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MULTIGRID METHODS FOR THE COMPUTATION OF
SINGULAR SOLUTIONS AND STRESS INTENSITY FACTORS I:

CORNER SINGULARITIES

SUSANNE C. BRENNER

Abstract. We consider the Poisson equation −∆u = f with homogeneous
Dirichlet boundary condition on a two-dimensional polygonal domain Ω with
re-entrant angles. A multigrid method for the computation of singular solu-
tions and stress intensity factors using piecewise linear functions is analyzed.
When f ∈ L2(Ω), the rate of convergence to the singular solution in the energy
norm is shown to be O(h), and the rate of convergence to the stress intensity

factors is shown to be O(h1+(π/ω)−ε), where ω is the largest re-entrant angle
of the domain and ε > 0 can be arbitrarily small. The cost of the algorithm is
O(h−2). When f ∈ H1(Ω), the algorithm can be modified so that the conver-
gence rate to the stress intensity factors is O(h2−ε). In this case the maximum
error of the multigrid solution over the vertices of the triangulation is shown
to be O(h2−ε).

1. Introduction

Let Ω be a bounded polygonal domain in R2 with at least one re-entrant angle.
Consider the Poisson equation with homogeneous Dirichlet boundary condition:

−∆u = f in Ω,(1.1)
u = 0 on ∂Ω,

where f ∈ L2(Ω).
Let ω1, . . . , ωJ be the internal angles of Ω which satisfy π < ωj < 2π and let pj

be the corresponding vertices. It is well known (cf. [23], [27], [32], [39]) that the
unique solution u ∈ H1

0 (Ω) of (1.1) has the representation

u =
J∑

j=1

κjsj + w,(1.2)

where w ∈ H2(Ω)∩H1
0 (Ω) and the singular functions sj are defined as follows. Let

polar coordinates (rj , θj) be chosen at the vertex pj so that the internal angle ωj

is spanned by the two half lines θj = 0 and θj = ωj. Then we have

sj(rj , θj) = φj(rj)r
π/ωj

j sin
(
(π/ωj)θj

)
,(1.3)
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560 SUSANNE C. BRENNER

where φj (j = 1, . . . , J) are smooth cut-off functions which equal 1 identically in
a neighborhood of 0, and the supports of the φj ’s are small enough so that the
singular functions sj vanish identically on ∂Ω. Moreover, the following regularity
estimate holds:

‖w‖H2(Ω) +
J∑

j=1

|κj | . ‖f‖L2(Ω).(1.4)

(Throughout this paper the statement F . G means that F is bounded by G
multiplied by a constant which is independent of the mesh size and grid level. In
the statement F .ε G, the constant can depend on ε.) The coefficient κj can be
expressed in terms of u by the following extraction formula:

κj =
1
π

{∫
Ω

fs−j dx +
∫

Ω

u∆s−j dx

}
,(1.5)

where the dual singular function s−j is defined in the polar coordinate system
(rj , θj) as

s−j(rj , θj) = φj(rj)r
−π/ωj

j sin
(
(π/ωj)θj

)
(1.6)

(cf. [6], [7], [3], [27], [24], [39]).
Formulas similar to (1.2) and (1.5) also hold for the solution of two-dimensional

elasticity problems (cf. [49], [28], [29], [30], [33]). In that context, the coefficients
κj are known as stress intensity factors, and we will adopt that terminology here.
These quantities play a particularly important role in linear fracture mechanics.

In view of (1.5), it is natural to compute an approximation κj,h to κj by

κj,h =
1
π

{∫
Ω

f s−j dx +
∫

Ω

uh ∆s−j dx

}
,(1.7)

where uh is a finite element approximation of u. The accuracy of κj,h computed by
(1.7) depends on the accuracy of uh, which ultimately depends on the regularity of
u.

It is known (cf. [27]) that the singular functions sj ∈ Hr(Ω) for all r < 1+(π/ωj)
and sj 6∈ H1+(π/ωj)(Ω). It follows from (1.2) that the best one can say about the
regularity of u is

u ∈ Hr(Ω) ∀ r < 1 +
π

ω
,(1.8)

where

ω = max(ω1, ω2, . . . , ωJ).(1.9)

Suppose Vh ⊆ H1
0 (Ω) is the piecewise linear finite element space associated with

a quasi-uniform triangulation Th, h = max
T∈Th

diam T , and ũh ∈ Vh satisfies∫
Ω

∇ũh · ∇v dx =
∫

Ω

f v dx ∀ v ∈ Vh.(1.10)

It follows from (1.8) that for any ε > 0 we have

|u− ũh|H1(Ω) .ε h(π/ω)−ε ‖f‖L2(Ω),(1.11)

and

‖u− ũh‖L2(Ω) .ε h2(π/ω)−ε ‖f‖L2(Ω).(1.12)
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If κ̃j,h is computed by (1.7) using ũh, then (1.5), (1.7) and (1.12) imply that

|κj − κ̃j,h| ≤
1
π

∫
Ω

|(u − ũh)∆s−j | dx(1.13)

. ‖u− ũh‖L2(Ω)

.ε h2(π/ω)−ε ‖f‖L2(Ω).

Note that ∆s−j = 0 near pj , so the integration in (1.13) is only over a domain
away from pj , where s−j is a smooth function. Also, the estimate (1.13) cannot be
improved due to the pollution effect of the corner singularity (cf. [40], [52], [53]).
Thus the lack of regularity adversely affects the accuracy of the finite element
solution ũh and hence κ̃j,h.

In this paper, we develop, on quasi-uniform grids, a multigrid method for the
computation of the singular solution u and the stress intensity factors κj that
obtains better estimates than (1.11)–(1.13). The basic idea is that (1.1) and (1.2)
imply that w, the regular part of u, is the solution of

−∆w = f +
J∑

j=1

κj∆sj in Ω,(1.14)

w = 0 on ∂Ω.

If the κj ’s were known, we could solve (1.14) using piecewise linear finite elements,
and the solution would have a good convergence rate since w ∈ H2(Ω). Unfortu-
nately, the κj ’s are unknown, so we instead apply the finite element method on the
kth level to the following variational problem:

Find ŵk ∈ H1
0 (Ω) such that∫

Ω

∇ŵk · ∇v dx =
∫

Ω

f +
J∑

j=1

κj,k∆sj

 v dx ∀ v ∈ H1
0 (Ω),(1.15)

where the approximate stress intensity factors κj,k are computed by the extraction
formula (1.5) using the approximate solution uk−1 obtained in the (k − 1)st level,
i.e.,

κj,k =
1
π

{∫
Ω

fs−j dx +
∫

Ω

uk−1∆s−j dx

}
.(1.16)

We obtain, on the kth level, a piecewise linear approximate solution wk to ŵk by a
standard multigrid algorithm. The approximate solution uk to u is then defined to
be

uk =
J∑

j=1

κj,ksj + wk.(1.17)

In other words, we have a full multigrid algorithm where the right-hand side of
the finite element equation changes from level to level (cf. (1.15)) and we are
really computing the regular part w of the solution. The improvement in the
convergence rate is possible because w has better regularity than u. We will show
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(cf. Theorem 4.1) that

|u− uk|H1(Ω) . hk‖f‖L2(Ω),(1.18)
J∑

j=1

|κj − κj,k| .ε h
1+(π/ω)−ε
k ‖f‖L2(Ω).(1.19)

The estimate (1.18) is optimal for the piecewise linear finite element space, and
the estimate (1.19) improves the estimate in (1.13). The computational cost of our
multigrid method is proportional to the dimension of Vh, i.e., is of order Cεh

−2.
We also consider a second multigrid method in the case where f ∈ H1(Ω).

