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Multi-Group Multicast Beamformer Design for

MISO-OFDM with Antenna Selection
Ganesh Venkatraman Student Member, IEEE, Antti Tölli Senior Member, IEEE, Markku Juntti Senior

Member, IEEE, and Le-Nam Tran Senior Member, IEEE

Abstract—We study the problem of designing transmit beam-
formers for a multi-group multicasting by considering a multiple-
input single-output (MISO) orthogonal frequency division multi-
plexing (OFDM) framework. The design objective involves either
minimizing the total transmit power for certain guaranteed
quality-of-service (QoS) or maximizing the minimum achievable
rate among the users for a given transmit power budget.
The problem of interest can be formulated as a nonconvex
quadratically constrained quadratic programming (QCQP) for
which the prevailing semidefinite relaxation (SDR) technique
is inefficient for at least two reasons. At first, the relaxed
problem cannot be reformulated as a semidefinite programming.
Secondly, even if the relaxed problem is solved, the so-called
randomization procedure should be used to generate a feasible
solution to the original QCQP, which is difficult to derive for
the considered problem. To overcome these shortcomings, we
adopt successive convex approximation (SCA) framework to find
multicast beamformers directly. The proposed method not only
avoids the need of randomization search but also incurs less
computational complexity compared to an SDR approach. In
addition, we also extend multicasting beamformer design problem
with an additional constraint on the number of active elements,
which is particularly relevant when the number of antennas
is larger than that of radio frequency (RF) chains. Numerical
results are used to demonstrate the superior performance of our
proposed methods over the existing solutions.

I. INTRODUCTION

Physical layer multicasting is gaining significant attention

in the upcoming standards due to services like audio and video

streaming, which simultaneously deliver the same content to

multiple users. Current wireless standards such as the 3rd

Generation Partnership Project (3GPP) Long Term Evolution

(LTE) provide dedicated subframes to deliver multicast con-

tents in addition to regular unicast transmissions due to im-

mense data requirements from on-demand multicast services

[1]–[3]. In order to provide both unicast and multicast services

over cellular networks, evolved Multimedia Broadcast Multi-

cast Service (eMBMS) is specified in the LTE standard. The

challenge is to identify a proper share of wireless resources for
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providing the mix of unicast and multicast services. Depending

on the type of service required for each multimedia application

and the number of users requesting for it, the network will

determine the appropriate quality-of-service (QoS).

Physical layer multicasting for both single and multiple

groups has been studied extensively from a signal processing

perspective [4]–[14]. The main challenges that have been ad-

dressed in the context of multicasting problems are the group-

ing of users and the design of transmit beamformers for each

multicast group. In both problems, the knowledge of channel

state information (CSI) is assumed at the base stations (BSs).

While determining the multicast groups, transmit beamformers

are also designed to utilize the available spatial and frequency

dimensions at each transmission instant. The beamformers are

designed with the objective of either minimizing the total

transmit power or maximizing the minimum achievable rate

among the multiplexed multicast groups, where the minimum

rate is defined by the weakest link, i.e., the user with the

minimum rate. However, the design of transmit beamformers

in turn depends on the selection of users for various multicast

groups, which has drawn significant attention in the literature.

A. Multicast Scheduling

In each time slot, the BS involved in multicast transmission

transmits to the user group at a rate determined by the

weakest link. Even though associating users requesting the

same content in a same multicast group is beneficial in terms

of the resource utilization, it may also deteriorate the overall

performance if the users have heterogeneous channel condi-

tions, since the transmission rate is guided by the weakest link.

Thus, user association and resource scheduling for multicast

transmission is not a trivial extension of unicast schedulers.

Multicast scheduling based on a proportional fair metric

has been considered extensively to provide fairness among

multiple multicast groups [15]–[17]. In [15], two variants of

proportional fairness have been proposed based on the achiev-

able rate, namely, inter-group proportional fairness, based on

the sum of all user rates, and multicast proportional fairness,

aims at maximizing the sum log of user rates. Similarly, [16]

designed a scheduler to provide proportional fair utility for

both unicast and multicast users over multiple BSs.

B. Related Work

Upon determining users for various multicast groups, a

scheduler must utilize both spatial and frequency resources
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provided by multiple-input single-output (MISO) orthogo-

nal frequency division multiplexing (OFDM) framework ef-

ficiently to satisfy certain design criterion. Designing transmit

beamformers for single multicast group with perfect CSI at

the BS was introduced in [4]. Due to the nonconvex nature

of the problem formulation, the beamformers were designed

using semidefinite relaxation (SDR) and the resulting problem

is solved by semidefinite programming (SDP) in [4]. Briefly,

instead of finding a beamformer vector, say, m, the SDR

technique defines a hermitian matrix M = mm
H and poses

the original problem as an SDP with M as a variable. If the

solution has rank greater than one, then a randomization pro-

cedure proposed in [18] is used to extract a rank-one solution.

An extension to multiple multicast groups was studied in [6].

Alternatively, [19] employed successive convex approximation

(SCA) technique to solve the multicast problem for a single

group. Unlike the SDP based designs, the SCA technique

solves for beamformers directly, thereby avoiding the need

for any randomization procedure. However, for a multi-group

multicasting, the problem becomes difficult as it transforms

into a nonconvex quadratically constrained quadratic program-

ming (QCQP) wherein finding an initial feasible point itself

is difficult. To overcome this, [20] proposed a feasible point

pursuit SCA (FPP-SCA) algorithm by adding slack variables

to nonconvex constraints and a penalty to ensure that they were

all forced to zero, thereby ensuring feasibility of all operating

points (and solutions) throughout the SCA procedure.

A closely related problem of maximizing the minimum

signal-to-interference-plus-noise ratio (SINR) of all users was

also studied extensively in [5], [6], [8], [9], [11], [12], [21]. In

[5], [6], [9], [11] papers, max-min fairness based beamformers

were designed using the SDR approach. An iterative beam-

former design for a single multicast group was proposed in

[12] based on weighted SINR gradients. Alternatively, [8], [22]

proposed beamformer designs based on the SCA technique

for multi-group multicasting. An extension to multiple cells

was considered in [21] based on fractional programming.

Usually, beamformer design for multi-group multicasting with

certain QoS requirement is often not possible when the channel

vectors of users in different groups are collinear. This was

addressed in [23] as a joint beamformer and admission control

design with the objective of maximizing the admitted users.

In addition, various other extensions have been considered

in the literature. A distributed multi-cell beamformer design

for multicasting was proposed in [24] for both min-power and

max-min fairness objectives. An extension to single antenna

multi-group multicasting for relay networks was analyzed in

[25] with a min-power objective. In [26], a robust beamformer

design with imperfect CSI was addressed with a min-power

objective for cloud radio access network (Cloud-RAN). In [27]

and [28], a weighted fair multicast beamforming was proposed

with per antenna power constraints using both the SDR and

the SCA techniques, respectively. A multi-group multicasting

with antenna selection was introduced in [9] based on bisection

search. However, a beamformer design with antenna selection

based on biconvex formulation proposed in [10] was shown to

outperform [9] in terms of total transmit power. The capacity

limits of various multicasting schemes was discussed in [29]

by scaling the number of users and transmit antennas for a

fairness objective. An extension to antenna subset selection

was analyzed in [30] based on the average capacity scaling.

Finally, an extension to multiple-input multiple-output

(MIMO) scenario was considered in [13] wherein a non-

iterative algorithm for designing multicast precoders was pro-

posed to maximize the minimum user rate for a single multi-

cast group. The multiplexing of users over each sub-channel

is based on their channel similarities and the precoders were

evaluated by a weighted sum of the right singular vectors of

the multiplexed users. In [14], a two stage resource allocation

was proposed for multi-group multicasting by performing sub-

carrier assignment followed by a power allocation step over all

sub-carriers to maximize the overall multicasting throughput.

C. Main Contribution

In this paper, we consider the problem of physical layer

resource allocation for multi-group multicasting in a MISO-

OFDM in an isolated cell. In this context, we address the

problem of designing transmit beamformers so as to provide

certain guaranteed QoS in the form of minimum rate. Due

to the presence of multiple sub-channels, the SDR method

proposed in [6], [9]–[11] cannot be used directly as the SINR

requirement for each sub-channel is not fixed. Inspired by the

superior performance of the SCA based solutions in [19], [20],

[22], [28], we adopt the SCA method to solve our problem.

Furthermore, we extend this technique to solve multi-group

multicasting with antenna selection as studied in [9], [10], but

under a MISO-OFDM model. Unlike the approaches such as

the SDR with ℓ1/ℓ∞ norm in [9] and the exact penalty method

in [10], we solve the antenna selection problem by assigning a

binary variable for each element to denote its selection status,

similar to [10]. However, we adopt the SCA based design as in

[19], [20], [22] instead of the SDR based technique proposed

in [10]. Finally, we study the problem of maximizing the

minimum achievable rate by all users in multicast groups for a

given transmit power. Unlike [5], [6], [11], [12], [27], [28], we

consider the fairness problem in a multi-group multiple sub-

channel framework. The performance of proposed schemes are

demonstrated using extensive numerical simulations, including

a uniform linear array (ULA) model for illustrative reasons.

The rest of the paper is organized as follows. Section II

presents both system model and problem formulation, which

is followed by Section III, where the beamformer design for

multicast groups is proposed by employing the SCA technique.

