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In this paper we introduce a nonparametric linear programming formulation for the general multigroup classification problem. 

Previous research using linear programming formulations has either been limited to the two-group case, or required complicated 

constraints and many zero-one variables. We develop general properties of our multigroup formulation and illustrate its use with 

several small example problems and previously published real data sets. A comparative analysis on the real data sets shows that our 

formulation may offer an interesting robust alte rnative to parame tric statistical formulations for the multigroup discriminant 

problem. 

R ecently, various mathematical programming (MP)­

based approaches have been proposed for solving the 

class ification problem in discriminant analysis (Bajgier and 

Hill 1982; Freed and Glove r 1981a, 1981b; Gehrlein 1986; 

Hand 1981; Smith 1968, 1969; Stam and Joachimsthaler 

1989; Stam and Ragsdale 1992). There is empirical evidence 

that these nonparametric methods may produce more accu­

rate classification rules than the traditional statistical methods 

such as Fisher's linear discriminant method (Fisher 1936) 

and Smith 's quadratic discriminant method (Smith 1947), 

which are based on the assumption of multivariate normal­

ity, if this assumption is violated to a significant extent. 

However, the experience with MP-based methods is not 

uniformly positive (Nath et al. 1992; Joachimsthaler and 

Stam 1990). A comprehensive overview of empirical stud­

ies using MP-based approaches to classification analysis is 

provided by Joachimsthaler and Stam (1990). A good re­

view of MP formulations for solving the classification prob­

lem can be found in Erenguc and Koehler (1990) and 

Stam ( 1997). 

However, a major drawback of most existing MP formu­

lations is that they are limited to the two-group case, and 

their extension from the two-group case to the general 

multigroup case is problematic at best. Gehrlein ( 1986) 

proposes a formu lation for the multigroup case which un­

fortunately requires a multitude of binary variables in or­

der to identify the optimal division of segments of the 

decision space among the various groups, rendering its 

implementation infeasible in practice for many real-size 

data sets. Freed and Glover (198lb) remark that the min­

imize the sum of deviations (MSD) form ulation, which is 

one of the most widely used linear programming (LP) for­

mulations for solving the classification problem, can easily 

be generalized to the multigroup classification problem by 

sequentially solving for the optimal separating hyperplanes 

between the pairs of groups. One problem with this ap­

proach, however, is that the resulting classification rules 

may not cover each segment of the decision space. More­

over, the pairwise estimation of hyperplanes leaves much 

to be desired, because it may lead to suboptimal overall 

classification results. 

Hence, the extension to more than two groups is diffi­

cult , if it requires the introduction of a multitude of binary 

variables; it is ad hoc, if the composite classification 

scheme is determined by separate pairwise analyses of the 

groups. In fact, some of the previously proposed MP for­

mulations are designed specifically for the two-group case, 

and cannot easily be generalized to more than two groups. 

Our paper provides a formulation which is applicable to 

the general multigroup classification problem, and is simi­

lar to the LINMAP approach for problems in multidimen­

sional analysis of preferences (Srinivasan and Shocker 

1973). We next introduce the model formulation. 

Subject classificatiow Programming. Linear applications. Statistics; nonparametric. discriminant analysis. 
Area of redew: 0PTl\11L..\TIOS. 
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1. THE BASIC MODEL 

Consider a finite set S = { 1, ... , s} of populations 

(groups) of objects, with each object belonging to one and 

only one of the groups. Samples of size nj, j E S, are 

available from these groups, and the group membership of 

each sample object in the training sample is known. Let 

N = LjES nj be the total sample size, and Pj = {l, ... , n) 

the set of sample objects belonging to group j,j ES. Each 

object i with either unknown or unspecified group mem­

bership is characterized by a set of K attributes contained 

in the (K + !)-dimensional column vector X; = (x;0, 

X;i , . .. , X;Kf, where X;o = l. Denote the attribute vector 

for object i with known membership in group j , i.e., i E Pj, 

by xij = (xijO' Xijl' ... 'X;jK)T, where X;jO = 1. 

We will estimate s (K + !)-dimensional row vectors 

O/. j = ( cx
10

, a
1
,, ••• , °'jK), and determine linear classifica­

tion scores Ol.jX; (j = 1, ... , s) for any object i with respect 

to group j, j E S. The classification decision rule is to 

classify an object i into group m provided that 

(1.1) 

Hence, (1.1) assigns an object to the group for which it 

attains the highest classification score. The classification 

rule in ( 1.1) is comparable to the Bayesian approach where 

an object would be assigned to a group based on the high­

est posterior probability of group membership for the 

given vector of attributes (Anderson 1984, Johnson and 

Wichern 1988), or to Fisher's (1936) classical approach 

where group membership is determined by distances de­

rived from linear classification scores. 

The vectors Ol. j , j E S, will be determined in a way such 

that the decision rule in (I.I) operates "optimally" on the 

sample objects according to a criterion which will be de­

fined below, combining measures of the "goodness" and 

"badness" of the fit. Let us use the notation S _ j = S\{j} to 

denote the set of all groups except group j, and represent 

any real-valued scalar y by y = y+ - y - , where y • = 
Max{O; y}, y- = -Min{O; y}. Then, the goodness of fit in 

the training sample for object i E P,, r E S, can be mea­

sured by G;j(01.', 01. j ) in (1.2), in which the classification 

score Ol.'X;, of object i with respect to its own group r is 

pairwise compared with classification scores O/.jX;, of this 

object with respect to the remaining groups j E S _,: 

G;j{OI.', Oi. i) = (Oi.'X;, - Ol.jX;,) +, i E P,, j ES_,, r ES. 

(1.2) 

Obviously, we prefer strictly positive values for G;j(OI.', 

Ol. j ), and larger values are better. Likewise, the badness of 

fit for object i E P, with respect to group j can be defined 

as in (1.3): 

(1.3) 

where smaller values of B~(OI.' , Ol. j ) are preferred, and ide­

ally s;j( OI.', Ol. j ) = 0. The aggregate goodness and badness 

of object i E P, are given by G;(Oi.) and s;(Oi.) in (1.4) and 

( 1.5), respectively: 

G;(Oi.) = G;(Ol. 1
, ••• , 01.') 

= 2: G;i(OI.', Oi.j), i E P,, r ES, 
jES -. 

B;(Oi.) =B;(Ol. 1
, ••• , 01.') 

= 2: B;/0i.',0i.j), iEP,,rES. 
jES -. 

(1.4) 

(1.5) 

Thus, the goodness and badness of all objects i in group 

r combined are given by G,(Oi.) and B,(Oi.) in (1.6) and (1.7), 

respectively: 

G,(Oi.) = G,(Ol. 1
, • •• , 01. ') = 2: G;(Ol. 1

, ••• , 01. ' ) 
iEP, 

= 2: 2: G;/OI.', Ol.j), rES, 
i EP, jES -, 

B,(Oi.) = B,(Ol. 1
, ••• , OI. ') = 2: B;(Ol. 1

, ••• , 01. ') 
iEP, 

= 2: 2: s;j(OI.', Ol.i) , r ES. 
i E P, f ES - , 

(1.6) 

(1.7) 

Finally, measures of total goodness G(Oi.) and total bad­

ness B(Oi.) for all groups r ES are given by (1.8) and (1.9): 

G(Oi.) = G (Ol. 1
, • • • , 01. ') = 2: G,(Oi.) 

rES 

= 2: 2: 2: a;
1
(01.', Ol. i), (1.8) 

rES jES - . iEP, 

B(Oi.) = B( OL 1, ••. , OI. ') = 2: B,(Oi.) 
rES 

= 2: 2: 2: B;/ °''· Ol. i) . (1.9) 
rES jES - r iEP, 

The measures of total goodness and badness of fit in 

(1.8) and (1.9) are conceptually similar to the "internal" 

and "external" deviations previously introduced by several 

researchers for the two-group case (Freed and Glover 

1986a, Glover et al. 1988, Glover 1990, Joachimsthaler and 

Stam 1990). 