Let ω1, . . . , ωN be the internal angles of Ω which satisfy π/2 < ωj < 2π. When
f ∈ H1(Ω), the solution u of (1.1) can be written as (cf. [27], [23])

u =
N∑

j=1

∑
`∈Lj

κj,`sj,` + w,(1.20)

where w ∈ H3−ε(Ω) ∩H1
0 (Ω) for any ε > 0,

Lj = {` ∈ N : `(π/ωj) < 2},(1.21)

and in appropriate polar coordinates,

sj,`(rj , θj) = φj(rj)r
`(π/ωj)
j sin

(
`(π/ωj)θj

)
.(1.22)

Moreover, the following regularity estimates hold:
N∑

j=1

∑
`∈Lj

|κj,`| . ‖f‖H1(Ω) and ‖w‖H3−ε(Ω) .ε ‖f‖H1(Ω).(1.23)

The coefficient κj,` can be expressed in terms of u by

κj,` =
1
`π

{∫
Ω

fsj,−` dx +
∫

Ω

u∆sj,−` dx

}
,(1.24)

where the dual singular function sj,−` is defined by

sj,−`(rj , θj) = φj(rj)r
−`π/ωj

j sin
(
`(π/ωj)θj

)
.(1.25)

Using similar ideas and taking advantage of a superconvergence result for linear
finite elements, we develop a multigrid method that produces, at a cost of Cεh

−2
k ,

an approximate solution uk in the form

uk =
N∑

j=1

∑
`∈Lj

κj,`,ksj,` + wk,(1.26)

where wk is a piecewise linear function on the kth level triangulation, and we show
that (cf. Theorem 5.4)

|u− uk|H1(Ω) . hk ‖f‖H1(Ω),(1.27)

and
J∑

j=1

∑
`∈L

|κj,` − κj,`,k| .ε h2−ε
k ‖f‖H1(Ω).(1.28)
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As a corollary (cf. Corollary 5.6), we obtain

max
p

|u(p)− uk(p)| .ε h2−ε
k ‖f‖H1(Ω),(1.29)

where the maximum is taken over all the vertices p of the kth level triangulation.
Corner singularities can also be overcome by the method of local grid refinement

(cf. [1], [2]). Using this method, the number of degrees of freedom is of order
O(h−2) and the error of the computed stress intensity factor is of order O(h2).
This method also has the advantage that it does not require the knowledge of the
exact forms of the singular functions. However, it is more difficult in this approach
to use multilevel techniques (cf. [57], [58], [59], [60], [45]).

Another method for the computation of the stress intensity factors is the dual
singular function method (DSFM) (cf. [25], [7], [8]) where extraction formulas are
also used. In each iterative step of the DSFM, a finite element equation of the form
(1.15) is solved on the same grid. The algorithms developed in this paper can in
some sense be viewed as a multigrid version of the DSFM.

We should also mention that in [38] a multigrid method based on an extrapolation
technique is proposed, where O(h2−ε) convergence for the stress intensity factors
with cost O(h−2) is claimed. However, the result in [38] is obtained under the
unproven assumption that the standard multigrid method using piecewise linear
finite elements is a contraction with respect to the L2 norm in the presence of
corner singularities. There are also no numerical results in [38] to corroborate the
claim.

The rest of this paper is organized as follows. The multigrid algorithms are
defined in Section 2 and the convergence analyses are carried out in Sections 3, 4,
and 5. The results of numerical experiments are presented in Section 6. Section 7
contains some concluding remarks.

2. The multigrid algorithms

Let {Tk}, k ≥ 1, be a family of triangulations of Ω, where Tk+1 is obtained from
Tk by regular subdivision, i.e., by connecting the midpoints of the edges of the
triangles in Tk, and define hk = maxT∈Tk

diam T . Let Vk = {v ∈ H1
0 (Ω) : v|T ∈

P1(T ) ∀T ∈ Tk} be the piecewise linear finite element space associated with Tk.
We define the discrete inner product (·, ·)k by

(v1, v2)k = h2
k

∑
v1(p)v2(p) ∀ v1, v2 ∈ Vk,(2.1)

where the summation is taken over all the vertices p of Tk. The operators Ak :
Vk −→ Vk and Ik−1

k : Vk −→ Vk−1 are defined by

(Akv1, v2)k =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vk,(2.2)

and

(Ik−1
k v, w)k−1 = (v, w)k ∀ v ∈ Vk, w ∈ Vk−1(⊆ Vk).(2.3)

Clearly, Ak is symmetric positive definite with respect to (·, ·)k. Since (v, v)k is
equivalent to ‖v‖L2(Ω) for v ∈ Vk, it follows from (2.2) and a standard inverse
estimate (cf. [20], [16]) that the spectral radius ρ(Ak) satisfies ρ(Ak) . h−2

k .
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For the convergence analysis in Section 3, we also need the Ritz projection op-
erator Pk : H1

0 (Ω) −→ Vk defined by∫
Ω

∇(ζ − Pkζ) · ∇v dx = 0 ∀ ζ ∈ H1
0 (Ω), v ∈ Vk.(2.4)

It is easy to see that

Ik−1
k Ak = Ak−1Pk−1.(2.5)

The following is the standard one-sided kth-level multigrid iteration: For p = 1,
this is the usual V (m, 0) cycle, and for p = 2, this is the usual W (m, 0) cycle.
The kth level iteration. The kth level iteration with initial guess z0 yields
MG(k, z0, g) as an approximate solution to the equation

Akz = g.(2.6)

For k = 1, MG(1, z0, g) is the solution obtained from an exact solver. In other
words,

MG(1, z0, g) = A−1
1 g.(2.7)

For k > 1, there are two steps.
Smoothing Step Let zl ∈ Vk (1 ≤ l ≤ m) be defined recursively by the equations

zl = zl−1 +
1

Λk
(g −Akzl−1), 1 ≤ l ≤ m,(2.8)

where m is a positive integer independent of k, and Λk := Ch−2
k dominates the

spectral radius of Ak.
Correction Step Let g = Ik−1

k (g−Akzm) and qi ∈ Vk−1 (0 ≤ i ≤ p, p = 1 or 2) be
defined recursively by

q0 = 0 and qi = MG(k − 1, qi−1, g), 1 ≤ i ≤ p.(2.9)

The output is obtained by combining the two steps:

MG(k, z0, g) = zm + qp .(2.10)

Remark. We use Richardson relaxation in (2.8) to simplify the analysis in Section 3.
Other smoothers (cf. [37], [31], [4], [36], [10], [12]) can of course be used.