In Section IV, the problem of selecting a subset of antennas

is presented for a power minimization objective. Finally, the

problem of maximizing the minimum achievable rate among

multicast groups for a given transmit power is analyzed in

Section V. The numerical examples are presented in Section

VI together with the complexity figures. Finally, conclusions

are drawn in Section VII. The following notations are used in

this paper. Bold lower and upper case letters denote vectors

and matrices, respectively. (.)T, (.)H, tr(.), ‖.‖q represent the

transpose, Hermitian, the trace operator, and the ℓq norm,

respectively. The ith entry of a vector x is denoted by xi.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a single-cell multi-user MISO system with NT

transmit antennas transmitting NG independent multicast data

streams to K single-antenna receivers over N OFDM sub-

channels (or coherence bands).1 Each user belongs to one of

the NG multicast groups, where the users in each group receive

a common data stream. Let G = {1, 2, . . . , NG} denote the

set of all multicast groups present in the system and N =
{1, 2, . . . , N} be the set of all OFDM sub-channels. The set

of all users associated with multicast group g is denoted by

Gg and we denote the respective group of user k by a positive

integer gk. The received symbol yk,n on the nth sub-channel

for user k belonging to multicast group gk is given by

yk,n = hk,nmgk,ndgk,n +
∑

g′∈G\{gk}

hk,nmg′,ndg′,n + ek,n (1)

where hk,n ∈ C1×NT is the channel seen by user k on the

nth sub-channel, and mg,n ∈ CNT×1 is the beamformer for

multicast group g on sub-channel n. The data symbol dg,n,

transmitted for all users in Gg , is normalized as E[|dg,n|
2] = 1

and ek,n is the additive complex white Gaussian noise drawn

from CN (0, N0). The SINR seen by user k on the nth sub-

channel, which is represented as Γk,n({m}) be, is given by

Γk,n({m}) =
|hk,nmgk,n|

2

N0 +
∑

g′∈G\{gk}
|hk,nmg′,n|

2 (2)

where {m} , {mg,n}, ∀g ∈ G, ∀n ∈ N denotes the collec-

tion of all transmit beamformers. We remark that Γk,n({m}) is

a function of all transmit beamformers as shown in (2), but for

simplicity, we express it as Γk,n in the following discussions.

B. Problem Formulation

We address three closely related problems on designing

beamformers for a multicast transmission. At first, we study

the problem of minimizing the total transmit power required

to guarantee certain QoS for all users in each multicast group.

Formally, the beamformer design problem is given by

P1 ,





minimize
{m}

∑
g∈G

∑N

n=1 ‖mg,n‖
2

subject to
∑N

n=1 log(1 + Γk,n) ≥ r̄gk , ∀k

(3a)

(3b)

where r̄gk is the minimum multicast service rate for all users

belonging to group gk ∈ G. In unicast transmission, both

joint encoding across all sub-channels and link adaptation by

varying the coding scheme based on the user CSI are optimal

from the information theoretic perspective [31]. Whereas for

multicast transmission, link adaptation is not optimal, since

the code rate is limited by log(1 +mink∈Gg
{Γk,n}), ∀k ∈ Gg

for each n ∈ N and g ∈ G . Thus, only joint coding across all

the sub-channels with code rate r̄g is optimal for each group

g ∈ G. Despite coding jointly across all the sub-channels,

beamformers are designed specifically for each sub-channel

1Sub-channel refers to a group of frequency resources for which the channel
is assumed to be relatively constant. Thus, beamformers are designed for a
group of sub-carriers over which multiple data symbols are transmitted.

and multicast group based on the CSI of respective users.

Thus, by varying the SINR on each sub-channel independently,

the overall achievability of joint coding is ensured ∀g ∈ G, ∀k.

As an extension, we consider a design requirement wherein

the number of available radio frequency (RF) chains is smaller

than the number of transmit elements. Such a constraint can be

achieved by forcing certain entries of transmit beamformers to

zero as the power on each antenna is dictated by the respective

beamformer entry. To do so, let us define a vector w as

w = [w1, . . . , wNT
]
T
, wt =

∑
g∈G

∑N

n=1 |mg,n,t|
2 (4)

where mg,n,t is the complex entry corresponding to antenna

index t ∈ {1, 2, . . . , NT } of the beamformer vector used to

serve multicast group g on the nth sub-channel and wt is the

total transmit power from antenna element t. With the above

notations, the second problem formulation is given as

P2 ,





minimize
{m}

NT∑

t=1

wt

subject to ‖w‖0 ≤ NRF

N∑

n=1

log(1 + Γk,n) ≥ r̄gk , ∀k

(5a)

(5b)

(5c)

where NRF < NT is the total number of available RF chains.

Finally, we study above two problems with the objective

of providing fairness, i.e., maximizing the minimum multicast

group rate, for a given power budget. It can be modeled as

P3 ,





maximize
{m}

min
g∈G,k∈Ggk

{ N∑

n=1

log(1 + Γk,n)
}

subject to ‖w‖0 ≤ NRF

NT∑

t=1

wt ≤ Ptot

(6a)

(6b)

(6c)

where Ptot is the available transmit power budget. We discuss

above problems and their solutions in subsequent sections.

III. PROPOSED SOLUTION FOR P1

All the problems outlined in Section II-B are nonconvex due

to SINR expression (2). In order to handle the nonconvexity,

various approaches have been proposed in literature based

on the SDR technique [4]–[6]. However, we resort to the

SCA method as in [20] wherein nonconvex constraints are

relaxed by a sequence of convex ones, which is then solved

iteratively until convergence. Before proceeding further with

the proposed SCA based design, we discuss some drawbacks

in extending the SDR technique to multi-carrier scenario.

A. Limitations of Semidefinite Relaxation

The SDR technique is a powerful signal processing tool that

has been employed widely in wireless communications. For

example, it has been used to demodulate higher order constel-

lations and physical layer beamformers for single and multiple

groups [4], [6], [32]. Unfortunately, the SDR method is not

applicable directly to a multi-carrier multicasting problem. To
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understand this, let us introduce a positive semidefinite matrix

Mg,n = mg,nm
H
g,n as an optimization variable along with a

constraint rank(Mg,n) = 1 so as to extract mg,n from Mg,n.

Now, by using Mg,n, we can express the SINR Γk,n in (2) as

Γk,n =
tr (Hk,nMg,n)

N0 +
∑

g′∈G\{g} tr (Hk,nMg′,n)
, ∀k ∈ Gg (7)

where Hk,n = h
H
k,nhk,n is the channel matrix related to hk,n.

Using (7), an equivalent formulation for P1 is written as

minimize
{M}

∑

g∈G

N∑

n=1

tr (Mg,n) (8a)

subject to rank (Mg,n) = 1, ∀g ∈ G, ∀n ∈ N (8b)

N∑

n=1

log (1 + Γk,n) ≥ r̄g, ∀k ∈ Gg (8c)

Mg,n � 0, ∀g ∈ G, ∀n ∈ N (8d)

where {M} , {Mg,n}, ∀g ∈ G, ∀n ∈ N is the collection of

all transmit beamformer matrices. The minimum guaranteed

QoS requirement of all users is ensured by the constraint (8c).

The problem (8) is still nonconvex with Mg,n even when

the rank-one constraint (8b) for all beamformers are omitted.

It follows due to the nonconvex nature of the QoS constraint

(8c). However, for a single sub-channel scenario, i.e., when

N = 1, (8) can be modeled as an SDP problem by discarding

the rank-one constraint (8b) as discussed in [6], [9]. Even

though the rank relaxation of (8) can be solved for a single

sub-channel case, we may still require to extract a rank-one

solution if (8) yields a result with the rank greater than one.

This step is carried out by a randomization procedure in

[18]. The best known randomization algorithm for this case

was proposed in [6], [18] and it requires solving a series of

linear programs. Therefore, as the number of sub-channels and

multicast groups increases, the complexity of (8) scales-up

quickly. Furthermore, designing beamformers for multi-group

multi-carrier multicasting as in (8) by the SDR method is not

a trivial problem, since the QoS constraint in (8c) is defined

over all sub-channels, and therefore cannot be solved for each

sub-channel independently by fixing the SINR arbitrarily by

satisfying (8c). Nonetheless, an iterative solution based on the

SDR and the SCA technique is proposed in [33].

B. Solution based on Successive Convex Approximation

Due to the issues involved with the SDR technique ex-

plained above, we propose an alternative approach to solve P1

by employing the SCA technique, thereby ensuring a rank-one

solution upon finding the multicast beamformers. In order to

do so, we relax the minimum guaranteed rate constraint in

(3b) with SINR term Γk,n by the following inequalities as

N∑

n=1

log(1 + γk,n) ≥ r̄g, ∀k ∈ Gg (9a)

|hk,nmg,n|
2

N0 +
∑

r∈G\{g} |hk,nmr,n|2
≥ γk,n, ∀k ∈ Gg (9b)

where the newly introduced optimization variable γk,n is an

under-estimator for the actual SINR Γk,n as Γk,n ≥ γk,n. By

adding one on both sides of (9b), we rewrite it as

N0 +
∑

r∈G |hk,nmr,n|
2

γk,n + 1
≥

∑

r∈G\{g}

|hk,nmr,n|
2 +N0 (10)

where user k belongs to group g ∈ G. Even after replacing

the QoS constraints in (3b) by two inequalities (9a) and (10),

the problem is still nonconvex due to the nonconvexity of the

constraint in (10). Therefore, we adopt the SCA technique in

[34] wherein the nonconvex set (10) is relaxed by a convex

subset around a fixed operating point, which is used in P1

instead of (10). Upon finding a solution, a new feasible set

is updated by using the current solution as an operating point

for the next iteration and solved for an optimal solution.

