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Abstract—In this paper, the end-to-end performance of a multi-
hop free-space optical system with amplify-and-forward channel-
state-information-assisted or fixed-gain relays using intensity
modulation with direct detection technique over Gamma-Gamma
turbulence fading with pointing error impairments is studied.
More specifically, novel closed-form results for the probability
density function and the cumulative distribution function of the
end-to-end signal-to-noise ratio (SNR) are derived in terms of
the Fox’s H function. Based on these formulas, closed-form
bounds for the outage probability, the average bit-error rate
(BER) of on-off keying modulation scheme, the moments, and the
ergodic capacity are presented. Furthermore, using the moments-
based approach, tight asymptotic approximations at high and
low average SNR regimes are derived for the ergodic capacity
in terms of simple elementary functions. The obtained results
indicate that the overall system performance degrades with an
increase of the number of hops. The effects of the atmospheric
turbulence conditions and the pointing error are also quantified.
All the analytical results are verified via computer-based Monte-
Carlo simulations.

Index Terms—Free-space optical (FSO) communication, mul-
tihop relaying, atmospheric turbulence, pointing errors, average
bit-error rate (BER), ergodic capacity.

I. INTRODUCTION

Free-space optical (FSO) communication has gained a
significant research attention as a cost effective and wide
bandwidth access technique operating at the unlicensed optical
spectrum with high security level, relative to the traditional
radio frequency (RF) transmission [1]–[3]. However, atmo-
spheric pressure in the FSO links causes fluctuations in the
refractive index, which is known as atmospheric turbulence,
severely degrading the system performance particularly over
distances of 1 km or longer [2]. Moreover, building sway
introduces vibrations in the transmitted beam, leading to a
misalignment between the transmitter and the receiver, known
as pointing error that limits the performance of FSO links [1],
[4].

Finding the proper model to characterize the FSO link is
one of the prime concerns in FSO communication. Several
statistical models such as Log-normal, and Gamma-Gamma
have been introduced to describe the fading over FSO chan-
nels. The Log-normal distribution is considered to be only
accurate under weak turbulence channel conditions [2]. On
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the other hand, the Gamma-Gamma PDF is a good model
for atmospheric turbulence under both small and large scales
atmospheric fluctuations and is presented in [5]. Different
types of modulation schemes are employed in FSO commu-
nication systems such as pulse position modulation (L-PPM)
and on-off keying (OOK). However, OOK is the dominant
modulation scheme which is widely deployed in commercial
FSO systems, mainly because of its simplicity and resilience
to laser nonlinearity [4].

Multihop relaying, where several intermediate terminals
relay the signal from the source terminal to the destination ter-
minal [6], can be used over FSO links to mitigate turbulence-
induced fading and, hence, increasing the reliability of the
FSO link. It is an efficient technique to expand the coverage
of wireless networks with low power requirements and offer
high data-rate at the end-to-end communication. [7] presents
the performance analysis of a dual-hop mixed RF/FSO trans-
mission system with pointing errors taken into account. In
[8], the end-to-end capacity of dual-hop FSO communication
systems employing amplify-and-forward (AF) relaying is stud-
ied. Selection combining (SC) and maximum ratio combining
(MRC) diversity techniques for a dual-branch transmission
system composed of a direct RF link and a dual-hop fixed
gain relay RF/FSO system are investigated in [9]. In [6], the
outage probability of a multihop FSO system with amplify-
and-forward (AF) or decode-and-forward (DF) relays over
strong turbulence fading channels is studied. Relay-assisted
transmission over Log-normal turbulence-induced fading with
path loss has been investigated in [10]. The performance of the
FSO multihop system using CSI-assisted and fixed-gain relays
over Gamma-Gamma turbulence under heterodyne detection
technique with pointing errors has been analysed in [11].
In [12], the end-to-end performance of the multihop FSO
system using channel-state-information (CSI)-assisted relays
and fixed-gain relays over Gamma-Gamma turbulence under
intensity modulation with direct detection (IM/DD) technique
has been examined. However, the performance study carried
out in [12] does not include the effect of the pointing error.
Also, the ergodic capacity, being an important performance
metric of primary concern in the design of FSO systems, is
not studied.