Full multigrid algorithm I. When f ∈ L2(Ω), we use a nested iteration (where
each kth level iteration is applied n times) to compute κj,k ∈ R (1 ≤ j ≤ J) and
wk ∈ Vk so that κj,k is a good approximation of κj , and uk =

∑J
j=1 κj,ksj + wk is

a good approximation of the solution u of (1.1) (cf. (1.2)).
The nested iteration. For k = 1,

w1 = A−1
1 g1,(2.11)

where g1 ∈ V1 is defined by

(g1, v)1 =
∫

Ω

fv dx ∀ v ∈ V1,(2.12)

and we set

κj,1 = 0 for 1 ≤ j ≤ J,(2.13)

u1 = w1.(2.14)
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For k ≥ 2, the numbers κj,k ∈ R are computed by

κj,k =
1
π

{∫
Ω

fs−j dx +
∫

Ω

uk−1∆s−j dx

}
for 1 ≤ j ≤ J,(2.15)

and wk ∈ Vk is obtained recursively by

wk,0 = wk−1,

wk,l = MG(k, wk,l−1, gk) for 1 ≤ l ≤ n,(2.16)
wk = wk,n,

where n is a positive integer independent of k, and gk ∈ Vk is defined by

(gk, v)k =
∫

Ω

(
f +

J∑
j=1

κj,k∆sj

)
v dx ∀ v ∈ Vk.(2.17)

We then define uk by

uk =
J∑

j=1

κj,ksj + wk.(2.18)

Full multigrid algorithm II. When f ∈ H1(Ω), we use a nested iteration
(where each kth level iteration is applied n times) to compute κj,`,k ∈ R (1 ≤
j ≤ N , ` ∈ Lj) and wk ∈ Vk so that κj,`,k is a good approximation of κj,`, and
uk =

∑N
j=1

∑
`∈Lj

κj,`,ksj,` + wk is a good approximation of the solution u of (1.1)
(cf. (1.20)).
The nested iteration For k = 1,

w1 = A−1
1 g1,(2.19)

where g1 ∈ V1 is defined by

(g1, v)1 =
∫

Ω

fv dx ∀ v ∈ V1,(2.20)

and we set

κj,`,1 = 0 for 1 ≤ j ≤ N, ` ∈ Lj ,(2.21)

u1 = w1.(2.22)

For k ≥ 2, the numbers κj,`,k ∈ R are computed by

κj,`,k =
1
`π

{∫
Ω

fsj,−` dx +
∫

Ω

uk−1∆sj,−` dx

}
for 1 ≤ j ≤ N, ` ∈ Lj ,(2.23)

and wk ∈ Vk is obtained recursively by

wk,0 = Ik
k−1wk−1,

wk,l = MG(k, wk,l−1, gk) for 1 ≤ l ≤ n,(2.24)
wk = wk,n,

where n is a positive integer independent of k, and gk ∈ Vk is defined by

(gk, v)k =
∫

Ω

(
f +

N∑
j=1

∑
`∈Lj

κj,`,k∆sj,`

)
v dx ∀ v ∈ Vk.(2.25)
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We then define uk by

uk =
N∑

j=1

∑
`∈Lj

κj,`,ksj,` + wk.(2.26)

The intergrid transfer operator Ik
k−1 : Vk−1 −→ Vk in (2.24) is defined as follows.

We assume that T1 is also obtained by connecting the midpoints of a coarser trian-
gulation T0. Let Qk ⊂ H1

0 (Ω) (k = 0, 1, 2, . . . ) be the quadratic Lagrange finite ele-
ment space associated with Tk. Let Ik−1

k−2 : Qk−2 −→ Vk−1 and Ik
k−2 : Qk−2 −→ Vk

be the nodal interpolation operators. Since Qk−2 and Vk−1 share the same nodal
points, it is clear that Ik−1

k−2 is an isomorphism from Qk−2 onto Vk−1. We define,
for k = 2, 3, . . . ,

Ik
k−1 = Ik

k−2 ◦
(
Ik−1

k−2

)−1
.(2.27)

This more sophisticated intergrid transfer operator is needed to maintain a higher
convergence rate for this full multigrid algorithm.

Remark. A standard argument (cf. [5]) shows that the costs for both full multigrid
algorithms are proportional to dim Vk.

3. Contraction properties of the kth
level iteration

We have the following result (cf. [9], [10], [13], [14]) for the convergence of the
kth level iteration in the energy norm.

Lemma 3.1. Let p = 1 (V-cycle) or 2 (W-cycle) and m ≥ 1 in the kth level
iteration. Then there exists a δ < 1, independent of k, such that

|z −MG(k, z0, g)|H1(Ω) ≤ δ|z − z0|H1(Ω).(3.1)

Remark. The estimate (3.1) was obtained in [13] and [14] for the symmetric V -
cycle algorithm. Since the finite element spaces Vk are conforming and nested, it
also holds (cf. [37]) for the one-sided V -cycle and W -cycle algorithms described in
Section 2. Moreover, the contraction number δ for the W -cycle algorithm can be
made arbitrarily small by increasing the number of smoothing steps m (cf. [5]).

We also have the following convergence result for the kth level iteration in the
‖ · ‖H1−(π/ω)+ε(Ω) norm.

Lemma 3.2. Let p = 2 (W-cycle), 0 < δ < 1, 0 < ε < π/ω and αε = 1−(π/ω)+ε 6=
1/2. If the number of smoothing steps m in the kth level iteration is sufficiently
large, then we have

‖z −MG(k, z0, g)‖Hαε(Ω) ≤ δ‖z − z0‖Hαε (Ω).(3.2)

Proof. We follow the methodology in [5]. First we consider the two-grid algorithm
where qp in (2.10) is replaced by (cf. (2.5))

q = A−1
k−1ḡ = A−1

k−1I
k−1
k Ak(z − zm) = Pk−1(z − zm).(3.3)

Let Rk : Vk −→ Vk be defined by

Rk = I − 1
Λk

Ak.(3.4)
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Then, by (2.8) and (3.4), we have

z − zm = Rm
k (z − z0).(3.5)

It follows from (3.3) and (3.5) that the error of the output z̃ = zm+q of the two-grid
method is given by

z − z̃ = z − zm − q = (I − Pk−1)(z − zm) = (I − Pk−1)Rm
k (z − z0).(3.6)

For 0 ≤ s ≤ 1, we define

|||v|||s =
√

(As
kv, v)k ∀ v ∈ Vk.(3.7)

We immediately have

|||v|||1 ≤ [ρ(A1−s
k )]1/2|||v|||s . hs−1

k |||v|||s ∀ v ∈ Vk, 0 ≤ s ≤ 1,(3.8)

and since Λk = Ch−2
k dominates the spectral radius of Ak,

|||Rkv|||s ≤ |||v|||s ∀ v ∈ Vk, 0 ≤ s ≤ 1.(3.9)

The effect of the smoothing step is measured by the following smoothing property:

|||Rm
k v|||1 = ((AkRm

k v, Rm
k v)k)1/2(3.10)

≤ Λs/2
k [ρ(Λ−s

k As
kR2m

k )]1/2(A1−s
k v, v)1/2

k

. h−s
k

[
sup

0≤t≤1
ts(1 − t)2m

]1/2

|||v|||1−s

. h−s
k m−s/2|||v|||1−s ∀ v ∈ Vk, 0 ≤ s ≤ 1.

The effect of the correction step is given by the following approximation property:

‖v − Pk−1v‖Hαε (Ω) .ε h
π/ω−ε
k |v − Pk−1v|H1(Ω) ∀ v ∈ H1

0 (Ω).(3.11)

We will establish (3.11) by a duality argument. Let φ ∈ H−αε(Ω) and ζ ∈ H1
0 (Ω)

satisfy ∫
Ω

∇ζ · ∇v dx = φ(v) ∀ v ∈ H1
0 (Ω).(3.12)

It is well known (cf. [23]) that ζ ∈ H1+(π/ω)−ε(Ω) and

‖ζ‖H1+(π/ω)−ε(Ω) .ε ‖φ‖H−αε (Ω).(3.13)

Let Πk be the nodal interpolation operator associated with Vk. It follows from
standard interpolation error estimates (cf. [20], [16]) and (3.13) that

|ζ −Πkζ|H1(Ω) .ε h
(π/ω)−ε
k ‖φ‖H−αε (Ω).(3.14)

Using (2.4), (3.12) and (3.14), we have

φ(v − Pk−1v) =
∫

Ω

∇ζ · ∇(v − Pk−1v) dx(3.15)

=
∫

Ω

∇(ζ −Πk−1ζ) · ∇(v − Pk−1v) dx

.ε h
(π/ω)−ε
k ‖φ‖H−αε (Ω)|v − Pk−1v|H1(Ω).