In order to find a convex approximation for the nonconvex

constraint (10), we introduce two new stacked channel vectors

h̄k,n and h̃k,n, which are defined as

h̄k,n , [hk,n,hk,n, . . . ,hk,n︸ ︷︷ ︸
NG terms

] ∈ C1×NT ·NG (11a)

h̃k,n , [hk,n,hk,n, . . . ,hk,n︸ ︷︷ ︸
(NG−1) terms

] ∈ C1×NT (NG−1) (11b)

where h̄k,n and h̃k,n are the vectors formed by repeating the

channel seen by user k on the nth sub-channel by NG and

NG−1 times, respectively. In addition, we also introduce two

new stacked vectors mn and m̃g,n such that k ∈ Gg as

mn , [mT
1,n,m

T
2,n, . . . ,m

T
NG,n]

T ∈ CNT ·NG×1 (12a)

m̃g,n , [mT
1,n,m

T
2,n, . . . ,m

T
g−1,n,m

T
g+1,n,

. . . ,mT
NG,n]

T ∈ CNT (NG−1)×1 (12b)

where mn is formed by stacking all multicast beamformers for

sub-channel n and the vector m̃g,n is obtained by stacking

transmit beamformers corresponding to multicast groups in

G\{g} for sub-channel n, i.e., by excluding mg,n from mn.

The newly defined vectors in (12) are just a rearrangement of

optimization variables {m}.

Now, by using (12), the constraint in (10) becomes

N0 + |h̄k,nmn|
2

1 + γk,n
≥ N0 + |h̃k,nm̃gk,n|

2 (13)

where the l.h.s of (13) is of quadratic-over-linear, i.e., a con-

vex function, and thus can be bounded from below by a linear

first order Taylor approximation L(mn, γk,n;m
(i)
n , γ

(i)
k,n) as

L(mn, γk,n;m
(i)
n , γ

(i)
k,n) ,

N0 + |h̄k,nm
(i)
n |2

1 + γ
(i)
k,n

+ 2ℜ

{
m

(i) H
n h̄

H
k,nh̄k,n

1 + γ
(i)
k,n

(
mn −m

(i)
n

)}

−
N0 + |h̄k,nm

(i)
n |2

(
1 + γ

(i)
k,n

)2
(
γk,n − γ

(i)
k,n

)
≤ l.h.s (13) (14)

where m
(i)
n and γ

(i)
k,n are fixed operating points upon which

the approximation is carried out. Moreover, m
(i)
n and γ

(i)
k,n are

the solutions obtained for mn and γk,n from the (i− 1)th
SCA iteration, respectively.

Finally, by replacing the l.h.s of (13) with (14), the convex
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subproblem for the ith SCA iteration is given ∀k ∈ Gg by

minimize
{m},{γ}

∑

g∈G

N∑

n=1

‖mg,n‖
2 (15a)

subject to

N∑

n=1

log(1 + γk,n) ≥ r̄g, γk,n ≥ 0, ∀k, ∀g (15b)

L(mn, γk,n;m
(i)
n , γ

(i)
k,n)

≥ N0 + |h̃k,nm̃gk,n|
2, ∀k, ∀n, ∀g. (15c)

We remark that (15) can be formulated as a second-order cone

programming (SOCP) by rewriting the QoS constraint (15b)

as
N∏

n=1

(1 + γk,n) ≥ exp(r̄gk), ∀k ∈ Gg, ∀g ∈ G (16)

which can be expressed by a system of second-order cone

(SOC) constraints as in [35], and thus (15) reduces to a

SOCP problem. The fixed operating points {m
(i)
g,n} and {γ

(i)
k,n}

are updated with the solution obtained from (15) in the

(i− 1)th SCA iteration. Then, by updating the operating point

recursively, (15) is solved until convergence to obtain transmit

beamformers, which achieves the required rate for all users

in the system. A discussion on the convergence analysis of

(15) is given in Appendix A and its complexity in Appendix

B. The superior performance of the SCA method over the

SDP technique was demonstrated for a multicast problem with

N = 1 in [20]. Thus, if the SDP based formulation presented

in (8) yields a rank-one vector for N = 1, the solution is the

same as that of (15) as there is no need for randomization

search to find a rank-one vector. However, if (8) yields a high

rank matrix, the randomization search is required to extract a

rank-one beamformer. In the later cases, the SCA schemes find

a better solution as they find beamforming vectors directly.

C. Choice of SCA Initialization Points

Finding an initial operating point {m
(0)
g } to start the SCA

procedure is not a trivial problem. For the single multicast

group case, initialization can be obtained easily by merely

scaling the beamformers until all the QoS constraints are

satisfied as shown in [19]. However, it is not applicable to

P1, since the multi-group beamformers are present in both the

numerator and the denominator of (2). Therefore, to find an

initial operating point for (15), we consider a relaxed problem

minimize
{m},{γ},R̃

∑

g∈G

N∑

n=1

‖mg,n‖
2 + δR̃ (17a)

subject to exp (r̄gk)−
N∏

n=1

(1 + γk,n) ≤ R̃, ∀k (17b)

L(mn, γk,n;m
(i)
n , γ

(i)
k,n)

≥ N0 + |h̃k,nm̃gk,n|
2, γk,n ≥ 0, ∀k, ∀n. (17c)

where mn and m̃g,n are defined in (12). The constant δ
determines a trade-off between the two objectives and R̃ is a

slack variable, used to relax the strict rate constraint. Problem

(17) is feasible for any randomly initialized beamformers,

since (15b) is relaxed by a slack variable R̃ in (17) [20], [22].

Algorithm 1 outlines the iterative procedure to solve (15).

Algorithm 1 Proposed iterative algorithm for solving P1

Initialization: Set i = 1, generate {m(0)} randomly and

compute {γ(0)} by evaluating (10) with equality. Set δ
to be large enough to ensure feasibility

1: repeat

2: solve (17) for optimal {m
(i)
∗ } and {γ

(i)
∗ }

3: update {m(i+1)} = {m
(i)
∗ } and {γ(i+1)} = {γ

(i)
∗ }

4: i = i+ 1
5: until R̃ < 0
6: Let {m∗} and {γ∗} be a solution of (17) when R̃ < 0
7: Set j = 1, {m(0)} = {m∗} and {γ(0)} = {γ∗}
8: repeat

9: solve (15) for optimal {m
(j)
∗ } and {γ

(j)
∗ }

10: update {m(j+1)} = {m
(j)
∗ } and {γ(j+1)} = {γ

(j)
∗ }

11: j = j + 1
12: until convergence or for fixed number of iterations, Imax

If δ is chosen to be infinite, then (17) reduces to a feasibility

problem. However, if δ is finite but sufficiently large, then

(17) solves for multicast beamformers with the objective of

minimizing total transmit power and the slackness term R̃
in each iteration. Once R̃ < 0, the above procedure can be

terminated and the solution can be used as an initial feasible

point to solve (15). For instance, if the feasible set of (15) is

nonempty, based on our observation from extensive numerical

simulations, choosing δ ≈ 103 will yield a feasible point in

2− 3 iterations itself. Finally, we note that (15) reduces to

• [19] when N = 1 and NG = 1, since γk,n becomes a

constant, thereby eliminating (15b) and (17b) from (15)

and (17), respectively, or

• [20] when N = 1 and NG ≥ 1. It follows from the

fact that when N = 1, γk,n becomes a constant, thereby

removing (17b) from (17). Thus, the FPP-SCA method in

[20] is similar to (17) if it is performed until convergence.

In order to perform efficient multicast transmission over mul-

tiple sub-channels, a group specific coding scheme must be

designed jointly across all the sub-channels with code rate r̄g
defined by the QoS requirement [31]. On the contrary, if the

coding scheme is designed for each sub-channel separately,

then the QoS constraint in (16) must be replaced ∀g ∈ G by

N∑

n=1

log(1 + min
k∈Gg

{γk,n}) ≥ r̄g (18)

which is equivalent to (16) when the number of sub-channels

is N = 1 and inferior when N > 1.

IV. PROPOSED SOLUTION FOR P2

In this section, we extend the solution of P1 to the antenna

selection problem introduced in P2. Since the power on each

antenna is determined by the beamformers, the number of

active elements is restricted to, say, NRF, by constraint (5b)

in P2. However, due to the presence of ℓ0 norm in (5b),

P2 cannot be solved directly. Hence, to find NRF active
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elements from NT transmit antennas, we could resort to the re-

weighted ℓ1 norm minimization approach as in [9]. However,

due to the presence of multiple sub-channels, even without the

constraint (5b), P2 can only be solved by employing the SCA

technique to find beamformers for all sub-channels. Therefore,

if we adopt the re-weighted ℓ1 norm minimization technique

proposed in [9], then we need a bisection search to find a

suitable regularization constant in order to find NRF active

elements, thereby leading to two nested loops, i.e., an inner

loop to perform the SCA based iterative procedure and an

outer loop for the bisection search.

Thus, to avoid the above mentioned problem of two nested

loops while solving P2, (5b) can be equivalently rewritten by

introducing a binary optimization variable a as

wt ≤ at vt, ∀t ∈ {0, . . . , NT } (19)

where at ∈ {0, 1} and vt ∈ R are newly introduced variables

together with w as in (4). The binary variable at denotes the

status of antenna elements, i.e., whether it is enabled or not,

and vt represents the total power on each antenna t due to

multicast transmission. Upon replacing ℓ0 norm in (5b) by a

binary vector a together with (19), we have

minimize
{m},{a},{v}

NT∑

t=1

vt (20a)

subject to

N∑

n=1

log(1 + Γk,n) ≥ r̄gk , ∀k (20b)

(19) and

NT∑

t=1

at = NRF, at ∈ {0, 1}, ∀t (20c)

where the SINR Γk,n is given by expression (2).

