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Abstract Compound extremes correspond to events with multiple concurrent or consecutive

drivers (e.g., ocean and fluvial flooding, drought, and heat waves) leading to substantial impacts such as

infrastructure failure. In many risk assessment and design applications, however, multihazard scenarios

of extremes and compound events are ignored. In this paper, we review the existing multivariate design

and hazard scenario concepts and introduce a novel copula-based weighted average threshold scenario

for an expected event with multiple drivers. The model can be used for obtaining multihazard design and

risk assessment scenarios and their corresponding likelihoods. The proposed model offers uncertainty

ranges of most likely compound hazards using Bayesian inference. We show that the uncertainty ranges of

design quantiles might be large and may differ significantly from one copula model to the other. We also

demonstrate that the choice of marginal and copula functions may profoundly impact the multihazard

design values. A robust analysis should account for these uncertainties within and between multivariate

models that translate into multihazard design quantiles.

Plain Language Summary Compound extremes correspond to events with multiple concurrent

or consecutive drivers, leading to substantial impacts such as infrastructure failure. Hurricane Harvey, with

more than 100 fatalities, is an example of concurrent hazards (extreme precipitation and storm surge); and

recent mudslide in California, with a death toll of 20 people in Montecito, CA, is an example of consecutive

hazards (significant precipitation a few weeks after the Thomas wildfire). In many risk assessment and design

applications, however, multihazard scenarios of extremes and compound events are ignored. In this paper,

we present a general framework for obtaining multihazard design and risk assessment scenarios and their

corresponding likelihoods. This framework also quantifies the underlying uncertainties of multihazard

scenarios and employs an ensemble of univariate and multivariate models for robust risk assessment.

1. Introduction

The interdependencebetween twoormore hazard drivers, whichmaynot necessarily be extremeevents indi-

vidually, may trigger significant extreme impacts—a phenomenon known as a compound event (Leonard

et al., 2014; Mehran et al., 2017; Vahedifard et al., 2016; Wahl et al., 2015). Compound events (or impacts) may

occur as a result of one of the following situations (Field, 2012): (1) two or more simultaneous or successive

extremeevents (e.g., simultaneous extremeprecipitation and storm surge,Moftakhari et al. (2017)), (2) combi-

nations of extreme events with underlying conditions that amplify the impact (e.g., droughts and heat waves,

Mazdiyasni & AghaKouchak, 2015), or (3) combinations of events that are not themselves extreme but collec-

tively lead to an extreme event or impact (e.g., a moderate coastal flood occurring during above average tide,

Moftakhari et al., 2015).

Frequency and severity of compound events are expected to increase in the future (Field, 2012; Kopp et al.,

2017; Mechler & Bouwer, 2015), which in turn elevate their associated risks, as defined by combination of

threatening events (also known as hazards) and adverse consequences (e.g., exposure and vulnerability)

(Tessler et al., 2015). This necessitates a deeper understanding of compound extremes and their impacts. Reli-

able and accurate characterization of compound hazards, as one important element of risk, requires in-depth

research to advance the existing theoretical frameworks and tools (Leonard et al., 2014).
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In this study, we review the existing multivariate design and hazard scenario concepts and introduce a

new copula-based methodology that offers uncertainty ranges of the most likely compound hazards using

Bayesian inference. Copulas have been proven to be a valuable tool to describe and analyze the dependence

structure of multiple variables in hydrology and climatology (De Michele & Salvadori, 2003; De Michele et al.,

2005; Favre et al., 2004; Salvadori &DeMichele, 2004a, 2004b) andhavebeenemployedas a vehicle todevelop

multihazard design scenarios (Gräler et al., 2013; Salvadori et al., 2014; Volpi & Fiori, 2012). While uncertainty

analysis has received a lot of attention in different branches of hydrology and climate science (Sadegh and

Vrugt (2013, 2014); Sadegh et al. (2015, 2018), and references therein), it is not broadly explored inmultihazard

design scenarios. This is specifically important given the relatively short length of our observations, which

may translate into large uncertainty in the design/hazard scenarios (Sadegh et al., 2017).

We also analyze the marginal and joint probability distributions of compound hazard events and depict the

importance of the choice of marginal distributions as well as copulas to model univariate and multivariate

probabilities of natural hazards and compound events. Moreover, we propose a multivariate approach

that estimates an expected hazard threshold level based on the weighted average of multiple critical

levels/thresholds.

2. Methodology
2.1. Critical Level for Hazard Assessment

In a typical hazard assessment problem, depending on the problem’s dimension, the probability space is

divided by an equal probability point, line, or surface, hereafter referred to as the critical layer. We define

critical layer as (Salvadori et al., 2011),

LP
q
=
{
x ∈ Rd : P(x) = q

}
(1)

in which q is the critical probability level, x denotes a realization of the d-dimensional feasible space, and P is

a d-dimensional probability distribution. In a univariate study, P reduces to a marginal distribution, while in a

multivariate study, P is defined as a copula probability distribution that describes the correlation structure of

the driving variables. LP
q
divides the feasible space into three subregions (Corbella & Stretch, 2012):

1. subcritical (nonhazardous) region (R<
q
) that includes events (realizations) with probability, P, lower than the

critical probability level (P < q);

2. critical layer (e.g., point, line, or surface), LP
q
, on which events hold equal probability, q; and

3. supercritical (hazardous) region (R>
q
) where events with probability, P, higher than the critical probability

level, q, (P> q) fall.

