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Solar cell efficiency is maximized through multijunction architectures

that minimize carrier thermalization and increase absorption. Previous

proposals suggest that the maximum efficiency for a finite number of

subcells is achieved for designs that optimize for light trapping over

radiative coupling. We instead show that structures with radiative

coupling and back reflectors for light trapping, e.g. spectrum-splitting

cells, can achieve higher conversion efficiencies. We model a

compatible geometry, the polyhedral specular reflector. We analyze

and experimentally verify the effects of spectral window and radiative

coupling on voltage and power. Our results indicate that radiative

coupling with back reflectors leads to higher efficiencies than previ-

ously studied architectures for practical multijunction architectures

(i.e., #20 subcells).

The photovoltaic community is closer than ever to achieving
ultra-high multijunction solar cell efficiencies (>50%).1–8 Sub-
cells from III–V compound semiconductors are approaching
ideal Shockley–Queisser behavior and emit signicant radiation
of photons with energies equal to or above the optical bandgap
because nonradiative recombination has been minimized with
advanced growth processes.6,9 The optical environment of a
solar cell controls where the radiated photons from a subcell are
directed and this greatly affects its efficiency.2,3 Thus the optical
design of multijunction architectures is crucial for maximizing
performance. To date, (1) light trapping and (2) radiative
coupling have been investigated as promising optical design
strategies. Light trapping inhibits the radiative emission of a
subcell in order to reduce the dark current and increase voltage.

For example, this can be achieved by including a back reector
on a cell.9 By contrast, radiative coupling directs radiative
emission between neighboring subcells for reconversion.2,8

Cells that have a high degree of radiative coupling have higher
currents and are more tolerant of spectral mismatch because
photons can be redistributed and boost carrier generation in
the current-limited subcells.10–15 Thus including both strong
light trapping and radiative coupling could yield very high
efficiencies. However, only geometries that optimize for either
strong light trapping or strong radiative coupling have been
considered in the previous literature.2

Until now, a proposed structure that only optimizes for light
trapping and completely blocks radiative coupling using
frequency selective reectors matched to the band gap emission
of each subcell has been assumed to be the most efficient
structure for discrete numbers of junctions. This ‘selective
reector’ design has been shown to give the highest efficiencies
for time symmetric structures comprised of a realistic number
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Broader context

Even with the recent advances in photovoltaics research, 50% solar cell
efficiencies have not yet been achieved. Previous designs have focused on
a tandem stack structure where semiconductor layers are epitaxially grown
or wafer bonded on top of each other, and this presents a signicant
fabrication challenge. In this design space, the “selective reector”
structure, a design that incorporates reectors between subcell layers for
very strong light trapping, has been identied to be the most efficient
theoretical design. However we have identied that spectrum-splitting
designs, a class of structures that have not been considered in these kinds
of analyses, can give even higher maximum efficiencies and avoid the
challenge of stacking multiple bandgap semiconductor layers. This is
because some spectrum-splitting geometries can have both strong light
trapping and some degree of radiative coupling, or the absorption of
radiatively emitted light from a different subcell, owing to the geometry of
the structure. We also propose a specic geometry, the polyhedral spec-
ular reector, to have up to 0.6% absolute efficiency increase over the
selective reector design. In our Letter, we extend the understanding of
solar cell efficiency and motivate the development of novel spectrum-
splitting designs for achieving ultra-high solar efficiencies (>50%).
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of junctions (2–20 subcells).2 Under these same constraints, we
instead show here that it is possible to exceed this assumed
efficiency limit by incorporating a back reector for light trapping
benets and radiative coupling. Such a design is conceivable with
spectrum-splitting architectures whose subcells are mechanically
decoupled from one another, for example.16 Here we investigate
different multijunction architectures to provide insight on how
their optical environments affect overall efficiencies. We employ
a simple model to understand how radiative coupling between
subcells with back reectors can improve multijunction perfor-
mance and compare this to the previously assumed maximum
efficiency case. For cells that do not utilize radiative coupling, we
analytically derive and experimentally verify decreases in subcell
voltages and efficiencies for architectures that incorporate back
reectors on all subcells. We also show that increasing the
radiative coupling between subcells enables these incurred losses
to be minimized. Finally, we investigate the effect of radiative
coupling between subcells with back reectors for spectrum-
splitting architectures and determine the overall efficiencies for
these devices. These efficiencies are also compared to previous
idealized geometries and we show where radiative coupling can
provide a higher conversion efficiency.