A. Mixed Integer Solution

Following the approximations proposed in Section III-B, we

relax Γk,n in (2) by an under-estimator γk,n as in (9). Due to

the nonconvex nature of the newly introduced constraint (9b),

(20) cannot be solved directly. Therefore, we approximate the

continuous nonconvex constraint (13) by (15c) to arrive at a

mixed-integer quadratic programming (MIQP) subproblem as

minimize
{m},{a},{v},{γ},

NT∑

t=1

vt (21a)

subject to

NT∑

t=1

at = NRF, at ∈ {0, 1}, ∀t (21b)

(15b), (15c) and (19). (21c)

The MIQP subproblem in (21) can be solved optimally by the

available MIQP solvers such as [36], [37], however, it involves

huge computational complexity. This procedure of iteratively

solving (21) is referred to as iterative MIQP solution. Even

though (21) can be solved optimally in each iteration, due to

the iterative nature of the problem, the complex entries of the

SCA operating point {m
(i)
g,n} will be forced either to zero or to

a non-zero complex values depending on the respective values

of w by (19). The equivalent formulation of P2 in (20) consists

of both binary and continuous variables. However, in the

iterative MIQP approach, we only approximate the continuous

nonconvex constraints by a sequence of convex subsets using

the principles of the SCA, while keeping the binary variables

untouched. In this manner, the domain of the continuous

variables is approximated by a feasible subset in each iteration.

Due to this approximation, it cannot be guaranteed that the

feasible subset can cover the entire continuous region of the

original feasible set when the SCA procedure converges. Thus,

the iterative MIQP cannot guarantee an optimal solution in

general even upon the convergence of the SCA procedure.

B. Regularized Relaxed Binary Formulation

As an alternative to the combinatorial problem (20), we

relax the binary variable at ∈ {0, 1} by a linear constraint as

at ∈ [0, 1], ∀t in order to find a low complexity formulation.

Due to the linear relaxation, binary outcome for the solution

of at, ∀t cannot be guaranteed. Hence, to promote a binary

solution for the relaxed linear variable a, we regularize the

objective function with a penalty term as in [38], [39], which

depends only on the relaxed variable a. Thus, an approximate

solution with a regularization term for (20) is given by

P̂2 ,





minimize
{m},{a},
{v},{γ}

NT∑

t=1

vt + ψ f(a)

subject to

NT∑

t=1

at = NRF, at ∈ [0, 1], ∀t

(15b), (15c) and (19)

(22a)

(22b)

(22c)

where f(a) is a penalty function to encourage sparse solution

for a. Due to linear relaxation in (22b), (19) can be expressed

as a rotated SOC constraint. The parameter ψ determines

a trade-off between the desired objective and the degree of

sparsity in the solution of a. Since the quality of a depends

on the choice of regularization parameter ψ, binary outcome

for the solution of a cannot be guaranteed, therefore, (22) can

only be shown as an approximate problem for (20) and not an

equivalent formulation, which can be expressed as P2 ⊂ P̂2.

Upon solving P̂2 with a sparsity promoting penalty function,

if a ∈ {0, 1}NT , then the solution obtained is also a feasible

solution of P2. However, if a /∈ {0, 1}NT , then a feasible point

for P2 can be found by setting NRF maximum entries from

sorted vector a to unity while forcing the remaining to zero.

Thus, the solution found by solving (22) can be used to obtain

a feasible point for (20) and original problem P2.

1) Log-Sum as Penalty Function: We begin with the well

known sparsity inducing penalty function proposed in [40] to

promote binary solution for vector a, as given by

f(a) =

NT∑

t=1

log(at + ǫ) (23)

where ǫ is a small positive constant used to limit the dynamic

range of the log function. With this penalty term, P̂2 becomes

minimize
{m},{a},{v},{γ}

NT∑

t=1

vt + ψ

NT∑

t=1

log(at + ǫ) (24a)
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subject to (15b), (15c), (19) and (22b). (24b)

The use of log(at + ǫ) in (24a) is justified by the fact that

log(at + ǫ) has slope 1/ǫ at origin that becomes infinitely

large as ǫ → 0, which is greater than the ℓ1 norm that has

unit slope at the origin. Therefore, similar to the ℓ0 norm that

has infinite slope at the origin, the log(at+ǫ) term allows for a

large penalty for relatively small values of at, compared to the

ℓ1 norm [40]. It is similar to the re-weighted ℓ1 minimization

in [9] but with better convergence properties.

However, due to the presence of − log(at+ ǫ) in (24a), the

objective is a difference of convex (DC) function. Therefore,

by adopting SCA framework, we linearize the
∑NT

t=1 log(at +
ǫ) function by its first order Taylor approximation as

f̂(a;a(i)) = f(a(i)) +

NT∑

t=1

at − a
(i)
t

a
(i)
t + ǫ

≥ f(a), ∀a ∈ {0, 1}NT

(25)

around some fixed operating point a
(i) such that f(a(i)) =

f̂(a(i);a(i)). The expression in (25) is similar to the one used

in the iterative re-weighted ℓ1 algorithm to obtain a sparse

solution as discussed in [9] for the SDR formulation of the

antenna selection problem. In summary, the convex subprob-

lem in each iteration of the proposed iterative algorithm to

solve P̂2 using the log-sum penalty function is given by

minimize
{m},{a},{v},{γ}

NT∑

t=1

vt + ψ f̂(a;a(i)) (26a)

subject to (15b), (15c), (19) and (22b). (26b)

Upon finding a binary solution for vector a, the approximate

penalty term f̂(a;a(i)) in (26a) becomes a constant, thereby

leading to the original objective as in (20a). Finally, by using

the discussions presented in Appendix A, we can ensure that

(26a) converges to (24a) upon the SCA convergence, since

f̂(a,a(i)) → f(a) as i→ ∞. Thus, upon solving subproblem

(26) in each of the SCA iterations with the updated feasible

convex subset, we obtain a stationary point of (24) upon the

convergence of the SCA procedure.

2) Entropy as Penalty Function: Another choice for the

penalty function is an entropy measure of a, defined as [41]

f(a) = −
NT∑

t=1

at log(at). (27)

The slope of a in (27) also goes to infinity when at → 0,

which is the same as that of the ℓ0 norm. Specifically, the

entropy of an event with probability x, defined as −x log(x),
is minimized (i.e., to be zero) when x = {0, 1}. Due to the

fact that binary variable a is relaxed to take values in [0, 1]
similar to probability mass function, P̂2 becomes

minimize
{m},{a},{v},{γ}

NT∑

t=1

vt − ψ

NT∑

t=1

at log(at) (28a)

subject to (15b), (15c), (19) and (22b). (28b)

where the constant ψ is used to induce sparsity in a.

Due to the concave nature of f(a), the objective function is

a DC function. Therefore, it is solved by employing the SCA

technique for f(a) around the a
(i) as

f̂(a;a(i)) = f(a(i))−
NT∑

t=1

[
1 + log

(
a
(i)
t

)] (
at − a

(i)
t

)
(29)

where f̂(a;a(i)) is the first order Taylor approximation of

f(a) at fixed a
(i). By using the regularized objective, we can

formulate the convex subproblem for SCA iteration i as

minimize
{m},{a},{v},{γ},

NT∑

t=1

vt + ψ f̂(a;a(i)) (30a)

subject to (15b), (15c), (19) and (22b). (30b)

Upon obtaining a binary solution for vector a, the approximate

penalty term f̂(a;a(i)) in (29) becomes zero, thereby leading

to the original objective as in (20a). Finally, the iterative

convex subproblems (30) can be shown to find a stationary

point of the nonconvex problem P̂2 using the discussions in

Appendix A. The iterative procedure for solving P2 by using

either (26) or (30) is outlined in Algorithm 2. In order to find

an initial operating point, we run Algorithm 1 to find {m}
and {γ} such that all the QoS constraints are satisfied. Then,

the antenna selection vector is initialized with a
(0) = NRF

NT
1
T,

since Algorithm 1 utilizes all the available number of antennas.

Upon initializing {m(0)}, {γ(0)} and a
(0) with the solution

from Algorithm 1, feasibility of the operating point can be

guaranteed to begin Algorithm 2.

Finally, the choice of regularization parameter ψ plays a

vital role in determining the quality of solution obtained for the

relaxed vector a as it provides a trade-off between the binary

outcome to a solution with less transmit power. Due to the

iterative nature of the proposed algorithms, choosing ψ very

large may lead to a sub-optimal solution, since the feasible

subsets during first few SCA iterations are too restrictive as

they depend on the initial operating point. On the contrary,

choosing the parameter ψ very small may lead to a non-

integer solution, which is not a desired one. In such cases, we

can choose the antenna elements corresponding to the indices

of maximum NRF entries from the sorted a vector. Once

the transmit elements are chosen, steps 6-12 of Algorithm

1 is performed by retaining only those channel coefficients

corresponding to the chosen NRF maximum entries. If the

solution obtained by solving (22) is binary for some fixed

value of ψ, then it is also a feasible point for (20).

Alternatively, we can adopt the method in [38], [42], which

was also used in the multicasting context by [10], [11], where

ψ is increased in each SCA step to emphasize the penalty term

over the original objective for some ψ(0) ≥ 0. It is obtained

by modifying the objective functions in (26a) and (30a) as

minimize
{m},{a},{v},{γ}

NT∑

t=1

vt + ψ(i) f̂(a;a(i)) (31)

where ψ(i+1) = σψ(i) → Ψmax as i → ∞ for some very

large Ψmax together with σ > 1. By this way, the desired

objective is emphasized during initial SCA iterations and the

sparsity promoting term will be introduced gradually as the

SCA iteration increases. Heuristically, we can choose ψ such

that it satisfies ψ ≥ Pall

NT
, where Pall is the total power required
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to satisfy the QoS requirements while using all antennas. The

factor NT is used to normalize the value of penalty function

f(a;a(i)) when a is not binary. Therefore, to emphasize the

original objective of power minimization during the first few

SCA iterations with NRF active antennas, ψ includes the

scaling of NT so that f(a;a(i)) does not dominate when

initialized with a
(0) = NRF

NT
1
T. The convergence analysis of

Algorithm 2 is similar to the one presented in the Appendix

for Algorithm 1. The solution obtained by solving either (26)

or (30) iteratively, converges to a stationary point of P̂2. Thus,

if the solution obtained for a has a binary outcome, it is

also a feasible point for the original problem P2, otherwise

an approximate solution can be found by using step 6 in

Algorithm 2.