In this paper, we extend the work presented in [12] to
study the performance of a multihop FSO system employ-
ing CSI-assisted and fixed-gain relays over Gamma-Gamma
turbulence-induced fading with pointing error impairments
under IM/DD technique. Using the well-known inequality
between harmonic and geometric means of positive random
variables (RVs) [13], we derive novel closed-form results for
the probability density function (PDF), and the cumulative
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distribution function (CDF) of the end-to-end signal-to-noise
ratio (SNR) in terms of the Fox’s H function. Based on these
formulas, we derive closed-form bounds for the outage proba-
bility, the average bit error rate (BER) of OOK modulation
scheme, the moments, and the ergodic capacity. Moreover,
we present tight asymptotic approximations of the ergodic
capacity at high and low average SNR regimes via a moments-
based approach. Computer simulations are also included to
verify the accuracy of the presented mathematical analysis.

The remainder of the paper is organized as follows. In
Section II, the PDF of the product of rational powers of
statistically independent Gamma-Gamma distributions with
pointing errors is derived in closed-form. The multihop FSO
system operating over Gamma-Gamma fading channels with
pointing errors under IM/DD technique is then introduced,
and closed-form results to characterize the multihop FSO links
including the PDF, the CDF, and the moments are presented
in Section III. Subsequently, system performance metrics such
as the outage probability, the average BER of OOK, and
the ergodic capacity along with its asymptotic results are
studied in Section IV. The obtained analytical expressions in
the previous sections are numerically evaluated and interpreted
in Section V. Finally, we review our main results and we draw
some conclusions in Section VI.

II. STATISTICAL BACKGROUND

In this section, we derive exact closed-form expression for
the PDF of the product of rational powers of N independent,
but not necessarily identically distributed (i.n.i.d.), Gamma-
Gamma with pointing errors RVs.

Theorem 1 (PDF of the product of rational powers
of Gamma-Gamma with pointing errors RVs): Let Y ,∏N
i=1 γ

li/k
i , where l1, l2, . . . , lN , k are positive integers, and

γi is a RV following the Gamma-Gamma model with pointing
error impairments, with the PDF given by [1, Eq. (20)], [7,
Eq. (1)]

fγi(γ) =
ξ2i

2 Γ(αi) Γ(βi) γ
G3,0

1,3

[
αi βi hi

(
γ

µi

) 1
2
∣∣∣∣ ξ2i + 1
ξ2i , αi, βi

]
,

(1)

where ξi denotes the ratio between the equivalent beam radius
at the receiver and the pointing error displacement standard
deviation (jitter) at the receiver [1], [14] given as ξi =

wzeq,i

2σs,i
,

with σ2
s,i is the jitter variance at the receiver and wzeq,i is the

equivalent beam radius at the receiver [15], [16] (for negligible
pointing errors, ξ → ∞), hi =

ξ2i
ξ2+1 , G·,··,· (·) is the Meijer’s

G function as defined in [17, Eq. (9.301)], µi stands for the
electrical SNR and is related to the average SNR γi such that
µi = γi αi βi ξ

2
i (ξ2i + 2)/[(αi + 1)(βi + 1)(ξ2i + 1)2], and

αi and βi are the fading/scintillation parameters related to the
atmospheric turbulence conditions [4], [18]. More specifically,
assuming a plane wave propagation with aperture averaging,
these parameters can be determined from the Rytov variance

as [19], [20]

αi =

exp

 0.49σ2
R,i(

1 + 0.18 d2i + 0.56σ
12/5
R,i

)7/6
− 1


−1

(2)

βi =

exp

 0.51σ2
R,i

(
1 + 0.69σ

12/5
R,i

)−5/6
(

1 + 0.9 d2i + 0.62 d2i σ
12/5
R,i

)5/6
− 1


−1

(3)
where σ2

R,i = 0.5C2
n k

7/6
w L

11/6
i denotes the Rytov variance,

and d2i = kwD
2
a/(4Li), where Da is the diameter of the

receiver aperture, kw = 2π/λw is the optical wave number,
λw is the wavelength, Li is the propagation distance, and C2

n

refers to the index of refraction structure parameter varying
from 10−17 m−2/3 for weak turbulence to 10−13 m−2/3 for
strong turbulence. Then the PDF of the RV Y can be derived
in closed-form in terms of the Fox’s H function as 1

fY (y) =
k y−1

∏N
i=1 ξ

2
i∏N

i=1 Γ(αi)Γ(βi)

×H3N,0
N,3N

[
yk

N∏
i=1

(
(αiβihi)

2

µi

)li ∣∣∣∣ζ1ζ2
]
, (4)

with ζ1 = (ξ21 + 1, 2l1), . . . , (ξ2N + 1, 2lN ) and ζ2 = (ξ21 , 2l1),
(α1, 2l1), (β1, 2l1), . . . , (ξ2N , 2lN ), (αN , 2lN ), (βN , 2lN ).