We rst review previous time-symmetric multijunction archi-
tectures. Fig. 1(a)–(c) show schematics of previously studied
cases: the traditional tandem stack, the air-gap tandem stack, and
the selective reector structure.2 In all of these structures, sub-
cells are stacked in order of decreasing bandgap such that the
incident spectrum is divided by above-bandgap absorption of the
subcells.2,3 Both the traditional and air-gap tandem stack

structures can radiatively couple between subcells, but the air gap
tandem stack can trap some of the radiative emission in the same
subcell due to the refractive index contrast at the air–semi-
conductor interface on both sides of each subcell. By contrast, the
selective reector structure does not have any radiative coupling.
The selective reector is dened to be a mirror with unity
reectivity (R¼ 1) at all photon energies above the energy gap of a
given subcell and zero reectivity (R ¼ 0) at all photon energies
below the energy gap.2 This is different from a back reector that
has unity reectivity at all photon energies and therefore these
selective reector designs have been difficult to realize in practice
for monolithic multijunction solar cells. The selective reector
has the same benet as a back reector for a given subcell but it
can also restrict radiative emission for the next subcell if the
difference between bandgaps, or spectral window, is small
enough to reect the radiative emission of the next lowest subcell.
Although the air gap tandem structure and the selective reector
structure achieve the same efficiency limit for innite bandgaps
(86.8% for a 6000 K blackbody source), the selective reector
structure is more efficient than the tandem stack structures for
nite numbers of subcells because the strong light trapping
benet from the selective reector greatly outweighs the benets
from radiative coupling in the other structures.2,13,17,18 However
geometries that combine the benets from a back reector and
radiative coupling can indeed exceed these efficiencies.

Spectrum-splitting geometries have recently regained popu-
larity as multijunction cells begin incorporating more subcells
($4). Unlike monolithically grown multijunction cells, spec-
trum-splitting cells can be grown independently of one another,
avoiding difficult lattice-matched growth and wafer bonding
techniques.16 In the architectures studied here, light is split and
distributed onto a set of independently grown subcells either by
an external optical element or by manipulating the packing of
the subcells in the structure. We only consider time-symmetric
structures to provide the best comparison to the other geome-
tries. A schematic of the spectrum-splitting structure using an
external optical element, such as a prism or hologram, is shown
in Fig. 1(d).16,19 This structure allows for back reectors on each
subcell and assumes no radiative coupling between subcells. It
will be functionally very similar to the selective reector struc-
ture in the regime where the selective reector does not restrict
radiative emission (i.e. #20 subcells). However, spectrum-
splitting structures can exceed the efficiencies of a selective
reector structure if radiatively emitted light can be coupled
between subcells that have back reectors. An example of this is
shown in Fig. 1(e) with the polyhedral specular reector (PSR)
design.16,20–22 Here each subcell, complete with its own back
reector, is placed at a 45� angle in order from the highest to the
lowest bandgap opposite a mirror also at 45�. Similar to the
multijunction designs in Fig. 1(a)–(c), incident light is split by
above bandgap absorption but in this design, light that is not
absorbed is directed to the next subcell via specular reections off
of the back reector and opposing mirror. The PSR is particularly
interesting because light trapping and radiative coupling are
inherent to the geometry, shown by the rays in Fig. 1(e). The solid
ray shows a radiatively emitted photon that is downshied to the
next subcell and the dotted ray shows a radiatively emitted

Fig. 1 Schematics of various multijunction cell architectures. Solid
arrows denote photons that are radiatively coupled from the blue
subcell to the green subcell and dotted arrows denote radiatively
emitted photons that are trapped in the same subcell. Structures (a)–(c)
represent traditional multijunction architectures that have been studied
previously.2 The selective reflector structure (c) is the most efficient and
has no radiative coupling. Structures (d) and (e) represent more novel
spectrum-splitting architectures inwhich subcells are spatially separated
from one another. This offers an interesting possibility for radiative
coupling between subcells that have their own back reflectors.

Energy Environ. Sci. This journal is © The Royal Society of Chemistry 2014
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photon that is reected back onto the same subcell. Because this
geometry can recycle radiatively emitted photons between sub-
cells that have back reectors, we derive a higher conversion
efficiency beyond that in previously studied geometries.