Algorithm 2 Proposed iterative algorithm for solving P2

1: Perform Algorithm 1 until convergence.

2: Assign the solution {m∗} and {γ∗} to {m(0)} and

{γ(0)}, respectively.

3: Initialize a
(0) = NRF

NT
1
T.

4: repeat

5: Solve (26) for the log-sum penalty or (30) for the

entropy penalty function. Denote the solution {m},{γ}

and a as {m
(i)
∗ }, {γ

(i)
∗ } and a

(i)
∗ , respectively.

6: Set {m(i+1)},{γ(i+1)} and a
(i+1) to {m

(i)
∗ }, {γ

(i)
∗ },

and a
(i)
∗ , respectively and update i = i+ 1.

7: until convergence or for maximum number of iterations

8: Select NRF maximum entries from the sorted a and

perform steps 6-12 of Algorithm 1 by retaining NRF

channel entries hk,n, ∀k, ∀n for which at = 1, ∀t

V. PROPOSED SOLUTION FOR P3

In this section, we study problem P3 wherein the objective

is to maximize the minimum rate seen by the users of

various multicast groups for a given transmit power budget.

In addition, P3 also restricts the number of active antennas

used for transmission. Again, due to the presence of the ℓ0
norm in (6b), it is not possible to solve P3 directly. Therefore,

by following the technique as in P2, we relax the continuous

nonconvex constraint (13) by (15c), which leads to the problem

maximize
rg,{m},{a},{v},{γ}

min
g∈G

{rg} (32a)

subject to

N∑

n=1

log(1 + γk,n) ≥ rgk , ∀k (32b)

NT∑

t=1

at = NRF, at ∈ {0, 1}, ∀t (32c)

NT∑

t=1

vt ≤ Ptot (32d)

(15c) and (19). (32e)

where the total transmit power is restricted to Ptot by (32d).

Even though rgk is treated as a variable in (32b), it can still be

formulated as a system of SOC constraints by following [35].

Due to the binary constraint on a, the subproblem (32) for the

ith SCA iteration is a MIQP, which can be solved efficiently

by the existing solvers such as MOSEK and Gurobi [36], [37].

In contrast to the MIQP subproblem, which has huge

computational complexity, we consider an approximate version

of P3 by relaxing the binary constraint on vector a by a linear

one as discussed in Section IV-B. Again, to encourage sparsity

in the solution of a, we regularize the objective as

P̂3 ,





maximize
rg,{m},{a},

{v},{γ}

min
g∈G

{rg}−ψ f(a)

subject to

NT∑

t=1

at = NRF, a ∈ [0, 1]NT

(15c), (19), (32b) and (32d)

(33a)

(33b)

(33c)

where f(a) is a penalty function which is defined as either (23)

or (27) and the vector w is given in (4). The newly introduced

variable rg is the minimum guaranteed rate of multicast group

g ∈ G. The problem now is to allocate the total power Ptot

among the sub-channels to maximize the minimum achievable

rate of users in the multicast groups.

To solve (33), we again use the SCA technique as discussed

in the previous subsection. In particular, the approximate

convex subproblem in the ith SCA step is given by

maximize
rg,{m},{a},{v},{γ}

minimum
g∈G

{rg}−ψ f̂(a;a
(i)) (34a)

subject to (15c), (19), (32b), (32d) and (33b) (34b)

where f̂(a;a(i)) is the first order Taylor approximation of

f(a) around a fixed operating point a
(i), given in (25) or

(29) depending upon the choice of f(a), which is either (23)

or (27). Upon determining the functions f(a) and f̂(a;a(i)),
the resulting subproblem (34) is solved by following the

discussions presented in Section IV. Unlike P̂1 and P̂2, an

initial operating point can be chosen randomly as there is no

guaranteed QoS requirement in the constraint set of (34). Thus,

finding an initial feasible point is a simple procedure for (34).

Due to the iterative nature of problem (33), finding min-

imum rate rg through bisection search is not an efficient

method as it introduces nested iterations, i.e., outer bisection

search and the inner feasibility check SCA loop for a fixed

minimum guaranteed rate rg, ∀g ∈ G. Therefore, to avoid

nested iterations, the minimum rate rg is considered as an

optimization variable and it is solved along with the other

variables iteratively. The algorithmic description for designing

beamformers with the objective of providing fairness among

multicast group rates is outlined in Algorithm 3 and the

convergence behavior of (33) is discussed in Appendix A.

VI. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed

algorithms to those of the known solutions in [6], [9], [10],

[20]. We divide this section into three parts wherein the first

subsection discuss the design of multicast beamformers for

multiple groups with single sub-channel, i.e., with N = 1.

Then, we discuss the performance of the proposed methods

for a multi-group multiple sub-channels setting. Finally, we

discuss the performance of max-min beamformer design for
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Algorithm 3 Proposed iterative algorithm for solving P3

1: Initialize {m(0)} and {γ(0)} randomly to perform Algo-

rithm 1 until convergence by replacing (15a) and (15b)

with (32a) and (32b), respectively.

2: Assign the obtained solution {m∗} and {γ∗} to {m(0)}
and {γ(0)}, respectively.

3: Set a(0) = NRF

NT
1
T to solve (34).

4: repeat

5: Solve (34) with f̂(a;a(i)) as (25) for log-sum penalty

or (29) for entropy penalty function. Let the solution

{m},{γ} and a obtained from the ith SCA step be

denoted as {m
(i)
∗ }, {γ

(i)
∗ } and a

(i)
∗ , respectively.

6: Set {m(i+1)},{γ(i+1)} and a
(i+1) to {m

(i)
∗ }, {γ

(i)
∗ },

and a
(i)
∗ , respectively and update i = i+ 1.

7: until convergence or for maximum number of iterations

8: Select NRF maximum entries from the sorted a and

perform steps 6-12 of Algorithm 1 by retaining NRF

channel entries hk,n, ∀k, ∀n for which at = 1, ∀t

multi-group multicasting with multiple sub-channels. For sim-

plicity, the path loss seen by all users is fixed to 0 dB in

all simulations and the channels are drawn from a zero-mean

complex Gaussian distribution unless stated otherwise. The

noise variance is normalized to N0 = 1 and the transmit

power is measured in dBm units. All the convex problems

are modeled with YALMIP [43] and solved by using MOSEK

solver [36]. For the SDP problems, if the solution obtained

has rank greater than one, then the randomization technique

with 500 samples as in [6] is used to generate rank-one

beamforming vectors from the high rank solution and choosing

the one that requires minimal transmission power.

Apart from the proposed methods in Sections IV and V, we

have included two more schemes for better comparison. The

first one is the highly complex exhaustive search wherein all

possible combinations of
(
NT

NRF

)
are searched to find a best

pattern that either minimizes the transmit power or maximizes

the minimum achievable rate. Secondly, we have included a

low complexity antenna selection by choosing NRF entries of

a that have high per-antenna power compared to the remaining

NT − NRF entries, labeled as sorted antenna powers in the

figures. It is equivalent of setting ψ = 0 in P̂2 and P̂3. Unlike

P̂2 with ψ > 0, selecting NRF maximum entries with ψ = 0
may not yield a solvable problem for P̂2 on all cases as there

is no guarantee in satisfying the QoS requirements imposed by

P̂2 with the chosen subset. However, P̂3 is always solvable by

setting ψ = 0 as there is no guaranteed QoS for the users. To

solve P̂2 and P̂3, the parameter ψ is fixed as ψ = 2 irrespective

of the system model and ǫ is set to 1e−5 for numerical stability.

1) Multi-Group Single Sub-Channel Scenario: We consider

the design of multicast beamformers with multiple groups for a

single sub-channel, due to which the minimum rate constraint

is reduced to a SINR requirement. In order to compare the

transmit power required by the various schemes for a fixed

QoS demand, we consider an ULA with NT = 12 antennas

serving NG = 3 groups, consisting of |Gg| = 40 users each.

The three multicast groups are centered around 0◦, 45◦ and

−45◦, respectively. The users within each group are separated

0

30150
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240

270

300

330

0

5

3dB QoS Req.

Group
2
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1

Group
3

Fig. 1. Radiation plot for a ULA with {NT , N,K,NG} = {12, 1, 120, 3},
NRF = 6 and multicast groups centered at 0◦, 45◦, and −45◦.

by 1◦. The SINR requirement is set to 3 dB for all users. The

channel is generated as [1 ejθk . . . ej(NT−1)θk ], where θk is the

angular frequency related to the location of user k with respect

to the array boresight and the gain is normalized to unity.

Fig. 1 shows the radiation pattern of the proposed and

existing SDP schemes in [9] and [10] with NRF = 6 antennas

for a ULA model. The radial axis in Fig. 1 corresponds to

the uniform received power in logarithmic scale. Due to the

multi-group interference, the actual transmit power is larger

than the desired QoS of 3 dB. Fig. 1 shows that all schemes

ensure the SINR of 3 dB to all users. The total power required

to achieve the minimum SINR requirement of 3 dB is less for

SCA based solutions while comparing with the SDP approach

proposed in [9]. Fig. 1 includes only the entropy minimization

scheme as a reference model for the SCA based design with

NRF = 6. As mentioned in Fig. 1, the total transmit power

required by the proposed SCA based scheme is 0.5 dB less

than the SDR based approach in [10] and ≈ 1.5 dB less than

the one in [9] while using NRF = 6 antennas for transmission.

