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Abstract

Multigrid optimization schemes that solve elliptic linear and bilinear optimal control prob-
lems are discussed. For the solution of these problems, the multigrid for optimization
(MGOPT) method and the collective smoothing multigrid (CSMG) method are developed
and compared. It is shown that thought these two methods are formally similar, they provide
different computational properties.
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1 Introduction

Although the multigrid strategy was first introduced to design solvers for elliptic bound-
ary value problems, it is now considered as one of the most promising approaches for the
development of efficient optimization schemes. Some recent developments include the ap-
plication of one-shot multigrid schemes to optimality systems [1, 5], to unconstrained opti-
mization problems [9, 10, 12], and to inverse problems [15, 16].

The purpose of this paper is to investigate two representative multigrid methods for op-
timization: the collective smoothing multigrid method (CSMG) and the multigrid for opti-
mization method (MGOPT). In our investigation we consider the application of these meth-
ods for solving linear and bilinear elliptic optimal control problems. While both schemes
are based on the well known full approximation storage (FAS) scheme [6] they represent
different approaches to the solution of optimization problems. The CSMG scheme solves
optimal control problems by solving the corresponding PDE optimality system in one shot
treating all optimization variables collectively. As typical in multigrid development, this ap-
proach needs to customize the collective smoothing and intergrid transfer operators for each
individual problem, i.e. the CSMG cannot be used as a black-box solver for all optimization
problems. On the other hand, an appropriate design of the CSMG multigrid components re-
sults in a robust algorithm with typical multigrid efficiency. This fact is proved in [5] for
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linear control problems. In this paper, we propose a CSMG method for bilinear control
problems and use this scheme as a benchmark.

The motivation for investigating the MGOPT scheme [10, 12] is that it can be formu-
lated in a way that is not problem specific and therefore it appears to have much easier
and larger applicability. In the MGOPT scheme the multigrid solution process represents
the outer loop where the control function is considered as the unique dependent variable.
The inner loop in this scheme consists of a classical one-grid optimization scheme and the
other MGOPT components are chosen as those typical of a classical multigrid approach.
However, in contrast to the collective smoothing multigrid framework, we do not have yet a
criteria for choosing the MGOPT components. In fact, as we show later, the essential con-
dition for a ‘successful’ application of the MGOPT scheme is that the reduced Hessian, that
is the Hessian of the optimization problem in the space of the control function, be positive
definite. This seams a much less restrictive requirement than ellipticity of the constitutive
equations of the optimality system which are required in the CSMG method. In this paper,
we consider the MGOPT method applied to linear and bilinear elliptic optimal control prob-
lems and compare its numerical performance with that of the CSMG method. We investigate
the influence of the choice of the one-grid optimization scheme on the MGOPT efficiency.
Furthermore, also based on theoretical considerations, we investigate the robustness of the
MGOPT scheme with respect to the choice of values of the optimization parameter.

In the following section, optimal control problems are formulated together with the
first-order necessary optimality conditions and the second-order sufficient conditions for a
minimum. In Section 3, we discuss two models for linear and bilinear distributed elliptic
optimal control problems. We remark that the bilinear optimal control model is a much
less investigated problem and it is similar to parameter identification problems. In Section
4, smoothing schemes for the proposed elliptic optimal control problems is presented. In
particular, we discuss a new robust collective smoothing scheme for optimal control prob-
lems with bilinear structure. The CSMG method and the MGOPT method are discussed in
Section 5 and Section 6, respectively. We illustrate the similar structure of the two schemes
even though the former applies to all dependent variables while the latter is formulated in
the reduced space of the optimization variable. Convergence of the MGOPT method and
results of numerical experiments follow to show the efficiency of both techniques and a
conclusion completes this paper.

2 Optimal control framework

An optimal control problem governed by a partial differential equation (PDE) is formulated
as follows {

min
u∈U

J(y, u)

c(y, u) = 0
(1)

where c(y, u) = 0 is a PDE that represents the equality constraint. We consider c to be
an elliptic PDE defined in a convex open Ω ⊂ R2 with given boundary conditions. The
state and the control (optimization) variables of the constraint c are denoted by y and u,
respectively. We assume that, for a given u the state equation admits a unique solution.

We consider a cost functional of the tracking type given by

J(y, u) = h(y) + νg(u), (2)

where ν > 0 is the weight of the cost of the control. The functions g and h are required to
be twice continuously differentiable, bounded from below and g(u)→∞ as ‖u‖ → ∞.
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Given an optimization problem, the optimality system represents the first-order neces-
sary conditions for a minimum. In order to derive these conditions, let c : Y × U → Z for
appropriate Hilbert spaces Y,U and Z, and consider the following Lagrange functional

L(y, u, p) = J(y, u) + 〈c(y, u), p〉Z,Z∗ ,

where p is the Lagrange multiplier, also known as the adjoint variable. By equating to
zero the Frechét derivatives of L with respect to the triple (y, u, p), we have the optimality
system

c(y, u) = 0,
h′(y) + cy(y, u)∗p = 0,
νg′(u) + cu(y, u)∗p = 0.

(3)

(∗ means adjoint.) The first differential equation in (3) is called the state equation and the
second one is the adjoint equation. The last equation yields the optimality condition.

