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1. Introduction. Multigrid methods and optimization related to partial differential
equations (PDE) are two modern fields of research in applied mathematics, both starting in
the early seventies with the works of Brandt [36] and Hackbusch [55], and Lions [81], respec-
tively. While research on multigrid methods has been motivated by the need of efficiently
solving large application problems, the purpose of optimization has been to define ways of
how optimally change or influence real world systems to meet a given target. Eventually,
this requires to realize optimization strategies in current practical applications having in-
creasing complexity, that is, to solve large-scale optimization problems in an accurate and
computationally efficient way. For this reason, the idea of using multigrid strategies for
optimization purposes is receiving increasing attention encouraged by results obtained in
the last few years.

It is the purpose of this paper to review some recent efforts and outline present devel-
opments in the field of multigrid methods for PDE optimization. The organization of the
paper reflects, on the one hand, the classification of optimization problems usual made in
the optimization community and, on the other hand, the different ways of how multigrid
methods are being used in computational optimization.

An important class of problems in optimization results from optimal control applications.
These consist of an evolutionary or equilibrium system including a control mechanism and
a functional modeling the purpose of the control. Other important classes of optimization
problems are shape design, topology, and parameter optimization. In all these cases the
underlying system is given by a set of partial differential equations; see [94] for an exceptional
instance.

From the point of view of the multigrid approach, we can roughly distinguish between
the direct (one-shot) multigrid method where the optimization problem is implemented
within the hierarchy of grid levels and the use of multigrid schemes as inner solvers within
an outer optimization loop. We also review recent trends to formulate optimization schemes
where the multigrid method defines the outer solver.

In the following section we define optimization problems with PDE constraints using
the terminology and notation as usual in the PDE optimization community. The notions
of reduced objective functional and Hessian, Lagrangian functions, optimality systems, etc.,
are introduced. The section is completed by a detailed derivation of the optimality sys-
tem characterizing a representative optimization problem. In Section 3, examples of steady
and time-dependent optimization problems are given. Section 4 provides a self-contained
introduction to multigrid methods for linear and nonlinear problems and introduces the re-
lated notation. Thereafter a section on Multigrid sequential quadratic programming (SQP)
schemes is given. In this case, multigrid schemes are used as inner solvers of given sub-
problems. A more direct approach is to apply the multigrid strategy to the solution of the
optimality system by defining this system on the entire grid hierarchy. The essential com-
ponent required to define this solution process is the formulation of appropriate smoothers.
We discuss the Schur complement based multigrid smoothers and the collective smoothing
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(volker.schulz@uni-trier.de).

1
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multigrid approach in Sections 6-7 and 8. In these sections, steady and time-dependent op-
timization problems are considered and details of implementation of the smoothing schemes
are given.

In Section 8.5 a globalization technique that exploits multigrid features is presented. In
Section 9 we review recent research on multigrid optimization methods where the multigrid
strategy defines the outer optimization iteration. This approach appears to be a promising
research field leading to reinterpreting multigrid algorithms from an optimization point of
view. A section of conclusions completes this paper.

2. Optimization problems with PDE constraints. Almost all optimization prob-
lems to be treated with multigrid methods deal with a (set of) PDE e(y, u) = 0 whose
solution y ∈ Y characterizes the state of a system of interest and which can be influenced
by certain degrees of freedom u ∈ U . These degrees of freedom should be adjusted in order
to reach a certain aim in the form of an objective J to be minimized. Thus we treat the
constrained minimization problem

min J(y, u) J : Y × U → R(2.1)
s.t. e(y, u) = 0 where e−1

y exists.(2.2)

Typically, there have to be added further equality and inequality constraints in practical
settings. The requirement of the existence of e−1

y enables a clear distinction of variables
as states y on the one hand and optimization variables u on the other hand. Furthermore,
this requirement also clearly separates this problem class from variational problems, like
the classical variational reformulation of elliptic PDE, where the application of multigrid
methods is meanwhile common sense.

The dependent state variables y are from a suitable function space. The independent
optimization variable u can be a function or a finite dimensional vector. In the latter case,
a multigrid structure for u is typically not constructed. An exception occurs, when u can
be seen as a finite dimensional projection from a function space, which is performed for
manufacturing or regularization reasons. An example, where a multigrid structure is built
up also in the finite dimensional case can be found in [105].

If the control u is finite dimensional, the problem under consideration is a parameter
optimization problem. If dim(u) is comparatively small, then these problems can be most
efficiently solved by reduced SQP, e.g., [98, 48], where multigrid methods are used for the
solution of linear forward and adjoint subproblems, which is discussed in more detail in
section 5.

The remainder of the paper is mainly devoted to optimization problems where the inde-
pendent optimization variable u is from a function space. Often, this leads to ill-conditioning,
which has to be coped with by appropriate regularization techniques (regularization by finite
dimensional projection, by adding Tichonov-like terms in the objective, by premature stop-
ping of iterations,...). Nevertheless, the resulting problem may not necessarily suffer from
ill-conditioning. The determination, which situation occurs in a certain problem, requires
some analysis of the reduced Hessian, which can also be viewed as the Hessian operator of
the mapping u 7→ J(y(u), u) with intermediate step in the form

u
IFT7→ y(u) 7→ J(y(u), u),

where ”IFT” means the application of the implicit function theorem.
The application of the implicit function theorem leads to so-called “black-box” methods.

A halfway application of the implicit function theorem leads to Schur-complement-type
multigrid methods as considered in section 6. These methods are of particular advantage,
if one wants to implement multigrid optimization approaches within a previous existing
multigrid code for the state equation. Another direct approach to optimization problems
is the collective smoothing multigrid strategy following the one-shot strategy first proposed
in [3, 4, 104]. A one-shot multigrid scheme means solving the first-order conditions for a
minimum, giving the optimality system for the state, the adjoint, and the control variables,
in parallel in the multigrid process.

In the remaining part of this section we provide a detailed derivation of the optimality
system characterizing the solution of an optimal control problem. The formulation of optimal
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control of systems governed by partial differential equations requires the following terms: 1)
The definition of a control (optimization) function u that represents the driving influence
of the environment on the system. 2) The set of partial differential equations modeling the
controlled system, represented by the state function y(u). 3) The cost functional (objective)
that models the purpose of the control on the system.

We denote by u the control function belonging to a closed and convex set of admissible
controls Uad ⊂ U , where U is a real Hilbert space with inner product and norm denoted by
(·, ·) and | · |, respectively.

The state of the system as a function of the control is denoted by y(u) ∈ Y , where Y is
a real Hilbert space with inner product and norm denoted by ((·, ·)) and || · ||. The state y is
given by the solution of a partial differential equation which is formally expressed as e(y, u) =
0 where e : Y ×U → Y ∗. It is required that the solution of this equation with given u defines
a continuous affine mapping u → y(u). Let us denote its first derivative at u in the direction
δu by y′(u, δu). It is characterized as the solution to ey(y, u) y′(u, δu) + eu(y, u) δu = 0. We
assume that second derivative of u → y(u) is zero.

The cost functional is formally given by

J(·, ·) : Y × U → R.

It is assumed that J(y, u) is twice Frechet-differentiable and that the second Frechet deriva-
tive J ′′ is locally Lipschitz-continuous. Using the mapping u → y(u) we can define the
reduced cost functional Ĵ(u) = J(y(u), u).

The optimal control problem is formulated as follows: Find û ∈ Uad such that

Ĵ(û) = inf
u∈Uad

Ĵ(u).

Of large interest are cost functionals of tracking type as the following

J(y, u) =
1
2
||y − z||2 +

ν

2
|u|2,(2.3)

where z ∈ Z is the given target function, Z being a real Hilbert space. In the following
we let Y ⊆ Z and when no confusion may occur we denote with ((·, ·)) and || · || the inner
product and norm of Z as well. Here ν > 0 is the weight of the cost of the control. (The
case ν = 0 is discussed in Section 8.1.)

We find for the second derivative of u → Ĵ(u)

Ĵ ′′(u)(δu, δu) = ||y′(u, δu)||2 + ν|δu|2,
and thus u → Ĵ(u) is uniformly convex. This implies existence of a unique solution û ∈ Uad

to the optimal control problem which can be characterized by the following optimality
condition

Ĵ ′(û, v − û) = ((ŷ − z, y′(û, v − û))) + ν(û, v − û) ≥ 0 for all v ∈ Uad,

where ŷ = y(û).
Introduce p̂ ∈ Y as the unique solution to

e∗y(ŷ, û)p̂ = −(ŷ − z)

where e∗y : Y → Y ∗. p̂ is the Lagrange multiplier, also called the adjoint variable. Then via
ey(y, u) y′(u, δu) + eu(y, u) δu = 0 and δu = v − û, we have

Ĵ ′(û, v − û) = −((e∗up̂, v − û)) + ν(û, v − û) ≥ 0 for all v ∈ Uad.(2.4)

In case Uad = U this condition becomes Ĵ ′(û) = 0.
Summarizing, the solution of the optimal control problem is characterized by the fol-

lowing optimality system

e(y, u) = 0,

e∗y(y, u)p = −(y − z),(2.5)
−((e∗up, v − u)) + ν(u, v − u) ≥ 0,
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for all v ∈ Uad. In this system, the first and second equations are referred to as the state
equation and adjoint equation, respectively. The third equation is called the optimality
condition.