The estimate (3.11) follows from (3.15) and the duality formula

‖η‖Hαε(Ω) = sup [φ(η)/‖φ‖H−αε (Ω)] ∀ η ∈ Hαε
0 (Ω),(3.16)

where the supremum is taken over all φ ∈ H−αε(Ω) \ {0}.
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The final ingredient is the relation between the mesh dependent norm ||| · |||s
and the Sobolev norm ‖ · ‖Hs(Ω) on Vk. First of all, we have |v|H1(Ω) = |||v|||1 and
‖v‖L2(Ω) . |||v|||0 for all v ∈ Vk. Interpolating these estimates (cf. [50]), we have

‖v‖Hs(Ω) . |||v|||s ∀ v ∈ Vk, 0 ≤ s ≤ 1.(3.17)

On the other hand, there exists (cf. [21], [48]) an interpolation operator πk :
L2(Ω) −→ Vk such that

|||πkv|||0 . ‖πkv‖L2(Ω) . ‖v‖L2(Ω) ∀ v ∈ L2(Ω),(3.18)

|||πkv|||1 . ‖πkv‖H1(Ω) . ‖v‖H1(Ω) ∀ v ∈ H1
0 (Ω),(3.19)

πkv = v ∀ v ∈ Vk.(3.20)

For 0 < s < 1 and s 6= 1/2, we can interpolate (3.18) and (3.19) (cf. [50]) to obtain

|||πkv|||s . ‖v‖Hs(Ω) ∀ v ∈ Hs
0(Ω).(3.21)

Combining (3.20) and (3.21), we find

|||v|||s . ‖v‖Hs(Ω) ∀ v ∈ Vk, 0 ≤ s ≤ 1, s 6= 1/2.(3.22)

In other words, the mesh dependent norm ||| · |||s and the Sobolev norm ‖ · ‖Hs(Ω)

are equivalent on Vk as long as s 6= 1/2.
Therefore, from (3.6)–(3.11) and (3.22), we have the following error estimate for

the two-grid algorithm:

‖z − z̃‖Hαε (Ω) .ε h
(π/ω)−ε
k |Rm

k (z − zm)|H1(Ω)(3.23)

.ε m[−(π/ω)+ε]/2‖z − z0‖Hαε (Ω).

Now we estimate the error for the kth level iteration. Let γm = m[−(π/ω)+ε]/2,
and suppose that the error of the (k − 1)st level iteration in the Hαε(Ω) norm is
reduced by a factor η. Then it follows from (2.9) and (3.23) that

‖z −MG(k, z0, g)‖Hαε (Ω) ≤ ‖z − z̃‖Hαε (Ω) + ‖q − q2‖Hαε (Ω)(3.24)

≤ Cεγm‖z − z0‖Hαε (Ω) + η2‖q‖Hαε(Ω).

From (3.8), (3.11) and (3.17), we have

‖Pk−1v‖Hαε (Ω) ≤ ‖v − Pk−1v‖Hαε (Ω) + ‖v‖Hαε(Ω)

.ε h
(π/ω)−ε
k |v|H1(Ω) + |||v|||αε(3.25)

.ε |||v|||αε ∀ v ∈ Vk.

Combining (3.5), (3.9) and (3.25), we obtain

‖q‖Hαε (Ω) = ‖Pk−1(z − zm)‖Hαε (Ω)(3.26)

≤ C′ε|||z − z0|||αε .

The estimates (3.22), (3.24) and (3.26) together imply that

‖z −MG(k, z0, g)‖Hαε(Ω) ≤ (Cεγm + C′′ε η2)‖z − z0‖Hαε (Ω).(3.27)

For m sufficiently large, we have γm < (4CεC
′′
ε )−1 and

ηm =
[
1− (1− 4CεC

′′
ε γm)1/2

]
/(2C′′ε )
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is a fixed point of the map T (η) = Cεγm + C′′ε η2. Since the first level iteration is
an exact solver, it follows from (3.27) and mathematical induction that

‖z −MG(k, z0, g)‖Hαε (Ω) ≤ ηm‖z − z0‖Hαε (Ω) for k ≥ 1.(3.28)

As limm→∞ ηm = 0, the lemma follows from (3.28).

4. Convergence analysis for the full multigrid algorithm I

Theorem 4.1. Let p = 2, 0 < ε < π/ω, αε = 1− (π/ω) + ε 6= 1/2 and the number
of smoothing steps m be sufficiently large so that (3.1) and (3.2) hold for 0 < δ < 1.
If the number of nested iterations n is sufficiently large, then we have

|w − wk|H1(Ω) . hk‖f‖L2(Ω),(4.1)
J∑

j=1

|κj − κj,k| .ε h
1+(π/ω)−ε
k ‖f‖L2(Ω),(4.2)

‖w − wk‖Hαε (Ω) .ε h
1+(π/ω)−ε
k ‖f‖L2(Ω),(4.3)

where wk and κj,k are computed by (2.11)–(2.18).

Proof. We will establish (4.2) and (4.3) through recursive estimates. It follows from
(1.5) and (2.15) that, for 1 ≤ j ≤ J ,

|κj − κj,k| =
1
π

∣∣∣∣∫
Ω

(u− uk−1)∆s−j dx

∣∣∣∣(4.4)

. ‖u− uk−1‖L2(Ω)‖∆s−j‖L2(Ω)

. ‖ŵk−1 − wk−1‖Hαε (Ω),

where (cf. (1.2), (1.15) and (2.18))

ŵk = u−
J∑

j=1

κj,ksj =
J∑

j=1

(κj − κj,k)sj + w = (u− uk) + wk.(4.5)

Let ak =
∑J

j=1 |κj − κj,k| and bk = ‖ŵk − wk‖Hαε (Ω). We have proved that

ak . bk−1.(4.6)

To estimate bk, we begin with

bk ≤ ‖ŵk − Pkŵk‖Hαε (Ω) + ‖Pkŵk − wk‖Hαε (Ω).(4.7)

Using (1.4), (3.11), (4.5) and standard finite element discretization error estimates
(cf. [20], [16]), we find

‖ŵk − Pkŵk‖Hαε (Ω)

≤
J∑

j=1

|κj − κj,k| ‖sj − Pksj‖Hαε (Ω) + ‖w − Pkw‖Hαε (Ω)

.ε h
(π/ω)−ε
k

 J∑
j=1

|κj − κj,k| |sj − Pksj |H1(Ω) + |w − Pkw|H1(Ω)


.ε h

2(π/ω)−2ε
k ak + h

1+(π/ω)−ε
k ‖f‖L2(Ω).

(4.8)
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Since Pkŵk ∈ Vk is the exact solution of the equation Akz = gk (where gk is defined
by (2.17)), it follows from (2.16) and (3.2) that

‖Pkŵk − wk‖Hαε (Ω) ≤ δn‖Pkŵk − wk−1‖Hαε (Ω).(4.9)

Note that (1.2) and (4.5) imply

w − ŵk =
J∑

j=1

(κj,k − κj)sj .(4.10)

From (4.8) and (4.10), we obtain

‖Pkŵk − wk−1‖Hαε (Ω) ≤‖Pkŵk − ŵk‖Hαε (Ω) + ‖ŵk − w‖Hαε (Ω)

+ ‖w − ŵk−1‖Hαε (Ω) + ‖ŵk−1 − wk−1‖Hαε (Ω)(4.11)

.ε h
2(π/ω)−2ε
k ak + h

1+(π/ω)−ε
k ‖f‖L2(Ω)+ak+ak−1+bk−1.