To better understand the importance of the last equation we introduce the reduced cost
functional Ĵ given by

Ĵ(u) = J(y(u), u), (4)

where y(u) denotes the unique solution to the state equation for a given u. One can show
that the gradient of Ĵ(u) with respect to u is given by

∇Ĵ(u) = νg′(u) + cu(y, u)∗p(u), (5)

where p(u) solves the adjoint equation for a given u and corresponding y(u).
In a convex setting where the optimal control solution is unique, solving the optimal-

ity system is equivalent to solving the optimal control problem. However, in general,
c(y, u) = 0 may represent a nonlinear PDE and g and h may be locally non convex
wherein problem (1) may have multiple extremals including minima, maxima, and even
saddle points. Therefore additional conditions must be satisfied to guarantee that the solu-
tion is a minimizer. For the second-order optimality conditions, we assume that (y, u, p)
satisfy the optimality system (3) and the following

Lzz(y, u, p)(v, v) ≥ c1‖v‖2, c1 > 0 ∀v ∈ N (c′(y, u)), (6)

where z = (y, u) and c′(y, u) represents the linearized constraint. We assume that the null
space N (c′(y, u)) can be represented by N (c′(y, u)) = T (y, u)U , where U is the space
where the control is defined and

T (y, u) =

[
−c−1

y cu
Iu

]
,

such that cy and cu are evaluated at (y(u), u). Therefore, we can write condition (6) as

∇2Ĵ(u)(w,w) ≥ c2‖w‖2 c2 > 0 ∀w ∈ U. (7)

The operator∇2Ĵ is the reduced Hessian defined by

∇2Ĵ(u) = T ∗(y, u)Lzz(y, u, p)T (y, u)

where y and p solve the state and the adjoint equations for a given u. Hence, ∇2Ĵ(u) is
given by

∇2Ĵ = Luu + C∗ Lyy C − Luy C − C∗ Lyu (8)

where C = C(y, u) = c−1
y (y, u)cu(y, u). Notice that the reduced Hessian matrix ∇2Ĵ

is symmetric. Thus, condition (7) requires that the smallest real eigenvalue of the reduced
Hessian be positive.
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3 Linear and bilinear elliptic optimal control problems

In this section, we discuss linear and a bilinear elliptic optimal control problems. In our
setting the linear optimal control problem possesses a unique solution while for the bilinear
case existence but no uniqueness of the optimal solution can be proved [11]. From an
inverse problem point of view, the linear case represents a simplified source identification
problem. On the other hand, the bilinear case belongs to the class of parameter identification
problems.

We choose a cost functional given by

J(y, u) =
1

2
‖y − z‖2L2(Ω) +

ν

2
‖u‖2L2(Ω), (9)

where z ∈ L2(Ω) is the target function. This choice corresponds to h(y) = 1
2‖y − z‖

2
L2(Ω)

and g(u) = 1
2‖u‖

2
L2(Ω).

We focus on the following linear elliptic optimal control problem
min
u∈U

J(y, u),

−∆y − u = f in Ω,
y = 0 on ∂Ω,

(10)

where f ∈ L2(Ω) and U = L2(Ω). In this case, u is a distributed control over Ω. The
solution to (10) is characterized by the following optimality system

−∆y − u = f in Ω,
y = 0 on ∂Ω,

−∆p+ y = z in Ω,
p = 0 on ∂Ω,

νu− p = 0 in Ω.

(11)

From Equations (5) and (8), the reduced gradient is given by

∇Ĵ(u) = νu− p, (12)

and the reduced Hessian is
∇2Ĵ(u) = νI + ∆−2. (13)

We see that∇2Ĵ(u) is strictly positive and its eigenvalues are given by

λmn = ν +
1

π4(m2 + n2)2
for m,n ∈ N

which are all positive. The smallest eigenvalue is λmin = ν > 0 and therefore the solution
to the optimality system is guaranteed to be a minimizer. However, smaller ν correspond to
more flat minima and more stiff optimality systems.

Before we discuss the bilinear case, we consider two conditions regarding the reduced
Hessian which are needed in Section 7. These conditions are necessary for proving of
convergence of the MGOPT scheme. First, we have the ellipticity condition given by

(∇2Ĵ(u)v, v) ≥ β‖v‖2 for some β > 0.

We find an appropriate β as follows

(∇2Ĵ(u)v, v) = ((νI + ∆−2)v, v) = ν(v, v) + (∆−2v, v)

≥ ν(v, v) = ν‖v‖2.
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Hence β = ν. Also we have the Lipschitz condition

‖∇2Ĵ(u)−∇2Ĵ(v)‖ ≤ λ‖u− v‖ uniformly for some λ ≥ 0.

And it is easily shown that λ = 0 since ‖∇2Ĵ(u)−∇2Ĵ(v)‖ = 0.
Next, consider the case of a bilinear optimal control problem given by the following

min
u∈U

J(y, u),

−∆y − u y = f in Ω
y = 0 on ∂Ω.

(14)

Similar to the linear case, we choose f ∈ L2(Ω) and U = L2(Ω). The solution to problem
(14) is characterized by the following optimality system

−∆y − uy = f in Ω,
y = 0 on ∂Ω,

−∆p+ y − up = z in Ω,
p = 0 on ∂Ω,

νu− yp = 0 in Ω.

(15)

For a given u, y(u) and p(u) are the solutions of the state and adjoint equations with
homogeneous Dirichlet boundary conditions. Their existence requires that the operator
(∆+u) be invertible. Now notice that u cannot be constant on Ω since it satisfies u = yp/ν
and it inherits the homogeneous boundary conditions as the state and the adjoint variables.
Then we can use Lemma 3.2 from [8] based on the following theorem [7] that we state
without proof.

Theorem 1 Let Ω ⊂ Rd (d ≥ 2) be open and connected, let V ∈ Lqloc(Ω) for some q ≥ 2
with q ≥ 2d−1

3 . If ψ ∈ H1
loc(Ω),

(−∆ + V )ψ = 0

and ψ(x) = 0 on an open, non-empty subset of Ω, then ψ = 0 on Ω.