Depending on the study goals, onemight be interested in either subcritical or supercritical (nonhazardous or

hazardous) regions. This paper focuses on coastal flooding, and hence, we focus on supercritical (hazardous)

region, R>
q
(i.e., high extreme values).

2.2. Marginal Distributions

Estimating the critical level or return period of an extreme event typically involves fitting distribution

functions. We use 17 different continuous marginal distribution functions to find a suitable model that opti-

mally fits the available data. Distribution functions include (1) Beta, (2) Birnbaum-Saunders, (3) exponential,

(4) extreme value, (5) Gamma, (6) generalized extreme value, (7) generalized Pareto, (8) inverse Gaussian,

(9) logistic, (10) log-logistic, (11) lognormal, (12) Nakagami, (13) normal, (14) Rayleigh, (15) Rician, (16) t loca-

tion scale, and (17)Weibull distributions (listed alphabetically). For adetaileddescriptionof thesedistributions

refer to Johnson et al. (1993, 1994), and Bowman and Azzalini (1997).

The best marginal distribution is selected based on the Bayesian information criterion (BIC). The parameters

of the marginal distributions are estimated through a maximum likelihood algorithm that minimizes the dis-

tance between empirical probability values and theirmodeled counterparts. A chi-square goodness-of-fit test

is then employed to statistically examinewhether or not data is sampled from the fitted distribution at 5% sig-

nificance level (Lewis & Burke, 1949). Visual comparison of the fitted distribution versus empirical probability

values, as well as QQ plotting, is also used to verify the acceptability of the distribution fit.

In many studies only one (or a few) marginal distribution(s) is used (Zheng et al., 2015). We argue that using a

wide range of distributions is essential tominimize prior assumptions on the distributions of data by selecting

the best fitted function. Any distribution holds some underlying assumptions, but our flexible approach
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strives to identify those closest to that of the underlying empirical distribution of data. We, however, share a

common assumption with the literature that the underlyingmarginal distribution does not change over time

(Salvadori et al., 2014).

2.3. From Univariate to Multivariate Multihazard Analysis

Return period is a statistical measure of the expected recurrence interval of a hazard, such as flood, over an

extended period of time. This statistical concept is frequently used for risk analysis and infrastructure design

purposes. Univariate return period is defined as

RP1
q
=

�

Pr
(
x ∈ R>q

) =
�

1 − P1
q

, (2)

in which RP1
q
represents the univariate return period, P1

q
signifies the marginal probability at the criti-

cal probability level, q, and � is defined as average interarrival time of observed events (Salvadori et al.,

2011, 2014).

The univariate return period concept can be extended to higher dimensions for multihazard analysis. How-

ever, in a multihazard case, it is important to consider the dependence between hazard drivers. Copulas have

been widely used for modeling the dependence structure of two (or more) time-independent random vari-

ables, regardless of theirmarginal distributions (DeMichele & Salvadori, 2003; Favre et al., 2004; Grimaldi et al.,

2016; Joe, 2014; Nelsen, 2007; Salvadori et al., 2007, 2014).

Nelsen (2003) informally defines 2-D copulas as a mapping tool from I2(I × I) space to I, in which I ∈ [0, 1].

F1(x1) = Pr(X1 ≤ x1) and F2(x2) = Pr (X2 ≤ x2) describemarginal distributions of continuous random variables

X1 and X2, respectively, and H(x1, x2) = Pr (X1 ≤ x1, X2 ≤ x2) explains their joint probability distribution.

Hence, [F1(x1), F2(x2),H(x1, x2)] is a point in a 3-D space I3. According to Sklar’s theorem (Sklar, 1959), there

exists a copula function, C, for which H(x1, x2) = C
[
F1(x1), F2(x2)

]
. If marginal distributions, F1 and F2, are

continuous, copula C is unique. Similarly, a copula can be constructed from a joint cumulative distribution,

H, as C(u1, u2) = H
[
F−1
1
(u1), F

−1
2
(u2)

]
given [u1, u2] =

[
F1(x1), F2(x2)

]
. The definition of copula can similarly

extend to d-variables

C(u) = H
[
F−1
1
(u1), F

−1
2
(u2), · · · , F

−1
d
(ud)

]
, (3)

where u = [u1, u2, · · · , ud].

We use the 26 bivariate copulas built into the Multivariate Copula Analysis Toolbox (MvCAT; Sadegh et al.,

2017), which includes models with one to three degrees of freedom, namely (1) Gaussian, (2) t, (3) Clayton,

(4) Frank, (5) Gumbel, (6) independence, (7) Ali-Mikhail-Haq, (8) Joe, (9) Farlie-Gumbel-Morgenstern, (10)

Gumbel-Barnett, (11) Plackett, (12) Cuadras-Auge, (13) Raftery, (14) Shih-Louis, (15) linear-Spearman, (16)

Cubic, (17) Burr, (18) Nelsen, (19) Galambos, (20) Marshall-Olkin, (21) Fischer-Hinzmann, (22) Roch-Alegre, (23)

Fischer-Kock, (24) BB1, (25) BB5, and (26) Tawn copulas. The equations of these copulas are available in Table

1 of Sadegh et al. (2017).