Proof: See Appendix A.

It is worth to mention that an efficient MATHEMATICA R© im-
plementation for evaluating the Fox’s H function is presented
in [22].

III. STATISTICAL CHARACTERISTICS OF THE END-TO-END
SNR

A. System and Channel Models

We consider an N -hop FSO wireless communication system
which operates over independent and not identically dis-
tributed Gamma-Gamma fading channels with pointing error
impairments under IM/DD with on-off keying (OOK). The
source terminal S communicates with the destination terminal
D through N − 1 intermediate terminals R1, R2, . . . , RN−1
which relay the information signal only from one hop to the
next, acting as non-regenerative relays. All relay terminals
simultaneously receive and transmit in the same frequency
band, and no latency is incurred in the whole chain of

1Note that, the PDF of Y given in (4) can also be represented in terms
of the Meijer’s G function by means of using [21, Eqs. (2.4.5), (2.1.4) and
(2.9.1)] as

fY (y) =
k y−1

∏N
i=1 ξ

2
i (2 li)

αi+βi−2

(2π)2
∑N

i=1 li−N
∏N
i=1 Γ(αi)Γ(βi)

×G
6
∑N

i=1 li,0

2
∑N

i=1 li,6
∑N

i=1 li

[
yk

N∏
i=1

(
(αiβihi)

2

16µi l4i

)li ∣∣∣∣χ1

χ2

]
,

where χ1 = ∆(2lN , 1 + ξ2N ), . . . ,∆(2l1, 1 + ξ21) and χ2 = ∆(2l1, ξ21),
∆(2l1, α1),∆(2l1, β1), . . . ,∆(2lN , ξ

2
N ),∆(2lN , αN ),∆(2lN , βN ).
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transmission. In this case, the received signal at the first
intermediate relay, R1, can be expressed as

y1 = s1 x+ n1 = ηI1 x+ n1, (5)

where s1 = ηI1 is the instantaneous intensity gain of the first
hop, η denotes the effective photo-current conversion ratio of
the receiver, I1 stands for the first hop irradiance, x is the OOK
signal with values 0 or 1, and n1 refers to the AWGN at the
input of R1 with zero mean and variance N0,1. The signal
y1 is then multiplied by the gain g1 of the first intermediate
node R1 and retransmitted to the second intermediate node
R2, where the received signal can be determined as

y2 = g1 s2(s1 x+ n1) + n2 = g1 ηI2(ηI1 x+ n1) + n2, (6)

where I2 is the irradiance at the second hop, and n2 is the
AWGN at the input of R2. Then, the received signal at the
destination terminal D can be written as

yN =
N∏
i=1

gi−1si x+
N∑
i=1

ni

N∏
k=i+1

gk−1sk, g0 = 1. (7)

Therefore, the end-to-end SNR can be given as [23]

γend =

[
N∏
i=1

g2i−1 s
2
i

]/[
N∑
i=1

N0,i

(
N∏

k=i+1

g2k−1 s
2
k

)]
. (8)

B. CSI-Assisted Relays

One choice for the relay gain was proposed in [23] as g2i ,
1/s2i , where the relay just amplifies the incoming signal with
the inverse of the channel intensity gain of the previous hop,
regardless of the noise of that hop. As mentioned in [23],
such a relay technique serves as a benchmark for all practical
multihop systems employing non-regenerative relays. The end-
to-end SNR γend can be thus derived from Eq. (8) as

γend ,

(
N∑
i=1

1

γi

)−1
, (9)

where γi = η2 I2i /N0,i is the instantaneous SNR for the ith
hop following the Gamma-Gamma model with pointing error
impairments, with the PDF given by (1). It is noteworthy to
mention that the derived equivalent SNR in Eq. (9) is not
easily tractable due to the difficulty in finding its statistics.
However, an upper bound for the end-to-end SNR γend can be
derived by using the well-known inequality between harmonic
and geometric means for γ1, γ2, . . . , γN given by [13]

HN 6 GN , (10)

where HN , N
(∑N

i=1 1/γi

)−1
and GN ,

∏N
i=1 γ

1/N
i are

the harmonic and geometric means, respectively. Therefore,
an upper bound for the end-to-end SNR for an N -hop FSO
system with CSI-assisted relays can be obtained as [13,
Eq. (14)]