We can now derive the reduced gradient and the reduced Hessian using (5) and (8) as
follows

∇Ĵ(u) = νu− y p (16)

and
∇2Ĵ(u) = νI + y(∆ + u)−2y + p(∆ + u)−1y + y(∆ + u)−1p. (17)

In this case, we cannot state positivity of the reduced Hessian. And it is difficult to find
the ellipticity and Lipschitz constants unlike in the linear case. However, since p = (∆ +
u)−1(y − z) we can expect that for sufficiently accurate tracking, i.e. small ‖y − z‖, and
moderate values of ν the reduced Hessian is a positive definite operator. This situation may
take place whenever z is (almost) attainable. That is, there exists a u such that y(u) ≈ z.

4 Discretization and collective smoothing

We discuss multigrid methods for optimization problems that are formally expressed by
set of equations Au = f in a domain Ω. Correspondingly, we need to define a hierarchy
of problems Akuk = fk, indexed by k = 1, 2, . . . , L. These problems are assumed to be
defined in Ωk that represents Ω with a discretization parameterized by grid size hk. We have
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h1 > h2 > · · · > hL > 0, and for simplicity we assume that hk−1 = 2hk. The number
of interior grid points will be nk, and any function in Ωk is a vector of size nk. We denote
this vector space with Vk. In the space Vk, we introduce the discrete L2 inner product (·, ·)k
with the corresponding norm ‖u‖k =

√
(u, u)k.

For multigrid purpose we define a restriction operator Ik−1
k : Vk → Vk−1 and a pro-

longation operator Ikk−1 : Vk−1 → Vk. We require that they satisfy (Ik−1
k u, v)k−1 =

(u, Ikk−1v)k for all u ∈ Vk and v ∈ Vk−1. That is, the restriction operator is the adjoint of
the interpolation operator.

Now we consider the discrete version of the optimality system (11) for the linear control
case. Let us consider finite difference discretization and −∆k denotes the minus five-point
Laplacian. We have

−∆kyk − uk = fk,
−∆kpk + yk = zk,

νuk − pk = 0.
(18)

Let x ∈ Ωk where x = (ihk, jhk) and i, j are the indeces of the grid points arranged
lexicographically. Hence, in expanded form we have

−(yi−1,j + yi+1,j + yi,j−1 + yi,j+1) + 4yi,j − h2ui,j = h2fi,j ,

−(pi−1,j + pi+1,j + pi,j−1 + pi,j+1) + 4pi,j + h2yi,j = h2zi,j ,
νui,j − pi,j = 0.

Let wk = (yk, uk, pk). A collective smoothing step on w updates the values yi,j , pi,j , and
ui,j such that the resulting residuals of the state and adjoint equations at that point are zero.
We first set

Ai,j = −(yi−1,j + yi+1,j + yi,j−1 + yi,j+1)− h2fi,j , and
Bi,j = −(pi−1,j + pi+1,j + pi,j−1 + pi,j+1)− h2zi,j .

(19)

The values Ai,j and Bi,j are considered constant during the update of the variables at ij.
Hence, we have the following system of equations of three variables yi,j , ui,j and pi,j

Ai,j + 4yi,j − h2ui,j = 0,

Bi,j + 4pi,j + h2yi,j = 0,
νui,j − pi,j = 0.

Since this is a linear system, we can compute the updates for the variables yi,j , ui,j and pi,j
in the following way

yi,j(ui,j) = 1
4(h2ui,j −Ai,j),

pi,j(ui,j) = 1
16(−h4ui,j + h2Ai,j − 4Bi,j).

(20)

To obtain an update ui,j , we require that it satisfies the optimality condition ∇Ĵ(u) =
νu− p(u) = 0. Hence, we have

ui,j =
1

16ν + h4
(h2Ai,j − 4Bi,j).

With this ui,j we use (20) to update the values of the state and adjoint variable at the i, j
grid point. A sweep of this smoothing scheme consists in an ordered sequential update of
ui,j and yi,j , pi,j on all grid points.

Next, we define the smoothing iteration for the discrete bilinear elliptic optimal control
problem given by

−∆kyk − uk yk = fk,
−∆kpk + yk − uk pk = zk,

νuk − yk pk = 0.
(21)
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In this case, we have

−(yi−1,j + yi+1,j + yi,j−1 + yi,j+1) + 4yi,j − h2ui,j yi,j = h2fi,j ,

−(pi−1,j + pi+1,j + pi,j−1 + pi,j+1) + 4pi,j + h2yi,j − h2ui,j pi,j = h2zi,j ,
νui,j − yi,j pi,j = 0.

Using the same notations as in (19), Ai,j and Bi,j are considered constant during the update
of the variables at ij. Hence, we have the following system of equations of three variables
yi,j , ui,j , and pi,j

Ai,j + 4yi,j − h2ui,j yi,j = 0,

Bi,j + 4pi,j + h2yi,j − h2ui,j pi,j = 0,
νui,j − yi,j pi,j = 0.

We see that the resulting system of equations is nonlinear and thus computing the updates for
the variables ui,j , yi,j and pi,j requires to apply a local Newton step. This approach results
in a non robust smoothing iteration apparently because we have multiple solutions for ui,j
that are close. In fact, as we show below, the condition νui,j − yi,j(ui,j) pi,j(ui,j) = 0
results in a quartic polynomial equation for ui,j and therefore four roots are possible. To
determine these solutions we construct the quartic polynomial and solve it exactly by using
the Cardano-Tartaglia formula. In this way we can explore among the possible solutions of
the optimization step. To construct the quartic polynomial, we can define yi,j = yi,j(ui,j)
and pi,j = pi,j(ui,j) as functions of ui,j as follows

yi,j(ui,j) = −1
4−h2ui,jAi,j ,

pi,j(ui,j) = 1
(4−h2ui,j)2

(h2Ai,j + h2Bi,jui,j − 4Bi,j),

and equate the reduced gradient to zero, i.e. ∇Ĵ(u) = νu− y(u)p(u) = 0. Hence we have
a quartic polynomial equation in ui,j given by

νh6u4
i,j − 12νh4u3

i,j + 48νh2u2
i,j − (64ν + h2Ai,jBi,j)ui,j − (h2A2

i,j − 4Ai,jBi,j) = 0.