It follows from (4.7)–(4.9) and (4.11) that

bk .ε δn
(
bk−1 + ak + ak−1

)
+ h

2(π/ω)−2ε
k ak + h

1+(π/ω)−ε
k ‖f‖L2(Ω).(4.12)

Combining (4.6) and (4.12), we find[
ak

bk

]
≤ Cε

[
0 1
δn δn + h

2(π/ω)−2ε
k

] [
ak−1

bk−1

]
+ Cεh

1+(π/ω)−ε
k ‖f‖L2(Ω)

[
0
1

]
,(4.13)

where the vector inequality is interpreted componentwise.
Since δn and h

2(π/ω)−2ε
k are both small for n and k large, we can consider the

matrix in (4.13) to be a perturbation of the nilpotent matrix
[
0 Cε

0 0

]
. Therefore,

for n sufficiently large and k > kε, we have[
ak

bk

]
≤ C

[
ak−1

bk−1

]
+ Cεh

1+(π/ω)−ε
k ‖f‖L2(Ω)

[
0
1

]
,(4.14)

where the constant matrix C has nonnegative components and satisfies

‖Cn‖∞ . 1
4n

.(4.15)

By iterating (4.14), for k > kε, we obtain∥∥∥∥[
ak

bk

]∥∥∥∥
∞

.ε

(
h

1+(π/ω)−ε
k +

1
4
h

1+(π/ω)−ε
k−1 +

1
42

h
1+(π/ω)−ε
k−2 + · · ·

)
‖f‖L2(Ω)

+
(

1
4

)k−kε
∥∥∥∥[

akε

bkε

]∥∥∥∥
∞

.

(4.16)

Since hk−1 = 2hk and 1 + (π/ω)− ε < 2, it follows from (4.16) that∥∥∥∥[
ak

bk

]∥∥∥∥
∞

.ε h
1+(π/ω)−ε
k ‖f‖L2(Ω) +

(
1
4

)k−kε
∥∥∥∥[

akε

bkε

]∥∥∥∥
∞

.(4.17)

On the other hand, from (1.4) and (2.11)–(2.14) we have

a1 =
J∑

j=1

|κj | . ‖f‖L2(Ω),(4.18)

b1 = ‖u− P1u‖Hαε (Ω) . ‖u‖H1(Ω) . ‖f‖L2(Ω).(4.19)
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It follows from (4.13), (4.18) and (4.19) that∥∥∥∥[
ak

bk

]∥∥∥∥
∞

.ε ‖f‖L2(Ω) .ε h
1+(π/ω)−ε
k ‖f ||L2(Ω) for 1 ≤ k ≤ kε.(4.20)

Combining (4.17) and (4.20), we find∥∥∥∥[
ak

bk

]∥∥∥∥
∞

.ε h
1+(π/ω)−ε
k ‖f ||L2(Ω) for k ≥ 1.(4.21)

We have established (4.2), and the estimate (4.3) follows from (4.10) and (4.21).
Repeating the arguments in (4.7)–(4.11) with respect to the | · |H1(Ω) norm and

using (4.2) with an ε < π/ω, we find

|ŵk − wk|H1(Ω) . δn|ŵk−1 − wk−1|H1(Ω) + hk‖f‖L2(Ω).(4.22)

We obtain from iterating (4.22) that

|ŵk − wk|H1(Ω) . hk‖f‖L2(Ω).(4.23)

The estimate (4.1) follows from (4.2) (with ε < π/ω), (4.10) and (4.23).

The following corollary is immediate.

Corollary 4.2. Under the assumptions of Theorem 4.1, we have

|u− uk|H1(Ω) . hk‖f‖L2(Ω).(4.24)

5. Convergence analysis for the full multigrid algorithm II

Since we are really computing the regular part of the singular solution in our
approach, it is possible to exploit superconvergence results. This idea will be demon-
strated by the following analysis of the full multigrid algorithm II.

We first investigate the properties of the intergrid transfer operator Ik
k−1.

Lemma 5.1. The following estimates hold for the intergrid transfer operator de-
fined by (2.27):

|Ik
k−1v|H1(Ω) . |v|H1(Ω) ∀ v ∈ Vk−1,(5.1)

|Πkζ − Ik
k−1Πk−1ζ|H1(Ω) . h1+t

k ‖ζ‖H2+t(Ω) ∀ ζ ∈ H2+t(Ω) ∩H1
0 (Ω),(5.2)

where Πk is the nodal interpolation operator associated with Vk and 0 ≤ t ≤ 1.

Proof. Let T be a triangle, η be a quadratic polynomial, and ηI be the linear
interpolant of η with respect to the subdivision of T obtained by connecting the
midpoints of the sides of T . A standard scaling argument shows that

C1|ηI |H1(T ) ≤ |η|H1(T ) ≤ C2|ηI |H1(T ),(5.3)

where the constants C1 and C2 depend only on the angles of T .
Recall that Qk ⊂ H1

0 (Ω) (k = 0, 1, 2, . . . ) is the quadratic Lagrange finite element
space associated with Tk, and Ik−1

k−2 (resp., Ik
k−2) is the nodal interpolation operator

from Qk−2 into Vk−1 (resp., Vk). We deduce from (5.3) that, for k ≥ 2,

|Ik
k−2q|H1(Ω) . |q|H1(Ω) . |Ik−1

k−2q|H1(Ω) ∀ q ∈ Qk−2.(5.4)

The estimate (5.1) follows from (2.27) and (5.4).
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Figure 1

Figure 2

Let T be a triangle in Tk−2 and q be a polynomial of degree ≤ 2. By restricting
all the definitions to T , we find

Πkq − Ik
k−1Πk−1q = Πkq − Ik

k−2

(
Ik−1

k−2

)−1
Πk−1q(5.5)

= Πkq − Ik
k−2q = 0.

By the Bramble-Hilbert lemma (cf. [11]) and a standard scaling argument we
deduce from (5.5) that

|Πkζ − Ik
k−1Πk−1ζ|H1(Ω) . h2

k‖ζ‖H3(Ω) ∀ ζ ∈ H3(Ω) ∩H1
0 (Ω),(5.6)

|Πkζ − Ik
k−1Πk−1ζ|H1(Ω) . hk‖ζ‖H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1

0 (Ω).(5.7)

The estimate (5.2) follows from interpolating (5.6) and (5.7) (cf. [50]).

Next we discuss a superconvergence result for the linear finite element. A uniform
band in a triangulation is a collection of triangles between two parallel lines such
that any two triangles sharing a common side form a parallelogram (cf. Figure 1),
and the boundary of the band consists of the two parallel lines and parts of ∂Ω.
We say that a triangulation satisfies the uniform band condition if it can be divided
completely into uniform bands (cf. Figure 2). Note that one can always find
a triangulation satisfying the uniform band condition for any polygonal domain
whose vertices all have rational coordinates, and the uniform band condition is
preserved by regular subdivision.