Clearly, by definition G(Oi.) and B(Oi.) are nonnegative 

for any 0/.. The trivial solution where OI.' = 01.*, for all r E S, 

generates G(01.) = B(01.) = 0 but does not contain any useful 

information in terms of classification power, as any object 

can be classified arbitrarily into any of the s groups. Hence, 

we need to rule out the trivial solution by a proper normal­

ization. Also, a solution 0/. for which G(Oi.) - B(Oi.) < 0, i.e., 

a solution for which the total badness exceeds the total 

goodness of the fit, will in general not be satisfactory 

(see, e.g., Glover 1990). It can easily be verified that for 

any 01., G(Oi.) = B(-01.) holds, so it follows that for any 

solution 01. with G(01.) - B(01.) = -q < 0, G(-01.) -

B(-01.) = q > 0. Hence, undesirable solutions with total 

badness exceeding total goodness can easily be ruled out 

in our proposed formulation, by using the normalization 

given in (1.10): 

G(Oi.) - B(Oi.) = q, (l.10) 



where q is any strictly positive constant. Using this condi­

tion, we preclude solutions for which G(a) - B(a) < 0 

and the trivial solution a' = a•, for all r E S. From the 

definition of G(a) and B(a), (1.8) and (1.9), and the prop­

erty that y = y+ - y-, it follows that the difference be­

tween G(a) and B(a) is a linear function in a, i.e., 

G(a) - B(a) = 2: 2: 2: (a' - ai)x;, . 
rES jES-, iEP, 

The normalization in (1.10) will be investigated in more 

detail below. We next state the complete linear program 

LPq, which determines the a-vectors which minimize the 

total badness, subject to the normalization in (1.10). The 

superscript q in LP q refe rs to the right-hand-side value 

used in the normalization constraint. 

Program LPq: Min B(a) 

Subject to: 

G(a) - B(a) = q 

°' unrestricted in sign. 

( l.11) 

(1.10) 

(1.12) 

Due to the relationship between B(a) and G(a) dis­

cussed above and propositions to be introduced later, the 

normalization in (1.10) does not preclude any useful clas­

sification solution from consideration, and only scales the 

optimal solution through the choice of the constant q (see 

also Proposi tion 6). Program LP q can be restated as 

LPq-A by explicitly introducing a set of variables 13~ ; and 

y~, representing the badness B~ 1 ( a', a i) and goodness 

G~ ; (a', a i) of object i E P, with respect to group j ES _,, 

respectively: 

Program LPq-A: Min 2: 2: 2: 13 ;; ( 1.13) 
rES jES -• iEP. 

Subject to: 

13;; + (a' - a i) x;, - Y;; = 0, 

fora!! i E P,,j ES . ,, r ES, (1.14) 

2: 2: 2: ( y;; - 13;;) = q , ( 1.15) 
rE5 jES -• iEP, 

13;j, 'Y~j ;3 0, 

for all i E P,, j E 5-,, r ES. (1.16) 

Formulation LP "-A is similar in concept to the Hybrid 

model previously proposed for the two-group case (Glover 

et al. 1988, Glover 1990), with the omission of the minimax 

deviations from their general model framework. The fa­

vorable classification results for two groups reported in a 

recent simulation study involving (among others) several 

variants of the Hybrid model (Duarte Silva and Stam 

1994) indicate that our proposed multigroup formulation 

may give good classification results as well. Some impor­

tant theoretical properties of our formulation will be de­

rived and discussed in the next section. 

From (1.14) it is clear that the°' vectors are determined 

relative to each other. Consequently, one of the °' vectors 

can be set equal to the null vector, without loss of gener­

ality (see Proposi tion 7). 

Group I 
j = 1 

Group 2 
j = 2 

Group 3 
j = 3 
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Table I 

Data for Examples 1 and 3 

Example 1 Example 3 

Object i X;j1 x,Jz X;j1 X;j z 

1 1 2 2 3 
2 2 3 5 6 
3 2 4 3 8 
4 2 1 
1 4 2 4 6 

2 2.5 3 1 3 
3 2.5 4 4 4.5 

1 1 1 2 4 

2 2 2.5 4 5 

3 4 1 

Using w;,; as the dual variable associated with the con­

straint for object i E P,, j E S _" r E S, and w as the dual 

variable for the normalization constraint, the dual linear 

program DP"-A of LPq-A can be written as in (1.17)­

( 1.20): 

Program DPq·A: Maxqw 

Subject to: 

(1.17) 

L 2: X irkwirj - 2: 2: X;jkwijr 

JES - , iEP, JES -, iEP1 

+ ( L L X;,k 
jES - , iEP, 

L L X ;jk) W 
jES-. iEP1 

= 0, 

k = 0, 1, ... , K, and for all r ES. 

(1.18) 

Q ~Wirf :s::; 1, 

for all i E P" j E S _,, r E S, 

w unrestricted in sign. 

(1.19) 

(1.20) 

From a computational viewpoint, the dual program 

DP "-A is quite attractive, since the simplex method with 

bounded va riables can be used to solve it, and DPq-A 

contains only a relatively small number of proper con­

straints. While the primal problem in LPq-A has (s -

l)N + 1 constraints, DPq-A has only s(K + 1) proper 

constraints, the remainder being upper bounds on the 

variables. 

Example 1 is a very simple constructed data set with 

three groups and two (proper) attributes. Table I provides 

the data both for Example 1 and for Example 3, which is a 

special case that will be discussed in Section 2. 

Table II presents optimal vectors ai obtained for Exam­

ples 1 and 3 from solving LP q _A with q = 10. It should be 

noted that there may be alternative solutions, especially in 

those examples where complete linear separation of two or 

more groups is possible. 

Example 1. The interpretation of Example 1 is straightfor­

ward, as all of the °'; vectors are different. The hyper­

planes which pairwise separate groups h and j are 

constructed by setting ahx = a ix, h, j E S. Since the 
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Table II 

Solution Vectors for Examples 1 and 3 

Solution Example 1 Example 3 
Vector 

C'l. j 
X;j O x,, 1 Xij2 X;jO Xij l x,12 

a' 0 0 0 3.333 0 0 
C'l.2 -3.509 7.018 -3.509 3.333 0 0 
C'l.3 10.526 5.848 -8.187 0 0 0 

Objective 0 13.3333 
Value 

example has only two proper attributes (x 1, x2 ), the hyper­

planes are lines in R2
• After rescaling, this leads to the 

following separating hyperplanes: 

(1) Line separating groups 1 and 2: 2x 1 - x2 = 1, 

(2) Line separating groups 1 and 3: 5x 1 - 7x2 = -9, 

(3) Line separating groups 2 and 3: x 1 + 4x2 = 12. 