We simplify the analysis of radiative coupling to a two sub-
cell system in which a higher bandgap subcell radiatively

couples to a lower bandgap subcell. This provides a starting
point for modeling optical interactions in a multijunction cell
where all subcells are independently connected and have their
own back reectors. A band diagram and schematic of the two
subcell model is shown in Fig. 2(a). Subcell #2, the subcell of
interest, has a bandgap of Eg and subcell #1, the source of radi-
ated photons, has a bandgap of Eg +D. Both subcells are assumed
to be ideal semiconductors that absorb all photons with energies
above their respective bandgaps. Subcell #1 receives all photons
above its bandgap from the input spectra while subcell #2 is
limited to a narrow spectral window, D, of the input spectrum.
We qualitatively relate D to the number of subcells in a hypo-
thetical multijunction cell because adding more subcells to a
structure decreases the spectral window on each subcell. For
simplicity, we assume that the only radiative coupling mecha-
nism is subcell #2 absorbing photons emitted from subcell #1.

We then dene a geometric parameter B to describe the
radiative coupling from subcell #1 to subcell #2. B represents the
fraction of radiatively emitted photons directed from subcell #1
to #2 such that 0 # B # 1, analogous to the down converting
literature, and is determined by the optical architecture of the
multijunction cell.23,24 B¼ 1 is time-asymmetric because radiative
emission is completely downshied and does not obey absorp-
tion–emission symmetry, but we include it in our analysis as an
upper limit to this downshiing system.3,4,25 The specic struc-
tures we study here have varying degrees of radiative coupling but
are still time-symmetric. For example, the traditional tandem
stack (Fig. 1(a)) would have a B of �0.93–0.98 because radiatively
emitted photons are reected at the front air–semiconductor
interface (large index of refraction contrast) and transmitted
through the rear semiconductor–semiconductor interface to the
bottom subcell (little to no index contrast).14 The air gap tandem
stack (Fig. 1(b)) has a smaller B of 0.5 because there is an air–
semiconductor interface on both sides and so radiation is
emitted equally on both faces. The generic spectrum-splitting
structure of Fig. 1(d) corresponds to B¼ 0 because its subcells are
optically independent. However not all spectrum-splitting struc-
tures are optically isolated. For example, the PSR (Fig. 1(e)) has
some radiative coupling (B¼ 0.204) because some of the radiated
photons will reect off of the mirror and onto the next subcell in
line. Although the subcells are not directly in optical contact as in
the tandem stack structure, radiatively emitted photons can still
be coupled between independently connected subcells.

Assuming the subcells in the simplied system are charac-
terized under the 1 sun AM1.5D spectrum and have a front air
interface, we can calculate the power produced in subcell #2 as a
function of B and D using basic detailed balance principles.26,27

See the ESI† material for the full derivation. The power
produced in subcell #2 is given by:

Fig. 2 (a) Band energy diagram and schematic of the two subcell
model. Subcell #2 can absorb solar photons from its input spectral
window (red) or photons produced via radiative recombination in
subcell #1 (green). (b)–(c) Theoretical light I–V subcell characteristics
as a function of spectral window, D, for a subcell with Eg ¼ 1.42 eV (e.g.
GaAs) for B ¼ 0, 1/4, 1/2 and 1. Radiative coupling strongly affects the
subcell (b) voltage and (c) power for small values of D. (d)–(e) Exper-
imental verification of light I–V characteristics for a GaAs subcell with
no absorbed radiation from another cell (i.e. B ¼ 0). The (d) measured
voltages Voc and Vmax and the (e) measured subcell power (markers)
closely follow the modeled response (dashed lines).
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where V is the operating voltage of a subcell, J is the current
produced in a subcell, NAM1.5D is the photon ux as a function of
energy in the 1 sun AM1.5D spectrum, q is the charge of an
electron, h is Planck's constant, c is the speed of light, k is
Boltzmann's constant, and To is the temperature of the subcell
(300 K). The current in subcell #2 has three important contri-
butions: current produced from the input spectra, current
produced from reconverting radiated photons from subcell #1,
and the dark current resulting from radiating photons.