γend 6 γub =
1

N

N∏
i=1

γ
1/N
i . (11)

The form of γub is mathematically more tractable than that
in (9) and can be efficiently used to study several end-to-end
performance metrics of the multihop FSO system. Using (4)
by setting li = 1 and k = N into it, the PDF of the end-to-end
SNR γub can be determined in closed-form as

fγub (γ) =
Nγ−1∏N

i=1 ξ
2
i∏N

i=1 Γ(αi)Γ(βi)
H3N,0
N,3N

[
γNNN

N∏
i=1

(αiβihi)
2

µi

∣∣∣∣κ1

κ2

]
,

(12)

where κ1 = (ξ21 + 1, 2), . . . , (ξ2N + 1, 2) and
κ2 = (ξ21 , 2), (α1, 2), (β1, 2), . . . , (ξ2N , 2), (αN , 2), (βN , 2).
Then, utilizing [24, Eq. (2.25.2/2)], the CDF of γub can be
obtained as

Fγub(γ) =
N
∏N
i=1 ξ

2
i∏N

i=1 Γ(αi)Γ(βi)

×H3N,1
N+1,3N+1

[
γNNN

N∏
i=1

(αiβihi)
2

µi

∣∣∣∣(1, N), κ1
κ2, (0, N)

]
.

(13)

By exploiting the well-known inequality for positive RVs, an
upper bound for the nth order moment of γub can be expressed
as

E[γnend] 6 E[γnub], (14)

where E[·] denotes the expectation operator. Since the RVs γi
are independent, the above equation can be written as

E[γnend] 6 E[γnub] = N−nE

[
N∏
i=1

γ
n/N
i

]
= N−n

N∏
i=1

E
[
γ
n/N
i

]
.

(15)

For Gamma-Gamma fading channels with pointing error im-
pairments, the moments E[γni ] are specified as

E[γni ] =

∫ ∞
0

γni fγi(γi) dγi. (16)

Substituting (1) in (16), using the RV transformation z =
√
γi,

and applying [17, Eq. (7.811.4)], the moments of γi reduce to
the following simple expression

E[γni ] =
ξ2i Γ(2n+ αi) Γ(2n+ βi)

Γ(αi)Γ(βi)(2n+ ξ2i )

[
(αi βi hi)

2

µi

]−n
. (17)

Using (15) and (17), the moments of γub can be obtained in
closed-form as

E[γnub] =
1

Nn

N∏
i=1

ξ2i Γ( 2n
N + αi)Γ( 2n

N + βi)

Γ(αi)Γ(βi)(
2n
N + ξ2i )

[
(αiβihi)

2

µi

]− n
N

.

(18)

Note that, the expression in (18) is useful to derive tight
asymptotic approximations of the ergodic capacity at the low
and high average SNR regimes, as will be shown in the next
section.
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C. Fixed-Gain Relays

The fixed-gain relays offer simplicity and ease of deploy-
ment at the expense of performance, comparing to the CSI-
assisted relays [23]. Non-regenerative relays introduce fixed
gains to the received signal given by g2i = 1/(CiN0,i), where
Ci is a positive constant (C0 = 1). Using the same approach as
in [23], the overall SNR at the destination can then be written
as [25]

γ′end =

 N∑
i=1

i∏
j=1

Cj−1
γj

−1 . (19)

Utilizing Eq. (10), an upper bound for the end-to-end SNR
when fixed-gain relays are employed, can be obtained as

γ′end 6 γ′ub =
1

N

N∏
i=1

C
− (N−i)

N
i γ

N+1−i
N

i . (20)

Substituting li = N+1−i and k = N into (4) and performing
some algebraic manipulations, the PDF of γ′ub can be derived
in closed form as

fγ′ub
(γ) =

N γ−1
∏N
i=1 ξ

2
i∏N

i=1 Γ(αi)Γ(βi)

×H3N,0
N,3N

γNNN
N∏
i=1

CN−ii

[
(αiβihi)

2

µi

]N+1−i ∣∣∣∣J1J2
 ,

(21)

where J1 = (ξ21 + 1, 2N), . . . , (ξ2N + 1, 2) and J2 =
(ξ21 , 2N), (α1, 2N), (β1, 2N), . . . , (ξ2N , 2), (αN , 2), (βN , 2).
Therefore, the CDF of γ′ub may be obtained by applying [24,
Eq. (2.25.2/2)] with some algebraic manipulations as

Fγ′ub
(γ) =

N
∏N
i=1 ξ

2
i∏N

i=1 Γ(αi)Γ(βi)

×H3N,1
N+1,3N+1

[
γNNN

N∏
i=1

CN−i
i

[
(αiβihi)

2

µi

]N+1−i ∣∣∣∣(1, N), J1
J2, (0, N)

]
.