The sample points and lines of separation for Example 1 

are depicted graphically in Figure I. This figure shows that 

the data in this example are perfectly linearly separable, 

since none of the objects is misclassified. However, the 

separating hyperplanes do pass through three of the data 

points, so that the classification of these objects is ambigu­

ous. We will discuss the implications of this issue later in 

Section 2.5, and will propose a slightly modified prob lem 

formulation (the e-procedure) which deals with this issue. 

In the next section, we derive a number of properties of 

program LP'I, which will provide further justification for 

the choice of objective function and normalization in thi s 

formulation, and to establish the usefulness of LP 'I for ana­

lyzing the multigroup classification problem. A number of 

these properties are generalizations of similar properties 

4.5 -..------------...,...-------~ 

0 

3.5 

Group 1 c Group 2 

2.5 

1.5 
Group 3 

A 

0.5 

0+--..,...---.----,.--.----.----.---..---,----l 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 

Figure 1. Classification scheme for example I. 

previously derived, discussed and analyzed for the two­

group case by, among others, Freed and Glover (1986) and 

Koehler (1989a, 1989b, 1990, 1991). 

2. PROPERTIES OF THE BASIC MODEL 

2.1. Sequential Separation 

In this section, we first study the phenomenon that the 

classification vectors for at least two groups coincide. This 

situation may occur frequently in practice. Even though 

the normalization in (1.10) prevents that all o. j vectors are 

identical, it is possible that the o. j vectors in one or more 

subsets of Sare the same. In general , suppose that LPq-A 

generates an optimal solution with a partition S" S2, ••• , 

S0 of S such that for all pairs 111, r ES, (2.1) holds: 

mES 11 and rES1,,hE{l, . .. ,li}¢:>o."'=a'. 

(2.1) 

If every subset S; is a singleton, it follows that Ii = s, so 

that condition (2.1) does not apply and we get a solution of 

LPq-A where all aj are different. If at least one subset, say 

S1,, contains at least two elements, e.g., 111 and r, then am -

a' = 0, and no separation between groups 111 and r is 

possible. A new object with attribute vector X; and amX; = 

o.'x; = maxJE5 {aix;) cannot be classified at this stage. In 

fact, this situation can occur even if perfect linear separa­

tion of groups /11 and r is possible, as Example 2 below will 

show. 

In order to overcome this problem, a new linear pro­

gram is solved for each subset Si, containing more than 

one group. This LP uses only the sample data of the 

groups belonging to Si.. The (incomplete) classification in­

formation from previous iterations is retained, and re­

mains part of the final classification scheme. This process 

is continued until all subsets contain exactly one group, 

i.e., until all groups are separated. Such a process must 

necessarily terminate after solving at most s - I LPs, un­

less for a subset Si. containing at least two groups the 

conditions of Proposition 2 below hold. In that (unlikely) 

case, groups belonging to Si. cannot (and should not) be 

separated. Successive divisions can be represented by a 

tree structure, as we will show in Example 2. 

Example 2. In Example 2 we solve a constructed five­

group class ification problem with two proper attributes. 

The data, optimal a-vectors and successive partitions for 

this example are provided in Table III. The problem and 

the final classification scheme are shown graphically in 

Figure 2. 

We use the sequential separation procedure to deter­

mine the optimal classification rules for the five groups. 

Let us denote the a-vector associated with group r com­

puted in iteration p by ol". Table III shows that solving the 

full model with all five groups yields an optimal solution 

where a 11 = o. 12 = a 13 = a 14 = or, and o. 15 = (2.907, 

-2.907, -2.907)r, leading to hyperplane (1) in Figure 2, 
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Table III 

Data, Solutions and Successive Divisions for Example 2 (Five Groups) 

Data 
Group j 

Group 1 Group 2 Group 3 Group 4 Group 5 
Object i X;ji X;j2 X1jl X,12 X;ji X;p. xiJl X;j2 X;jt X;j1 

l 0 2.6 0 1 I I I 0 0 0 
2 1 3 0 2 2.4 2 2 0 1 0 
3 I .4 1.8 1 2 3 0.6 2 0.6 0 1 
4 1.4 2.6 2 2 3 1.4 3 0 0.4 0.4 

Successive Divisions and Solutions 
Optimal Solutio n 

Iteration S2 
0:11 0: 12 0: 13 0:15 

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (2.907, -2.907, -2.907) 

s. 

2 0:21 0:22 0:23 0:24 

(0, 0, 0) (0, 0, 0) (0, 2.358, - 2.358) (0, 2.358, - 2.358) 

3 0:31 0:32 o:JJ 0:34 

(0, 0, 0) ( 66.66 7' 0, - 33.333) (0, 0, 0) (13.636, 0, -22.727) 

separating group 5 from the other groups. Hence, the par­

tition of S consists of (S1> 5 2), where 5 1 = {I , 2, 3, 4}, and 

5 2 = {5}. A second iteration is required to separate the 

four groups in S 1> resulting in the a-vectors o:21 
= o:22 = 

or, and o:23 = o:24 
= (0, 2.358, -2.358)r, thus yielding 

clusters 53 = { 1, 2} and 54 = {3, 4} and hyperplane (2) 

which separates S 3 and 5 4 . ln the third iteration it remains 

to solve two more linear programs, one to separate the 

groups ins,, giving o:31 =or. o:32 = (66.667, 0, -33.333f 

and hyperplane (3), and another for 5 4 , resulting in o:33 = 

or, o:
34 = (13.636, 0, -22.727f and hyperplane (4) , which 

3,5 ~------------------, 

0 

Group 1, 2 

0 0 
(2) 2,5 

Group 1 Group 3, 4 

(3) 
t. 

0 

Group 2 
1,5 

t. 

Group 3 

(4) 
x 

0,5 

Other 
Group 4 

0 x x 

Group 5 

0,5 

·0,5 0,5 1,5 2,5 3,5 

Figure 2. Classification scheme for example 2 (five-group 

problem). 

completes the process of successive partitioning the 

groups. The process of successive divisions can be repre­

sented by the tree structure as in Figure 3. 

2.2. Existence of Solutions 

We next study the existence of solutions to LP", and show 

that this formulation guarantees a finite optimal solution, 

unless the left-hand side of the normalization constraint 

(1.10) is identical to zero. Without loss of generality, we 

will refer to the generic formulation LP", rather than to 

the equivalent formulation LP"-A. 

Proposition I. Program LP" has a finite optimal solution 

for any q > 0 if and only if there exists at least one o: for 

which G(o:) - B(a) * 0. 

s = { 1, 2, 3, 4, 5 } 

S5 = { 1} 

Figure 3. Tree st ructure and branching in the presence of 

coinciding a-vectors for example 2. 
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Proof. "=?": It is obvious that a finite optimal solution to 

LP" implies that G(cr) - B(a) = q * 0, since q > 0. 