Another rigorous way to derive the optimality system is also by introducing the La-
grangian function

L(y, u, p) = J(y, u) + 〈e(y, u), p〉Y ∗,Y .

By formally equating to zero the Frechét derivatives of L with respect to the triple (y, u, p),
we obtain the optimality system; see, e.g., [86].

In general, solutions of optimality systems represent only extremal points and additional
second-order conditions must be satisfied to guarantee that they are the minima sought. If
J and e are twice continuously differentiable, the second-order sufficient conditions for a
minimum require to satisfy the optimality system and the following

Lxx(y, u, p)(v, v) ≥ c1 ||v||2, c1 > 0, for all v ∈ N (e′(y, u)),(2.6)

where x = (y, u) and e′ represents the linearized equality constraint; see, e.g., [48]. We
assume that the null space N (e′(y, u)) can be represented by N (e′(y, u)) = T (y, u) U , where

T (y, u) =
[ −e−1

y eu

Iu

]
,

and ey, eu are evaluated at (y, u). Therefore condition (2.6) becomes

H(y, u, p)(w,w) ≥ c2 ||w||2, c2 > 0,(2.7)

for all w ∈ U . The operator H is the reduced Hessian defined by

H(y, u, p) = T (y, u)∗ Lxx(y, u, p)T (y, u).

That is, H is given by

H(y, u, p) = Luu(y, u, p) + C(y, u)∗ Lyy(y, u, p) C(y, u),(2.8)

where C(y, u) = ey(y, u)−1 eu(y, u), assuming eyu(y, u) = 0 and Jyu(y, u) = 0.
Notice that H is symmetric. Therefore condition (2.7) requires that, in order to have a

minimum, all eigenvalues of the reduced Hessian be positive. This fact is further discussed in
Section 8.5 in order to formulate a globalization step within the one-shot multigrid approach.

3. Examples of optimization problems. In this section some representative opti-
mization problems are formulated and the corresponding optimality systems are given. The
multigrid solution of these problems is discussed in detail in the sections that follow. Assume
that Ω ⊂ R2 is convex or ∂Ω is C1,1 smooth.
Example I: An elliptic distributed optimal control problem.





minu∈Uad
J(y, u),
−∆y = u + g in Ω,

y = 0 on ∂Ω.
(3.1)

We assume that the set of admissible controls is the closed convex subset of L2(Ω) given by

Uad = {u ∈ L2(Ω) |u(x) ≤ u(x) ≤ u(x) a.e. in Ω},(3.2)

where u and u are elements of L∞(Ω). The objective J(y, u) is given by

J(y, u) =
1
2
||y − z||2L2(Ω) +

ν

2
||u||2L2(Ω),(3.3)

where ν > 0 and g, z ∈ L2(Ω). In this case u is a distributed control on all of Ω.
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The solution of the optimization problem given above is characterized by the following
optimality system

−∆y = u + g in Ω,
y = 0 on ∂Ω,

−∆p = −(y − z) in Ω,
p = 0 on ∂Ω,

(νu− p, v − u) ≥ 0 for all v ∈ Uad.

(3.4)

An example of elliptic boundary optimal control problem with constraints is given by
the following. Minimize

J(y, u) =
1
2
||y − z||2L2(Ω) +

ν

2
||u||2L2(∂Ω),(3.5)

subject to u ∈ Uad ⊂ L2(∂Ω) and

−∆y + y = g in Ω,
∂y
∂n = u on ∂Ω.

(3.6)

In this case, a possible set of admissible controls is given by

Uad = {u ∈ L2(∂Ω) |u(x) ≤ u(x) ≤ u(x) a.e. in ∂Ω},(3.7)

where u and u are functions of L∞(∂Ω).
For the existence of a unique solution to (3.5)-(3.7) we refer to [81]. The solution is

characterized by the following optimality system

−∆y + y = g in Ω,
∂y
∂n = u on ∂Ω,

−∆p + p = −(y − z) in Ω,
∂p
∂n = 0 on ∂Ω,

(νu− p, v − u) ≥ 0 for all v ∈ Uad.

(3.8)

Example II: A parabolic distributed optimal control problem.




minu∈L2(Q) J(y, u),
−∂ty + ∆y = u in Q = Ω× (0, T ),

y = y0 in Ω at t = 0,
y = 0 on Σ = ∂Ω× (0, T ),

(3.9)

where we take y0(x) ∈ H1
0 (Ω). In this case a cost functional of tracking type is given by

J(y, u) =
1
2
||y − z||2L2(Q) +

ν

2
||u||2L2(Q).(3.10)

where z ∈ L2(Q). The optimality system related to this problem is given by

−∂ty + ∆y = u in Q,
y = 0 on Σ,

∂tp + ∆p = −(y − z) in Q,
p = 0 on Σ,

νu− p = 0 in Q,

(3.11)

with initial condition y(x, 0) = y0(x) and terminal condition p(x, T ) = 0. In fact, notice
that the state variable evolves forward in time and the adjoint variable evolves backward in
time. A more general formulation of this problem is given in Section 8.2.
Example III: An hyperbolic optimal control problem (optical flow problem) [19, 20].





min~w∈V J(y, ~w),
yt + ~w · ∇y = 0 in Q = Ω× (0, T ),

y = Y0 in Ω at t = 0,
(3.12)
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where ~w = (u, v) ∈ V , V is a class of admissible flow fields and J is the cost functional

J(y, ~w) =
1
2

∫

Ω

N∑

k=1

|y(x1, x2, tk)− Yk|2dΩ(3.13)

+
α

2

∫

Q

|∂ ~w

∂t
|2dq +

β

2

∫

Q

(|∇u|2 + |∇v|2)dq +
γ

2

∫

Q

|∇ · ~w|2dq.

Here, it is required that the evolving state y matches as close as possible the sequence
{Yk}k=0,N of given functions defined at increasing times tk ∈ [0, T ] with tN = T . The
coefficients α, β, and γ are predefined positive weights.

The corresponding optimality system results in

yt + ~w · ∇y = 0,

y(·, 0) = Y0,

pt +∇ · (~wp) =
N−1∑

k=1

[δ(t− tk)(y(·, tk)− Yk)] ,

p(·, T ) = −(y(·, T )− YN ),

α
∂2u

∂t2
+ β∇ · ∇u + γ

∂

∂x1
(∇ · ~w) = p

∂y

∂x1
,(3.14)

α
∂2v

∂t2
+ β∇ · ∇v + γ

∂

∂x2
(∇ · ~w) = p

∂y

∂x2
,

where, e.g., ~w ∈ V is required to satisfy prescribed boundary conditions on the spatial
boundary and at the temporal boundaries of Q.
Example IV: An elliptic boundary control problem as a simplified shape optimization
problem. We consider a region Ω = (0, 1)2 and imagine the boundary with Γ1 := [0, 1]×{0}
being an outer boundary of a body above Γ1 whose shape should be optimized so that the
flow along the boundary minimizes a difference to a certain pressure distribution. We model
the flow in Ω by potential flow and treat only small variations in the geometry. The control
u models orthogonal boundary variations. According to [92], we can formulate the following
boundary control problem





minu∈H1(Γ1)
1
2

∫
Γ1

( ∂y
∂x − P (x))2dx,

−∆y = 0 in Ω,
∂y
∂~n = ∂u

∂x on Γ1,
y = 0 on ∂Ω\Γ1,

(3.15)

The pressure function P : Γ1 → R is given data. Notice that in this case u is defined only
on Γ1.

The corresponding optimality system is given by

−∆y = 0 in Ω,
∂y
∂~n = ∂u

∂x on Γ1,
y = 0 on ∂Ω\Γ1,

−∆p = 0 in Ω,
∂p
∂~n = − ∂

∂x ( ∂y
∂x − P (x)) on Γ1,

p = 0 on ∂Ω\Γ1.

(3.16)

A Fourier analysis computing the symbol of the reduced Hessian shows that the reduced
Hessian is a differential operator of second order. Thus, the problem is well posed, although
there is no regularization term present.

4. Multigrid methods. Motivation for pursuing the multigrid strategy [30, 37, 61,
106] to solving optimization problems is the achievable optimal computational complexity
together with robustness with respect to chosen values of optimization parameters [3, 21,
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22, 25, 26, 15, 16, 17, 18, 48, 56, 100]. To illustrate these facts, to make this presentation
self-contained, and introduce the related notation, we give in the following an introduction
to multigrid methods.

Let us index operators and variables defined on a grid with mesh size h = hk, k =
1, . . . , L, where the index k is the level number. Here L denotes the finest level. On each
level, a problem of the form

Akwk = fk,(4.1)

is considered where Ak results from the discretization of a system of coupled partial differ-
ential equations for the vector of dependent variables wk = (uk, vk, ..).