The proof of the following result can be found in [18] (cf. also [34], [41], [61],
[19], [35]).
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Lemma 5.2. Suppose the triangulations Tk satisfy the uniform band condition and
ζ ∈ H3(Ω) ∩H1

0 (Ω). Then

|Πkζ − Pkζ|H1(Ω) . h2
k‖ζ‖H3(Ω).(5.8)

Corollary 5.3. Suppose the triangulations Tk satisfy the uniform band condition
and ζ ∈ H2+t(Ω) ∩H1

0 (Ω) for 0 ≤ t ≤ 1. Then

|Πkζ − Pkζ|H1(Ω) . h1+t
k ‖ζ‖H2+t(Ω).(5.9)

Proof. The estimate (5.9) follows from interpolating (5.8) and the obvious estimate

|Πkζ − Pkζ|H1(Ω) . hk‖ζ‖H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1
0 (Ω).

We now establish the convergence properties of the full multigrid algorithm II.

Theorem 5.4. Let f ∈ H1(Ω). Assume that the triangulations Tk satisfy the
uniform band condition, p = 1 or 2, and m ≥ 1. If the number of nested iterations
n is sufficiently large, then we have

|Πkw − wk|H1(Ω) .ε h2−ε
k ‖f‖H1(Ω),(5.10)

N∑
j=1

∑
`∈Lj

|κj,` − κj,`,k| .ε h2−ε
k ‖f‖H1(Ω),(5.11)

where wk and κj,`,k are computed by (2.19)–(2.26).

Proof. It follows from (1.24), (2.23), (2.26) and the Poincaré inequality that

|κj,` − κj,`,k| =
1
`π

∣∣∣∣∫
Ω

(ŵk−1 − wk−1)∆sj,−` dx

∣∣∣∣
.

∣∣∣∣∫
Ω

(ŵk−1 − Πk−1ŵk−1)∆sj,−` dx

∣∣∣∣(5.12)

+
∣∣∣∣∫

Ω

(Πk−1ŵk−1 − wk−1)∆sj,−` dx

∣∣∣∣
. ‖ŵk−1 −Πk−1ŵk−1‖L2(Ω) + |Πk−1ŵk−1 − wk−1|H1(Ω),

where

ŵk = u−
N∑

j=1

∑
`∈Lj

κj,`,ksj,` = (u− uk) + wk

=
N∑

j=1

∑
`∈Lj

(κj,` − κj,`,k)sj,` + w.

(5.13)

Let ak =
∑N

j=1

∑
`∈Lj

|κj,` − κj,`,k| and bk = |Πkŵk − wk|H1(Ω). Since sj,` ∈
H1+(π/ω)−ε(Ω) and w ∈ H3−ε(Ω), we have from (1.23), (5.13) and standard inter-
polation error estimates that

‖ŵk−1 −Πk−1ŵk−1‖L2(Ω) ≤
N∑

j=1

∑
`∈Lj

|κj,` − κj,`,k−1|‖sj,` −Πk−1sj,`‖L2(Ω)

+ ‖w −Πk−1w‖L2(Ω)(5.14)

.ε h
1+(π/ω)−ε
k−1 ak−1 + h2

k−1‖f‖H1(Ω).
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It follows from (5.12) and (5.14) that

ak .ε h
1+(π/ω)−ε
k ak−1 + bk−1 + h2

k‖f‖H1(Ω).(5.15)

On the other hand, we have

bk ≤ |Πkŵk − Pkŵk|H1(Ω) + |Pkŵk − wk|H1(Ω),(5.16)

and from (1.23), (5.9), (5.13) and a standard interpolation error estimate,

|Πkŵk − Pkŵk|H1(Ω) ≤
N∑

j=1

∑
`∈Lj

|κj,` − κj,`,k||Πksj,` − Pksj,`|H1(Ω)

+ |Πkw − Pkw|H1(Ω)(5.17)

.ε h
(π/ω)−ε
k ak + h2−ε

k ‖f‖H1(Ω).

Since Pkŵk ∈ Vk is the exact solution of Akz = gk (where gk is defined by (2.25)),
it follows from (2.24) and Lemma 3.1 that

|Pkŵk − wk|H1(Ω) ≤ δn|Pkŵk − Ik
k−1wk−1|H1(Ω),(5.18)

for some δ < 1.
It follows from (1.23), (5.1), (5.2) and (5.13) that

|Pkŵk − Ik
k−1wk−1|H1(Ω)(5.19)

≤ |Pk(ŵk − w)|H1(Ω) + |Pkw −Πkw|H1(Ω)

+ |Πkw − Ik
k−1Πk−1w|H1(Ω) + |Ik

k−1(Πk−1w − wk−1)|H1(Ω)

.ε ak + h2−ε
k ‖f‖H1(Ω) + |Πk−1w − wk−1|H1(Ω)

.ε ak + h2−ε
k ‖f‖H1(Ω) + |Πk−1(w − ŵk−1)|H1(Ω)

+ |Πk−1ŵk−1 − wk−1|H1(Ω)

.ε ak + ak−1 + bk−1 + h2−ε
k ‖f‖H1(Ω).

Using (5.16)–(5.19) we obtain

bk .ε (h(π/ω)−ε
k + δn)ak + δn(ak−1 + bk−1) + h2−ε

k ‖f‖H1(Ω).(5.20)

As in the proof of Theorem 4.1, by iterating (5.15) and (5.20) we have

ak .ε h2−ε
k ‖f‖H1(Ω),(5.21)

bk .ε h2−ε
k ‖f‖H1(Ω).(5.22)

The estimate (5.11) is the same as (5.21). We deduce from (5.13) that

|Πkw − wk|H1(Ω) ≤ |Πk(w − ŵk)|H1(Ω) + |Πkŵk − wk|H1(Ω)(5.23)

. ak + bk.

The estimate (5.10) follows from (5.21)–(5.23).

Remark. By exploiting superconvergence we are able to perform the analysis in
the proof of Theorem 5.4 using the energy norm and still obtain a higher rate of
convergence. The use of the energy norm also makes it possible to apply Lemma 3.1
(instead of Lemma 3.2) to demonstrate convergence even for the V -cycle algorithm
with one smoothing step.

The following corollary is immediate.
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Corollary 5.5. Under the assumptions of Theorem 5.4, we have

|u− uk|H1(Ω) . hk‖f‖H1(Ω).(5.24)

Corollary 5.6. Under the assumptions of Theorem 5.4, we have

max
p

|u(p)− uk(p)| .ε h2−ε
k ‖f‖H1(Ω),(5.25)

where the maximum is taken over all the vertices p of Tk.

Proof. It suffices to estimate ‖Πk(u − uk)‖L∞(Ω). By (1.17), (2.26), (5.10), (5.11)
and the discrete Sobolev inequality (cf. [46], [61]), we have

‖Πk(u− uk)‖L∞(Ω) ≤
N∑

j=1

∑
`∈Lj

|κj,` − κj,`,k|‖Πksj,`‖L∞(Ω) + ‖Πkw − wk‖L∞(Ω)

.
N∑

j=1

∑
`∈Lj

|κj,` − κj,`,k|+ | ln hk|1/2|Πkw − wk|H1(Ω)(5.26)

.ε h2−ε
k ‖f‖H1(Ω).

Remark. If none of the angles of Ω is an integer multiple of π/2, then the regular
part w in (1.20) actually belongs to H3(Ω) (cf. [27], [23]). For such Ω the ε-
dependence in (1.23), (5.9) and (5.10) disappears, and the estimate (5.25) becomes

max
p

|u(p)− uk(p)| . h2
k| ln hk|1/2‖f‖H1(Ω).

Remark. It is well known (cf. [47], [44], [16]) that

‖u− ũh‖L∞(Ω) . h2| ln h|‖u‖W 2∞(Ω),

where ũh is the P1 finite element solution of (1.1). It is interesting to see that a
multigrid method can produce similar results for singular solutions.