"¢:": Checking LP•, we obseive that the formulation 

always has a finite optimal solution, if feasible . Arbitrarily 

select a vector er for which G(cr) - B(a) = p > 0. From 

(1.14) and (1.15) it follows that /3 ~ = Max{O, -(er' -

cr j )x
1
,} , i E P,, j E S_,, r ES. Hence, er* = p- 1qa and 

13* = p - 'ql3 form a feasible solution to LP • , which com­

pletes the proof. 0 

Whenever G(cr) - B(a) = 0 for all er, the linear pro­

gram LP• is infeasible and does not provide a solution to 

the discriminant problem. The next proposition shows un­

der which data conditions this will happen. 

Proposition 2. G(a) - B(a) = 0, for all a , if and only if 

LieP, x,, = x•, for all r E S. 

Proof. 

G(cr ) - B (a) = 2: 2: 2: (er' - cri) x1, 

rES jES -, iEP, 

2: [ L L o.'x;, 
rES j ES -, iEP, 

r2:ES [ (s - 1) ,.EIP, cr'x1, - 2: 2: a ix1,J 
jES- , iE P, 

2: [s 2: cr'x1, - 2: 2: a ix1,] = s 2: 2: cr ' x1, 

r E S iEP, jES iE P, rES 1Ef', 

- 2: 2: 2: a ix1, = s 2: 2: cr'x1, - 2: 2: 2: cr'x1i 
rES j ES i EP, rES iE P, rESjESiEP1 

2: cr ' [s 2: x1, - 2: 2: x1i]· 
rES iEP, jES iE P1 

Hence, it follows that G(cr) - B(a) = 0, for all er, if and 

only if 

s 2: X;, - 2: 2: X;j = 0, for r E s' 
iEP, jES iE P1 

which condition can be rewritten as 

1 
L xi,= - 2: 2: X;j =x*, rES, 

iE P, S j ES iE P1 

from which the proposition follows. 0 

Since x,rti equals one for all i E P,, r E S, it is obvious 

that 2:,e P X;rti = n1 will be identical across all groups r E S 

if and o~ly if ni = nh, for all j, h E S. Thus, restating 

Proposition 2 in a more concrete way, it shows that LP• 

(q * 0) provides no feasible solution to the discriminant 

problem, if and only if ( 1) all sample sizes 11i are equal, and 

(2) the sum, and hence the mean, for each attribute is the 

same across all groups. It is unlikely that any real data set 

will ever satisfy these conditions. Interestingly, the para­

metric Bayesian approach with multivariate normal groups 

(Anderson 1984) and equal covariance matrices for the 

different groups fails to provide a solution under exactly 

the same conditions as those in Proposition 2, provided 

that the prior probability of group membership is esti­

mated by the sample size proportions, and the group 

means are estimated by the respective sample means. The 

situation of equal sample means but unequal sample sizes 

is discussed in Propositions 3-6. 

To correct for the different sample sizes, weights could 

be introduced into the normalization restriction (1.10). 

Probably the most justified weighted normalization would 

be the one given in (2.2), where the contributions to G( er) 

- B( er) by obseivations in each group are weighted by the 

group's sample size, 

2: 2: 2: ni(a' - cri) x1, = q . (2.2) 
r E S j ES -, iE P, 

For the case of two groups, this expression simplifies to 

the normalization recently proposed by Glover (1990). 

Proposition 2 continues to hold , provided that L;e p x1, is 

replaced by.!;- L;eP, x1,, i.e. , instead of conditions (l) and 

(2) below Proposition 2, the requirement for this proposi­

tion now is that the sample means for each attribute 

should be the same across groups. Thus, LPq will fail to 

yield a feasible solution if and only if the sample means on 

all the attributes are equal, independent of the sample 

sizes. In this paper we do not investigate the use of (2.2) in 

LP" further. 

In Proposition 2 we derived that LP•-A has no feasible 

solution if and only if the training sample means for the 

attributes are identical across all groups and the training 

sample sizes of all groups are identical. Under these data 

conditions, none of the objects will be classified into a 

group. We will next discuss a related special case which 

will rarely occur in practice, but which is nevertheless of 

theoretical interest. Proposition 3 shows that if the sample 

means of each attribute are equal across all groups, but the 

sample sizes are not all identical, then there exists an op­

timal solution for which only the constant terms o., 0 can 

possibly be nonzero. 

Proposition 3. If xjk = l/11j x L;ep Xijk = x k> f or all j E S , 

k = 1, .. . , K , and not all sample 'sizes ni are equal, then 

there exists an optimal solwion to LP •-A, say (er*, {3* , 

y*) , such that a;k = 0, k = 1, ... , K , and r E S. 

Proof. See the appendix. 

The result of Proposition 3 is logically consistent , be­

cause one cannot expect to construct a meaningful linear 

classification function separating the groups, when the 

sample mean of each attribute is identical across all 

groups. The next proposition shows that it is possible to 

directly detennine an optimal solution to LP•-A if the con­

ditions of Proposition 3 hold. Moreover, Proposition 4 

shows in this case there exists a classification scheme which 

depends on the group sample sizes only. Without loss of 

generality, we assume that n 1 ;. n 2 ;. • • ·;. n,, with n 1 > 
n,, i.e., we order the groups according to their size. 

Let m , = sn, - Lies ni. Then Proposition 4 is stated as 

follows: 



Proposition 4. Under the conditions of Proposition 3, an 

optimal solution to LPq-A is given by aj. = 0, k = 1, ... , 

K,j ES; aj0 = O,j = r* + 1, ... , s; aj0 = q/L.;: 1 111;,j = 

1, . .. , r*, where r• is rnch that 

r L j::r+I nj 
Min ---- = Min M, = M* 

r=1 .... . s-1 Li"' ' m; 

holds for r = r*. 

Proof. See the appendix. 

Proposition 4 implies that if the sample mean for each 

proper attribute is the same across all groups, but the 

group sample sizes are not all identical , there exists an 

optimal solution to LPq-A where the estimated coefficients 

of all proper attributes are identical to zero for all groups, 

while the estimated coefficient of the constant term is ei­

ther a positive constant equal to aj0 , for j = I, ... , r*, or 

zero, for j = r• + 1, ... , s. In this case any object will be 

classified into the cluster of groups S 1 = {I, . . . , r*}, and 

never into any of the groups in S2 = {r* + 1, ... , s}. 

As remarked above, no immediate separation of objects 

within S 1 is possible. Further application of the sequential 

separation procedure described in Section 2.1 will of 

course eventually lead to the classification of all objects 

into the group with the largest training sample size. How­

ever, this phenomenon is not a shortcoming of our 

method. Under the data conditions of Proposition 4, the 

Bayesian approach will also classify all objects into the 

largest group of the training sample, as long as the prior 

group membership probabilities are proportional to the 

sample sizes. In the case of equal priors across groups, the 

posterior probabilities obtained using the Bayesian ap­

proach will be identical for each group, in other words, 

none of the objects will be classified into any group. Simi­

larly, Proposition 2 states that LP"-A does not classify any 

object into a group if the training sample sizes of all 

groups are identical. 

We can extend Proposition 3 to Proposition 5, the proof 

of which is conceptually similar to that of Proposition 3. 