The solutions of the quartic polynomial are either four real or two real and two complex.
The two complex conjugate solutions can be disregarded. In order to find the minimizer, we
choose the minimum real solution of the quartic polynomial which minimizes

Ĵi,j(u) =
1

2
(yi,j(u)− zi,j)2 +

ν

2
u2.

With this condition, we get a robust and efficient smoothing iteration.

5 The collective smoothing multigrid (CSMG) method

The CSMG scheme is based on the nonlinear multigrid full approximation storage (FAS)
method applied to the optimality system with a collective smoothing. This method shows
mesh independence due to its robustness with respect to the value of the weight of the
control. Some recent applications of the CSMG method to linear control problems with
state and control constraints are presented in [2,4]. To illustrate the CSMG method consider

Ak(wk) = fk, (22)

where Ak(·) represents the discrete optimality system and wk = (yk, uk, pk). Let the col-
lective smoothing iteration be denoted by Sk such that we get an updatewlk = Sk(w

l−1
k , fk).
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Starting with an initial approximation w0
k, we apply γ1 times the smoothing scheme and ob-

tain wγ1k . Now, the desired solution wk can be written as wk = wγ1k + ek for some error ek
which is assumed to be smooth. We also have the residual rk = fk − Ak(wγ1k ) associated
with wγ1k . Thus, the error ek can be viewed as the solution to the following equation

Ak(w
γ1
k + ek) = rk +Ak(w

γ1
k ). (23)

Next, we want to solve problem (23) on a coarser grid Ωk−1. Define wk−1 := Ik−1
k wγ1k +

ek−1. Here, wk−1 represents a coarse-grid approximation to wk. To determine wk−1 we
define a coarse-grid representation of Ak(·) by Ak−1(·), we approximate wγ1k by Ik−1

k wγ1k
and Ik−1

k rk = Ik−1
k (fk −Ak(wγ1k )). Hence, we have the following equation

Ak−1(wk−1) = Ik−1
k (fk −Ak(wγ1k )) +Ak−1(Ik−1

k wγ1k ). (24)

We define
τk−1 = Ak−1(Ik−1

k wγ1k )− Ik−1
k Ak(w

γ1
k ), (25)

then equation (24) can be written as

Ak−1(wk−1) = Ik−1
k fk + τk−1. (26)

The term τk−1 is called the fine-to-coarse residual correction. The solution of equation
(24) provides ek−1 := wk−1 − Ik−1

k wγ1k . Therefore, we have a correction to the fine grid
approximation as follows

wk = wγ1k + Ikk−1(wk−1 − Ik−1
k wγ1k ). (27)

Finally, we apply γ2 iterations of the smoothing algorithm to damp possible high frequency
errors that may arise from the coarse grid correction process. The following algorithm
presents the method described above.

Algorithm 2 (CSMG algorithm) Initialize w0
k to be an initial approximation at resolution

k. If k = 1 (coarsest resolution), solve Ak(wk) = fk and return. Else if k > 1,

1. Pre-smoothing
Apply γ1 iterations of an optimization algorithm to the problem at resolution k.

wlk = Sk(w
l−1
k , fk), l = 1, 2, . . . , γ1

2. Coarse grid problem
Compute the residual. rk = fk −Ak(wγ1k )

Restrict the residual. rk−1 = Ik−1
k rk

Restrict the solution of (1). wγ1k−1 = Ik−1
k wγ1k .

Compute the fine-to-coarse residual correction.

τk−1 = Ak−1(wγ1k−1)− Ik−1
k Ak(w

γ1
k ), fk−1 = Ik−1

k fk + τk−1

Apply γ cycles of CSMG (γ1, γ2) to the coarse grid problem Ak−1(wk−1) = fk−1 to
obtain wk−1

3. Coarse grid correction
Prolongate the error. e = Ikk−1(wk−1 − wγ1k−1)

The coarse grid correction is given by wγ1+1
k = wγ1k + e.

4. Post-smoothing
Apply γ2 iterations of a smoothing algorithm to the problem at resolution k.

ulk = Sk(w
l−1
k , fk), l = γ1 + 2, . . . , γ1 + γ2 + 1
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6 The multigrid for optimization (MGOPT) method

The multigrid for optimization (MGOPT) method was first introduced by Nash [12] and
Lewis and Nash [9, 10] as an extension of the multigrid scheme to optimization problems.
To illustrate the MGOPT method, consider a discrete (locally) convex optimization problem

min
uk

(
Ĵk(uk)− (fk, uk)k

)
. (28)

This problem is equivalent to solving

∇Ĵk(uk) = fk. (29)

We introduce the term fk in order to give a recursive formulation of the MGOPT scheme.
At finest resolution k = L we set fk = 0.

Our focus is on optimal control problems where Ĵk represents the reduced cost func-
tional. To evaluate Ĵk at uk we compute yk(uk) and to determine∇Ĵk(uk) we need yk(uk)
and pk(uk). The MGOPT scheme is formulated in terms of the functional and its gradient
that implies the (formally exact) solution of the state and adjoint equations.

Let Sk be an optimization algorithm on the space Vk such that ulk = Sk(u
l−1
k ) for

l = 1, 2, . . . , γ1. We require sufficient decrease as follows

Ĵk(u
l
k)−(fk, u

l
k)k < Ĵk(u

l−1
k )−(fk, u

l−1
k )k−η‖∇Ĵk(ul−1

k )−fk‖2 for some η ∈ (0, 1).