Moreover, the proposed SCA based method outperforms the

SDR approach in [4], [9] by 2 dB when NRF = NT . On the

contrary, the SDR technique in [10] performs the same as that

of the SCA method in [20] while enabling all antennas.

In Fig. 2, we consider a fading scenario, where the channels

are generated randomly from hk,n ∼ CN (0, INT
). The figure

compares the average transmit power required to provide the

QoS of 3 bits to all users by the proposed and an existing SDR

based schemes in [9], [10] for solving P2. We consider a model

with NG = 2 multicast groups consisting of 10 users each. The

SDP method proposed in [9] yields solution with rank greater

than one, whereas the biconvex SDP formulation in [11]

generates rank-one solution mostly. For comparison, we have

also plotted the antenna selection based on the sorted power,

which is nothing but solving (22) without f(a) and selecting

the elements corresponding to the indices of maximum NRF

entries from a. It is evident from Fig. 2 that solving (22)
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Fig. 2. Average transmit power requirement for model {NT , N,K,NG} =

{20, 1, 20, 2} vs. the number of active elements NRF with r̄g = 3 bits.

without the penalty function requires more transmit power

compared to that of the regularized problems. Fig. 2 also

depicts that as we increase NRF to NT , the transmit powers

required by the SDP methods in [9], [10] are comparable

to that of the SCA based techniques. Additionally, the SDP

scheme in [10] performs similar to that the penalty based SCA

methods. The superior performance of the SCA technique is

due to the inherent rank-one restriction on the solution unlike

the SDP method wherein the problem is solved by relaxing

the rank-one constraint, which requires randomization search

to extract a rank-one vector if the solution has higher rank.

Fig. 3 compares both the computational time and the total

transmit power required by [9], [10] and the proposed entropy

based solution for solving P̂2. The system model is as men-

tioned in Fig. 3 along with the QoS requirement of r̄g = 3 bits.

In both figures of Fig. 3, the l.h.s denotes the computational

complexity, whereas the r.h.s exhibits the transmit power

requirement. The randomization search is performed over 100
samples if the solution has rank greater than one. In the

case of [10], 10 iterations are used to determine a subset of

antennas, which is followed by the alternating optimization

(AO) procedure for finding the beamformers. Both [10] and the

SCA scheme are iterated until two subsequent objective values

differ by 10−3. Upon increasing NT , the computational times

of the SDR based techniques scales-up quickly in the order

of O(N6
T ), whereas the proposed SCA algorithm increases

modestly by O(N3
T ) as shown in Fig. 3(a). However, unlike

varying NT , the complexity of all the algorithms scales-up

similarly while increasing |Gg| as shown in Fig. 3(b), since

the complexity scales by O(K3) for all schemes as shown

in Appendix B. Regarding the algorithm performance, as NT

increases, the transmit power required by all the schemes de-

creases monotonically due to the additional spatial degrees of

freedom (DoF) provided by the increasing NT as shown in Fig.

3(a), whereas, the transmit power scales-up quickly when |Gg|
increases as shown in Fig. 3(b). Furthermore, the performance

difference between the SDP and the SCA schemes grows

significantly with the number of users in each group, which is
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Fig. 3. Average computational time for a system {NG, N,NRF} = {1, 1, 8}
with r̄g = 3 bits using i.i.d channel. Ellipses denote the same configuration.
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Fig. 4. Average transmit power requirement for model {NT , N,K,NG} =

{8, 2, 10, 2} vs. the number of active elements and r̄g = 5 bits.

due to high rank solutions produced by the SDP based schemes

in [9], [33]. Even though beamformers are designed based

on biconvex SDP formulation in [10], it performs similar to

that of the proposed SCA based technique, since the solutions

produced by the method in [10] are predominantly rank-one.
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2) Multi-Group with Multiple Sub-Channels: We consider

a scenario with NT = 8 transmit antennas and N = 2 sub-

channels, serving NG = 2 multicast groups with |Gg| = 5
users each. As there are two multicast groups that are to be

served over two sub-channels, it requires at least NRF =
1 active antennas for an interference-free transmission by

an orthogonal scheduling of multicast groups over the sub-

channels. The QoS requirement of all users is fixed to 5 bits

and the path loss seen by all users is set to 0 dB. Fig. 4

compares the transmit power required by various schemes for

a given QoS requirement. The total transmit power required

by the techniques in Section IV are comparable to that of the

exhaustive search, whereas the selection based on the sorted

antenna powers is inferior compared to the proposed schemes

with ψ > 0. Fig. 4 also includes two possible user allocations

wherein the multicast groups are allocated orthogonally onto

independent sub-channels as shown by legends the A and B.

For the subset selections with NRF = {1, 2}, the multicast

groups are assigned orthogonally over non-overlapping sub-

channels for an interference-free transmission. As shown in

Fig. 4, when NRF ≥ NG, the orthogonal allocation schemes

are not optimal when compared to the proposed techniques,

due to under utilization of the available frequency resources.

In case of multiple sub-channels, we extended the SDP-SCA

method in [33] to perform antenna selection by including a

penalty term in the objective as in (22a). Fig. 5 compares both

the total transmit power and the computational complexity

among the entropy based SCA technique and an extension of

[33] by varying each one of the system parameters by keeping

the remaining ones fixed. The comparisons are made between

the two schemes by varying the number of transmit antennas

in Fig. 5(a), sub-channels in Fig. 5(b), multicast groups in Fig.

5(c), and the number of users in each multicast group in Fig.

5(d). Increasing either the number of transmit antennas NT or

sub-channels N , the transmit power required to provide certain

QoS decreases as shown in Figs. 5(a) and 5(b), respectively.

This behavior is due to the additional spatial and frequency

DoF provided by the increase in NT and N , respectively.

Thus, by increasing NT for a fixed number of active elements

NRF = 8, the transmit powers of both the schemes are

minimized with a fixed gap as shown in Fig. 5(a). However, as

|Gg| increases, the probability of producing high rank solutions

by the SDP-SCA method increases, since the rank of SDP

solution is bounded by the number of constraints, which is

|Gg|, thereby yielding inferior rank-one vectors compared to

that of the SCA method for a given complexity as in Fig. 5(d).

As NG increases, the transmit power required by the SDP

method is higher compared to the SCA technique in Fig. 5(c).

It is due to the increase in the randomness involved in finding

NG rank-one beamformers as the multicast group increases.

As shown in Appendix B, as NT increases, the complexity

of the SDP approach scales up quadratically with respect to

the SCA technique, since the complexities are in the order of

O(N6
T ) and O(N3

T ), respectively. This behavior can be seen

in Fig. 5(a). However, if either the number of sub-channels or

multicast groups increases, the complexity scales up similarly

for both the SCA and SDP schemes as shown in Figs. 5(b)

and 5(c). On the contrary, if the number of users in each group

increases as in Fig. 5(d), then the complexity of both the SDP

and the SCA schemes scales up modestly and the gap between

them diminishes as K increases. It can be explained as follows.

The complexity of both schemes grow as O(N3K3) with an

additional fixed overhead, which depends on NT , NG and N .

Therefore, if K ≪ NT , the SDP complexity is dominated

by the term O(N6
TN

3
GN

3), which is greater than the SCA

complexity of O(N3
TN

3
GN

3). However, if K ≫ NT , both the

SCA and the SDP complexities are comparable as the fixed

overhead due to O(N3
TN

3
GN

3) and O(N6
TN

3
GN

3) is much

lower than O(N3K3) while keeping NT , NG and N fixed.

When Gg = 30, the randomization search is unable to extract a

rank-one beamformer for the SDP-SCA method in [33], hence,

the corresponding data point is not shown in Fig. 5(d).

3) Multicast Beamformer Design with Fairness Objective:

We study the beamformer design aiming at maximizing the

minimum achievable rate of all users in a multi-group multiple

sub-channel case. Algorithm 3 is performed for a model

consisting of NT = 8 transmit antennas with N = 2 sub-

channels, serving NG = 2 multicast groups with 5 users each.

Due to the available DoF provided by N = 2 sub-channels, the

minimum number of antennas required to achieve a nonzero

rate to all users can be as low as one element. The total

transmit power Ptot is fixed at 40 dBm in order to compare

with Fig. 4, which has the same system settings.

Fig. 6 plots the minimum rate achieved by various beam-

former designs presented in Section V for the users belonging

to two multicast groups by varying NRF. The average min-

imum rate achieved by the Algorithm 3 using both penalty

functions are fairly comparable, whereas the selection scheme

with ψ = 0 is inferior compared to that of the penalty based

approaches. As we can see from Fig. 6 that the achievable

rate between the proposed methods with ψ > 0 and that of

the exhaustive search is quite small, meaning that Algorithm

3 is efficient in solving P3. For the same reason as in Fig. 4,

we also see in Fig. 6 that all the proposed beamformer designs

are able to offer nonzero rate even for NRF = 1, using orthog-

onal sub-channel allocation for multiplexing multicast groups.

However, for a multiple antenna transmission, allocating users

over all the sub-channels proves to be more efficient than the

orthogonal allocations in terms of the minimum rate. It ensures

that the proposed multicast design for multiple sub-channels

exploits both the spatial and frequency resources efficiently in

order to maximize the minimum guaranteed rate of all users.