MvCAT infers the copula parameters by tuning them to optimally fit the estimated joint probabilities to

the associated empirical joint probabilities. This is a nonparametric approach for fitting copulas that uses

pseudo-observations to find copula parameters. MvCAT includes two optimization and uncertainty analysis

frameworks, namely, a gradient-based local optimization and a hybrid-evolution Markov Chain Monte Carlo

(MCMC) simulation (Sadeghet al., 2017). The local optimizationoptionuses an “interior-point” algorithm (Byrd

et al., 2000; Waltz et al., 2006) and performs a quick search of the feasible space at the expense of a small

likelihood of getting trapped in local optima (Sadegh et al., 2017). MCMC, on the contrary, warrants finding

an estimate of the global optimum at a small computational expense. The employed state-of-the-art MCMC

algorithm numerically solves the Bayes’ equation

p(�|D̃) = p(�)p(D̃|�)
p(D̃)

∝ p(�)p(D̃|�) (4)

to estimate posterior distribution of copula parameters p(�|D̃). In equation (4), D̃ denotes the empirical joint

probability vector, p(�) represents the prior distribution of copula parameters (uniform in our case), p(D̃)

is the evidence, and p(D̃|�) denotes the likelihood function. If we conveniently assume the error residuals
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(divergencebetween copulamodeled,di(�) , and empirical joint probability values, d̃i) are uncorrelated, Gaus-

sian distributed with a zero mean and a constant variance (homoscedastic), the likelihood function could be

defined as

p(D̃|�) ≅ (�|D̃) =
n∏

i=1

1
√
2��̃2

exp
{
−
1

2
�̃−2

[
d̃i − di(�)

]2}
, (5)

where �̃ is an estimate of the standard deviation of measurement error, which can be estimated on-the-fly in

the MCMC simulation. Each of the posterior copula parameters can be used to derive the multihazard design

scenarios. However, if uncertainty analysis is not desired, mode of the posterior distribution can be used for

design purposes.

3. Multivariate Hazard Scenarios

Return period in a multivariate space, as an intuitive extension of its univariate case, is defined as

(Vandenberghe et al., 2011)

RP2+
q

=
�

Pr
(
x ∈ R>q

) =
1

1 − C(uq)
. (6)

inwhichuq = F(xq), and xq ∈ LP
q
. This approach follows the “OR” definition of the joint return period in section

3.3 of Gräler et al. (2013). Also see Salvadori et al. (2016).

In this setting, an event with a prespecified critical layer or joint return period can be selected for design

purposes and/or hazard assessment. However, there are numerous combinations of x on the return period

curve (associated with the critical layer) in a 2+-dimensional problem, RP2+
q
, with equal probability (Salvadori

et al., 2011; Volpi & Fiori, 2012). For example, there are infinite combinations ofwater level andfluvial discharge

leading to statistically similar 100-year events, while their impacts can be drastically different. An intuitive

approach to select among plausible pairs of x is to assign weights to them based on their associated copula

density values (Corbella & Stretch, 2012; Gräler et al., 2013; Salvadori et al., 2011, 2014; Zheng et al., 2015). The

copula probability density function is defined as (Volpi & Fiori, 2012),

h(x) =
�dH(x)

�x1�x2 · · · �xd
. (7)

We seek to offer an approach to select the desired points on the critical return period level, RP2+
q
, based on the

copula density values and theunderlyinguncertainties. The critical returnperiod level, RP2+
q
, is associatedwith

the critical layer, LP
q
. In the following,we review the literatureon this topic and introduce twonovel concepts: (i)

uncertainty ranges of themost likely design scenario and (ii) an expected scenario derived from theweighted

ensemble average of the most likely design scenarios.

3.1. Most Likely Scenario

The most common approach in selecting one design/hazard scenario, among feasible combinations with

equal return periods, is to analyze the systemunder themost likely compound event. Themost likely scenario

coincides with the combination of hazards on the critical layer, LP
q
, (also known as critical joint return period,

RP2+
q
), with highest joint density level (Salvadori et al., 2014) defined as

xq = argmax h(x), x ∈ LP
q
. (8)

This most likely compound event, however, may not be the most severe among the possibilities in terms

of impact. So, we further explore other possibilities to sample from the critical level and evaluate their

hazardousness.

3.2. Multiple Samples on the Critical Layer, LP
q

To obtain a distribution of potentially hazardous combination of drivers, rather than one-single combination

as in section 3.1, we drawweighted random samples of compound events from the critical layer, LP
q
. The sam-

pling approach uses the copula probability density function, h(x), as weight (Gräler et al., 2013). The samples

with higher joint probability density values have a higher chance of selection, but this method allows for per-

turbing a level of stochasticity into design scenarios and hazard assessment, consistent with the stochastic

nature of hazard drivers. The output will be a set of forcing that can be used to run a numerical or conceptual

model (e.g., hydrodynamic model of an estuary).
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3.3. Uncertainty Analysis of Most Likely Scenario

The approach proposed in this paper helps describing uncertainties associated with statistical model struc-

turebyfinding the copula family that best describes the correlation structurebetween two (ormore) variables.