(22)

Following the same approach as in the CSI-assisted relays case
along with (17), we get the moments of γub′ in closed-form
in terms of simple functions as

E[γ′nub ] = RnN
N∏
i=1

ξ2i Γ
(

2(N+1−i)n
N + αi

)
Γ
(

2(N+1−i)n
N + βi

)
Γ(αi)Γ(βi)

(
2(N+1−i)n

N + ξ2i

)
×
[

(αiβihi)
2

µi

]− (N+1−i)n
N

, (23)

where RN = 1
N

∏N
i=1 C

− (N−i)
N

i .

IV. PERFORMANCE METRICS

Based on the derived expressions in the previous section,
we introduce closed-form bounds for the outage probability,
the average BER of OOK, and the ergodic capacity for both
CSI-assisted and fixed-gain relays.

A. Outage Probability
The outage probability is defined as the probability that

the output SNR falls below a predetermined protection ratio
γth. Using (11), (13), (20), and (22), lower bounds for the
outage probability can be obtained in closed-form such as
Pout > Fγub(γth) when CSI-assisted relays are used, and P ′out >
Fγ′ub

(γth) when fixed-gain relays are employed, respectively.

B. Average BER
The average BER of IM/DD with OOK can be expressed as

P (e) = P (0)P (e|0)+P (1)P (e|1), where P (0) and P (1) refer
to the probabilities of transmitting 0 and 1 bits, respectively
and P (e|0), P (e|1) denote the conditional error probabilities
when the bits 0 and 1 are transmitted, respectively. Assuming
that P (0) = P (1) = 1

2 and P (e|0) = P (e|1), the conditional
irradiance I error probability can be given by [4], [26]

P (e|I) = P (e|0, I) = P (e|1, I) = Q

(
η I√
2N0

)
, (24)

where Q(·) is the Gaussian Q function defined as Q(x) =
(1/
√

2π)
∫∞
x

exp(−t2/2) dt and can be written in terms of the
complementary error function such that erfc(x) = 2Q(

√
2x).

By averaging (24) over the irradiance I , the average BER P (e)
can be obtained as

P (e) =

∫ ∞
0

P (e|I) fI(I) dI. (25)

Using the relation between I and the instantaneous end-to-
end SNR γend, i.e. γend = η2 I2/N0, the average BER can be
formulated in terms of the SNR as

P (e) =
1

2

∫ ∞
0

erfc
(√

γ

2

)
fγend(γ) dγ. (26)

1) CSI-Assisted Relays: Substituting (12) into (26),
representing erfc(·) through the Fox’s H function

erfc
(√
γ/2
)

= 1/
√
πH2,0

1,2

[
γ
4

∣∣∣∣ (1, 1)
(0, 1), ( 1

2 , 1)

]
[24,

Eqs. (8.4.14/2) and (8.3.2/21)], and integrating using
[24, Eq. (2.22.1/1)], a lower bound for the average BER of
CSI-assisted relays over Gamma-Gamma fading channels
with pointing errors can be shown to be given in closed-form
in terms of the Fox’s H function as

Pγub(e) =
N
∏N
i=1 ξ

2
i

2
√
π
∏N
i=1 Γ(αi)Γ(βi)

×H3N,2
N+2,3N+1

[
(4N)N

N∏
i=1

(αiβihi)
2

µi

∣∣∣∣(1, N), ( 1
2 , N), κ1

κ2, (0, N)

]
.

(27)

2) Fixed-Gain Relays: For a multihop FSO system
equipped with fixed-gain relays, a lower bound on the average
BER can be found by substituting (21) in (26) and using [24,
Eq. (2.25.1/1)], yielding

Pγ′ub
(e) =

N
∏N
i=1 ξ

2
i

2
√
π
∏N
i=1 Γ(αi)Γ(βi)

×H3N,2
N+2,3N+1

(4N)N
N∏
i=1

CN−ii

[
(αiβihi)

2

µi

]N+1−i ∣∣∣∣a1, J1J2, a2

 ,
(28)
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where a1 = (1, N), ( 1
2 , N) and a2 = (0, N).