It is worth noting the similarity between Figs. 4 and 6,

having the same system model, in terms of the performance

metrics when NRF = NT . In Fig. 4, a minimum transmit

power of 40 dBm is required to provide a QoS of 5 bits to all

users with NRF = NT = 8. On the other hand, Fig. 6 shows

that the minimum achievable rate is ≈ 5 bits for a power

budget of Ptot = 40dBm, thereby establishing an relation

between problems P2 and P3 having different objectives.

Finally, we conclude with Fig. 7 comparing both objectives,

namely, power minimization and max-min fairness, by varying

the number of sub-channels while fixing the remaining param-

eters. The l.h.s y-coordinate denotes the total transmit power

and the r.h.s y-coordinate marks the minimum achievable rate

for all users. The system model consists of a BS with NT = 12
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Fig. 5. Average computational time for system with NRF = 8 active elements for r̄g = 3 bits using an i.i.d channel model for evaluation. The ellipse
markings in all figures are used to denote similar type of system configuration, which are used for cross-reference.
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Fig. 7. Average transmit power and minimum achievable user rate for system
with {NT , |Gg |, NG} = {12, 5, 3} vs. the number sub-channels N and
NRF = 5, 8. Additionally, Ptot = 40dBm and r̄g = 5 bits.

transmit antennas and NG = 3 multicast groups, constitutes

of |Gg| = 5 users each. Comparison is made by varying the

number of sub-channels used for two different values of RF

chains, namely, NRF = 8 and NRF = 5. In the case of power
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minimization objective, the minimum guaranteed rate of all

users are kept as r̄g = 5 bits, and for the max-min fairness

objective, the total transmit power is restricted to 40 dBm.

Two important observations can be made from Fig. 7 when

the number of sub-channels N increases. The total transmit

power required for a power minimization objective decreases

and the minimum achievable rate by all users for the max-

min fairness objective increases. This behavior of the proposed

SCA based solutions is attributed to an efficient utilization of

the frequency resources provided by the increasing number

of sub-channels used for transmission. In the case of NRF =
8, the solution obtained by solving the problem of max-min

fairness P̂3 can be used as an initial feasible point to solve

the min-power design problem P̂2 without solving (17) for

the system setups with N ≥ 4, which is marked as (A) in

Fig. 7. It is because of the fact that the total transmit power

required to achieve r̄g = 5 bits is ≈ 40 dBm for P̂2 and the

minimum achievable rate for P̂3 is 5 bits when the transmit

power is restricted to 40 dBm. Similar discussion holds for

the system setup with NRF = 5 and N ≥ 6. This transition

point is denoted in Fig. 7 with the help of marker (B).

VII. CONCLUSIONS

We considered the design of multicast beamformers for

multiple groups with the min-power objective under cer-

tain quality-of-service requirements and multiple-input single-

output orthogonal frequency division multiplexing. Due to

nonconvexity of the problem formulation, we employed SCA

technique and solved the resulting convex subproblems itera-

tively. We then extended our formulation to limit the number

of antennas used for a multicast transmission. Thus, to select

a subset of transmit antennas, we have introduced a binary

variable to handle the active status of each antenna. Since the

resulting problem is combinatorial, we have relaxed the binary

variable to be continuous and solved the problem efficiently by

employing the SCA technique. Moreover, we have augmented

an additional penalty term in the objective to encourage

sparsity in the relaxed binary variable upon convergence.

Finally, we have also addressed the problem of providing

fairness among multicast groups by maximizing the minimum

achievable rate of users for a given transmit power. The

performances of the proposed methods were demonstrated by

the numerical simulations. Furthermore, we also compared the

results of existing solutions based on semidefinite relaxation

with the proposed schemes, which was based on the SCA

technique. The proposed solutions outperformed the existing

methods in all our numerical experiments.
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APPENDIX A

CONVERGENCE ANALYSIS

In order to show the convergence of proposed iterative

methods in Algorithms 1, 2 and 3, we need to ensure the

following conditions.

(a) Objective sequence should be strictly decreasing and

bounded from below

(b) Sequence of iterates (stacked solution vector) should

be bounded or the feasible set of each subproblem is

compact

Upon satisfying the conditions (a) and (b), we can ensure the

convergence of objective sequence generated by Algorithms

1, 2 and 3 by using [44, Th. 3.14]. Additionally, by using

the discussions in [34], [45], we can show that every limit

point of bounded sequence of iterates generated by the iterative

methods is a stationary point of the nonconvex problem.

Due to the presence of discrete constraints in P2 and

P3, the existence of stationary points cannot be guaranteed.

Therefore, we can only state that the solution obtained upon

the convergence of iterative methods in Algorithms 2 and 3 is a

stationary point for the respective relaxed nonconvex problems

P̂2 and P̂3 and not for P2 and P3. With these assumptions,

let us consider using a generalized formulation to represent

nonconvex problem P1 and the relaxed binary formulations

P̂2 and P̂3 as

minimize
x

f(x) = f1(x)− f2(x) (35a)

subject to gi(x) ≤ 0, ∀i ∈ I (35b)

g̃i(x) ≤ 0, ∀i ∈ I ′ (35c)

hj(x) = 0, ∀j ∈ J (35d)

where x is a vector formed by stacking all optimization

variables, and I, I ′,J are all index sets. From the problem

formulations, it is clear that f1(x), f2(x), and g̃i(x), ∀i ∈ I ′

are all convex and differentiable functions, hj(x), ∀j ∈ J are

affine, and gi(x), ∀i ∈ I are all concave functions. Due to

the concavity of gi(x), ∀i ∈ I, the corresponding constraints

defined by (35b) becomes nonconvex. The feasible set of

problem (35), denoted by X , is defined as

X = {x
∣∣ gi(x) ≤ 0, ∀i ∈ I,

g̃i(x) ≤ 0, ∀i ∈ I ′, hj(x) = 0, ∀j ∈ J }. (36)

In order to discuss the convergence of Algorithms 1, 2 and

3, we use the following notations. Let xk and f(xk) denote,

respectively, the stacked vector of the solution and the objec-

tive value in the (k − 1)th SCA iteration. Let us denote the

sequence of iterates as {xk}, which is formed by collecting the

solution vector from each SCA iteration. Similarly, {f(xk)}
represents the corresponding objective sequence.

A. Boundedness of the Iterates

The feasible set of P1,P2, and P3 with the SINR ex-

pression (2) is closed and bounded. Moreover, the objective

function is coercive, i.e., f(x) → ∞ as ‖x‖ → ∞, and

therefore the feasible set is also compact, following from

[46, Prop. A.8]. Due to the lack of strict convexity in each

SCA subproblem, the overall objective sequence generated by

the proposed algorithms need not be strictly decreasing, i.e.,

f(xk) ≯ f(xk+1), ∀k > 0, which is required to terminate

the iterative procedure. In order to overcome this issue, a

regularization term can be added to the objective function f(x)
without affecting the optimality as

fk(x) = f(x) + τk ‖x− x
k‖22 (37)

where x
k is the solution obtained in the (k − 1)th SCA

iteration and the positive constant τk > 0 ensures strong

convexity in fk(x) for each step [47, Sec. 3.4.3].
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B. Boundedness of the Objective Sequence

This is obvious from the fact that the norm function is

bounded from below as ‖x‖q ≥ 0, ∀x and q ∈ Z.

C. Strict Monotonicity of the Objective Sequence

The problem in (35) is not convex due to the nonconvexity

of both the objective function (35a) and the constraint (35b).

Therefore, we adopt the SCA technique by solving a series

of convex subproblems instead of the original nonconvex

problem. In order to do so, we need to find suitable con-

vex approximations for both the objective function and the

constraint, respectively.

We begin by addressing the nonconvexity of the feasible

set X , which is resulting from the constraint (35b). In order

to find convex subset for (35b), we bound the l.h.s. of (35b),

which is a concave function, by the respective first order Taylor

approximation around an operating point, say, xk, ∀i ∈ I as

ĝi(x;x
k) , gi(x

k) +∇gi(x
k)T(x− x

k) ≥ gi(x) (38)

where the inequality is due to the concavity of gi(x), ∀i ∈ I.

As a result, (38) is a convex subset of (35b) and the approx-

imate convex feasible set for the kth SCA iteration is given

by

X k = {x
∣∣ ĝi(x;xk) ≤ 0, ∀i ∈ I,

g̃i(x) ≤ 0, ∀i ∈ I ′, hj(x) ≤ 0, ∀j ∈ J } (39)

and by following (38), we have X k ⊂ X , ∀k.

Secondly, we consider approximating the objective function

f(x) = f1(x) − f2(x), which is a DC function. To deal

with the nonconvex part, i.e., f2(x), the proposed algorithms

approximate it by the first order Taylor approximation around

some fixed operating point xk as

f̂2(x;x
k) , f2(x

k) +∇f2(x
k)T(x− x

k) ≤ f2(x). (40)

The approximate function f̂2(x;x
k) ≤ f2(x) is a global

under-estimator for f2(x). Therefore, by using (40) instead

of f2(x), the approximate convex objective for the kth SCA

iteration is given by

f̂k(x;xk) = f̂(x;xk) + τk ‖x− x
k‖22 ≥ fk(x) (41)

where f̂(x;xk) = f1(x) − f̂2(x;x
k), and the inequality in

(41) is due to f2(x).

In summary, we can write the approximate convex subprob-

lem for each SCA iteration k as

minimize
x

f̂k(x;xk) (42a)

subject to x ∈ X k (42b)

The problem in (35) is convex, and therefore can be solved

optimally by the appropriate convex solvers. Let xk+1 be the

solution obtained by solving (42) in the kth SCA iteration.