Let u0
k be an initial approximation to the solution of Equation (28). After an application of

γ1 iterations of an optimization algorithm, we obtain uγ1k . Hence, it follows that the desired
solution uk is given by uk = uγ1k + ek for some error ek. Therefore, problem (29) can be
written as

∇Ĵk(uγ1k + ek) = fk

or equivalently as

∇Ĵk(uγ1k + ek)−∇Ĵk(uγ1k ) = fk −∇Ĵk(uγ1k ). (30)

Next, we will represent problem (30) on a coarser grid Vk−1. We define uγ1k + ek on Vk−1

as
uk−1 = Ik−1

k uγ1k + ek−1. (31)

On the left hand side of equation (30), we represent ∇Ĵk(·) by ∇Ĵk−1(·) and uγ1k by
Ik−1
k uγ1k . On the other side, we apply the restriction operator Ik−1

k and we get Ik−1
k (fk −

∇Ĵk(uγ1k )). Hence, we have the following equation

∇Ĵk−1(uk−1) = Ik−1
k fk − Ik−1

k ∇Ĵk(uγ1k ) +∇Ĵk−1(Ik−1
k uγ1k ). (32)

If we represent τk−1 as

τk−1 = ∇Ĵk−1(Ik−1
k uγ1k )− Ik−1

k ∇Ĵk(uγ1k ), (33)

then equation (32) can be written as

∇Ĵk−1(uk−1) = Ik−1
k fk + τk−1. (34)

The term τk−1 is called the fine-to-coarse gradient correction. Solving equation (34) is the
same as solving the coarse-grid optimization problem

min
uk−1

(
Ĵk−1(uk−1)− (fk−1, uk−1)k−1

)
(35)
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where fk−1 = Ik−1
k fk+τk−1. Assume that the solution to (35) is uk−1. Then we can define

the coarse-to-fine minimization step as follows

uk = uγ1k + αIkk−1(uk−1 − Ik−1
k uγ1k ). (36)

The term α is the step length obtained after a line search procedure in the direction given by
Ikk−1(uk−1 − Ik−1

k uγ1k ). Finally, we apply γ2 iterations of the optimization algorithm and
we get the solution uγ1+γ2+1

k .

Remark 3 Let us consider the coarse grid optimization problem given in equation (35).
Denote uk−1 = Ik−1

k uk, then the gradient of the coarse grid functional is

∇(Ĵk−1(uk−1) − (fk−1, uk−1)k−1)

= ∇Ĵk−1(uk−1)− fk−1

= ∇Ĵk−1(uk−1)−
[
Ik−1
k fk +∇Ĵk−1(uk−1)− Ik−1

k ∇Ĵk(uk)
]

= Ik−1
k ∇Ĵk(uk)− Ik−1

k fk

= Ik−1
k

(
∇Ĵk(uk)− fk

)
.

Note that in the second equality, we use the definition of fk−1 and τk−1. This shows that the
gradient of the coarse grid functional at uk−1 is the same as the restriction of the gradient
of the fine grid functional at uk.

We are now ready to present one cycle of the iterative MGOPT method.

Algorithm 4 (MGOPT algorithm) Initialize u0
k to be an initial approximation at resolu-

tion k. If k = 1 (coarsest resolution), solve min
uk

(
Ĵk(uk)− (fk, uk)k

)
and return, i.e.,

solve∇Ĵk(uk) = fk. Else if k > 1,

1. Pre-optimization
Apply γ1 iterations of an optimization algorithm to the problem at resolution k.

ulk = Sk(u
l−1
k ), l = 1, 2, . . . , γ1

2. Coarse grid problem
Restrict the solution of (1). uγ1k−1 = Ik−1

k uγ1k
Compute the fine-to-coarse gradient correction.

τk−1 = ∇Ĵk−1(uγ1k−1)− Ik−1
k ∇Ĵk(uγ1k ), fk−1 = Ik−1

k fk + τk−1

Apply one cycle of MGOPT (γ1, γ2) to the coarse grid minimization problem

min
uk−1

(
Ĵk−1(uk−1)− (fk−1, uk−1)k−1

)
to obtain uk−1

3. Coarse-to-fine minimization
Prolongate the error. e = Ikk−1(uk−1 − u

γ1
k−1)

Perform a line search in the direction e to obtain a step length αk.
The coarse-to-fine minimization step is given by uγ1+1

k = uγ1k + αk e.

4. Post-optimization
Apply γ2 iterations of an optimization algorithm to the problem at resolution k.

ulk = Sk(u
l−1
k ), l = γ1 + 2, . . . , γ1 + γ2 + 1
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7 The convergence of the MGOPT method

The convergence of the CSMG scheme is already well established using local Fourier analy-
sis; see for example [4,5]. Much less is known on the convergence properties of the MGOPT
scheme that we discuss in the following. Assume that Ĵk(uk) − (fk, uk)k is twice Frechét
differentiable for each k. Moreover, ∇2Ĵk is (locally) positive definite and satisfies the fol-
lowing conditions: (∇2Ĵk(u)v, v)k ≥ β‖v‖2k and ‖∇2Ĵk(u) − ∇2Ĵk(v)‖k ≤ λ‖u − v‖k
uniformly for some constants β, λ > 0. We use the expansion

Ĵk(u+ z) = Ĵk(u) + (fk, z) + (∇Ĵk(u)− fk, z)k +
1

2

∫ 1

0
(∇2Ĵk(u+ tz)z, z)kdt. (37)

The following lemma will be necessary for the results that follow.