It also helps quantifying uncertainties associated with parameter estimation procedure. This framework

attributes modeling uncertainties to copula parameters, � (Vrugt & Sadegh, 2013), and estimates the most

likely scenarios for each posterior copula parameter set (as opposed to the one scenario from best copula

parameter; section 3.1). This approach is mathematically defined as

∀�i ∈ � x
q

i
= argmax h(x), xi ∈ LP

q
(�i). (9)

We treat each sample of the posterior distribution with equal weight; however, the most likely region of

the posterior distribution inherently encompasses more samples. This method quantifies the uncertainties

associated with the estimated most likely scenario and analyzes the sensitivity of system to variation of

this scenario.

Copulamodel parameters are prone tomeasurement andmodel structural errors. These errors preclude find-

ing a “unique” parameter combination that is significantly better than others (Vrugt et al., 2003). Indeed, some

parameters might be equally good according to a goodness-of-fit measure (the problem of “equifinality”;

Beven & Binley, 1992). Moreover, one parameter combination might be superior to others according to one

goodness-of-fit index and inferior based on another. Copula parameters also depend on the period of obser-

vation. It is hence suggested that a cohort of samples that are all acceptable providesmore information about

the systembehavior as opposed to a best parameter combination, which is to be accepted as “true” represen-

tation of the system. Selecting best parameter may underestimate the uncertainties of the system (Sadegh &

Vrugt, 2014). See supporting information, for more detail.

3.4. Expected Scenario

For design and risk assessment purposes, it is also useful to estimate an expected event that represents the

nonextremedynamics of the system. This reference scenario represents the situation that should be expected

in any given year. This approach relaxes the need for defining a critical return period level, RP2+
q
. Following

the concept of Cumulative Hazard proposed by Moftakhari et al. (2017), a weighted average of most likely

scenarios with return periods of 2, 10, 25, 50, and 100 years is calculated.Weights are then assigned according

to the return period levels, and the approach is formulated as

xex =

(
5∑

i=1

1

RP2+
qi

argmax h(x), x ∈ LP
qi

)
∕

(
5∑

i=1

1

RP2+
qi

)
,

RP2+
q

= [2, 10, 25, 50, 100].

(10)

This is a nonextreme threshold scenario and is not meant to replace extreme design scenarios. Weights used

in equation (10) are selected based on the most widely used return period levels. These weights are assigned

as reciprocal of RP level, which are associated with their occurrence probability. Events with lower probability

of occurrence (more extreme) yield higher design levels but get lower weights, and vice versa. We will now

showhow this approach canbe implemented in a coastal floodingproblemwith twodependent flooddrivers.

4. Results

In this study, we analyze compound flooding hazard (i.e., combined ocean and terrestrial flooding) in

Washington, DC, United States. This area has a considerable number of infrastructure exposed to flooding in

the Potomac River channel (Ayyub et al., 2012; Moftakhari et al., 2017). The dynamics of flooding is strongly

determined by the nonlinear interactions between freshwater inflows and estuary water level (Hoitink & Jay,

2016) (see supporting information for detailed physical description of this interdependence). Thus, modeling

the correlation structure between flood drivers is crucial for appropriate characterization of flooding dynam-

ics. In fact, previous studies have shown that ignoring the interactions between ocean and terrestrial flooding

can lead to biased risk estimates (Moftakhari et al., 2017).

Here we consider the daily freshwater inflow estimates by the U. S. Geological Surveys (gauge num-

ber 01646500) and hourly water level observations provided by National Oceanic and Atmospheric

Administration (gauge number 8594900) as major flood drivers. The pair of interest for any given year is set

SADEGH ET AL. 5
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Figure 1. Marginal cumulative distributions of (a) water level and (e) river discharge, and their (c and f) associated univariate return periods (y axis presented in

log scale). Joint probability isolines derived from Joe copula are displayed in Figure 1b, and associated return period isolines are depicted in Figure 1d. Both joint

probability and multivariate return period isolines are color coded with joint density levels with blue representing lower densities and red denoting higher

densities. Joint probability density values are renormalized to [0,1] range for visualization proposes. Blue dots are observed pairs of river discharge annual

maxima and associated water levels.

to be the largest annual freshwater inflow to the estuary and the corresponding largest observed hourly

water level within ±1 day. We first investigate the interdependency of these two natural hazards in an

83-year record (hence 83 pairs of drivers) through different correlation coefficients, namely, Kendall’s rank

(r = 0.5274, pvalue = 0.0000), Spearman’s rank correlation (r = 0.7041, pvalue = 0.0000), and Pearson cor-

relation coefficient (r = 0.9125, pvalue = 0.0000), all of which display significant dependence between the

two variables. Hence, we have used our proposedmodel to describe floodhazard considering both (terrestrial

and ocean) drivers and their interdependencies.