In the case of linear multigrid methods it is convenient to utilize the fact that the
solution of (4.1) is equivalent to solving Akwe

k = rk, where we
k = w̄k −wk is the error grid

function between the solution w̄k to (4.1) and its current approximation wk and rk is the
residual defined by

rk = fk −Akwk.(4.2)

Initially we can assume that wk is affected by errors having a large spectrum of frequencies.
The multigrid strategy is to solve for all frequency components of the error using multiple
grids.

On the grid of level k, a smoothing procedure is applied in order to solve for the
high-frequency components of the error. This is an iterative scheme denoted by w(m1)

k =
Sm1

k (wk, fk), where Sm1
k is a linear smoothing operator applied m1 times. For example Sk

can be a pointwise (collective) Gauss-Seidel iteration [106] or a Vanka smoother [110]. One
sweep of this iteration is written in the form: w(m1)

k = w(m1−1)
k + Rk (fk − Akw

(m1−1)
k )

where the operator Rk applies to the residual.
To correct for the smooth components of the error, a coarse grid correction (CGC) is

defined. For this purpose a coarse grid problem for the error function is constructed on the
grid with mesh size hk−1. That is,

Ak−1wk−1 = Ik−1
k rk,(4.3)

where wk−1 represents on the coarse grid Ωk−1 the error we
k on the next finer grid. The

operator Ik−1
k : Vk → Vk−1 restricts the residual computed at level k to the grid with level

k − 1.
Once the coarse grid problem is solved, the coarse grid correction follows:

wnew
k = wk + Ik

k−1 wk−1,(4.4)

where Ik
k−1 : Vk−1 → Vk is an interpolation operator. Here wk represents the current

approximation at level k as it was obtained by the smoothing process and before coarsening.
If the high frequency components of the error on the finer grid k are well damped, then
the solution at level wk−1 should provide enough resolution for the error of wk through
Ik

k−1wk−1.
The idea of transferring to a coarser grid can be applied along the set of nested meshes.

One starts at level k with a given initial approximation (e.g., zero) and applies the smoothing
iteration m1 times. The residual is then computed and transferred to the next coarser grid
while wk that was obtained by smoothing is left unchanged. On the coarse grid with index
k − 1 again the smoothing process is applied. This procedure is repeated until the coarsest
grid is reached.

On the coarsest grid, one solves the problem using a direct method or by iteration and
the result is used to improve wk via (4.4). The coarse grid correction is then followed by
m2 post-smoothing steps at level k before the CGC procedure followed by post-smoothing is
repeated for the next (if any) finer level. This entire process represents one multigrid cycle.
It can be interpreted as a linear iteration of the type w`+1

L = w`
L +ML(fL −ALw`

L) where
Mk is the multigrid iteration operator. The multigrid algorithm expressed in terms of Mk

is given as follows.
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Algorithm 1 (Multigrid Algorithm).

Set M1 = A−1
1 . For k ≥ 2 define Mk : Vk → Vk in terms of Mk−1 as follows. Let

f ∈ Vk and q0 = 0.
1. Set w0 = w̃ ∈ Vk (Starting approximation).
2. Define wl for l = 1, . . . , m1 by

wl = wl−1 +Rk(f −Ak wl−1).

3. Set wm1+1 = wm1 + Ik
k−1q

m where qi for i = 1, . . . ,m is defined by

qi = qi−1 +Mk−1[Ik−1
k (f −Ak wm1)−Ak−1qi−1].

4. Set Mkf = wm1+m2+1 where w` for ` = m1 + 2, · · · ,m1 + m2 + 1 is given by Step
2.

Notice that we can perform m two-grid iterations at each working level. For m = 1 we
have a V (m1, m2)-cycle and for m = 2 we have a W (m1, m2)-cycle; m is called the cycle
index [106]. In the following, N is the number of V - or W -cycles that are applied to solve
the problem at hand.

The algorithm above uses the equivalence of equation (4.1) with the residual equation.
This holds true for A being a linear operator. In case A(·) is a nonlinear operator, the multi-
grid algorithm described above must be modified. Among the class of nonlinear multigrid
methods [65, 113], the most popular approach is the full approximation scheme (FAS) [36].
It consists of the same steps as the multigrid algorithm previously described but instead of
solving for the error function we

k it applies to the variable wk−1 = Îk−1
k wk + we

k−1 as the
coarse-grid function.

To describe the FAS method consider the following nonlinear discrete problem

Ak(wk) = fk.(4.5)

As in the linear case we need to define a smoothing procedure also denoted by Sk. This may
be, for example, a (local) Newton-Gauss-Seidel scheme. Suppose to apply m1-times this
iteration to (4.5) starting with the current approximation w(0)

k to obtain the approximate
solution w̃k. Now, the desired correction we

k to w̃k is defined by Ak(w̃k + we
k) = fk. This

correction can be defined as the solution to

Ak(w̃k + we
k)−Ak(w̃k) = rk,

where rk = fk −Ak(w̃k) is the residual associated to w̃k.
Next, assume to represent the problem (4.5) on the coarser grid Ωk−1. To represent

w̃k + we
k on the coarse grid we write

wk−1 = Îk−1
k w̃k + we

k−1.

Now to formulate our problem on the coarse grid, replace Ak(·) by Ak−1(·), w̃k by
Îk−1

k w̃k, and rk by Ik−1
k rk. Here IH

h is a conveniently chosen restriction operator. We get
the following FAS equation

Ak−1(wk−1) = Ik−1
k fk + τk−1

k ,(4.6)

where τk−1
k is the fine-to-coarse defect correction defined by

τk−1
k = Ak−1(Îk−1

k wk)− Ik−1
k Ak(wk).(4.7)

Notice that Îk−1
k is a restriction operator which is not necessarily equal to Ik−1

k . The usual
choice for Îk−1

k is straight injection. Once the coarse grid problem is solved, the coarse grid
correction follows

wnew
k = wk + Ik

k−1(wk−1 − Îk−1
k wk).(4.8)
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Assuming that the smoothing iteration has reduced the high frequency components of the
error on the finer grid, the difference wk−1−Îk−1

k wk provides a good approximation for the
smooth error of wk.

The FAS algorithm can be summarized as follows.
Algorithm 2 (FAS Algorithm).

Set M1 ≈ A−1
1 (e.g., iterating with S1). For k ≥ 2 define Mk : Vk → Vk in terms of

Mk−1 as follows. Let f ∈ Vk and q0 = 0.
1. Set w0 = w̃ ∈ Vk (starting approximation).
2. Define wl for l = 1, . . . , m1 by

wl = wl−1 +Rk(f −Ak wl−1).

3. Set wm1+1 = wm1 + Ik
k−1(q

m − Îk−1
k wm1) where qi for i = 1, . . . ,m is defined by

qi = qi−1 +Mk−1[Ik−1
k (f −Ak wm1) +Ak−1(Îk−1

k wm1)−Ak−1qi−1].

4. Set Mkf = wm1+m2+1 where w` for ` = m1 + 2, · · · ,m1 + m2 + 1 is given by Step
2.

One can choose a starting grid with a level number K < L which is coarser than the
finest grid where the solution is desired. In this case one applies N multigrid cycles on level
K and then the solution is interpolated on the next finer grid. The interpolation provides a
first approximation for the multigrid solution process on this finer level and so on until the
finest grid is reached. The combination of this nested iteration technique with the multigrid
scheme is called the full multigrid (FMG) scheme. For the sake of completeness, it should be
mentioned that there exist also nonlinear variants of the correction scheme due to Hackbusch
[61].

For problems which are highly non-regular (i.e. discontinuous coefficients, singularities,
etc.) and in the case where complex computational domains are considered, the design of
geometric multigrid schemes is more involved. In these cases more sophisticated techniques
are required to design intergrid transfer operators and smoothers. To resolve this difficulty
Algebraic multigrid (AMG) solvers were developed [27, 39, 40, 43, 95, 102]. AMG schemes
resemble the geometric multigrid process described above by utilizing only information con-
tained in the algebraic system to be solved. To define a hierarchy of algebraic problems, the
AMG algorithm starts by first applying a splitting procedure to select a subset of coarse (C)
points among all fine (F) points representing the unknown variables. Based on this splitting
a restriction operator Ik−1

k is constructed which has full rank. This immediately defines
an interpolation operator Ik

k−1 = (Ik−1
k )T , from the set of coarse points to the set of fine

points, and a coarse matrix of coefficients Ak−1 is given by the Galerkin formula

Ak−1 = Ik−1
k Ak Ik

k−1.

It can be proved that if Ak is symmetric and positive definite and Ik−1
k is any restriction

operator having full rank, then the AMG scheme is a convergent iteration. For a detailed
review of AMG see [102].

In the sections that follow, we describe various multigrid approaches to optimization
problems.

