that undergo large deformation. Research work on the CA paradigm as a tool for
solving topology optimisation of continuum structures with geometric nonlineari-
ties is limited, e.g. the nonlinear topology design of trusses [16, 73] and nonlinear
topology design of continuum structures [22].

The multigrid algorithm presented in this thesis may fail to converge when geomet-
ric nonlinearities are considered in topology optimisation of continuum structures.
Aside from the work reported in this thesis, in our experimentation with solving
topology optimisation of geometrically nonlinear 2D continua we have observed se-
vere convergence difficulties. With the subtle handling of discretisation and approx-
imation errors by the multigrid approach, it is likely that a multigrid implementa-
tion of topology optimisation of continua exhibiting geometric nonlinearities would
be more effective. Nonetheless, the extension of the multigrid design algorithm to
nonlinear structures requires several adaptations. For instance, the residual relation
Ae = r used for the multigrid (see chapter 3) does not hold for nonlinear prob-
lems since the matrix A becomes dependent on the response and Au − Av 6= Ae.
An alternative methodology based on Full Approximation Storage (FAS) multigrid
scheme [28, 74] seems to be a good direction to take to solve a nonlinear problem.
This scheme shares many features with the multigrid algorithm described in chapter
3, the main differences lie in the solution process on the coarsest grid and in the
relaxation process.

In this research, the design-dependent loads have been introduced into the formu-
lation using standard expressions for the drag force which do not involve explicit
construction of the loading surfaces. This scheme has been demonstrated to be suc-
cessful in accommodating the topology to the specific nature of these loads using
both the MMALS and the multigrid accelerated cellular automata algorithms. In
some cases, however, the optimisation process could not avoid local minima. More-
over, the MMALS algorithm sometimes encounters difficulties converging to a pure
black/white design. Further research is certainly needed to enhance the capability
of these algorithms to converge to global minima and to better control the explicit
constraint parameters to obtain a pure black/white design.
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Local Rule of Analysis

A.1 Two-dimensional structures

y

1

x

2

34

Figure A.1: Two-dimensional element.

For two-dimensional structures, the (18 × 18) linear stiffness matrix K is the assem-
bly of element stiffness matrices of Nelement elements of the Moore neighbourhood
structure (see figure 2.4(d)):

K =

Nelement
∑

i=1

ρ̄p
i K0, (A.1)

where K0 is a stiffness matrix of the element represented in figure A.1. It is obtained
from isotropic material and linear small deformation assumptions. The element
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stiffness matrix K0 is defined as

K0 =
E t

1 − ν2
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(A.2)

where E is the Young’s modulus, ν is the Poisson’s ratio and t is the plate thickness.

The cell displacements are updated using the Gauss-Seidel scheme as follows:

ut+1
C = ut

C + (KC)−1 · (GC(ut+1
N ) + fC), (A.3)

where KC is a (2 × 2) matrix defined by the cell C indexes of the stiffness matrix K

which can be written as K9,10 ; 9,10. The vector GC(ut+1
N ) is the vector of internal

forces defined as
GC(ut+1

N ) = −KN1 · u
t+1
N1

− KN2 · u
t+1
N2

, (A.4)

where KN1 and KN2 are (2 × 8) matrices defined by line 9 and 10 of the stiffness
matrix K as K9,10 ; 1..8 and K9,10 ; 11..18 respectively. The vectors ut+1

N1
and ut+1

N2

are their corresponding displacement vectors defined from ut+1
N .

A.2 Three-dimensional structures

For the case of three-dimensional structures, the element stiffness matrix K0 of figure
A.2 is defined as

K0 =







K0
11 K0

12 K0
13

K0
12

T
K0

22 K0
23

K0
13

T
K0

23
T

K0
33






, (A.5)
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Figure A.2: Three-dimensional element.
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where
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(A.12)

and a is the distance between the cells.

The analysis update rule remains the same as in two-dimensional case. However,
the linear stiffness matrix K of the Moore neighbourhood structure defined in figure
2.4(e) is a (81 × 81) matrix. The matrix KC has dimensions (3 × 3) (KC =
K40..42 ; 40..42), and KN1

and KN2
are (3 × 40) matrices (KN1

= K40..42 ; 1..40 and
KN2 = K40..42 ; 42..81).
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design of composite layers using cellular automata. Structural and Multidisci-
plinary Optimization, 30:413–421, 2005.

[22] R. Zakhama, M. M. Abdalla, H. Smaoui, and Z. Gürdal. Topology design of
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