Wefirst select thebest fittedmarginal distributions, F1 and F2, to the observedflooddrivers (section 2.2) based

on the BIC goodness-of-fit metric. Figures S2A and S2C (supporting information) show the fitted distributions

(red line) compared to the observed (blue dots) river discharge and water level. Figures S2B and S2D display

the QQ plots to visually examine the goodness-of-fit of the distributions to the observed data. In our study, a

log-logistic distribution is selected to fit both variables (Table S1). The chi-square test for both drivers at 5%

significance level also confirms our visual inspection that fitted distributions are acceptable.

Then, we evaluate 26 bivariate models using MvCAT toolbox (Sadegh et al., 2017). The copula parameters

and their posterior distributions are inferred using MCMC simulation within a Bayesian framework. In this

study, the Fischer-Hinzmann copula is selected as the best model to describe the dependence structure

among the studied variables, based consistently on all goodness-of-fit criteria (Akaike information criterion,

BIC, Likelihood, Nash-Sutcliffe efficiency, and root-mean-square error). However, this copula does not have a

closed-form joint probability density function due to the “min” operator in its joint cumulative distribution

function, which leaves the derivative undefined at X1 = X2 (when the two inputs to copula are equal). This

impedes finding the most likely scenario (section 3.1) of compound hazard effects, among others. Hence, we

select the Joe copula (secondbestmodel) for the rest of this study. Figure 1 shows the joint probability isolines

(b) and return period levels (b) based on the Joe copula.

We then use the Joe copula model to derive design quantiles and analyze the associated compounding haz-

ards. Figure 2 shows the river discharge—water level fluctuation design pairs associated with a compound

eventwith joint return period of 50 years based on the different approaches described in section 3. The design

valuesof river dischargeandwater level, basedon themost likely design scenario are 9820.50m3/s and2.48m,

respectively. These are larger than the design values derived through univariate analysis (river discharge of

9202.01 m3/s and water level of 2.39 m). This clearly highlights that ignoring the interactions between flood

drivers can lead to underestimation of the hazard.

SADEGH ET AL. 6
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Figure 2. Multivariate design quantiles based on different approaches. Univariate return period curves for (a) water level and (d) river discharge. Y axis for these

two plots is in log scale. Figure 2b shows a joint 50-year return period curve, color coded with the joint density levels. Light gray arrows display the univariate

design quantiles, whereas dark gray arrows depict the most likely scenario design quantiles. (c) Multiple samples, in black dots, on the joint 50-year return period

level randomly drawn with density levels as weight. In this plot, red dots show uncertainty space of most likely scenario design quantiles for posterior samples

of the Joe copula model.

To provide a broader range of multivariate design scenarios, Figure 2c shows 100 samples (black dots) ran-

domly drawn from the RP2
0.98

(50-year event) curve based on the weights assigned by the copula density

values (section 3.2). Design quantiles for this approach using the Joe copula range between 9202.00 and

12632.37 m3/s for river discharge (a range that equals to 97% of the mean annual maximum river discharge)

and 2.39 and 3.58m for water level (a range that is as wide as 86% of averagewater level). Themain limitation

of this approach is that the ranges of discharge andwater level are very wide and covermost of the entire dis-

tribution. Figure 2c also displays the uncertainty space of design quantiles based on the most likely scenario

(section 3.3). Each red dot represents the most likely scenario for one parameter set from the posterior distri-

bution of the Joe copula, derived using MCMC simulation within a Bayesian framework. Each of these design

levels couldbeacceptablegiven the available information in theobserveddata,whichdepicts the importance

of taking uncertainty quantification into consideration for an informed design and management practice.

Thus far, we have focused on the design quantiles and the associated hazards based on a predefined return

period. Here we propose a multivariate expected event regardless of return period level (see the theory in

section 3.4). Table S4 shows the expected events’ boundary conditions for different copula families. In other

words, the threshold levels of Table S4 represent the compound hazards of the system at any given year with

the highest likelihood. For the Joe copula, an expected event is defined by a river discharge of 4492.23 m3/s

and a water level of 1.58 m. A closer look at Table S4 shows that the threshold quantiles of an expected

event given different copula models are fairly constrained and fall within the interval of [4490.77 m3/s–

5042.82 m3/s] for river discharge (a range that equals 16% of the mean annual maximum discharge) and

[1.58–1.72 m] for water level (a range that equals 10% of the mean water level). Note that expected scenario

quantiles refer to a nonextreme event that ismost likely to occur in any given year and are significantly smaller

than the extrememultihazard scenarios. Nonextreme scenarios show lower uncertainty ranges, compared to

extremes; however, we design systems to withstand the extreme scenarios, and we should be wary of the

uncertainties in our design and hence probability of failure.

One key question is that to what extent the choice of multivariate model (here choice of copula) affects the

estimated hazard. Figure 3 plots 100 weighted random samples on the RP2
0.98

(50-year) curve (black dots)
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Figure 3. Multivariate design quantiles based on 100 weighted random samples on the critical layer (50-year joint return period curve) displayed with black dots,

and uncertainty ranges of most likely scenario depicted with red dots for a set of six randomly chosen copulas, namely (a) Gaussian, (b) Clayton, (c) Gumbel,

(d) Joe, (e) Nelsen, and (f ) Tawn.

and uncertainty ranges of the most likely scenario based on the posterior distribution of copula parameters

(red dots) for a group of six randomly selected representative copulas (also see supporting information). This

figure shows that choice of copula model and underlying uncertainty of copula parameters can potentially

translate into large ranges of design (or critical layer) quantiles. The weighted random samples (black dots)

on the RP2
0.98

curve, for all the copulas, cover a relatively large interval as wide as 246% of the mean annual

maximum discharge and 159% of the average water level. More importantly, the uncertainty ranges of the

most likely scenario significantly differ from one copula model to another (Figure 3). For example, the uncer-

tainty ranges of themost likely design quantile for the Joe copulamodel are aswide as 6%of themean annual

maximumdischarge and 3%of themeanwater level, respectively, while these ranges significantly expand for

the Gaussian copula to 337% of the mean annual maximum discharge and 97% of the average water level,

respectively.