5. Multigrid aspects in reduced SQP approaches to parameter optimization.
We call optimization problems of the form (2.1)–(2.2) parameter optimization problems, if
the space U for the influence variables is finite dimensional, i.e. u ∈ U = Rnu , and there
is no further multigrid structure conceived within U . Nevertheless, the constraint (2.2) is
thought of as a PDE. This situation happens frequently in simulation-based optimization
problems as, e.g., parameter identification problems or shape optimization with an a-priori
defined shape parametrization. Typically, the number of parameters, i.e. nu, is low—
often below 100. In this framework, the method of choice is a reduced SQP approach as
demonstrated in [98, 97, 48]. Some detail has to be discussed, if the PDE in (2.2) is solved
by a multigrid method. A straight forward implementation of a reduced SQP method within
the separability framework applied to problem (2.1)–(2.2) iterates over the following steps:
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(0) initialize ` = 0, y0, u0

(1) solve the adjoint problem e∗y(y`, u`)p` = −Jy(y`, u`)
and build the reduced gradient γ` = J>u + e∗u(y`, u`)p`

(2) build some approximation B` ≈ H(y`, u`, p`) of the reduced Hessian, e.g., by Quasi-
Newton update formulae

(3) solve ∆u = arg min
u∈LU(u`)

1
2u>B`u + γ>` u, where LU(u`) denotes the linearization of

U in u`

(4) solve the linear problem ey(y`, u`)∆y = −(eu(y`, u`)∆u + e(y`, u`))
(5) update (y`+1, u`+1) = (y`, u`) + τ · (∆y, ∆u), where τ is some line-search updating

factor in the early iterations.
In steps (4) and (1), linear systems have to be solved, in our context by application of

multigrid methods. Since these systems are adjoint to each other, the natural question arises
whether this fact should be reflected in the respective multigrid solvers, as well. This fact
is particularly important, if the linear systems are not solved exactly but only up to some
numerical error left over after finitely many iterations. Classical reduced SQP convergence
theory can only guarantee convergence if we know that the reduced gradient γ can be
interpreted as a derivative, i.e., we need the consistency condition

γ>` =
∂

∂u
J(y` −Aeu(y`, u`)u, u` + u)(5.1)

where A ≈ ey(y`, u`)−1 is the approximation to ey(y`, u`)−1 defined by the multigrid algo-
rithm for the forward problem. If we do not satisfy this consistency condition, the necessary
condition γ` ≈ 0 for optimality cannot be used as an indication for the optimal solution and
therefore as a stopping rule for the iterations, if we only want to use a comparatively coarse
accuracy in the forward solver. Then, this inconsistent γ might even give a direction, which
is not a descent direction.

In [97] a proof is given for the fact that the condition (5.1) leads to the following
requirements for the construction of grid transfer operators and the smoothing operator

AIk−1
k =

(
FIk

k−1

)∗
, AS = (FS)∗ , AIk

k−1 =
(
FIk−1

k

)∗

where AI and FI with indices mean the transfer operators for the adjoint and forward
problems, respectively. Here AS and FS represent the respective smoothing operators. For
efficiency reasons, the accuracy in the respective linear systems can be adapted in the style
of inexact reduced SQP methods as in [68], where the accuracy of the linear subproblems
is continuously increased, when zooming in to the solution. This is not required when
using approximate reduced SQP methods, as in [98], where the optimization problem is
reformulated so that a stagnation point of the resulting approximate algorithm is always
an optimal solution, regardless whether the accuracy of the linear subproblems is increased
during the nonlinear iterations or not.

Often, additional constraints are to be satisfied, either formulated in the description of
the set U or as a finite number of state constraints. These additional constraints can be
efficiently taken care of within the set-up above in so-called partially reduced SQP methods,
as introduced in [98].

6. Schur complement based multigrid smoothers. The earliest multigrid opti-
mization approaches and many later ones have been based on a smoothing concept which
can be interpreted as a Schur-complement splitting of the KKT-matrix. Considering a
Newton-iteration for the necessary conditions to problem (2.1)-(2.2), we obtain an incre-
mental iteration where the increments in all variables

w =




∆y
∆u
∆p




are the solution to the equation

Aw =



−∇yL(y, u, p)
−∇uL(y, u, p)
−e(y, u)


 =: f .(6.1)
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The function L(y, u, p) is the Lagrangian of the optimization problem and the operator
matrix

A =




Lyy Lyu e∗y
Luy Luu e∗u
ey eu 0


(6.2)

is the Karush-Kuhn-Tucker matrix, i.e. matrix of second order derivatives of the Lagrangian
of the optimization problem. All variants of SQP methods for nonlinear problems play with
variable approximations of the matrix A above, since the system (6.1) can be viewed as a
linear-quadratic optimization problem.

For the linear-quadratic problem of Example I, the operator matrix is constant

A =




I 0 −∆
0 ν · I −I
−∆ −I 0




where I is the identity operator in the interior of the domain Ω, and ∆ represents the
Laplacian with Dirichlet boundary conditions (c.f. equation (3.4)).

Schur-complement smoothing approaches that can still be written in the form

wl = wl−1 +R(f −Awl−1).

aim at maintaining a high degree of modularity in the implementation of a multigrid opti-
mization method. If, for example, one has a fast Poisson-solver for inverting −∆, one aims
at iterative methods which use this fast solver and thus at a modular method. This is the
starting point of the early multigrid optimization methods in [56]. Before going into more
details, we briefly refer the basic Schur-complement approach.

A Schur-decomposition of a general 2× 2-block matrix

K =
[

A B>

B D

]

with symmetric blocks A and D, and A invertible, is an explicit reformulation of a block-
Gauss-decomposition, i.e.

K

[
I −A−1B>

0 I

]
=

[
A 0
B S

]

where S = D−BA−1B> is the so-called Schur-complement. Obviously, in Schur-complement
approaches, on needs the inverses of the blocks A and S or at least approximations of
them, thus defining iterative methods rather than factorization methods. Iterative Schur-
complement solvers are based on the scheme

wl = wl−1 +
[

I −Ã−1B>

0 I

] [
Ã 0
B S̃

]−1

(f −K wl−1).(6.3)

where Ã and S̃ are approximations to A and S.
If we want to employ this technique, we first have to match the blocks in the 3×3-matrix

A (6.2) with the blocks in the 2× 2-matrix K. A possible approach is the identification

A =
[

Lyy Lyu

Luy Luu

]

and B and D are chosen accordingly. The factorization is a so-called range space factor-
ization. In many cases, the A-block thus defined may not be invertible which is a limiting
factor for the method. Therefore, this arrangement is not well suited for PDE constrained
optimization problems, unlike to variational problems like Stokes or Navier-Stokes [28, 112].

Interchanging the 2nd and 3rd row and column in the matrix A and identifying

A =
[

Lyy e∗y
ey 0

]
, B =

[
Luy e∗u

]
, D = Luu
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leads to a so-called nullspace decomposition. In the iterative version of this approach, the
A and S blocks are inverted only approximatively. With this decomposition the Schur-
complement reads

S = Luu − Luye−1
y eu − e∗ue∗y

−1Lyu + e−1
y euLyye∗ue∗y

−1

that is also the otherwise called reduced Hessian that characterizes the optimization problem.
Coercivity of the reduced Hessian guarantees well-posedness of the overall optimization
problem.

For the purpose of illustration, we elaborate on the above expression in the case of
Example I. The reduced Hessian is

S = ν · I − 0 ·∆−1 · I − ·I ·∆−1 · 0 + I ·∆−1 · I ·∆−1 · I = ν · I + (∆−1)2

which is the compact operator (∆−1)2 perturbed by ν · I. In [56], Hackbusch uses this
insight in proposing a multigrid smoother for integral Fredholm operators of the second
kind, operating on the controls u only.

ul =
1
ν

(γ − (∆−1)2 ul−1) = ul−1 +
1
ν

(
γ − S ul−1

)
.

where γ = ∆−1z is the reduced gradient at zero. In the nullspace Schur-complement setting,
this corresponds to choosing

Ã =
[

0 e∗y
ey 0

]
, S̃ = ν · I

Notice that because in Example I we have Luy = 0 and Lyu = 0, certain terms in the
iteration (6.3) vanish, so that indeed only one exact solution with ey and one exact solution
with e∗y is to be performed. Here, a fast Poisson-solver at hand is used. But still, the forward
system and the adjoint system are solved exactly. Similar ideas lead to the generalization
to parabolic optimal control problems in [59, 2].

If one wants to save effort and so does not perform a full solution of the forward and
adjoint systems in each smoothing step but rather successive smoothing steps for the forward
and adjoint system, the resulting iteration (6.3) is not longer a smoothing step of a multigrid
method of second kind. In [99, 84, 100, 48] iteration (6.3) is interpreted as a transforming
smoothing iteration and successfully applied in various practical problems. The choices for
the algorithmic blocks are

Ã =
[

Lyy ẽ∗y
ẽy 0

]
and S̃ = ν · I

where ẽy is some approximation to ey useful for smoothing, e.g., just the diagonal of ey in
Jacobi-smoothing. The block S̃ mostly consists of the regularizing part but in numerical
experiments it has been shown that a deterioration of the algorithmic performance for ν → 0
can be avoided by a small number of cg-iterations for the Schur-complement system. The
same iteration is used as an iterative solver in [71] and in [54] as a preconditioner for Krylov
methods for the optimality conditions.