6. Numerical experiments

In this section, we report the results of some numerical experiments for (1.1)
performed on the Γ-shaped domain Ω (cf. Figures 3 and 4) with vertices (0, 0),
(0, 1), (1, 1), (−1, 1), (−1,−1) and (0,−1). We use the P1 Lagrange finite element in
the experiments. All the computations are done using a W -cycle kth level iteration
with 5 smoothing steps, and the number of nested iterations in the full multigrid
algorithms is also 5. The mesh size hk for the kth level grid is taken to be 2−k. We
first describe the experiments; comments on the numerical results are given near
the end of this section.

Remark. Convergence of the algorithms has been observed for m = n = 1. We
choose to report the results for m = n = 5, since the numerical results do not
appear to improve for any larger m or n.

The two singular functions for this Γ-shaped domain are:

s1(r, θ) = φ(r)r2/3 sin
(
(2/3)θ

)
,(6.1)

s2(r, θ) = φ(r)r4/3 sin
(
(4/3)θ

)
,(6.2)
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Figure 3

Figure 4

where the cut-off function φ(r) is defined by

φ(r) =


1 0 ≤ r ≤ 1/4,

−192r5 + 480r4 − 440r3 + 180r2 − 135
4 r + 27

8 1/4 ≤ r ≤ 3/4,

0 3/4 ≤ r.

(6.3)

In the first set of experiments, we solve the Poisson equation (1.1) with f =
−∆s1 −∆s2 + 6x(y2 − y4) + (x− x3)(12y2 − 2). The exact solution is therefore

u = s1 + s2 + (x− x3)(y2 − y4).(6.4)

In the first experiment, we solve (1.1) using the standard full multigrid algorithm
(where the right-hand sides of the discrete equations on all levels come from f) on
the grids depicted in Figure 3. The approximate stress intensity factors κk are
computed by the extraction formula (1.7) using the P1 finite element solution uk

obtained by the standard full multigrid method. The error ek in the energy norm is
defined by ek = |Πku−uk|H1(Ω). The rate of convergence σk for the stress intensity
factor and the rate of convergence εk in the energy norm are computed by

σk = log2

(
|κk−1 − 1|
|κk − 1|

)
,(6.5)

εk = log2

(
ek−1

ek

)
.(6.6)

The results are tabulated in Table 1.
In the second experiment, we solve (6.1) using the full multigrid algorithm I

described in Section 2 on the grids depicted in Figure 3. This algorithm computes
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Table 1. Results for the standard full multigrid algorithm with
f = −∆s1 −∆s2 + 6x(y2 − y4) + (x− x3)(12y2 − 2)

k κk σk ek εk

1 1.6999229601 – 1.27093× 100 –
2 1.2589102299 1.43 5.91072× 10−1 1.1045
3 1.1036407706 1.32 1.61387× 10−1 1.8728
4 1.0287080790 1.85 5.74371× 10−2 1.4905
5 1.0073492045 1.97 2.76732× 10−2 1.0535
6 1.0020544785 1.84 1.64752× 10−2 0.7482
7 1.0005531037 1.89 1.02811× 10−2 0.6803
8 1.0001571227 1.82 6.46930× 10−2 0.6683
9 1.0000458701 1.78 4.07502× 10−3 0.6668
10 1.0000142397 1.69 2.56715× 10−3 0.6666
11 1.0000046460 1.62 1.61722× 10−3 0.6666

Table 2. Results for the full multigrid algorithm I with f =
−∆s1 −∆s2 + 6x(y2 − y4) + (x− x3)(12y2 − 2)

k κk σk ek εk

1 – – 7.929× 10−1 –
2 1.69992296014 – 8.364× 10−1 −0.07
3 0.82132136706 1.97 2.322× 10−1 1.85
4 1.02037630458 3.13 3.456× 10−2 2.75
5 0.99943755129 5.18 6.236× 10−3 2.47
6 1.00003984026 3.82 1.595× 10−3 1.97
7 1.00000536058 2.89 4.200× 10−4 1.93
8 1.00000234005 1.20 1.170× 10−4 1.84
9 1.00000057569 2.02 3.567× 10−5 1.71
10 1.00000012632 2.19 1.204× 10−5 1.57
11 1.00000002876 2.13 4.397× 10−6 1.45
12 1.00000000746 1.95 – –

κk ∈ R and wk ∈ Vk which are approximations of the stress intensity factor κ = 1
and the regular part of the solution in (6.4), namely, w = s2+(x−x3)(y2−y4). The
error ek in the energy norm is defined by ek = |Πkw − wk|H1(Ω). The convergence
rates σk and εk are again computed by (6.5) and (6.6). The results are tabulated
in Table 2.

In the third experiment, we solve (1.1) by the full multigrid algorithm II described
in Section 2 on the uniform grids depicted in Figure 4. This algorithm computes
κ1,k ∈ R, κ2,k ∈ R and wk ∈ Vk which are approximations of the stress intensity
factors κ1 = 1, κ2 = 1 and the regular part of the solution in (6.4), namely, w =
(x−x3)(y2−y4). The error ek in the energy norm is defined by ek = |Πkw−wk|H1(Ω)

The convergence rates σ1,k (σ2,k) and εk are computed as in (6.5) and (6.6). The
results are tabulated in Table 3.
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Table 3. Results for the full multigrid algorithm II with f =
−∆s1 −∆s2 + 6x(y2 − y4) + (x− x3)(12y2 − 2)

k κ1,k σ1,k κ2,k σ2,k ek εk

1 – – – – 1.124× 100 –
2 1.6229151283 – 1.17131298888 – 7.361× 10−1 0.61
3 0.8859991798 2.45 0.99336080108 4.69 1.417× 10−1 2.38
4 1.0091773397 3.63 1.00029662538 4.48 1.131× 10−2 3.65
5 0.9999856171 9.32 1.00023130682 0.36 5.829× 10−4 4.28
6 1.0000653041 −2.18 1.00002651087 3.13 1.551× 10−4 1.91
7 1.0000136298 2.26 1.00000976600 1.44 3.636× 10−5 2.09
8 1.0000044994 1.60 1.00000116447 3.07 9.574× 10−6 1.93
9 1.0000011279 2.00 1.00000029598 1.98 2.376× 10−6 2.01
10 1.0000002659 2.08 1.00000008791 1.75 5.810× 10−7 2.03
11 1.0000000638 2.06 1.00000002475 1.82 1.433× 10−7 2.02
12 1.0000000163 1.97 1.00000000585 2.08 – –

Table 4. Results for the standard full multigrid algorithm with
f = 1

k κk σk ek εk

1 0.40404781 – 2.513× 10−1 –
2 0.40105510 2.46 1.378× 10−1 0.866
3 0.40051009 −2.07 7.465× 10−2 0.885
4 0.40280457 1.62 4.104× 10−2 0.863
5 0.40205736 6.72 2.313× 10−2 0.827
6 0.40205027 −3.50 1.338× 10−2 0.790
7 0.40197036 1.87 7.919× 10−3 0.756
8 0.40194849 1.08 4.776× 10−3 0.729
9 0.40193815 1.29 2.922× 10−3 0.709
10 0.40193393 1.28 1.805× 10−3 0.695
11 0.40193219 – – –

In the second set of experiments, we solve the Poisson equation

−∆u = 1 in Ω,(6.7)
u = 0 on ∂Ω.