Uncertainties in the most likely scenario (and other scenarios) stem from multiple sources, including the

goodness-of-fit of the models (both marginal and multivariate model), model structural errors, posterior dis-

tributions of the copula model parameters, and even the observed joint probability errors. The observations

to which the univariate and multivariate models are fitted to are often not long enough to sufficiently con-

strain the model parameters, specifically for multidimensional models (Sadegh et al., 2017). The length of

record is also a constraining factor in terms of evaluating out-of-range return periods, requiring extrapolation

that exponentially increases the design uncertainties. Currently, most publications in hydrology and climate

journals consider very few multivariate models in their analysis, which may lead to large biases and errors in

estimated joint return periods, critical levels, etc. Such errors can beminimized through a rigorous copula and

marginal fitting, chosen from a wide range of options. This ensures that the selected copulas and marginals

are good representatives of the understudy system.We also note that some copula familieswith rather similar

performance metrics may show significantly different forms of probability isolines (see Sadegh et al. (2017)).

This raises the question ofwhichmodel should be trusted to single handedly provide the design quantiles.We

demonstrate that amultimodel analysis providesmore robust design quantiles and hence should be adopted

by the community (Figure S1).

Finally, uncertainty estimates (as in Figure 3) should be transparently communicated to those responsible for

infrastructure design and risk assessment, as well as to the public (Adger et al., 2013; Buchecker et al., 2013;

Covello et al., 1986; Faulkner et al., 2007). Neglecting uncertainties in the characterization of hazardous events

SADEGH ET AL. 8
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can potentially lead to adopting inefficient or over-designedmitigation strategies (Keller et al., 2008; Moser &

Ekstrom, 2010; Pielke et al., 2007). Traditional approaches inmultivariate analysis literature donot fully address

the sources of uncertainties. We argue that the proposed approach in this paper offers an avenue to account

for the underlying uncertainties in multihazard assessment.

5. Conclusions

It is important to consider the compounding effects of multiple interdependent extremes or drivers to accu-

rately characterize the underlying hazard. In this paper, we discuss multiple design scenarios and hazard

assessment frameworks associated with compound events, and their uncertainties based on a multivariate

framework. Here we summarize our conclusions.

1. The choice of copula is crucially decisive formultivariate hazard assessment and design quantile estimation

(Figure 3), which has not received the attention it deserves in the literature. In most hydrology and climate

studies, only few models (typically a handful) are tested for fitting and multivariate analysis. In our coastal

flooding example, the most likely compound extreme scenario varies in a range that equal to 56% of the

mean annual maximum river discharge and 178% of the average water level, for different copula models.

We recommend using awide range ofmodels with different characteristics to ensure the fittedmultivariate

model is representative.

2. Translation of modeling uncertainties into multivariate design quantiles is a critical aspect of multivariate

analyses. While some copula models show a relatively confined level of uncertainty (e.g., Joe copula with

the most likely design quantiles’ ranges equal to 6% and 3% of the mean annual maximum river discharge

and themeanwater level, respectively), others display a large range of uncertainty in their design quantiles

(e.g., Gaussian copula with the most likely design quantiles’ ranges equal to 337% and 97% of the mean

annualmaximum river discharge and themeanwater level, respectively). For different case studies anddata

sets, the best choice of model with response to uncertainty bounds may change.

3. We also note that the choice of marginal distribution plays an important role in determining the design

quantiles. Figure S2 (supporting information) shows significant divergence between differentmarginal dis-

tributions representing river discharge (a) and water level (b). But this issue is not limited to multivariate

analysis and the same applies to univariate applications.

Moreover, in this paper we introduce the concept of a multihazard expected event, with threshold quan-

tiles derived based on the notion of weighted average of possible events. This multivariate event shows less

sensitivity to the choice of copula. In our coastal flooding case study, for example, such threshold scenario

ranges between [4490.77–5042.82 m3/s] for annual maximum river discharge and [1.58–1.72 m] for water

level, extents of which equal to 16% and 10% of the mean annual maximum river discharge and the mean

water level, respectively.

References

Adger, W. N., Barnett, J., Brown, K., Marshall, N., & O’brien, K. (2013). Cultural dimensions of climate change impacts and adaptation. Nature

Climate Change, 3(2), 112.

Ayyub, B. M., Braileanu, H. G., & Qureshi, N. (2012). Prediction and impact of sea level rise on properties and infrastructure of

Washington, DC. Risk Analysis, 32(11), 1901–1918.

Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological processes, 6(3),

279–298.

Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: The kernel Approach with S-plus Illustrations (Vol. 18).

Oxford, UK: OUP Oxford.

Buchecker, M., Salvini, G., Baldassarre, G. D., Semenzin, E., Maidl, E., & Marcomini, A. (2013). The role of risk perception in making flood risk

management more effective. Natural Hazards and Earth System Sciences, 13(11), 3013–3030.

Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming.

Mathematical Programming, 89(1), 149–185.

Corbella, S., & Stretch, D. D. (2012). Multivariate return periods of sea storms for coastal erosion risk assessment. Natural Hazards and Earth

System Sciences, 12(8), 2699–2708.

Covello, V. T., Slovic, P., & Von Winterfeldt, D. (1986). Risk communication: A review of the literature. Boca Raton, FL: National Emergency

Training Center.

De Michele, C., & Salvadori, G. (2003). A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. Journal of

Geophysical Research, 108(D2), 4067. https://doi.org/10.1029/2002JD002534

De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway.

Journal of Hydrologic Engineering, 10(1), 50–57.

Faulkner, H., Parker, D., Green, C., & Beven, K. (2007). Developing a translational discourse to communicate uncertainty in flood risk between

science and the practitioner. AMBIO: A Journal of the Human Environment, 36(8), 692–704.

Acknowledgments

This study is supported by California

Energy Commission (award

500-15-005), the National Science

Foundation Hazards-SEES Program

(award DMS 1331611), and the

National Oceanic and Atmospheric

Administration Ecological Effects

of Sea Level Rise Program (award

NA16NOS4780206). The hourly water

level data are provided by National

Oceanic and Atmospheric Association

(NOAA; http://tidesandcurrents.

noaa.gov/), and the estimated daily

freshwater discharge records are

obtained from United States

Geological Survey website (USGS;

http://waterdata.usgs.gov/nwis/rt).

SADEGH ET AL. 9

https://doi.org/10.1029/2002JD002534
http://tidesandcurrents.noaa.gov/
http://tidesandcurrents.noaa.gov/
http://waterdata.usgs.gov/nwis/rt


Geophysical Research Letters 10.1029/2018GL077317

Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas.Water

Resources Research, 40(1), W01101.

Field, C. B. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the

Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

Gräler, B., van den Berg, M., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. (2013). Multivariate return periods in

hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences,

17(4), 1281–1296.

Grimaldi, S., Petroselli, A., Salvadori, G., & De Michele, C. (2016). Catchment compatibility via copulas: A non-parametric study of the

dependence structures of hydrological responses. Advances in Water Resources, 90, 116–133.

Hoitink, A., & Jay, D. A. (2016). Tidal river dynamics: Implications for deltas. Reviews of Geophysics, 54(1), 240–272.

Joe, H. (2014). Dependence modeling with copulas. Boca Raton, FL: CRC Press.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1993). Continuous univariate distributions (Vol. 1). Hoboken, NJ: Wiley-Interscience.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (Vol. 2). Hoboken, NJ: Wiley-Interscience.

Keller, K., Yohe, G., & Schlesinger, M. (2008). Managing the risks of climate thresholds: Uncertainties and information needs. Climatic Change,

91(1), 5–10.

Kopp, R., Easterling, D. R., Hall, T., Hayhoe, K., Horton, R., Kunkel, K., & LeGrande, A. (2017). Potential surprises—compound extremes and

tipping elements. Climate Science Special Report: A Sustained Assessment Activity of the US Global Change Research Program, 608–635.

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., et al. (2014). A compound event framework for understanding

extreme impacts.Wiley Interdisciplinary Reviews: Climate Change, 5(1), 113–128.

Lewis, D., & Burke, C. J. (1949). The use and misuse of the chi-square test. Psychological Bulletin, 46(6), 433.

Mazdiyasni, O., & AghaKouchak, A. (2015). Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of

the National Academy of Sciences, 112(37), 11,484–11,489.

Mechler, R., & Bouwer, L. M. (2015). Understanding trends and projections of disaster losses and climate change: Is vulnerability the missing

link? Climatic Change, 133(1), 23–35.

Mehran, A., AghaKouchak, A., Nakhjiri, N., Stewardson, M. J., Peel, M. C., Phillips, T. J., et al. (2017). Compounding impacts of human-induced

water stress and climate change on water availability. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-06765-0

Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D. L., Sweet, W., Matthew, R. A., & Luke, A. (2015). Increased nuisance flooding

along the coasts of the United States due to sea level rise: Past and future. Geophysical Research Letters, 42, 9846–9852.

https://doi.org/10.1002/2015GL066072

Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. (2017). Cumulative hazard: The case of nuisance flooding. Earth’s Future,

5(2), 214–223.

Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. (2017). Compounding effects of sea level rise and fluvial

flooding. Proceedings of the National Academy of Sciences, 114(37), 9785–9790.

Moser, S. C., & Ekstrom, J. A. (2010). A framework to diagnose barriers to climate change adaptation. Proceedings of the National Academy of

Sciences, 107(51), 22,026–22,031.