Proposition 5. Suppose that for some allribute t E { 1, ... , 

K} , x;,, "' O,for all i E P,, r ES. lf .rik = x.,j ES and k = 

1, . . . , K, then there exists an optimal solwio11 to LPq-A, 

say (a* , f3*, y*), such that a;k = 0 and r E S, k = 0, 

1, ... ' t - 1, t + 1, ... ' K. 

Proof. See the appendix. 

Compared with Proposition 3, the only additional re­

quirement in Proposition 5 is that there exists an attribute 

t E {O, 1, ... , K} for which the training sample values x;,, 

are all nonnegative. However, Proposition 8 below shows 

that the training sample data can easily be transformed 

such that X;,, ;;, 0 for all i E P,, r ES, and any t E {l, ... , 

K}. Moreover, this nonnegativity restriction is always satis­

fied for t = 0, since the constant terms X;,o equal one for 
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each object. Therefore, Proposition 3 is a special case of 

Proposition 5. 

Proposition 5 shows that if the sample mean for each 

proper attribute (i.e., for each k E { 1, ... , K}) is identical 

across groups, but the group sample sizes are not all the 

same, an optimal solution exists in which the estimated 

values of all but one of the attribute coefficients for all 

groups are zero, including the coefficients of the constant 

terms. The nature of the optimal solution a~ (see (A.18) 

in the appendix) implies that in this situation objects will 

always be classified into the group, say w, which has the 

largest coefficient a;rAx = a:,. However, the a~ 1 AX value 

may occur for more than one group, in which case the 

classification rule assigns each observation to the subset 

5MAX of groups with maximal a;,-value . Objects are never 

assigned to groups with smaller a,,-values, so that under 

the-admittedly exceptional-data condition of Proposi­

tions 3-5, alternative procedures yielding nonlinear (e.g., 

quadratic) classification rules are required. We relegate 

the extension of our linear method to the nonlinear case to 

future research. 

Example 3 illustrates the special case described in Prop­

ositions 3-5. 

Example 3. Example 3 has three groups and two proper 

attributes. The data and optimal solution for this example 

are given in Tables I and II. In the optimal solution for this 

example, both proper attributes x1 and x2 have a zero 

coefficient for all three groups. This implies that the only 

useful information from the sample data, according to the 

LP model , is contained in the number of training sample 

objects from each group. Since ab = a6 = 3.333 and a~ = 

0, all sample objects are classified into the cluster consist­

ing of groups I and 2. No object will ever be classified into 

group 3, and the sequential separation procedure is 

needed in order to further distinguish between groups I 

and 2. Since the sample means of both attributes are iden­

tical across all groups, but the sample sizes are not (n 1 = 

4, 11 2 = 3, and 11 3 = 2), this result is a direct application of 

Propositions 3 and 4. It is interesting to verify the condi­

tions in Proposition 4 which resulted in the initial separa­

tion scheme for this example. We use the training sample 

sizes ni to calculate that m 1 = 3, m 2 = 0 and m 3 = -3, so 

that M 1 = 5/3 and M 2 = 4/3. The minimum value M* over 

r E {l, ... , s - l} = { 1, 2} is Ml> and r* = 2, resulting in 

an initial separation of group 3 from groups 1 and 2. 

2.3. Scaling, Linear Transformations, and 

Index of Fit 

The next property shows that the particular choice of the 

positive constant q affects only the scaling of the problem. 

Proposition 6. Let (a*, f3*, y*) be an optimal solution to 

program LPq, with objective function value v?. Then, for 

any t > 0, (a**, /3**, y**) with a•• = tq - 1a* , /3** = 
tq - 1 /3* and y•• = tq- 1y* is an optimal solution to LP', 

with objective fu11ction value tq- 1v?. 
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Proof. Let v: the objective function value for the solution 

(a**, ll**, -y**) to LP'. By the construction of (a**, ll** , 

-y**), it immediately follows that v: = tq - 1v'f. If (a**, 

(l**, -y**) is not optimal in LP', then there exists a solu­

tion (a ', (l', -y') with objective value v~ such that v~ < v \ . 

However, consider a solution (a", (l", -y") with a" = 

qt - 1a' , W' = qt- 1(l' and -y" = qt - 1-y', which is feasible in 

LPq with objective function value vi.= qt- 1if2 < qt - 1if1 = 

qt - 1tq-'vi = v'f. This is obviously a contradiction. D 

Given the decision rule in (1.1) to classify an object i 

into group m provided that amx; = MaxiES{aix;} , it is 

clear that the solutions a• and a** as defined in Proposi­

tion 6 are equivalent in that the classification results for 

both vectors will be identical, and q merely scales the op­

timal solution. It should be noted that if LP q has alterna­

tive optimal solutions, then LP' has corresponding 

alternative optimal solutions as well. 

The model described so far assigns one vector a i to 

each group j E S. Checking the structure of LP•, it is 

obvious that there is redundancy in the number of vari­

ables in°' = (a1, .. . , a 5
), as G(a) and B(a) are based on 

the pairwise differences berween the a-vectors. The next 

proposition makes this redundancy explicit. 

Proposition 7. Let (a, {3, y) be an optimal solution to 

LPq. For any fixed vector a 0 E RK+t, define 11i = a i + 
a 0 ,forallj ES. Then (11, /3, y) is also an optimal solution 

to LP•. 

Proof. The pairwise difference ( lJ' - ll i) is equal to ( °' ' -

a 0 
- a i + a 0

) =(a' - a i) , which reduces to the same 

pairwise differences as in the original formulation (1.14). 

Hence, if ( 0<, (l, 'Y) is an optimal solution, ( lJ, (l , 'Y) is an 

optimal solution as well. D 

By taking the vector °' 0 in Proposition 7 equal to - °'' 

for some r E S, it follows that ll' = 0, implying that any 

one of the vectors a i, j E S, can be set identically equal to 

zero without loss to the model. To preserve the symmetry 

of the original model form, however, we do not introduce 

this simplification in our paper. 

An important consideration in the construction of meth­

ods for classification and discrimination is whether these 

methods are insensitive to rotation and/or translation of 

the data. To discuss this issue for our approach, we intro­

duce some further notation. Let xT, = (1, X;,i, .. . , x;,K) = 

(1, (x:;f), and ai = (ai0, °'i ' ' ... , °'iK) = (ai0, (ai.Rf). 

Proposition 8 shows that the a-vectors of LP q after a lin­

ear transformation of the data are themselves a linear 

transformation of the original solution, while the (l- and 

-y-vectors remain unchanged. 