C. Ergodic capacity

The ergodic capacity for FSO systems with IM/DD can be
bounded by

C , E[ln(1 + c γend)], (29)

where c is a constant equal to c = e/(2π) [27, Eq. (26)], [28,
Eq. (7.43)]. Since γend ≤ γub and γ′end ≤ γ′ub, ln(1 + γend) ≤
ln(1 + γub) and ln(1 + γ′end) ≤ ln(1 + γ′ub), and therefore,
upper bounds for the ergodic capacity of both CSI-assisted
and fixed-gain relays can be derived.

1) CSI-Assisted Relays: Substituting (12) into (29), uti-
lizing the Fox’s H function representation of ln(1 + c γ) as

H1,2
2,2

[
c γ

∣∣∣∣(1, 1), (1, 1)
(1, 1), (0, 1)

]
[24, Eqs. (8.4.6/5) and (8.3.2/21)],

then integrating using [24, Eq. (2.25.1/1)], the ergodic capacity
of an N -hop FSO with IM/DD system employing CSI-assisted
relays can be upper bounded as

Cγub =
N
∏N
i=1 ξ

2
i∏N

i=1 Γ(αi)Γ(βi)

×H3N+2,1
N+2,3N+2

[(
N

c

)N N∏
i=1

(αiβihi)
2

µi

∣∣∣∣(0, N), (1, N), κ1
κ2, (0, N), (0, N)

]
.

(30)

An asymptotic approximation of the ergodic capacity in (30)
at high average SNR can be obtained from the first derivative
of the nth order moment of γub [29, Eqs. (8) and (9)] as

Cγub≈ log(c) +
∂

∂n
E[γnub]

∣∣∣
n=0

. (31)

By substituting Eq. (18) into Eq. (31) and after some algebraic
manipulations, the ergodic capacity can be asymptotically
approximated at high average SNR as

Cγub ≈
µi�1

log(c)− log(N) +
1

N
log

(
N∏
i=1

µi

)

+
2

N

N∑
i=1

[
ψ(αi) + ψ(βi)− log(αiβihi)−

1

ξ2i

]
, (32)

where ψ(·) is the psi (digamma) function [17, Eq. (8.360.1)].
At low average SNR, the ergodic capacity is found to be
approximated by the first moment. Evaluating (18) at n = 1,
we get the asymptotic approximation of the ergodic capacity
at low average SNR in terms of simple functions as

Cγub ≈
µi�1

cE[γub]

=
c

N

N∏
i=1

ξ2i Γ( 2
N + αi) Γ( 2

N + βi)

Γ(αi)Γ(βi)(
2
N + ξ2i )

[
(αi βi hi)

2

µi

]− 1
N

.

(33)

2) Fixed-Gain Relays: For the case of fixed-gain relays,
an upper bound for the ergodic capacity can be found after
performing some algebraic manipulations using (21) and [24,
Eq. (2.25.1/1)] as

Cγ′ub
=

N
∏N
i=1 ξ

2
i∏N

i=1 Γ(αi)Γ(βi)

×H3N+2,1
N+2,3N+2

[(
N

c

)N N∏
i=1

CN−i
i

[
(αiβihi)

2

µi

]N+1−i ∣∣∣∣b1, J1J2, b2

]
,

(34)

where b1 = (0, N), (1, N) and b2 = (0, N), (0, N). At high
average SNR, after performing some algebraic manipulations
using (23), we get an accurate simple closed-form approxima-
tion of the ergodic capacity as

Cγ′ub
≈

µi�1
log(cRN ) + log

(
N∏
i=1

µ
N+1−i

N
i

)

+
2

N

N∑
i=1

(N + 1− i)
[
ψ(αi) + ψ(βi)− log(αiβihi)−

1

ξ2i

]
.

(35)

Furthermore, the ergodic capacity of a multihop FSO system
using fixed-gain relays can be approximated in the low SNR
regime in closed-form in terms of simple elementary functions
by

Cγ′ub
≈

µi�1
cRN

N∏
i=1

ξ2i Γ
(

2(N+1−i)
N + αi

)
Γ
(

2(N+1−i)
N + βi

)
Γ(αi)Γ(βi)

(
2(N+1−i)

N + ξ2i

)
×
[

(αiβihi)
2

µi

]− (N+1−i)
N

. (36)

V. NUMERICAL RESULTS AND DISCUSSION

Assuming equal average SNRs per hop for all hops γi =
γ, the outage probability, the average BER, and the ergodic
capacity of the multihop FSO system with CSI-assisted and
fixed-gain relays using IM/DD technique under the effect of
pointing errors are evaluated numerically and illustrated. Weak
(α = 2.902 and β = 2.51), moderate (α = 2.296 and β =
1.822), and strong (α = 2.064 and β = 1.342) turbulent FSO
channel conditions are considered in our study [20, Table I].