Lemma 5 Assume that (∇Ĵk(u)− fk, v)k ≤ 0 for u,v ∈ Vk . Let γ satisfies the condition

0 ≤ γ ≤ −2δ(∇Ĵk(u)− fk, v)k

[∫ 1

0
(∇2Ĵk(u+ tγv)v, v)kdt

]−1

for some δ ∈ [0, 1].

Then

−γ(1− δ)(∇Ĵk(u)− fk, v)k ≤ Ĵk(u)− Ĵk(u+ γv) + γ(fk, v) ≤ −γ(∇Ĵk(u)− fk, v)k.

Proof. Set z = γv in Equation (37). For the first inequality, the restriction to γ is used.

Ĵk(u+ γv) = Ĵk(u) + γ(fk, v) + (∇Ĵk(u)− fk, γv)k +
1

2

∫ 1

0
(∇2Ĵk(u+ tγv)γv, γv)kdt

= Ĵk(u) + γ(fk, v) + γ(∇Ĵk(u)− fk, v)k +
γ

2

∫ 1

0
(∇2Ĵk(u+ tγv)v, v)kdt · γ

≤ Ĵk(u) + γ(fk, v) + γ(∇Ĵk(u)− fk, v)k +

γ

2

∫ 1

0
(∇2Ĵk(u+ tγv)v, v)kdt

(
−2δ(∇Ĵk(u)− fk, v)k

[∫ 1

0
(∇2Ĵk(u+ tγv)v, v)kdt

]−1
)

≤ Ĵk(u) + γ(fk, v) + γ(∇Ĵk(u)− fk, v)k − γδ(∇Ĵk(u)− fk, v)k.

Then

−γ(1− δ)(∇Ĵk(u)− fk, v)k ≤ Ĵk(u)− Ĵk(u+ γv) + γ(fk, v)

which proves the first inequality stated in the lemma. For the second inequality, the positiv-
ity of∇2Ĵk is used. We have

Ĵk(u+ γv) = Ĵk(u) + γ(fk, v) + (∇Ĵk(u)− fk, γv)k +
1

2

∫ 1

0
(∇2Ĵk(u+ tγv)γv, γv)kdt

= Ĵk(u) + γ(fk, v) + γ(∇Ĵk(u)− fk, v)k +
γ2

2

∫ 1

0
(∇2Ĵk(u+ tγv)v, v)kdt

≥ Ĵk(u) + γ(fk, v) + γ(∇Ĵk(u)− fk, v)k.

Then

Ĵk(u)− Ĵk(u+ γv) + γ(fk, v) ≤ −γ(∇Ĵk(u)− fk, v)k.

We now discuss an explicit estimate for the step length α such that the condition of
sufficient decrease is satisfied. This is proven in the lemma that follows.
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Lemma 6 Assume that (∇Ĵk(u)− fk, v)k ≤ 0 for u,v ∈ Vk . Let

α(u, v) = min

{
2,
−(∇Ĵk(u)− fk, v)k

λ‖v‖3k + (∇2Ĵk(u)v, v)k

}
where λ > 0.

Then

0 ≤ −1

2
α(u, v)(∇Ĵk(u)− fk, v)k ≤ Ĵk(u)− Ĵk(u+ α(u, v)v) + α(u, v)(fk, v).

Proof. Set γ = α(u, v), δ = 1
2 and z = α(u, v)v in Lemma 5. First, we will show that∫ 1

0
(∇2Ĵk(u+ tαv)v, v)kdt ≤ λ‖v‖3k + (∇2Ĵk(u)v, v)k.

∫ 1

0
(∇2Ĵk(u + tαv)v, v)kdt

=

∫ 1

0

[
(∇2Ĵk(u+ tαv)v, v)k − (∇2Ĵk(u)v, v)k + (∇2Ĵk(u)v, v)k

]
dt

=

∫ 1

0

[
(∇2Ĵk(u+ tαv)v, v)k − (∇2Ĵk(u)v, v)k

]
dt+

∫ 1

0
(∇2Ĵk(u)v, v)kdt

=

∫ 1

0

[
(∇2Ĵk(u+ tαv)v, v)k − (∇2Ĵk(u)v, v)k

]
dt+ (∇2Ĵk(u)v, v)k

≤
∫ 1

0
λ‖tαv‖k‖v‖2kdt+ (∇2Ĵk(u)v, v)k

= λα‖v‖3k
∫ 1

0
tdt+ (∇2Ĵk(u)v, v)k

≤ λ‖v‖3k + (∇2Ĵk(u)v, v)k, since α ≤ 2.

Then from the given assumption for α, we have

α(u, v) ≤ −(∇Ĵk(u)− fk, v)k

λ‖v‖3k + (∇2Ĵk(u)v, v)k
≤ −(∇Ĵk(u)− fk, v)k∫ 1

0 (∇2Ĵk(u+ tαv)v, v)kdt
.

Notice that α satisfies the condition of Lemma 5 with δ = 1
2 . Hence it follows that

0 ≤ −1

2
α(u, v)(∇Ĵk(u)− fk, v)k ≤ Ĵk(u)− Ĵk(u+ α(u, v)v) + α(u, v)(fk, v).

Finally, we will discuss the lemma which shows that the coarse-to-fine minimization with
step length α given by Lemma 6 is a minimizing step. It is also not required to solve
the coarse grid minimization problem exactly. This is however (formally) required on the
coarsest grid.

Lemma 7 Let u ∈ Vk and define ũ = Ik−1
k u. Let ṽ ∈ Vk−1 and define v = Ikk−1(ṽ − ũ).