Each smoothing step of the approximate null-space iterations for the solution of system
(6.1) runs through the following steps:

1) compute defects




da

dd

de


 := Awl − f

2) d̃e := ẽ−1
y de

3) d̃a := ẽ−∗y (da − Lyyd̃e)
4) ∆u := −S̃−1(dd + L∗uyd̃e + e∗ud̃a)
5) ∆y := d̃e + ẽ−1

y eu∆u

6) ∆λ := d̃a + ẽ−∗y (Lyu∆u− Lyy∆y)
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7) wl+1 = wl +




∆y
∆u
∆λ




Convergence of the resulting multigrid methods is shown in [101].
The Schur complement based smoothing approaches discussed above decouple the smooth-

ing of the forward and adjoint equation from the smoothing of the design equation or Schur
complement equation. In this way, the smoothing algorithm for the overall optimization
system is still a highly modular algorithm. The price for this high degree of modularity
is the necessity to deal with the null-space Schur complement. Typically, only the easily
accessible part stemming from regularization is used as an approximation, i.e., S̃ = Luu. If
the regularization parameter (here ν) tends towards zero, this strategy runs into trouble. In
[2], this problem is resolved by a more refined analysis of the reduced Hessian for inverse
problems [47]. In Example I, additional accuracy with respect to the Schur complement
system

S̄ul = −γ, where S̄ = ν · I + e∗u(c̃∗y)−1c̃−1
y eu

can be achieved by a small number of conjugate gradient steps as demonstrated in [101]. It
should be noted, that this approximate Schur complement is formed with the approximations
c̃y ≈ ey which are cheaply inverted because they are used for smoothing the forward and
the adjoint system.

A variation of the null-space Schur complement iteration is presented in [78, 67], where
the D = Luu-block is used as a pivot instead of the A-block. The resulting Schur complement
is then

S =
[

Lyy e∗y
ey 0

]
−

[
LyuL−1

uuLuy LyuL−1
uue∗u

euL−1
uuLuy euL−1

uue∗u

]

In particular in cases similar to Example I, where Lyu = 0 and Luu = ν · I, we see that

S =
[

Lyy e∗y
ey 0

]
−

[
0 0
0 1

ν eue∗u

]

This means that
[

Lyy e∗y
ey 0

]−1

· S = I − compact operator

which makes the above mentioned multigrid methods of second kind applicable. So far, this
has been used only in the form of two-level cascadic methods.

Schur complement multigrid approaches for parabolic problems have not been widely
used. They can be found, e.g., in [60], where the forward and the adjoint systems are
solved exactly. Schur complement approaches are advantageous in hyperbolic optimization
problems because of the non-diffusive nature of the forward problem, where an exact solver
can be provided. This is shown in more detail in the next section in the form of an application
to optical flow problems.

7. Multigrid for the optimal control in the coefficients of an hyperbolic prob-
lem. Multigrid methods for optimal control problems governed by hyperbolic systems are
a much less investigated field of research, partly because multigrid methods aren’t a natural
choice for the solution of hyperbolic equations. Therefore, it is natural to use multigrid
in a decoupled form as discussed in the previous section on Schur complement approaches.
In fact, in many cases an elliptic nullspace Schur complement results, making the use of
multigrid methods appropriate.

In this context, an interesting application problem results from the optimal control
formulation of the optical flow problem as proposed in [19, 20]. An optical flow is the field
of apparent velocities in a sequence of images; see [6, 53, 111]. From the knowledge of the
optical flow, information about the spatial arrangement of objects and the rate of change of
this arrangement ought to be obtained.
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The forward model is based on the assumptions that the image brightness of an object
point remains constant in the images when the object moves. That is, the total time deriva-
tive of the brightness at each point (x1, x2) at time t is zero. This approach leads to the
following optical flow constraint (OFC) equation

∂y

∂t
+ u

∂y

∂x1
+ v

∂y

∂x2
= 0,(7.1)

where y = y(x1, x2, t) denotes the image brightness at (x1, x2) and t, and ~w = (u, v) repre-
sents the optical flow vector.

Now consider a sequence of image frames {Yk}k=0,N on Ω sampled at increasing time
steps, tk ∈ [0, T ], k = 0, 2, . . . , N , where t0 = 0 and tN = T . In the optimal control
formulation we require to estimate ~w such that the resulting y(·, tk, ~w) approximates Yk at
the sampling times. This means to solve

{
yt + ~w · ∇y = 0, in Q = Ω× (0, T ],
y(·, 0) = Y0,

(7.2)

and minimize the cost functional

J(y, ~w) =
1
2

∫

Ω

N∑

k=1

|y(x1, x2, tk)− Yk|2dΩ(7.3)

+
α

2

∫

Q

Φ(|∂ ~w

∂t
|2)dq +

β

2

∫

Q

Ψ(|∇u|2 + |∇v|2)dq +
γ

2

∫

Q

|∇ · ~w|2dq.

Here, α, β, and γ are predefined nonnegative weights. The term with Φ provides bounded
variation type regularization across edges and corners of images, where ∇~w is large; see,
e.g., [74]. The last term in (7.3) improves the filling-in properties of the optimal control
solution; see [19, 19] for details.

The optimal solution is characterized by the following optimality system

yt + ~w · ∇y = 0, with y(·, 0) = Y0,

pt +∇ · (~wp) =
N−1∑

k=1

[δ(t− tk)(y(·, tk)− Yk)] , with p(·, T ) = −(y(·, T )− YN ),

α
∂2u

∂t2
+ β∇ · [Ψ′(|∇u|2 + |∇v|2)∇u] + γ

∂

∂x1
(∇ · ~w) = p

∂y

∂x1
,(7.4)

α
∂2v

∂t2
+ β∇ · [Ψ′(|∇u|2 + |∇v|2)∇v] + γ

∂

∂x2
(∇ · ~w) = p

∂y

∂x2
,

where δ denotes the Dirac δ-function. The interpretation of the second equation in (7.4) is

pt +∇ · (~wp) = 0, on t ∈ (tk−1, tk), for k = 1, . . . , N,(7.5)
p(·, t+k )− p(·, t−k ) = y(·, tk)− Yk, for k = 1, . . . N − 1.(7.6)

The last two equations are nonlinear elliptic equations representing the optimality condition.
As boundary conditions for ~w one can choose homogeneous Dirichlet boundary conditions
on the spatial boundary and natural boundary conditions at the temporal boundaries of Q.

To solve (7.4), an explicit time-marching second-order TVD scheme for the forward-
backward hyperbolic subsystem and a FAS multigrid method for the elliptic control equa-
tions is proposed in [19, 20]. The proposed method is summarized as follows

Loop for solving the optimal control problem (7.4).
1. Apply the Horn & Schunck [53] method for a starting approximation to the

optical flow.
2. Solve the optical flow constraint equation to obtain y.
3. Solve (backward) the adjoint optical flow constraint equation to obtain p.
4. Update the right-hand sides of the elliptic system.
5. Apply a few cycles of multigrid to solve the control equations.
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6. Go to 2 and repeat Iloop times.
Results presented in [19, 20] show that the optimal control approach allows accurate and
robust determination of optical flow also in the limit case where only two image frames are
given.

8. The collective smoothing multigrid approach. A collective smoothing multi-
grid (CSMG) approach means solving the optimality system for the state, the adjoint, and
the control variables simultaneously in the multigrid process by using collective smoothers
for the optimizations variables. The CSMG approach is in contrast to the sequential solving
of the state, the adjoint, and control equations. This approach requires that the uncon-
trolled state equations be solvable, and thus it cannot be applied to singular optimal control
problems [82] where the uncontrolled system may not have a solution or blowup in finite
time. A CSMG based scheme aims at realizing the tight coupling in the optimality system
along the hierarchy of grids. By employing collective smoothing, that is, by realizing the
coupling in the optimality system at the smoothing step level, robustness and typical multi-
grid efficiency is achieved. This fact is sustained by results of multigrid convergence analysis
[25] obtained by means of local Fourier analysis [106] and in the framework of [34].

Development strategies of collective smoothers for optimality system appears well es-
tablished now also in an algebraic multigrid context [17, 18]. This is also true for problems
with control- or state-constraints [13, 14, 23]. In the control-constrained case, the CSMG
approach allows to construct robust multigrid schemes that apply also in case ν = 0, thus
allowing the investigation of bang-bang control problems. In particular, using the multigrid
scheme in [14, 23] it is possible to show the phenomenon of ‘chattering control’ [9] for elliptic
systems which appears to be a problem which received little attention.

The results above concern multigrid methods for elliptic optimality systems. First works
concerning multigrid solution of parabolic optimal control problems are [59, 60]. Recent
contributions to this field are given in [15, 16, 22]. Parabolic optimality systems are char-
acterized by a set of parabolic partial differential equations with opposite time orientation.
The starting point for the recent developments is represented by space-time parabolic multi-
grid methods [58, 109] and the approach presented in [57]. The use of parabolic multigrid
methods is suggested by the need of a setting that allows a robust implementation of the
time coupling between state and adjoint variables. The coupling is then realized within the
smoothing scheme as proposed in [15, 22]. This iterative scheme has been successfully ap-
plied in combination with different coarsening strategies to solve singular parabolic optimal
control problems. In fact, the collective smoothing scheme proposed in [14, 15, 16, 22, 23]
implements the coupling between state and adjoint variables at each time step, thus avoid-
ing to solve the state equation without control. With this approach, optimal convergence
factors and robustness with respect to changes of the values of the optimization parameters
are obtained. These facts are confirmed by the results of the multigrid convergence analy-
sis presented in [16]. CSMG multigrid methods for optimal control problems governed by
hyperbolic partial differential equations haven’t been considered yet.