In the fourth experiment, we apply the standard full multigrid algorithm to
(6.7) on the grids in Figure 3. The error ek in the energy norm is defined by
ek = |uk−uk+1|H1(Ω). The convergence rates εk and σk are computed by (6.6) and

σk = log2

(
|κk − κk−1|
|κk − κk+1|

)
.(6.8)

The results are tabulated in Table 4.
In the fifth experiment, we apply the full multigrid algorithm I to (6.7) on the

grids depicted in Figure 3. The error ek in energy norm is now defined by ek =
|wk−wk+1|H1(Ω). The convergence rates σk and εk are computed by (6.8) and (6.6)
respectively. The results are tabulated in Table 5.
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Table 5. Results for the full multigrid algorithm I with f = 1

k κk σk ek εk

1 – – 4.138× 10−1 –
2 0.40404781 – 2.565× 10−1 0.690
3 0.29704637 0.55 1.603× 10−1 0.678
4 0.37020221 1.73 8.073× 10−2 0.990
5 0.39218469 1.65 4.042× 10−2 0.998
6 0.39918799 1.78 2.014× 10−2 1.005
7 0.40123227 1.98 1.005× 10−2 1.003
8 0.40174937 1.92 5.022× 10−3 1.001
9 0.40188560 2.00 2.511× 10−3 1.000
10 0.40191976 2.01 1.255× 10−3 1.000
11 0.40192822 2.00 – –
12 0.40193032 – – –

Table 6. Results for the full multigrid algorithm II with f = 1

k κ1,k σ1,k κ2,k σ2,k ek εk

1 – – – – 3.938× 10−1 –
2 0.34080586 – −2.0614706× 10−17 – 1.829× 10−1 1.11
3 0.33610413 −3.14 −1.2218483× 10−2 0.32 8.644× 10−2 1.08
4 0.37747233 1.18 −2.4317474× 10−3 2.47 3.634× 10−2 1.25
5 0.39567246 2.02 −6.6497401× 10−4 1.83 1.054× 10−2 1.79
6 0.40014791 1.75 −1.6711078× 10−4 1.99 3.307× 10−3 1.67
7 0.40147892 2.00 −4.2006249× 10−5 1.99 1.028× 10−3 1.69
8 0.40181127 1.89 −1.0519784× 10−5 2.00 3.384× 10−4 1.60
9 0.40190104 1.99 −2.6327556× 10−6 2.00 1.140× 10−4 1.57
10 0.40192361 2.02 −6.5851034× 10−7 2.00 3.923× 10−5 1.54
11 0.40192918 2.00 −1.6466864× 10−7 2.00 – –
12 0.40193057 – −4.1172418× 10−8 – – –

In the sixth experiment, we apply the full multigrid algorithm II to (6.7) on
the grids depicted in Figure 4. The error ek in the energy norm is defined by
ek = |wk+1−Ik+1

k wk|H1(Ω). The convergence rates σ1,k (σ2,k) and εk are computed
by (6.8) and (6.6), respectively. The results are tabulated in Table 6.

Experiments 1 and 4 are performed for the sake of comparison with the new
algorithms. The convergence rates in the energy norm tend to 2/3 in both ex-
periments. The convergence rates for the stress intensity factors in experiment 4
tend to 1.3 ∼ 4/3. In fact, if we extrapolate from Table 6 the value 0.40193103 for
the stress intensity factor and compute the convergence rates again, then the last
three rates become 1.29, 1.30 and 1.32. The rates for the stress intensity factors in
experiment 1 are also decreasing towards 4/3.

Experiments 2 and 5 show the improvement of the full multigrid algorithm I
over the standard full multigrid algorithm. The performance of this algorithm is
actually better than the prediction of our theory. Note that in both cases the right-
hand side of the Poisson equation is smooth and hence the regular part w belongs
to H(7/3)−ε(Ω) instead of just H2(Ω). This higher regularity of w and some sort
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Table 7. L2 convergence of the full multigrid algorithm II with
f = 1

k µk δk

1 4.028096× 10−2 –
2 1.420687× 10−2 1.50
3 7.475676× 10−3 0.93
4 3.121328× 10−3 1.26
5 7.693137× 10−4 2.02
6 2.272332× 10−4 1.76
7 5.608381× 10−5 2.02
8 1.499267× 10−5 1.90
9 3.770565× 10−6 1.99
10 9.353645× 10−7 2.01

of superconvergence result are probably responsible for the better than expected
performance of this algorithm.

The convergence rates of both of the stress intensity factors tend to 2 in ex-
periments 3 and 6, as predicted by the theory. The convergence rates in energy
norm also tend to 2 in experiment 3, again in agreement with the theory. Note
that |s1|H1(Ω) ∼ 1.176 and |s2|H1(Ω) ∼ 0.768, and hence the energy norm error
|u − (κ1,11s1 + κ2,11s2 + w11)|H1(Ω) in experiment 3 is of order 10−7, whereas in
experiment 1 the energy norm error at level 11 is only of order 10−3.

The convergence rates in energy norm in experiment 6 do not approach 2. This
may be explained as follows. The order 2 convergence in energy norm depends
on a delicate superconvergence result, and the rates computed by (6.6) will tend
to the correct order only if there is an asymptotic expansion for the energy norm
error instead of just a bound. In experiment 3, the regular part is actually C∞ and
such an asymptotic expansion exists. Hence the order 2 convergence is observed
there. On the other hand, the regular part in experiment 6 is only in H3−ε(Ω) and
therefore the asymptotic expansion is absent. Consequently the order 2 convergence
in energy norm is not observed.

Note that the estimate (5.10) and the Poincaré inequality imply that we have
O(h2−ε) L2-norm convergence for the full multigrid algorithm II. Since the existence
of an asymptotic expansion for the L2-norm error usually requires less regularity,
the L2-norm errors in experiment 6 may still show a convergence rate of 2. We have
computed the L2-norm errors µk = ‖wk −wk+1‖L2(Ω) and calculated their rates of
convergence δk = log2(µk−1/µk). The results are displayed in Table 7. It shows
that the rate of convergence in the L2-norm is indeed 2.

7. Concluding remarks

The multigrid methods in this paper use the simplest finite element. They can be
easily implemented by modifying existing multigrid codes for the P1 finite element.
Since the grids are generated by connecting midpoints, it is also easy to parallelize
these algorithms. The extension of these methods to domains with cracks is carried
out in [17].

For more regular f , there exist singular function representations (cf. [27], [24],
[23], [39]) where the regular part w is also more regular. In such cases multigrid
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methods with higher orders of convergence can be developed using higher order
elements. The generalization of the results of this paper to higher order elements
is carried out in [15].

Since the multigrid methods in this paper compute the regular part of the sin-
gular solution, superconvergence results (cf. [61], [54], [19], [35]) which require
unrealistic regularity on nonsmooth domains become relevant in this approach.
Note that other superconvergence results which are less restrictive than the one
based on the “uniform band” condition can also be used as they become available.

These methods can also be applied to elasticity problems, transmission problems,
problems with mixed Dirichlet and Neumann boundary conditions and fourth order
problems. The only prerequisite is the knowledge of the singular function repre-
sentation, which may not always be readily available. However, in any applications
where the stress intensity factors are sought, the singular function representation
must be known, as otherwise the concept of stress intensity factors cannot even be
defined. We also point out that there exist many algorithms for the computation
of the singular functions (cf. [33], [51], [42], [43], [55], [56], [22]).
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1. I. Babuška, Finite element method for domains with corners, Computing 6 (1970), 264–273.
MR 45:2934
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28. , Problèmes aux limites dans les polygones, Mode d’emploi, EDF Bull. Direction Études
Rech. Sér. C. Math. Inform. 1 (1986), 21–59. MR 87g:35073
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