Proposition 8. Let U be a nonsingular K X K matrix, and 

u an arbitrary column vector in RK. ·Suppose that the x;,, 

i E P,, r E S, are the original data and the transfomied 

data are given by x~ = Ux~ + u, i E P,, r E S. Consider 

program LP q-D, the analogue to LP q-A using the trans-

formed data x~R. If (a, /3, y) with °' = (0< 
1
, ••• , 0<

5
) and 

a i = (ai0, (ai·R f) , j E S, solves LPq-A, then (/;, /3, y) 

solves LP•-D, where /; = (t, . . . , /;') , and ?;i = ({i0 , 

(?;i.Rf), with {io = °'io - a i.Ru - 1u and i;i .R = a i.Ru- 1
• 

Proof. The stability theorem of Glover et al. (1988) can be 

applied directly to LPq-A. A less direct proof can be con­

structed using duality theory of linear programming. D 

One application of this proposition concerns solving the 

problem of standardized data. Let i ik and sik denote the 

sample mean and standard deviation of attribute k in 

group j. Similarly, let xk and sk be the mean and (pooled) 

standard deviation of attribute k for all sample data. The 

original data can be standardized using the transformation 

in Proposition 8 by taking U = Diag(sk" 1
), i.e., a diagonal 

transformation matrix with the reciprocal of the pooled 

standard deviations on the main diagonal , and u = 

(11 1, ... , uK) , where uk = -x,.s;;- '. According to Proposi­

tion 8, these standardized data generate a transformed 

problem with solution (a*, (l* , -y*), where aj0 = °'iO + 
2:[ ~ 1 i k°'ik• a jk = sk°'ik• ll* = ll and -y• = -y, j ES, k = 

I , ... , K. The coefficients a jk can be used to identify the 

relative importance of the different attributes. As shown 

above, they can be computed directly from the coefficients 

°'ik> without re-solving the original problem. 

A last basic result of our formulation for the general 

multigroup class ification problem concerns the construc­

tion of a general index of fit. For given sample sets of 

objects and a set of vectors a i, j E S, such that G(a) 

B(a) > 0, an index of fit C(a) is defined by (2.3) : 

B (a ) 
C (a ) = 1 - G(a). (2.3) 

The main properties of this index are contained in the 

next two propositions. 

Proposition 9. The index of fit Cq( a*) associated with an 

optimal solwion (a*) of LP 'I has th e following propenies: 

(i) 0 < Cq(a*) ""I, with larger values ofCq(a*) indicating 

better classification results for the sample data. 

(ii) Cq(a*) is independent of q and of the data transforma­

tion of Proposition 8. 

(iii) The objective function of LP q can be changed to max-

imizing Cq(a) without changing the solwion of LPq. 

Proof. Cq(a *) is strictly greater than zero, because 

Cq(a*) = (G(a*) - B(a*))/G(a*) = q!G(a*) , while q > 
0 and G(a*) > 0. Moreover, Cq(a*) does not exceed 1, 

since G(a*) ;;. G(a*) - B(a*) = q, which completes the 

proof of (i). To prove (ii), we let Bq(a*) and B,(a**) 

denote the objective values (badness) of the optimal solu­

tions a• and a•• of LP q and LP', respectively. Then, 

C,(a**) = t/(t + B,(a**)) = tl (t + tq - 1Bq(a*)), from 

Proposition 6, so that C,(a**) = q!(q + Bq(a*)) = 

Cq( a*). The independence of Cq( a*) from the data trans­

form ation of Proposition 8 is obvious since an optimal 

solution was constructed in the proposition in which the 



badness vector Jl remained unchanged. Part (iii) follows, 

because minimizing badness B(cx) is equivalent to minimiz­

ing q + B(a) , which in turn is equivalent to maximizing 

ql(q + B(a)) = Cq(a). 0 

2.4. Separating Hyperplanes 

For any pair of solution vectors a' and o!, the following 

three cases are possible: 

(i) a' = a 1, 

(ii) a' * ai, but a,k 1, ... , K, and a, 0 * 
a j0, or 

(iii) none of the above. 

Given an object with score x, and considering classifica­

tion into either group r or group j , we have the following 

situation: 

ad (i) No classification between groups r and j is pos­

sible, and the sequential procedure is to be ap­

plied (see Section 2.1). 

ad (ii) No separating hyperplane between groups r and 

j exists. Any object will be classified into group r 

if a, 0 > a 10, in group j if a10 > a, 0. 

ad (iii) A separating hyperplane does exist, and the clas­

sification is as follows: 

if a'x > a ix, then classify into group r, 

if a'x < a ix, then classify into group j , and 

if a'x = a ix, then classify into either group 

r or group j. 

2.5. e-Procedure 

As remarked above, one potential drawback of LP q-A, as 

well as of other previously proposed LP-based formula­

tions for the two-group case, is that some objects in the 

training sample may be located exactly on the boundary 

between two groups, so that their classification is ambigu­

ous. For instance, three out of nine objects in Example 1 

and six of 244 objects in Example 5 below (see Section 3) 

are located on one or more separating hyperplanes. 

This phenomenon may not pose a problem in practice, 

as long as the size of the training sample is large, the data 

are continuous, and when the classification rules are ap­

plied to validation samples. However, due to their ten­

dency to select separating hyperplanes which cross through 

some of the objects in the training sample, one should be 

careful in interpreting the classification performance of 

linear programming procedures which ignore this issue­

certainly on the training sample, but also on the validation 

sample if the populations have discrete-valued attributes, 

in which case some validation sample objects may be lo­

cated exactly on a boundary between two or more groups. 

To avoid as much as possible the case of having obser­

vations of the training sample located on the separating 

hyperplanes between groups, it is possible to introduce an 

e-procedure as follows. For e positive and sufficiently 

small, let {3~ 1 = (O'.rx,,. - a.ixir - e) - and 'Y~J = (a '"xir -
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Table IV 

Results for e-Procedure Applied to the Data of 

Example 1 

a' 
Solution Vector 
(l2 

(0, 0, 0) ( -11.444,8.889, -2.444) ( 5.407,6.407,6.407) 

Pairwise Separating Hyperplanes 

Group I and Group 2 8.889x 1 - 2.444x2 = 11.444 
Group I and Group 3 6.407x 1 - 6.407x2 = -5.407 

Group 2 and Group 3 2.482x 1 + 3.963x2 = 16.851 

dx,, - e) +, where i E P,,j ES _, and r ES. Now, the set 

of restrictions in (1.14) is replaced by (2.4): 

for all i E P,, j E S _,, r E S. (2.4) 

Note that if 13 ~ = y ~ = 0, object i E P, will always be 

classified correctly with respect to group j. The remainder 

of LP"-A remains unchanged. One choice might be to 

restrict e to a (small) fraction of the average value of the 

a'x,, - a ix,,, for instance by applying the formula in (2.5): 

e = 
1 

I I I (cx'x,, - a 1x,,) , (2.5) 
F(s - 1) Ljes n1 res iEP, JES-. 

where F is a large positive number denoting the fraction 

(e.g. , F = 1,000). Defining T = (s - I) 2:1es n1 for sim­

plicity and using (2.4 ), (2.5) can be written as (2.6): 

LL .Z:: (y;1-f3;1)=TFe-Te=q, (2.6) 
rES iEP, JES - . 

ore = q/T(F - 1). Choosing a value of q should be guided 

by the principle of obtaining an optimal a-vector with 

components which are neither too small nor too large. 

Reasonable choices range from q = T to q = l ,OOOT. It is 

possible to refine this e-procedure, e.g., by allowing differ­

ent e-variables for each pair of groups. However, we will 

not discuss this extension in the current paper. 

Example 4. Recall that, even though none of the objects 

was misclassified, in Example 1 several of the data points 

were located on the boundary of the classification regions, 

so that the classification of these objects is ambiguous. We 

re-solve this example using the e-procedure. The resulting 

optimal solution and the classification regions are given in 

Table IV and graphically presented in Figure 4. It appears 

that the classification scheme resulting from the 

e-procedure is more attractive than that in the original 

scheme in Example 1, as the group boundaries are now 

located strictly inbetween the objects, without increasing 

the number of misclassified cases. 