In the next three subsections we provide additional details on the CSMG approach. In
particular, we focus on the smoothing strategy within the nonlinear FAS multigrid frame-
work. We start considering the case of elliptic constrained optimal control problems.

8.1. Multigrid schemes for elliptic constrained optimal control problems. We
discuss the design of a collective smoothing iteration for an optimal control problem with
control constraints [14, 23]. This procedure appears to be robust with respect to changes of
the value of the weight and, in particular, it allows the choice ν = 0. This fact makes the
CSMG algorithm a useful tool to investigate bang-bang type control phenomena [50].

Consider Example I (3.1) where we require that the set of admissible controls is the
closed convex subset of L2(Ω) given by

Uad = {u ∈ L2(ω) |u(x) ≤ u(x) ≤ u(x) a.e in ω ⊂ Ω},(8.1)

where u and u are elements of L∞(Ω) and ω is a subset of Ω.
Existence of a unique solution to (3.1)–(8.1) and its characterization are well known
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[23, 81, 85]. We have that the solution is characterized by the following optimality system

−∆y = u + g in Ω,
y = 0 on ∂Ω,

−∆p = −(y − z) in Ω,
p = 0 on ∂Ω,

(νu− p, v − u) ≥ 0 for all v ∈ Uad.

(8.2)

Notice that the last equation in (8.2) giving the optimality condition is equivalent to (see
[81, 85])

u = max{u, min{u,
1
ν

p(u)}} in ω, if ν > 0.(8.3)

The unique solution u to (3.1)–(8.1) with ν = 0 satisfies (8.2) with the optimality
condition given by

p = min{0, p + u− u}+ max{0, p + u− u} in Ω.(8.4)

To define a smoothing iteration for the present problem, consider the discrete optimality
system at x ∈ Ωh, where x = (ih, jh) and i, j index the grid points lexicographically. We
have

−(yi−1 j + yi+1 j + yi j−1 + yi j+1) + 4yij − h2 uij = h2gij + h2 f
(y)
ij ,(8.5)

−(pi−1 j + pi+1 j + pi j−1 + pi j+1) + 4pij + h2 yij = h2 zh + h2 f
(p)
ij ,(8.6)

(νuij − pij) · (vij − uij) ≥ 0 for all vh ∈ Uadh,(8.7)

where f (y) and f (p) have been introduced to take into account the presence of defect cor-
rections in the multigrid scheme.

A collective smoothing step at x consists in updating the values yij and pij such that
the resulting residuals of the two equations at that point are zero. The neighboring variables
are considered constant during this process. Therefore, define the two constants

ey = (yi−1 j + yi+1 j + yi j−1 + yi j+1) + h2gij + h2 f
(y)
ij

and

ep = (pi−1 j + pi+1 j + pi j−1 + pi j+1) + h2 f
(p)
ij .

Replacing these two constants in (8.5) and (8.6), we obtain yij and pij as functions of uij

as follows

yij = (ey + h2 uij)/4(8.8)

and

pij = (4 ep − h2 ey + 4 h2 zij − h4 uij)/16.(8.9)

Now to obtain the uij update, replace the expression for pij in the inequality constraint and
define the auxiliary variable

ũij =
1

16 ν + h4
(4 ep − h2 ey + 4 h2 zij).(8.10)

Here ũij is defined as the solution to the optimality condition equation without constraints,
i.e. ∇Ĵ(u) = νu− p(u) = 0. Then, the new value for uij resulting from the smoothing step
is given by

uij =





uij if ũij > uij

ũij if uij ≤ ũij ≤ uij

uij if ũij < uij

(8.11)
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for all x = (ih, jh) ∈ ωh, uij = 0 otherwise. With the new value of uij given, new values for
yij and pij are obtained. This completes the description of the collective smoothing step. It
satisfies the inequality constraint; see [23]. Further, in case ν = 0 the smoothing iteration
defined above satisfies (8.4). Because of (8.11) we can consider the present iteration belongs
to the class of projected iterative schemes [41].

The approach described above can be easily extended to the case of boundary optimal
control problem with constraints as formulated by (3.5)-(3.7) and (3.8). To implement
the control on the boundary, one can approximate ∂

∂n by centered differences quotient and
combine the Neumann boundary conditions with the stencil of the differential operator
considered at the boundary. The application of the collective smoothing iteration follows
along the same lines as described above; see [23]. In the presence of nonlinearities in the
state equation it is not possible to solve explicitly the optimality system at the grid point
level. Instead, a collective local Newton iteration can be applied, resulting in a CSMG
scheme that provides convergence factors that are almost independent of ν and of the mesh
size; see [21] for more details.

8.2. A space-time multigrid scheme for parabolic optimal control problems.
In this section, we describe space-time multigrid schemes for the solution of parabolic optimal
control problems in the whole space-time cylinder [15, 16, 22]. With this approach we are
able to implement time coupling in the optimality system consisting of parabolic partial
differential equations with opposite time orientation. For this purpose, appropriate collective
smoothing schemes are defined. The space-time CSMG strategy results in fast solvers whose
convergence factors are mesh independent and do not deteriorate as the optimization weights
tends to be small.

Consider the following optimal control problem




minu∈L2(Q) J(y, u),
−∂ty + σ ∆y = u in Q = Ω× (0, T ),

y(x, 0) = y0(x) in Ω at t = 0,
y(x, t) = 0 on Σ = ∂Ω× (0, T ),

(8.12)

where we take y0(x) ∈ H1
0 (Ω). Control may be required to track a desired trajectory given

by yd(x, t) ∈ L2(Q) or to reach a desired terminal state yT (x) ∈ L2(Ω). For this purpose we
choose a cost functional of the tracking type given by

J(y, u) =
α

2
||y − yd||2L2(Q) +

β

2
||y(·, T )− yT ||2L2(Ω) +

ν

2
||u||2L2(Q).(8.13)

Then there exists a unique solution to the optimal control problem above; see [81]. Here,
ν > 0 is the weight of the cost of the control and α ≥ 0, β ≥ 0, α + β > 0 are optimization
parameters. For example, the case α = 1, β = 0 corresponds to tracking without terminal
observation.

The solution to (8.12) is characterized by the following optimality system

−∂ty + σ ∆y = u,(8.14)
∂tp + σ ∆p + α (y − z) = 0,(8.15)

νu− p = 0,(8.16)

with initial condition y(x, 0) = y0(x) for the state equation (evolving forward in time) and
terminal condition

p(x, T ) = β(y(x, T )− yT (x)),(8.17)

for the adjoint equation (evolving backward in time).
Now, we discuss the design of two robust collective smoothing schemes for solving (8.14)–

(8.16) discretized by finite differences and backward Euler scheme. For simplicity of illustra-
tion, we eliminate the control variable by means of the optimality condition νum

h − pm
h = 0.

We have

− [1 + 4σγ] yi j m + σγ [yi+1 j m + yi−1 j m + yi j+1 m + yi j−1 m] + yi j m−1

− δt

ν
pi j m = 0, 2 ≤ m ≤ Nt + 1,(8.18)
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− [1 + 4σγ] pi j m + σγ [pi+1 j m + pi−1 j m + pi j+1 m + pi j−1 m] + pi j m+1

+ δt α (yi j m − yd i j m) = 0, 1 ≤ m ≤ Nt.(8.19)

Let us define a collective iteration step which is applied at any space-time grid point
to update wi j m = (yi j m, pi j m). For this purpose consider (8.18) and (8.19) for the two
variables yi j m and pi j m at the grid point i j m. We can refer to the left-hand sides of (8.18)
and (8.19) as the negative of the residuals ry(wi j m) and rp(wi j m), respectively. A step of
a collective smoothing iteration at this point consists of a local update given by

(
y
p

)(1)

i j m

=
(

y
p

)(0)

i j m

+
[ −(1 + 4σγ) −δt/ν

δt α −(1 + 4σγ) + δt

](0) −1

i j m

(
ry

rp

)

i j m

(8.20)

where ry and rp denote the residuals at i j m prior to the update. While a sweep of this
smoothing iteration can be performed in any ordering of i, j, the problem of how to proceed
along time direction arises.

To solve this problem the first vector component of (8.20) marching in the forward
direction is used to update the state variable and the adjoint variable p is being updated
using the second component of (8.20) marching backwards in time. In this way a robust
iteration is obtained given by the following algorithm [21, 22, 15].