In Fig. 1, the end-to-end outage probability of a multihop
FSO system using CSI-assisted relays is plotted as a function
of the inverse normalized outage threshold, γ/γth, under weak
turbulent conditions with strong pointing error ξ = 1.1.
Monte-Carlo Simulations for both lower bounds and exact
results, based on Eq. (11) and Eq. (9) respectively, of the
outage probability are also presented. A perfect match between
analytical and simulation results of the lower bounds can be
seen from Fig. 1. It can also be observed that the outage
performance degrades as the number of hops increases (i.e.
the higher the values of N , the higher will be the outage
probability). Moreover, it can be shown that the lower the
values of γ/γth, the tighter the bounds are.

Fig. 2 depicts the end-to-end outage probability for the
case of CSI-assisted relays as a function of γ/γth for dif-
ferent numbers of hops N and for varying effects of the
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Fig. 1. Outage probability for a multihop FSO system using CSI-assisted
relays with IM/DD under weak (α = 2.902 and β = 2.51) turbulent
conditions with strong pointing error (ξ = 1.1).
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Fig. 2. Outage probability for a multihop FSO system using CSI-assisted
relays with IM/DD for C2

n = 5× 10−14 m−2/3, Li = 3000 + 500(i− 1),
and (ξ = 2.1, 1, 6.7, 1.1).

pointing error (ξ = 2.1, 1, 6.7, 1.1). We consider that the
refractive index is set such that C2

n = 5 × 10−14 m−2/3,
the wavelength is equal λw = 1550 nm, the aperture di-
ameter for the receiver is Da = 0.01 m, and the distance
between successive hops is Li = 3000 + 500(i − 1) (m),
i = 1, . . . , N , resulting in different values of the fading
parameters ((α = (2.076, 2.075, 2.126, 2.208) and (β =
1.596, 1.478, 1.410, 1.370)). As clearly seen from the figure,
our mathematical results are also verified when different αi,
βi, and ξi are used for non-equidistant relays.

In Fig. 3, lower bounds on the end-to-end average BER of
OOK are presented versus the average SNR per hop under
strong, moderate, and weak turbulence conditions for N = 1
and N = 3. As clearly seen in the figure, the analytical and the

simulation results for the lower bounds on the average BER are
in a perfect agreement. We can also see from this figure that
lower values of N yield the best performance in terms of the
average BER. Moreover, it can be observed that the average
BER increases as the atmospheric turbulence conditions get
severe.
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Fig. 3. Average BER of OOK for a multihop FSO system using CSI-assisted
relays with IM/DD for N = 1 and N = 3 under weak (α = 2.902 and
β = 2.51), moderate (α = 2.296 and β = 1.822), and strong (α = 2.064
and β = 1.342) turbulence conditions for ξ = 6.7.
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Fig. 4. Ergodic capacity for a multihop FSO system using CSI-assisted relays
with IM/DD under strong turbulence (α = 2.064 and β = 1.342) with strong
pointing error (ξ = 1.1).

Fig. 4 shows the ergodic capacity for strong turbulence
conditions with strong pointing error ξ = 1.1 using N = 2,
N = 3, and N = 4. As expected, increasing the number
of hops decreases the ergodic capacity. Additionally, Fig. 4
indicates the tightness of the bound for lower values of N
even at high average SNR regime. Moreover, this figure shows
the high accuracy of the asymptotic results based on the
moments method derived in (32) at high average SNR values.
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As illustrated in Fig. 4, the analytical results for the bound
on the ergodic capacity have also been verified by means of
computer simulations.

The end-to-end outage probability of a multihop FSO
system employing fixed-gain relays is plotted versus the in-
verse normalized outage threshold γ/γth in Fig. 5 for strong
turbulence conditions under strong pointing error effects for
several values of N . Monte-Carlo simulations for the exact
results are also illustrated in the same figure showing the
tightness and the accuracy of the bounds especially at low
SNRs. Furthermore, it is observed that the outage probability
degrades with an increase of the number of hops N and shows
a similar behaviour with the multihop FSO system with CSI-
assisted relays.
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Fig. 5. Outage probability for a multihop FSO system using fixed-gain relays
with IM/DD under strong (α = 2.064 and β = 1.342) turbulent conditions
with strong pointing error (ξ = 1).
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Fig. 6. Average BER of OOK for a multihop FSO system using fixed-gain
relays with IM/DD for N = 4 under weak (α = 2.902 and β = 2.51)
and moderate (α = 2.296 and β = 1.822) turbulence conditions for varying
effects of the pointing error.