3. EVALUATION 

In this section we use two real data sets that have been 

published previously in the literature (Rulon et al. 1967, 

SAS 1988) to compare the classification performance of 
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Figure 4. Classification scheme for example 4 ( E-procedure ). 

our proposed formulation with that of Fisher's linear dis­

criminant function (Fisher 1936) and the nonparametric 

nearest neighbor method. Example 5 (Rulon et al. 1967) is 

a fairly large data set with three attributes, three groups and 

244 objects. Example 6 (SAS 1988) is a small five-group 

problem with four attributes and 36 objects. We analyze 

these data sets using both the resubstitution method, 

where the estimated classification rules are used to classify 

each object of the training sample, and the Leave-One-Out 

(LOO) cross-validation method (Lachenbruch 1967). The 

resubstitution method is known to be positively biased and 

to underestimate the true misclassification rates, because 

the very same objects are used to estimate and evalu­

ate the classification rules. The LOO method has been 

shown to yield almost unbiased estimates of the misclassi­

fication rates (Lachenbruch 1967, Mclachlan 1992). 

3.1. Example 5: Personnel Management Data Set 

(Rulon et al.) 

Rulon et al. (1967) attempt to characterize three groups of 

employees, "passenger agents," "mechanics," and "opera­

tions control agents," of a particular airline company. To 

this purpose, 85 passenger agents, 93 mechanics and 66 

operations control agents were asked to fill out an exten­

sive questionnaire, which included various questions about 

each employee's preference for certain types of indoor and 

outdoor activities. These answers were then translated into 

three composite scores, measured on a ratio-scale, the first 

one (X1) measuring preference for outdoor activities, the 

second (X2) measuring preference for convivial activities, 

and the third one (X3) measuring preference for conserva­

tive activities. For further details about the nature of these 

attributes and the data collection process we refer the 

reader to Rulon et al. (1967). The purpose of the analysis 

was to establish rules which would be useful in making 

personnel assignment decisions, answering such questions 

as which type of job provides the best fit with a given 

employee, based on the employee's questionnaire results. 

Table V gives the classification results of applying our 

proposed nonparametric linear programming formulation, 

with and without the e-procedure, Fisher's parametric lin­

ear discriminant function with proportional priors and with 

equal priors, and the nonparametric k-nearest neighbor 

method, with k = 8 and k = 16. The detailed information 

in the first part of Table V refers to the solutions obtained 

by applying the estimated classification rules to the train­

ing sample objects (resubstitution) . From the results we 

see that, using the resubstitution method, all six methods 

classify approximately equally well for this data set, with 

misclassification percentages ranging from 23.8 percent for 

the nearest neighbor method with k = 8 to 27.9 percent 

for the nearest neighbor method with k = 16. Fisher's 

linear function and the linear programming methods yield 

almost identical results of between 24.2 and 25 percent 

misclassified. Note that the linear programming method 

with the e-procedure correctly classifies each of the six 

objects from the training sample which were located on the 

boundary of the solution obtained without including 

the E-procedure. 

The last part of Table V presents the classification re­

sults when applying the LOO method. Again, Fisher's 

method gives slightly more accurate results than the linear 

programming formulations (25.0 and 25.4 versus 26.6 per­

cent misclassified), while the nearest neighbor methods 

perform poorly (29.1 and 30.3 percent misclassified) . 

3.2. Example 6: Remote-Sensing Data on Crops 

(SAS 1988) 

The real data of Example 6 are used in the SAS/Stat User's 

Guide (SAS 1988) to illustrate Fisher's linear discriminant 

analysis. In this example, four measures of remote-sensing 

data are used to classify observations as one of five differ­

ent crops: clover, corn, cotton, soybeans and sugar beets. 

The training sample consists of 11, 7, 6, 6, and 6 observa­

tions in these groups, respectively, for a total sample size 

of n = 36. Given the small number of training sample 

objects, we limit the nearest neighbor analysis to k = 8. 

Table VI gives the summary classification results using the 

resubstitution analysis and the LOO analysis. 

From Table VI, we see that the misclassification rates 

are high, no matter which linear classification rule is used. 

Misclassification rates of over 50 percent are not as sur­

prising in the five-group case as in two-group classification, 

as in our current example there are multiple ways of mis­

classifying objects. When re-substituting the training sam­

ple, the linear programming approach with E > 0 is the 

most accurate with a misclassification rate of 27.8 percent, 

followed at a distance by the linear programming approach 

with E = 0 ( 43.0 percent), Fisher's method (50 percent), 

and the nearest neighbor method with 53.2 percent mis­

classified. Analyzing the data using the LOO method, 
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Table V 

Solution of Example 5 (Rulon et al. 1967), Plus Comparison with Other Methods 

Linear Programming Method (LP •-A) (ReSubstitution) 

e=O Classified into Group: On E = 0.001 Classified into Group: 

1 2 3 Boundary I 2 3 

I~~ 
13 3 

I 

3 

I 

69 13 3 
From Group: 2 63 13 2 From Group: 2 15 65 13 

3 12 50 1 3 3 12 51 

Fisher's Linear Discriminant Function (ReSubstitution) 

Proportional Priors Equal Priors 
Classified into Group: Classified into Group: 

1 2 3 2 3 

68 13 4 70 11 4 
From Group: 2 16 67 10 From Group: 2 16 62 15 

3 3 13 50 3 3 12 51 

k-Nearest Neighbor Method (ReSubstitution) 

k = 8 Classified into Group: k = 16 Classified into Group: 

2 3 1 2 3 

Ii~ 
7 6 68 11 6 

From Group: 2 62 14 From Group: 2 20 56 17 
3 10 52 3 4 10 51 

Summary Classification Results for Example S 

Method 

LP•-A, e = 0 
LP•-A, e = .001 
Fisher's LDF, Proportional Priors 
Fisher's LDF, Equal Priors 
k-Nearest Neighbor, k = 8 

k-Nearest Neighbor, k = 16 

Fisher's method with proportional priors yields the best 

results, with 63.9 percent misclassified , closely followed by 

Fisher's method with equal priors and the linear program­

ming approach (66.7 percent). The difference of about 

three percent between the misclassification rates of these 

three methods corresponds with a difference of only one 

misclassified object. As when using resubstitution method, 

the nearest neighbor method gives the poorest classifica­

tion results (72.2 percent misclassified). 

Table VI 

Summary Classification Results for 

Example 6 (SAS 1988) 

Method 

LP•-A, e = 0 
LP•-A, E = .001 
Fisher's LDF, 

Proportional Priors 
Fisher's LDF, Equal 

Priors 
k-Nearest 

Neighbor, k = 8 

Percentage Misclassified 
ReSubstitution Leave-One-Out 

Method Method 

43.0 66.7 
27.8 66.7 
50.0 63.9 

50.0 

53.2 

66.7 

72.2 

Percentage Misclassified 

ReSubstitution 
Method 

24.2 
24.2 
24.2 
25.0 
23.8 
27.9 

4. CONCLUSIONS 

Leave-One-Out 

Method 

26.6 
26.6 
25.0 
25.4 
29.1 
30.3 

Our proposed multigroup LP approach for solving classifi­

cation problems appears to greatly enhance the types of 

problems that can be analyzed systematically using non­

parametric LP-based methods. The example problems and 

the analysis of real data sets presented in this paper clearly 

show that our multigroup LP procedure is indeed capable 

of providing good classification results, which can compete 

with both Fisher's parametric method and the nonpara­

metric k-nearest neighbor method. The purpose of our 

paper is to introduce the novel problem formulation and 

study a number of important properties of the formula­

tion. Of course, future research should further investigate 

the robustness of the proposed multigroup LP classifica­

tion method with respect to various data conditions, much 

like it has already been done-with mixed success-for the 

two-group case. 