Assume
Ĵk−1(ṽ)− (fk−1, ṽ) ≤ Ĵk−1(ũ)− (fk−1, ũ)

where
(fk−1, ṽ) =

(
Ik−1
k fk +∇Ĵk−1(ṽ)− Ik−1

k ∇Ĵk(v), ṽ
)
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and
(fk−1, ũ) =

(
Ik−1
k fk +∇Ĵk−1(ũ)− Ik−1

k ∇Ĵk(u), ũ
)

respectively. Then

Ĵk(u+ α(u, v)v)− Ĵk(u)− α(u, v)(fk, v) ≤ 1

2
α(u, v)(∇Ĵk(u)− fk, v)k

where α is the same as in Lemma 6. Strict inequality holds if

Ĵk−1(ṽ)− (fk−1, ṽ) < Ĵk−1(ũ)− (fk−1, ũ).

Proof. First, show that (∇Ĵk(u)− fk, v)k ≤ 0. From Equation (37),

(∇Ĵk(u)− fk, z)k = Ĵk(u+ z)− Ĵk(u)− (fk, z)−
1

2

∫ 1

0
(∇2Ĵk(u+ tz)z, z)kdt

≤ Ĵk(u+ z)− Ĵk(u)− (fk, z).

Let z = ṽ − ũ, u = ũ and replace k by k − 1. Then

(∇Ĵk−1(ũ)− fk−1, ṽ − ũ)k−1 ≤ Ĵk−1(ṽ)− Ĵk−1(ũ)− (fk−1, ṽ − ũ)

= Ĵk−1(ṽ)− (fk−1, ṽ)−
[
Ĵk−1(ũ)− (fk−1, ũ)

]
≤ 0.

Also, we have

(∇Ĵk(u)− fk, v)k = (∇Ĵk(u)− fk, Ikk−1(ṽ − ũ))k

= (Ik−1
k (∇Ĵk(u)− fk), ṽ − ũ)k−1

= (∇Ĵk−1(ũ)− fk−1, ṽ − ũ)k−1 ≤ 0.

The last equality can be referred to Remark 3 and it follows from Lemma 6 that

Ĵk(u+ α(u, v)v)− Ĵk(u)− α(u, v)(fk, v) ≤ 1

2
α(u, v)(∇Ĵk(u)− fk, v)k.

It appears clearly from the proofs that global convergence of the MGOPT method de-
pends critically on the descent direction d which in turn requires local positivity of the
Hessian. We can conclude with the following remarks.

Remark 8 For d to be a descent direction the following three conditions should be satisfied
[12].

• The convexity properties of the optimization problem on the finest resolution must be
well approximated by the problem on the coarse resolution .

• The multigrid subproblems min
xk−1

(
Ĵk−1(uk−1)− (fk−1, uk−1)k−1

)
are solved with

certain accuracy.

• The restriction and prolongation operators satisfy the condition

Ikk−1 = c(Ik−1
k )> for a constant c > 0.

This assumption is standard for multigrid algorithms. In our case, this is true for
Ik−1
k as a full weighing restriction and Ikk−1 as a bilinear interpolation with c = 4.
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We state the convergence of the MGOPT method.

Theorem 9 Let Ĵk(uk) − (fk, uk)k be twice Frechét differentiable for each k. Moreover,
let ∇2Ĵk be locally Lipschitz continuous and satisfies (∇2Ĵk(u)v, v)k ≥ β‖v‖2k together
with ‖∇2Ĵk(u)−∇2Ĵk(v)‖k ≤ λ‖u− v‖k uniformly for some positive constants β and λ
in a neighborhood V ε

k of u∗k where u∗k is the solution to problem (28). Then MGOPT method
provides a minimizing iteration.

Proof. Let u0
k ∈ V ε

k . Then A =
{
u ∈ Vk : Ĵk(u)− (fk, u) ≤ Ĵk(u0

k)− (fk, u
0
k)
}

is a
compact set. By induction, let k = 2 and define uk to be the result of the MGOPT step and
ûk−1 = arg min

u∈Vk-1

(
Ĵk−1(u)− (fk−1, u)k−1

)
. Using the result of Lemma 7, we have

Ĵk(uk)− (fk, uk)k = Ĵk(S
γ2
k (uγ1+1

k ))− (fk, S
γ2
k (uγ1+1

k ))

≤ Ĵk(u
γ1
k + αIkk−1(ûk−1 − Ik−1

k uγ1k ))− (fk, u
γ1
k + αIkk−1(ûk−1 − Ik−1

k uγ1k )))

≤ Ĵk(u
γ1
k )− (fk, u

γ1
k )k

= Ĵk(S
γ1
k (u0

k))− (fk, S
γ1
k (u0

k))k

≤ Ĵk(u
0
k)− (fk, u

0
k)k.

Note that strict inequality holds in all steps if∇Ĵk− fk is nonzero. For k > 2, by induction
hypothesis and Lemma 7, the theorem holds.

8 Numerical results

In this section, we present the results of numerical experiments on the computational perfor-
mance of the proposed multigrid schemes as solvers for distributed elliptic optimal control
problems. Choosing different values of the weight of the cost of the control, we gathered the
CPU time (in seconds) until a stopping tolerance of tol = 10−8 for the norm of the reduced
gradient is satisfied. For all computations, we use γ1 = γ2 = 2 pre and post smoothing
steps. This means that one cycle of the CSMG and of the MGOPT method uses γ1 +γ2 = 4
iterations of the smoothing algorithm on the finest grid. We consider an elliptic optimal
control problem with a discontinuous target function z as depicted in Figure 1. We use this
setting when solving both the linear and bilinear control problems.

First, we discuss the following linear elliptic optimal control problem
min
u∈U

J(y, u) := 1
2‖y − z‖

2
L2 + ν

2‖u‖
2
L2 ,

−∆y − u = f in Ω,
y = 0 on ∂Ω.