Algorithm 3. Time-Splitted Collective Gauss-Seidel Iteration (TS-CGS)
1. Set the starting approximation.
2. For m = 2, . . . , Nt do
3. For ij in, e.g., lexicographic order do

y
(1)
i j m = y

(0)
i j m +

[−(1 + 4σγ)] ry(w) + δt
ν rp(w)

[−(1 + 4σγ)]2 + δt2

ν α
|(0)i j m,

p
(1)
i j Nt−m+2 = p

(0)
i j Nt−m+2 +

[−(1 + 4σγ)] rp(w)− δt α ry(w)
[−(1 + 4σγ)]2 + δt2

ν α
|(0)i j Nt−m+2;

4. end.
The TS-CGS scheme applies with few modifications to the case of boundary control; see

[12] for details. Results of local Fourier analysis show that the TS-CGS scheme has good
smoothing properties, independently of the value of ν. This is also confirmed by results of
numerical experiments.

In the regime of small σ (or γ), however, the TS-CGS iteration cannot provide robust
smoothing because of lack of strong coupling in the space directions. To overcome this
problem, block-relaxation of the variables that are strongly connected should be performed.
For small σ (or γ) this means solving for the pairs of state and adjoint variables along the
time-direction for each space coordinate. This type of smoothing belongs to the class of
block relaxation [106].

To describe this procedure, consider the discrete optimality system (8.18)–(8.19) at any
i, j and for all time steps. Thus for each spatial grid point i, j a block-tridiagonal system
is obtained, where each block is a 2 × 2 matrix corresponding to the pair (y, p). This
block-tridiagonal system has the following form

M =




A2 C2

B3 A3 C3

B4 A4 C4

CNt

BNt+1 ANt+1




.(8.21)

Centered at tm, the entries Bm, Am, Cm refer to the variables (y, p) at tm−1, tm, and tm+1,
respectively. The block Am, m = 2, . . . , Nt, is given by

Am =



−(1 + 4σγ) − δt

ν

δt α −(1 + 4σγ)


 ,(8.22)
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where all functions within the brackets [ ] are evaluated at tm. Correspondingly, the Bm and
em blocks are given by

Bm =
[

1 0
0 0

]
and Cm =

[
0 0
0 1

]
.(8.23)

Clearly, for each time step, the variables neighboring the point ij are taken as constant and
contribute to the right-hand side of the system.

It remains to discuss the block ANt+1 for β 6= 0. At tm = T , we have the terminal
condition (8.17) which we rewrite as

β (ym
h − ym

Th)− pm
h = 0, m = Nt + 1.

Thus, the block ANt+1 is given by

ANt+1 =
[ −(1 + 4σγ) − δt

ν
β −1

]
.(8.24)

For each i, j we have to solve a tridiagonal system Mw = r where w = (y2
h, p2

h, . . . , yNt+1
h , pNt+1

h )
and r = (ry(w2), rp(w2), . . . , ry(wNt+1), rp(wNt+1)). In particular we have rp(wNt+1) =
pNt+1

h − β (yNt+1
h − yNt+1

Th ). Block-tridiagonal systems can be solved efficiently with O(Nt)
effort. A block-tridiagonal solver is given in [25]. Summarizing our collective t-line relaxation
is given by the following algorithm [25, 26]

Algorithm 4. Time-Line Collective Gauss-Seidel Iteration (TL-CGS)
1. Set the starting approximation.
2. For ij in, e.g., lexicographic order do

(
y
p

)(1)

i j

=
(

y
p

)(0)

i j

+ M−1

(
ry

rp

)

i j

;

3. end.
Also in this case ry and rp denote the residuals at i, j and for all m prior to the update.

Since the solution in time is exact, no time splitting is required.

8.3. Receding horizon approach. It is possible to combine multigrid schemes with
receding horizon techniques [73] to develop an efficient optimal control algorithm for tracking
a desired trajectory over very long time intervals. In the following, we sketch the implemen-
tation of the multigrid receding horizon scheme.

Consider the optimal control problem of tracking yd for t ≥ 0. Define time windows
of size ∆t. In each time window, an optimal control problem with tracking (α = 1) and
terminal observation (β = 1) is solved. The resulting optimal state at n∆t defines the initial
condition for the next optimal control problem defined in (n∆t, (n + 1)∆t) with desired
terminal state given by yT (x) = yd(x, (n + 1)∆t). The following algorithm results.

Algorithm 5. Multigrid Receding Horizon (MG-RH) Scheme
1. Set y(x, 0) = y0(x) and n = 0.
2. Set yT (x) = yd(x, (n + 1)∆t).
3. CSMG Solve (8.14)–(8.16) in (n∆t, (n + 1)∆t).
4. Update n := n + 1, set y0(x) = y(x, n∆t) and goto 2.

8.4. A multigrid schemes for a shape optimization problem. In Example IV, a
simplified shape optimization problem is formulated as an elliptic boundary control problem.
Here the shape should be optimized so that a flow along the boundary approaches a certain
pressure distribution.

Let us assume that Ω = (0, 1)2 and Γ1 consists of the boundary points with x2 = 0, the
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bottom boundary. The optimality system is given by

−∆y = 0 in Ω,
∂y
∂~n = ∂u

∂x on Γ1,
y = 0 on ∂Ω\Γ1,

−∆p = 0 in Ω,
∂p
∂~n = − ∂

∂x ( ∂y
∂x − P (x)) on Γ1,

p = 0 on ∂Ω\Γ1.

(8.25)

As shown in [104], an appropriate choice for determining the control is to set u = ∂p
∂x .

Denote first-order backward and forward partial derivatives of vh in the xi direction by
∂−i and ∂+

i , respectively. They are given by

∂−i vh(x) =
vh(x)− vh(x− î h)

h
and ∂+

i vh(x) =
vh(x + î h)− vh(x)

h

where î denotes the i coordinate direction vector and vh is extended by 0 on grid points
outside of Ω; see [62]. We have the five-point Laplacian ∆h = ∂+

1 ∂−1 + ∂+
2 ∂−2 .

In this framework, the discretization of (8.25) gives

−∆hy = 0 in Ω,
∂n

hy = ∂+
1 ∂−1 ph on Γ1,

y = 0 on ∂Ω\Γ1,
−∆hp = 0 in Ω,

∂n
hp = −∂+

1 ∂−1 yh + Px on Γ1,
p = 0 on ∂Ω\Γ1.

(8.26)

where Px = ∂P
∂x , and ∂n

hvh = −(vi j+1 − vi j−1)/2h at Γ1.
Notice that to solve (8.26) we need to realize the coupling on Γ1 while in the interior

of the domain we have two Laplace equations. For this purpose we combine the Neumann
boundary conditions with the stencil of the discrete elliptic operators considered at the
boundary. For x = (ih, jh) being a boundary grid point on the side x2 = 0 we have

−(2yi+1 j + yi j−1 + yi j+1 − 4yi j)− 2
h

(pi+1 j − 2pi j + pi−1 j) = 0,

−(2pi+1 j + pi j−1 + pi j+1 − 4pi j) +
2
h

(yi+1 j − 2yi j + yi−1 j) = 2hPx.

The equations obtained in this way have the same structure as (8.5) and (8.6) (without
constraints) and the application of the collective Gauss-Seidel iteration follows along the
same lines as above. Hence we can apply the FAS multigrid method previously described.
Notice that bilinear prolongation and full-weighting restriction have to be used to guarantee
the right scaling for the coarse-grid problem formulation at the boundary; see the discussion
in [106]. Clearly, on the boundary these transfer operators are mirrored.

To numerically validate the FAS multigrid algorithm for solving (8.26), consider the
desired profile given by Px = 1 Results for this case are reported in Table 8.1 for a V -cycle
with two pre- and post-smoothing steps.

Table 8.1
Results of experiments for a shape optimization problem

Mesh 129× 129 257× 257 517× 517
ρ 0.08 0.08 0.08

8.5. Globalization for the one-shot multigrid method. In a convex setting where
the optimal control solution is unique, solving the optimality system is equivalent to solving
the optimal control problem. However, in general, these solutions represent only extremal
points and additional conditions must be satisfied to guarantee that they are the minima
sought or otherwise escape the critical point. The starting point to formulate these condi-
tions is to recall the second-order sufficient conditions for a minimum.
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Let us recall the Lagrangian function

L(y, u, p) = J(y, u) + 〈e(y, u), p〉Y ∗,Y .

By equating to zero the Frechét derivatives of L with respect to the triple (y, u, p), we
obtain the optimality system. If J and e are twice continuously differentiable, the second-
order sufficient conditions for a minimum have to satisfy the optimality system and the
following

Lxx(y, u, p)(v, v) ≥ c1 ||v||2, c1 > 0, for all v ∈ N (e′(y, u)),(8.27)

where x = (y, u) and e′ represents the linearized equality constraint; see, e.g., [48]. We
assume that the null space N (e′(y, u)) can be represented by N (e′(y, u)) = T (y, u) U , where

T (y, u) =
[ −e−1

y eu

Iu

]
,

and ey, eu are evaluated at (y, u). Therefore condition (8.27) becomes

H(y, u, p)(w,w) ≥ c2 ||w||2, c2 > 0,(8.28)

for all w ∈ U . The operator H is the reduced Hessian defined by

H(y, u, p) = T (y, u)∗ Lxx(y, u, p)T (y, u).