APPENDIX 

Proof of Proposition 3. From Propositions 1 and 2 it fol­

lows that LP•-A has a finite optimal solution, say (a, J3, "f). 
Consider a;k = 0, k = 1, ... , K and r E S; a;0 = a, 0 + 
L~ - 1 5\a,., r ES; /3~/ = ~ L,EP, {3~. for all i E P,,j Es_, 
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and r E S; and y~• = ;/;- 2:,EP, y1, for all i E P,, j E 5-, 
and r ES. We will show that (a*, 13•, -y*) is both feasible 

and optimal for LPq-A 

(1) Feasibility: From the nonnegativity constraints /3',; ;;. 
0, Y1 ;;. 0, i E P,, j E S _,, r E S, of the original problem in 

(1.16), it is obvious that /3~/;;. 0 and y~•;;. 0, i E P,,j E 

S_,, r ES. Checking whether (a*, 13• , -y*) is feasible with 

respect to (1.14), we derive that 

This last expression equals zero, because (a, 13, -y) is a 

feasible (and optimal) solution to LPq-A, so that (l.14) 

implies that /3~ 1 + o{x" - a1x" - Y,.1 = 0. Hence, (a*, 13• , 
-y*) satisfies the constraint set (l.14) in LP"-A as well. 

Verifying the feasibility of the normalizat ion constraint 

(1.15) with respect to (a*, 13 •, -y*), we see that 

2: 2: 2: (y;/- /3;/ J= 2: 2: 2: ...'.... 2: 
iEP, jES _, rES i E P, j E S -• r E S ll r 1 E P, 

·(y;1-/3:1J = 2: 2: 2: (y;1- f3:1J, 
i E P , jES - , rE S 

which expression indeed equals q, using (1.15). This com­

pletes the proof that (a*, 13•, -y *) is a feasible solution to 

LPq-A, and hence to LPq. 

(2) Optimality: We know that (0t, 13, -y) is an optimal 

solution to LPq, with an objective function value of zq = 

L;EP, 2:iE5-, 2:,Es /3~ i · The objective function value of (a* , 

13 *, -y*) is given by: 

z• = 2: 2: 2: 13;/ = 2: 2: 2: ...'.... 2: 13;1 
rESjES -. iEP, rES j E S -, iE P , n, t EP, 

= 2: 2: 2: 13;1 = zl/ , 
rES j ES - , i EP, 

which completes the proof. 0 

Proof of Proposition 4. From Proposition 3 it follows that 

we can set a;k = 0, k = 1, . .. , K, and r ES. Thus, LP q-A 

simplifies to the LP-problem in (Al)-(A4): 

Min L L L 13;1, (Al) 
r E S jES -, iEP, 

Subject to: 

/3 ;i + a, o - a jO ;;. 0, i E P,, j E S _,, r E S, 

L (sn; - L n1 )a;o = q , 
iES jES 

/3;1;;.0 , iEP,,jE5-,,rES . 

(A2) 

(A.3) 

(A.4) 

Note that, for an optimal solution to this problem, /3~ = 

Max(O; - a, 0 + ai 0 ) , for all 1 E P,, so that we can set /3,i = 

/3~ 1 for all h, i E P,. Using this information, and letting m; 
= sn; - 2:iES n1, the above linear program can be simpli­

fied to (A5)-(A8): 

Min L L n,/3,1, 
rES jES - , 

Subject to: 

/3,i + a ,o - a 10 ;;. 0, j E S -n r E S, 

L m ;a ;o = q, 
iES 

f3,1 ;;. 0, j E 5-,, r E S. 

(AS) 

(A6) 

(A7) 

(A8) 

Substituting the /3,i in the objective function, this prob­

lem can in turn be rewritten as (A.9)-(AlO) : 

Min L L n,[Max(O, a10 - a, 0 )] , 
rES jES -, 

Subject to: 

2: ni;a w = q. 
iES 

(A9) 

(AlO) 

Notice that L;Es m; = 0. It follows that if a;0 , r E S, is 

optimal, the solution a;0 + c, r E S, where c is any 

constant , is also optimal. Hence, we can assume that an 

optimal solution exists such that the a;0 take on 7r + l 

different values, 7r + I ,,;;; s, say v0 , v1, .•• , vu, such that 

0 = vu < v 1 < · · · < v". 

Let Si = {i: a70 = vi ) , Si = {i: i E S\ S) and let ISi 

denote the cardinality of set S. Further, denote the mini­

mal objective functio n value of LP q _A by z", for any q > 0. 

Let e be such that 

0 < e < min( V u - V u - 1 , abs( q ) ) , 
2: ;es,,. nz; 

where abs(y) is the absolute value of y, and let 

{ 

• - € 
new - a 10 ' 

U jQ - * 
a ;o , 

i E Su , 

i E Su , 

iESu,rESu , 

all other (r, j) ES x S. 

Next , consider the program LP", where 11 = q - e L;Es 
m ;, by the choice of e. Note that e < vu - vu-! and 11 > o'. 
It is easy to check that the above solution is feasible for 

LP", and its objective value equals v"'w in (A12): 

v"'w=zq - elSu l L n i . 
jE S. 

From (A.12) it follows immediately that 

(A12) 

(AJ3) 

By the definition of z,, we also have z,, ,,;;; v new, and by 

Proposition 6, z,, = 11 /q zq ,,;;; vncw or, substituting 11 = q -

e L;Es. m;, we have (A.14): 

( l°") new Zq 1 - - € L.J nl ; ~ v . 
q ;es. 

(A.14) 



From (A.13) and (A.14) it follows that L;es. m, > 0, 

and from (A.12) and (A.14) we derive that (A.15) holds, 

zq( 1-! e 2: m, ) .;; zq - eJSrr l 2; ni. 
q iES, jE5, 

As L;es, m, > 0, (A.15) implies (A.16): 

qJS r.I L je.i'. ni 
Zq ~ 

(A.15) 

(A.16) 

Since the solution proposed in Proposition 4 has an ob­

jective value zq equal to the lower bound of (A.16), and 

the sets Sr. and Sr. are such that this lower bound itse lf is 

at its minimum, this solution must be optima l. 0 

Proof of Proposition 5. Similar to Proposition 3, it can be 

shown that, if (ex , J3 , y) is an optimal solution to LP "-A, 

then (ex*, J3 *, y *) is also an optimal solution to LP"-A, 

where: 

a ;k= O, rES ; k=O , l , .. . , t-1 , t + l , ... , K , 

i E P,, j E 5-,, r E S. 

i E P,, j ES _,, r ES. 
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