Due to the strong convexity of the objective function in (41),

the optimal solution to (42) is unique. Due to (38), we have

gi(x
k+1) ≤ ĝi(x

k+1;xk) ≤ 0, ∀i ∈ I. (43)

Therefore, the solution x
k+1 obtained by solving (42) in

the kth SCA iteration is feasible, i.e., x
k+1 ∈ X with the

assumption that initial operating point xk is feasible.

Finally, to ensure strictly nonincreasing behavior in the

objective sequence, it is enough to show strict monotonic

decrease in the objective between two consecutive SCA it-

erations, say, k−1 and k, respectively. Let xk ∈ X k−1 be the

solution obtained by solving (42) in the (k − 1)th SCA step.

To define X k, the nonconvex constraints defined by (35b) are

approximated by a convex first order Taylor approximation as

in (38) around the fixed operating point xk. Due to this, the

previous solution x
k is also included in the feasible set of the

current SCA iteration k as x
k ∈ X k.

Now, by using the fact that xk ∈ {X k−1 ∩X k}, the newly

found solution x
k+1 in the kth SCA iteration obeys

f̂k(xk+1;xk) ≤ f̂k(x;xk), ∀x ∈ X k (44)

therefore, the objective between two subsequent iterations is

non-increasing, thereby proving the monotonicity of the objec-

tive sequence. However, to ensure strict monotonic decrease in

the objective sequence, we expand (44) using (37) at x = x
k

as

f̂(xk+1;xk) + τk ‖xk+1 − x
k‖ ≤ f̂(xk;xk) (45)

where ‖xk − x
k‖ = 0. Now, by the nonnegative quadratic

term in the l.h.s of (45) and by the monotonic decrease of the

objective value in each step, we can ensure that the objective

sequence is strictly decreasing and the iterative procedure can

be terminated upon reaching ‖xk+1 − x
k‖ → 0 as k → ∞.

D. Stationarity of Limit Points

In order to discuss the convergence of sequence of beam-

former iterates generated by the iterative algorithms, we first

ensure the convergence of objective sequence {f̂k(xk;xk−1)}.

Function {f̂k(xk;xk−1)} is bounded and strictly decreasing

by the discussions in Appendices A-B and A-C. Therefore,

by using [46, Prop. A.3], we can ensure the convergence of

{f̂k(xk;xk−1)}. Unfortunately, such a claim cannot be made

on the convergence of sequence of iterates {xk}. However,

Appendix A-A shows that iterates generated by the iterative

procedure are bounded. By [46, Prop. A.5], the sequence {xk}
has at least one limit such that there exists a subsequence of

{xk} converging to it.

We now show that every limit point of the bounded sequence

{xk} is a stationary point, i.e., the limit point of every

convergent subsequence is a stationary point. In order to prove

the stationarity of limit points, let us consider a subsequence

{xkj |j = 0, 1, . . . } of {xk} that converges to x̄, which is a

limit point. Now, by taking the limit as j → ∞ along the

subsequence {xkj}, we have

lim
j→∞

{
f̂(xkj+1 ;xkj ) + τkj ‖xkj+1 − x

kj‖
}
= f̂(x̄; x̄). (46)

The above relation in (46) can be shown by using the conver-

gence of {f̂k(xkj ;xkj−1)}, and by the continuity of functions

f1(x) and f2(x;x
kj−1) along with the subsequence {xkj} as

lim
j→∞

f̂k(xkj+1 ;xkj ) = f1( lim
j→∞

x
kj+1)− f̂2( lim

j→∞
x
kj+1 ;xkj )
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+ lim
j→∞

τkj‖xkj+1 − x
kj‖ = f1(x̄)− f̂2(x̄; x̄) = f̂(x̄; x̄) (47)

where limj→∞ ‖xkj+1 − x
kj‖ leads to ‖x̄− x̄‖ → 0.

Due to the fact that {f̂k(xk;xk−1)} is convergent, we can

ensure that {f̂kj (xkj ;xkj−1)} is also convergent along the

subsequence {xkj}, since {xkj} ⊂ {xk}. Therefore, by taking

the limit as j → ∞ along the subsequence {xkj} and by using

the relation from (46) and (47), we have

lim
k→∞

f̂k(xk;xk−1) = lim
j→∞

f̂kj (xkj ;xkj−1) = f̂(x̄; x̄) (48)

where the equality in (48) follows from the fact that x̄ is a

limit point of {xk}.

Let us prove the stationarity of x̄ by contradiction. Assume

that x̄ is not a stationary point. In such a case, there exists

some other point x
′ ∈ {xk}, such that ∇f̂(x̄; x̄)T(x′ −

x̄) < 0 and f̂(x̄; x̄) > f̂(x′; x̄). Since x
′ is a point in

{xk}, there exists a subsequence that converges to x
′, for

which x
′ is a limit point. However, by using (48), we have

f̂(x̄; x̄) = f̂(x′; x̄) for all limit points of {xk}, which is a

contradiction. Additionally, due to the monotonic decrease in

the objective sequence {fkj (xkj ;xkj−1)}, we have x
kj → x̄

and fkj (xkj ;xkj−1) − fkj+1(xkj+1 ;xkj ) → 0 as j → ∞.

Furthermore, note that x̄ is the solution of (42), therefore, it

satisfies (44) over X k as k → ∞. Using the above statements,

we can show that x̄ satisfies the optimality condition in [46,

Prop. 2.1.2] as

∇f(x̄; x̄)T(x− x̄) ≥ 0, ∀x ∈ X k, k → ∞. (49)

Thus, x̄ is a stationary point, and by using (48), we can show

that every limit point of {xk} is a stationary point of (42).

Using (38) and (41), we can show that as i→ ∞, ĝi(x;x
k) →

gi(x̄) and f̂k(x;xk) → fk(x̄). Therefore, by following [45,

Thm. 2] and [48, Prop. 3.2], we can show that every limit

point of bounded sequence of iterates {xk} generated by the

iterative method is a stationary point of problem (35).

APPENDIX B

COMPLEXITY ANALYSIS

Using the discussions presented in [49], [50], the com-

putational complexity of the proposed algorithms and the

existing techniques are discussed and compared here. In this

analysis, we ignored the guaranteed rate constraint (15b) from

the consideration. It creates a fixed overhead as it can be

approximated by a system of SOC constrains as in [35] and

it is scaled by the number of users, which is constant for

both the SDP and the SCA based schemes for a multiple

sub-channel scenario. Due to the existence of multiple sub-

channels, the total number of variables used in (15) is given

by N × (NTNG +K), which is attributed to mg,n, γk,n. The

number of constraints in (15) corresponds to the total count of

multicast users and the sub-channels, which adds up to NK.

The total number of iterations required by interior point

methods, which is proportional to the number of constraints,

is given by O((NK)0.5 log(ǫ−1)) to obtain an ǫ optimal

solution. The arithmetic complexity of both assembling the

Newtons system and to solve them in each SCA iteration

requires utmost O(NK(NTNGN + KN)2 + NTNGN +

KN)3 ) ≈ O((NTNGN + KN)3) number of computations

as the worst case complexity. It can be easily verified that

as we increase the number of sub-channels, the overall com-

plexity scales up to the power of three while fixing the

remaining parameters. Similarly, if we design beamformers

for multiple sub-channels based on the SDP together with

the SCA technique proposed in [33], then the total number

of interior point iterations required to obtain an ǫ optimal

solution is given by O((NTNGN + KN)0.5 log(ǫ−1)) and

the arithmetic complexity required for a Newton iteration

is given by O((N2
TNGN + KN)3). It is worth noting that

both the SDP technique in [33] and the SCA based schemes

presented in Section III-B require an outer loop to update

the SCA operating point when N ≥ 1. Hence, the overall

complexity is multiplied by a constant Imax, which captures

the total number of SCA iterations necessary to obtain a

solution with reasonable accuracy. On the contrary, for a single

sub-channel case, only the SCA technique proposed in Section

III-B requires an outer loop to update the operating point

whereas the SDP technique proposed in [4], [6], [9] yields

a set of transmit beamformers by solving a SDP problem. In

terms of computational complexity, the SDP requires utmost

computations of O((N2
TNG)

3 + KNGN
2
T ) and the SCA

complexity is in the order of O(K(NTNG)
2 + (NTNG)

3),
using the discussions in [9], [20], [49].

Furthermore, the complexity of antenna subset selection

problems in (30) and (34) also follows similar complexity

figures as those in (15). However, due to the introduction

of new variables such as a,v, the variable size will be

increased to N×(NTNG+K)+2×NT , thereby leading to a

marginal increase in the Newton complexity as it is determined

by the dominant terms. It is evident from the complexity

figures that the SDP requires more arithmetic computations

compared to the SCA based techniques for a multiple sub-

channel case. The arithmetic complexity required to find an

initial feasible point for the SCA based scheme is given by

same factor as O((NTNGN+KN)3), which is similar to the

main SCA algorithm itself, since it is formulated by relaxing

the SINR constraint [20]. Similarly, the randomization search

required to find an efficient rank-one beamformer for the SDP

method requires only O(N(N3
G + NGK)), since each sub-

channel can be solved independently upon finding an optimal

γk,n [6]. With a single sub-channel and antenna selection,

the SDP based solution in [9] requires utmost O(N6
TN

3
G)

arithmetic operations per Newton iteration. On the contrary, for

a multi-group multicast beamformer design based on the pro-

posed SCA based method requires only O(N3
TN

3
G) operations,

which is significantly less when compared the SDP method

while keeping the number of users fixed. In addition to the

arithmetic complexity and the number of Newton iterations,

the SCA also includes a multiplicative factor Imax due to the

SCA update procedure. For N = 1 scenario, the proposed

SCA based formulations can be cast as a QCQP, which has

much lower computational complexity compared to the SDP

based approach [19], [20].