Let Ω = (0, 1)× (0, 1) and f ,z ∈ L2(Ω) given by

f(x, y) = 1

z(x, y) =

{
2, on (0.25, 0.75)× (0.25, 0.75)
1, otherwise

.

Notice that z is not attainable because of the boundary conditions. The numerical results
for this case are shown in Tables 1 and 2. We can see from Table 1 that choosing different
values for the parameter ν, the CSMG method converges within eight iterations. We also
obtain that the number of iterations is independent on the parameter ν and on the mesh size.
For the one grid optimization scheme, we use the gradient method (GM) and the nonlinear
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Figure 1: The target function z.

conjugate gradient (NCG) scheme [13]. As shown in Table 2, there is a constant increase
in the computational time as the parameter ν decreases. This property is also inherited by
the MGOPT method using both GM and NCG as smoothing algorithms. MGOPT with
NCG on the other hand exhibits a faster rate of convergence compared to the MGOPT with
GM. In all cases, the MGOPT procedure greatly improves upon the stand-alone one grid
optimization scheme and the resulting performance may become comparable to the optimal
performance of the CSMG algorithm. The numerical solutions y and u for ν = 10−4 are
shown in Figure 2.

Table 1: Results of linear elliptic optimal control problem using CSMG method.

ν mesh iter Ĵ ‖∇Ĵ‖L2 ρ time (sec)

1e-2
65× 65 8 0.718 9.64e-11 0.053 0.8

129× 129 8 0.701 9.91e-11 0.053 3.2
257× 257 8 0.692 9.95e-11 0.054 15.3

1e-4
65× 65 8 0.163 3.96e-12 0.090 0.8

129× 129 8 0.154 3.90e-12 0.083 3.2
257× 257 8 0.151 3.88e-12 0.082 15.3

Next, we discuss a bilinear elliptic optimal control problem as follows
min
u∈U

J(y, u) := 1
2‖y − z‖

2
L2 + ν

2‖u‖
2
L2 ,

−∆y − uy = f in Ω,
y = 0 on ∂Ω.

Let Ω = (0, 1)× (0, 1) and f ,z ∈ L2(Ω) given by

f(x, y) = 1

z(x, y) =

{
2, on (0.25, 0.75)× (0.25, 0.75)
1, otherwise

.

For this case numerical results are shown in Tables 3 and 4. We can see from Table 3 that
the CSMG method exhibits almost independence of the number of iterations on ν on the size
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Table 2: Results of CPU time (seconds) of linear elliptic optimal control problem using gradient method
(GM), MGOPT with GM (MGOPT1), nonlinear conjugate gradient (NCG) and MGOPT with NCG (MGOPT2).

ν mesh GM MGOPT1 NCG MGOPT2

65× 65 2.2 1.9 0.9 0.9
1e-2 129× 129 11.3 8.7 4.5 4.1

257× 257 57.5 40.0 23.1 20.7

65× 65 27.9 23.0 4.9 4.1
1e-4 129× 129 144.1 74.3 26.2 23.2

257× 257 723.0 344.8 131.8 88.6

Figure 2: Numerical solutions for the state (left) and control (right) variables of the linear
elliptic optimal control problem using ν = 10−4.

of the mesh where the problem is being solved. Together with the total CPU time, we also
include the CPU time for the computation of the roots of the quartic polynomial as this takes
about 70% of the whole computational time. Here, our purpose is to show robustness of the
collective smoothing procedure while we have made no effort in implementing a fast quartic
polynomial solver. Similar to the linear case, we show in Table 4 the computational time
for the onegrid optimization scheme using GM and NCG schemes. For solution processes
exceeding 20, 000 seconds we stopped the calculation. This table shows that MGOPT with
NCG is faster than MGOPT with GM. The numerical solutions y and u for ν = 10−4 are
shown in Figure 3.

9 Conclusion

We presented two multigrid schemes for solving elliptic optimal control problems, the
CSMG and the MGOPT methods. The numerical results showed that the CSMG scheme is
faster compared to the MGOPT method. It also provides mesh independent and parameter
independent convergence. On the other hand, it was shown that the MGOPT scheme greatly
accelerates one grid optimization schemes. While the application of the CSMG scheme re-
quired a carefully designed collective smoother specific for each problem, the application
of the MGOPT scheme did not require any adaptation to the problem.
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Table 3: Results of bilinear elliptic optimal control problem using CSMG method. (∗ time for computing the
roots)

ν mesh iter Ĵ ‖∇Ĵ‖L2 ρ time (sec) time (sec) ∗

1e-2
65× 65 8 0.863 2.06e-11 0.081 47.6 33.2

129× 129 9 0.843 1.85e-12 0.083 221.9 155.8
257× 257 9 0.834 1.90e-12 0.084 912.8 641.3

1e-4
65× 65 10 0.158 1.55e-08 0.287 59.7 41.5

129× 129 10 0.151 1.46e-08 0.366 243.1 170.1
257× 257 10 0.148 1.45e-08 0.434 997.5 696.7

Table 4: Results of CPU time (seconds) of bilinear elliptic optimal control problem using gradient method
(GM), MGOPT with GM (MGOPT1), nonlinear conjugate gradient (NCG) and MGOPT with NCG (MGOPT2).
(– longer that 20, 000 seconds)

ν mesh GM MGOPT1 NCG MGOPT2

65× 65 1.2 1.0 0.8 0.8
1e-2 129× 129 5.2 4.9 4.0 3.7

257× 257 25.1 19.1 19.0 18.8

65× 65 – – 17079.0 160.7
1e-4 129× 129 – – – 805.7

257× 257 – – – 4112.4

Figure 3: Numerical solutions for the state (left) and control (right) variables of the bilinear
elliptic optimal control problem using ν = 10−4.
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