In Fig. 6, the average BER of IM/DD with OOK for a multi-
hop FSO system equipped with fixed-gain relays is illustrated
for N = 4. The obtained results indicate that the average
BER performance deteriorates as the atmospheric turbulence
conditions become severe. Equivalent results obtained via
Monte-Carlo simulations are also included showing a perfect
agreement with the analytical results. Moreover, as seen in
this figure, when the effect of the pointing error decreases
(ξ →∞), then the average BER decreases leading to a system
performance improvement, as expected.
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Fig. 7. Ergodic Capacity for a 4-hop FSO system using fixed-gain relays
with IM/DD for strong turbulence (α,β)= (2.064,1.342).

Fig. 7 presents the end-to-end ergodic capacity of a 4-hop
FSO system with fixed-gain relays under strong turbulence
conditions for various pointing errors (ξ = 1.1 and ξ = 6.7).
As can be observed from this figure, the bounds are more
tight for low values of γ. However, the bounds lose tightness
as γ increases. The accuracy of the asymptotic results at high
average SNR ranges obtained via the moments-based approach
by (35) is evident, especially at high average SNR values.
Moreover, as it was expected, the ergodic capacity increases
with the decrease of the pointing error effect.

VI. CONCLUSION

In this paper, we have studied the performance of a multihop
FSO system with IM/DD using AF CSI-assisted or fixed-gain
relays over Gamma-Gamma fading channels under the effect
of pointing errors. We have derived closed-form expressions
for the PDF and the CDF of the end-to-end SNR in terms
of the Fox’s H function. Moreover, based on these formulas,
the outage probability, the average BER of OOK modulation
scheme, the moments, and the ergodic capacity were studied
for different turbulent conditions and various values of the
pointing error. Furthermore, new asymptotic approximations
of the ergodic capacity at high and low average SNR were
derived by applying the moments-based approach. Finally,
our results demonstrate that the performance degrades as
the pointing error effect and/or the atmospheric turbulent
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conditions become severe and with an increase of the number
of hops.

APPENDIX A
PROOF OF THEOREM 1

In this appendix, we derive the PDF of Y ,
N−1

∏N
i=1 γ

li/k
i , where γi is a RV whose PDF is given by

(1). In order to obtain the PDF expression of Y , we first
represent the PDF fγi(γ) of the Gamma-Gamma distribution
with pointing error impairments in terms of the Fox’s H
function by means of some algebraic manipulations utilizing
[21, Eq. (2.1.4)] and [21, Eq. (2.1.5)] together as

fγi(γ) =
ξ2i (αiβihi)

2

Γ(αi) Γ(βi)µi

×H3,0
1,3

[
(αiβihi)

2
γ

µi

∣∣∣∣ (ξ2i − 1, 2)
(ξ2i − 2, 2), (αi − 2, 2), (βi − 2, 2)

]
,

(A.1)

where H·,··,· (·) is the Fox’s H function [24, Eq. (8.3.1/1)].
Then, applying Theorem 4.2 from [30] and after performing
some algebraic manipulations, the PDF of rational powers of
Gamma-Gamma with pointing errors RVs, Y1 = γ

li/k
i , can be

obtained in terms of the Fox’s H function as

fY1(y) =
ξ2i

Γ(αi) Γ(βi)

(
(αiβihi)

2

µi

) li
k

×H3,0
1,3

( (αiβihi)
2

µi

) li
k

y

∣∣∣∣%1%2
 , (A.2)

where %1 =
(
ξ2i + 1− 2li

k ,
2li
k

)
and %2 =(

ξ2i − 2li
k ,

2li
k

)
,
(
αi − 2li

k ,
2li
k

)
,
(
βi − 2li

k ,
2li
k

)
. Now, using

Theorem 4.1 from [30] with some algebraic manipulations
by means of employing [21, Eq. (2.1.4)] and [21, Eq. (2.1.5)]
yields the desired PDF expression of Y given in terms of the
Fox’s H function in (4).
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