That is, H is given by

H(y, u, p) = Luu(y, u, p) + C(y, u)∗ Lyy(y, u, p) C(y, u),(8.29)

where C(y, u) = ey(y, u)−1 eu(y, u), assuming eyu(y, u) = 0.
Notice that H is symmetric. Therefore condition (8.28) requires that, in order to have a

minimum, all eigenvalues of the reduced Hessian be positive. The occurrence of nonpositive
eigenvalues indicates the presence of possible maxima or saddle points.

Clearly, in an infinite dimensional setting, the analysis of the spectrum of H is not a
viable task. Solving the eigenvalue problem may be computationally more expensive than
solving the optimality system. However, assuming that the spectral properties of the reduced
Hessian are well represented on the hierarchy of grids, we can define a globalization step
based on the spectral properties of the Hessian H on the (appropriately chosen) coarsest
grid.

In the case negative eigenvalues of the reduced Hessian are detected, one can use the
eigenvector corresponding to the smallest eigenvalue to determine an escape direction. This
direction of negative curvature [87] is given by the eigenvector corresponding to the negative
eigenvalue with largest absolute value. Then the corresponding normalized eigenvector φh

is used to perform the following globalization step

unew
h = uh − σ φh.(8.30)

With appropriately chosen |σ| and the sign of σ is such that σ φh · (νg′(uh)+e∗u ph(uh)) ≥ 0.
To guarantee that once we escape the undesired critical point, the multigrid algorithm

does not return to this critical point, the smoothing and the coarse-grid correction must
produce minimizing updates; see [24]. In the next section, we review recent developments
focusing on the fact that, under appropriate conditions, the coarse-grid correction provides
a descent direction giving the possibility to accommodate robust globalization strategies.

9. Multigrid as outer optimization scheme. In some recent papers, Nash [88]
and Lewis and Nash [80], propose a multigrid approach to optimization problems, called
MG/OPT, which closely resembles the well known full approximation storage (FAS) scheme
[36] and is similar to the nonlinear multigrid (NMGM) methods discussed in [61]. Extension
of the multigrid strategy to optimization problems is a quite new field of research with
increasing interest from optimization community; see also, e.g., the recent contribution
[11, 52, 91].
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In [80, 88] it is emphasized that under appropriate assumptions, the multigrid coarse-
grid correction provides a descent direction and, therefore, combining this fact with a line
search procedure and a minimizing ‘smoothing’ iteration, a globally convergent algorithm is
obtained. Numerical experiments, e.g. [88], demonstrate that MG/OPT greatly improves
the efficiency of the underlying optimization scheme used as ‘smoother’, suggesting that
the MG/OPT scheme may be beneficial in combination with well known optimization algo-
rithms. This claim appears to be true as far as a line search along the coarse-grid correction
is performed. Also in [88] it is reported that MG/OPT without line search diverges in some
cases. Therefore a line search appears to be necessary for convergence. Results on an a-
priori coarse grid correction step-length, which guarantees a globally convergent MG/OPT
iteration are given in [11].

9.1. The MG/OPT method for optimization. Consider the following (locally)
convex optimization problem

min
yk

fk(yk)(9.1)

where k = 1, 2, . . . , L, is the resolution or discretization parameter, L denotes the finest
resolution, and yk is the (unconstrained) optimization variable in the space Vk. For variables
defined on Vk we introduce the inner product (·, ·)k with associated norm ‖y‖k = (y, y)1/2

k .
Among spaces Vk, restriction operators Ik−1

k : Vk → Vk−1 and prolongation operators Ik
k−1 :

Vk−1 → Vk are defined. We require that (Ik−1
k y, v)k−1 = (y, Ik

k−1v)k for all y ∈ Vk and
v ∈ Vk−1.

On each space, denote with Sk an optimization algorithm. For example the truncated
Newton scheme used in [88]. Given an initial approximation y0

k to the solution of (9.1), the
application of Sk results in fk(Sk(y0

k)) < fk(y0
k).

The MG/OPT scheme is an iterative method. One cycle of this method is defined as
follows. Let y0

k be the starting approximation at resolution k.
Algorithm 6 (MG/OPT (k) Algorithm). If k = 1 (coarsest resolution) solve (9.1)

exactly.
Else if k > 1 :

1. Pre-optimization. Define y1
k = Sk(y0

k).
2. setup and solve a coarse-grid minimization problem. Define y1

k−1 = Ik−1
k y1

k and
τk−1 = ∇fk−1(y1

k−1)−Ik−1
k ∇fk(y1

k). The coarse-grid minimization problem is given
by

min
yk−1

(
fk−1(yk−1)− τT

k−1 yk−1

)
.(9.2)

Apply one cycle of MG/OPT(k-1) to (9.2) to obtain y2
k−1.

3. Line-search and coarse-grid correction. Perform a line search in the Ik
k−1(y

2
k−1 −

y1
k−1) direction to obtain αk. The coarse-grid correction is given by

y2
k = y1

k + αk Ik
k−1(y

2
k−1 − Ik−1

k y1
k)

4. Post-optimization. Define y3
k = Sk(y2

k).
Roughly speaking, the essential guideline for constructing fk on coarse levels is that

it must sufficiently well approximate the convexity properties of the functional at finest
resolution. In addition we have that the gradient of the coarse-grid functional at y1

k−1 =
Ik−1
k y1

k equals the restriction of the gradient of the fine-grid functional at y1
k. In fact

Remark 1. By adding the term −τT
k−1 yk−1 in Step 2. we have that

∇ (
fk−1(yk−1)− τT

k−1 yk−1

) |y1
k−1

= Ik−1
k ∇fk(y1

k).

The following lemma states that the coarse-grid correction provides a descent direction.
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Lemma 9.1. Take yk ∈ Vk and define ỹk−1 = Ik−1
k yk. Denote with f̂k−1(yk−1) =

fk−1(yk−1)− τT
k−1 yk−1 where τk−1 = ∇fk−1(Ik−1

k yk)− Ik−1
k ∇fk(yk). Let yk−1 be such that

f̂k−1(yk−1) < f̂k−1(Ik−1
k yk) and define ek = Ik

k−1(yk−1 − Ik−1
k yk). Then

(∇fk(yk), ek)k < 0.

Proof. From

f̂k−1(y + z) = f̂k−1(y) + (∇f̂k−1(y), z)k−1 +
1
2

∫ 1

0

(∇2f̂k−1(x + tz)z, z)k−1 dt

we obtain

(∇f̂k−1(yk−1), yk−1 − Ik−1
k yk)k−1 ≤ f̂k−1(yk−1)− f̂k−1(Ik−1

k yk) < 0.

Now we have

(∇fk(yk), ek)k = (∇fk(yk), Ik
k−1(yk−1 − Ik−1

k yk))k = (Ik−1
k ∇fk(yk), yk−1 − Ik−1

k yk)k−1

= (∇f̂k−1(Ik−1
k yk), yk−1 − Ik−1

k yk)k−1 < 0.

For the last equality recall Remark 1.

10. Conclusions. In this paper we presented a review on multigrid methods for PDE
optimization, emphasizing new methodological achievements exploiting the multigrid strat-
egy beyond its use as a solver module. To better illustrate these advances in computational
optimization, we gave a detailed description of some multigrid optimization techniques.
In particular, we discussed Schur-complement and collective-smoothing based multigrid
schemes. On the other hand, we outlined recent approaches to optimization where the multi-
grid strategy is the guideline to the design of outer loop optimization procedures. These are
all quite new concepts with very promising perspectives in computation and optimization
disciplines. This review is timely, considering the numerous scientific meetings and granted
projects on the field of scientific computing and optimization.
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26 A. BORZÌ AND V. SCHULZ

ferential equations, AIAA-2000-4890, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Long Beach, CA, (2000).

[81] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin,
1971.

[82] J.L. Lions, Control of Distributed Singular Systems, Gauthier-Villars, Paris, 1985.
[83] D.G. Luenberger, Optimization by vector space methods, Wiley, New York, 1969.
[84] B. Maar and V. Schulz, Interior Point Multigrid Methods for Topology Optimization, Structural

Optimization, vol. 19, No. 3 (2000), pp. 214–224.
[85] K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-

constrained optimal-control problems, Appl. Math. Optim., 8 (1981), pp. 69–95.
[86] H. Maurer and J. Zowe, First and second order necessary and sufficient optimality conditions for

infinite-dimensional programming problems, Mathematical Programming, 16, (1979) pp. 98–110,
.

[87] S.G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21(4) (1984),
pp. 770–788.

[88] S.G. Nash, A multigrid approach to discretized optimization problems, Optimization Methods and
Software, 14 (2000), pp. 99–116.
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[93] A. Rösch, Error estimates for linear-quadratic control problems with control constraints, submitted

to Optimization Methods and Software.
[94] H. Regler and U. Ruede, Layout optimization with algebraic multigrid methods (AMG), In Proceed-

ings of the Sixth Copper Mountain Conference on Multigrid Methods, Copper Mountain, April
4-9, 1993, Conference Publication. NASA, 1993.
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