Nelsen, R. B. (2003). Properties and applications of copulas: A brief survey. In J. Dhaene, N. Kolev, & P. A. Morettin (Eds.), Proceedings of the

First Brazilian Conference on Statistical Modeling in Insurance and Finance (pp. 10–28). Sao Paulo: University Press USP. Citeseer.

Nelsen, R. B. (2007). An introduction to copulas. New York: Springer Science & Business Media.

Pielke, R., Prins, G., Rayner, S., & Sarewitz, D. (2007). Climate change 2007: Lifting the taboo on adaptation. Nature, 445(7128), 597–598.

Sadegh, M., Majd, M. S., Hernandez, J., & Haghighi, A. T. (2018). The quest for hydrological signatures: Effects of data transformation on

Bayesian inference of watershed models.Water Resources Management, 32(5), 1867–1881.

Sadegh, M., Ragno, E., & AghaKouchak, A. (2017). Multivariate copula analysis toolbox (MvCAT): Describing dependence and underlying

uncertainty using a Bayesian framework.Water Resources Research, 53, 5166–5183. https://doi.org/10.1002/2016WR020242

Sadegh, M., & Vrugt, J. (2013). Bridging the gap between glue and formal statistical approaches: Approximate Bayesian computation.

Hydrology and Earth System Sciences, 17(12), 4831–4850.

Sadegh, M., & Vrugt, J. A. (2014). Approximate Bayesian computation using Markov Chain Monte Carlo simulation: Dream (abc). Water

Resources Research, 50, 6767–6787. https://doi.org/10.1002/2014WR015386

Sadegh, M., Vrugt, J. A., Xu, C., & Volpi, E. (2015). The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics,

and dream (abc).Water Resources Research, 51, 9207–9231. https://doi.org/10.1002/2014WR016805

Salvadori, G., & De Michele, C. (2004a). Analytical calculation of storm volume statistics involving Pareto-like intensity-duration marginals.

Geophysical Research Letters, 31, L04502. https://doi.org/10.1029/2003GL018767

Salvadori, G., & De Michele, C. (2004b). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events.Water

Resources Research, 40, W12511. https://doi.org/10.1029/2004WR003133

Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: An approach using copulas (Vol. 56). Dordrecht,

Netherlands: Springer Science & Business Media.

Salvadori, G., Durante, F., & De Michele, C. (2011). On the return period and design in a multivariate framework. Hydrology and Earth System

Sciences, 15, 3293–3305.

Salvadori, G., Durante, F., De Michele, C., Bernardi, M., & Petrella, L. (2016). A multivariate copula-based framework for dealing with hazard

scenarios and failure probabilities.Water Resources Research, 52, 3701–3721. https://doi.org/10.1002/2015WR017225

Salvadori, G., Tomasicchio, G. R., & D’Alessandro, F. (2014). Practical guidelines for multivariate analysis and design in coastal and off-shore

engineering. Coastal Engineering, 88, 1–14.

Sklar, M. (1959). Fonctions De Répartition à n Dimensions Et Leurs Marges. Paris, France: Université de Paris.

Tessler, Z., Vörösmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J., et al. (2015). Profiling risk and sustainability in coastal

deltas of the world. Science, 349(6248), 638–643.

Vahedifard, F., AghaKouchak, A., & Jafari, N. H. (2016). Compound hazards yield Louisiana flood. Science, 353(6306), 1374–1374.

Vandenberghe, S., Verhoest, N. E. C., Onof, C., & De Baets, B. (2011). A comparative copula-based bivariate frequency analysis of

observed and simulated storm events: A case study on Bartlett-Lewis modeled rainfall. Water Resources Research, 47, W07529.

https://doi.org/10.1029/2009WR008388

Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8),

1506–1515.

Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and

uncertainty assessment of hydrologic model parameters.Water Resources Research, 39(8), 1201. https://doi.org/10.1029/2002WR001642

SADEGH ET AL. 10

https://doi.org/10.1038/s41598-017-06765-0
https://doi.org/10.1002/2015GL066072
https://doi.org/10.1002/2016WR020242
https://doi.org/10.1002/2014WR015386
https://doi.org/10.1002/2014WR016805
https://doi.org/10.1029/2003GL018767
https://doi.org/10.1029/2004WR003133
https://doi.org/10.1002/2015WR017225
https://doi.org/10.1029/2009WR008388
https://doi.org/10.1029/2002WR001642


Geophysical Research Letters 10.1029/2018GL077317

Vrugt, J. A., & Sadegh, M. (2013). Toward diagnostic model calibration and evaluation: Approximate Bayesian computation.Water Resources

Research, 49, 4335–4345. https://doi.org/10.1002/wrcr.20354

Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding from storm surge and rainfall for major

US cities. Nature Climate Change, 5(12), 1093.

Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for nonlinear optimization that combines line search and

trust region steps.Mathematical Programming, 107(3), 391–408.

Zheng, F., Leonard, M., & Westra, S. (2015). Efficient joint probability analysis of flood risk. Journal of Hydroinformatics, 17(4), 584–597.

SADEGH ET AL. 11

https://doi.org/10.1002/wrcr.20354

	Boise State University
	ScholarWorks
	6-16-2018

	Multihazard Scenarios for Analysis of Compound Extreme Events
	Mojtaba Sadegh

	Abstract
	Plain Language Summary
	References