We investigate the open-circuit (Voc,2) and maximum power
voltage (Vmax,2) conditions for subcell #2. Open circuit voltage
(Voc,2) occurs when the radiative current exactly balances the
photogenerated current while the maximum power voltage
(Vmax,2) refers to the voltage when the power is maximized.† 28–30

Under both conditions, voltage increases when the current for
subcell #2 increases, which is caused by an increased number of
incident photons. For the same value ofD, a higher B will yield a
higher current and therefore a higher voltage. Voc,2 and Vmax,2

are plotted in Fig. 2(b) for an example bandgap of Eg ¼ 1.42.
Both voltage conditions show a decline with decreasing D

resulting from subcell #2 receiving fewer photons under the
restricted spectrum and this decline is lessened with a higher
value of B. The only exception to this trend is when B ¼ 1 for
Voc,2. When B ¼ 1, all photons absorbed into subcell #1 are
downshied to subcell #2 and Voc,2 equals the Voc of the subcell
operating as a single junction cell having full access to the
entire input spectrum regardless of the value of D.† 26,30 We plot
these with the voltages for a two subcell selective reector
structure (dotted red) whose derivation can be found else-
where.† 2 Both the Voc,2 and the Vmax,2 of a subcell with selective
reectors closely follow the B¼ 0 case until D# 0.6 eV when the
curves begin declining much less rapidly, similar to B > 0. Until
D # 0.6 eV, the spectral window is wide enough that the
selective reector does not restrict any of the radiative emission
and so it only acts as a back reector. Therefore these trends
match the voltages of the B ¼ 0 case. Only when this curve
diverges does the selective reector subcell has an advantage in
voltage over radiative coupling subcells.

We also study the maximum power (P2) for subcell #2 in
Fig. 2(c). Similar to the voltage, the maximum power decreases
monotonically with D because a reduced photon ux will
decrease both photocurrent and voltage. This decline is still the
most severe for B ¼ 0 because there is no radiative coupling to
compensate for a smaller spectral window. The inclusion of
radiative coupling (B > 0) lessens the decline in maximum power
due to additional photocurrent. Unlike the previously studied
voltage conditions, the power generated in the selective reector
case closely follows the B ¼ 0 curve even beyond D # 0.6 eV.
Restricting the emission of a subcell can increase its voltage, but
the additional current from radiative coupling in the B > 0 cases is
more advantageous. However, we recognize that the improve-
ment for the B > 0 cases here may be exaggerated due to only
studying radiative coupling between two absorbers and so we
study full multijunction ensembles later on.

To verify the theory discussed, we measured the light I–V
characteristics of a high quality GaAs solar cell in the absence of
radiative coupling (B¼ 0).6,9 The current–voltage response of the

cell was characterized by a solar simulator under 100 mW cm�2

of AM1.5 G illumination. The spectral window was adjusted
using longpass lters that act as subcell #1 and block photons
with wavelengths shorter than the lter cutoff wavelength.
Fig. 2(d) and (e) show the dependence of the experimental Voc,
Vmax, and maximum power on the available spectrum in the
absence of radiative coupling. The above expressions are
modied to incorporate realistic device losses for comparison to
the experimental devices.† 3,6,31 Fig. 2(d) and (e) show an excel-
lent correspondence of the data to our model. All three
parameters, Voc, Vmax, and Pmax, show a signicant decline with
decreasing spectral windows.

We now extend our analysis of radiative coupling to full
multijunction devices. We calculated the efficiencies for ideal
multijunction cells with 2 to 20 subcells under the 1 sun
AM1.5D G173-03 spectrum. The bandgaps for each ensemble
were determined by detailed balance optimizations discussed
elsewhere.† 32 The efficiencies are calculated for the cases
illustrated in Fig. 1 as well as some additional cases from our
study (B ¼ 0, 1/4, 1/2, and 1) for reference.2 All cases with
radiative coupling assume that absorption of radiatively
emitted photons only occurs when the absorbing subcell has a
smaller bandgap than the emitting subcell. This assumption is
valid for this range of subcells because the vast majority of
radiatively emitted photons from a given subcell have too small
of an energy to be converted by a subcell with a higher bandgap.
For the PSR, we assume that 20.2% of photons are downshied,
20.7–41.4% of photons are reected back into the same subcell
(depending on the subcell position), and that the remaining
photons are lost.† There is a concentration factor of 1/O2 owing
to the geometry of the structure.†We also only assume radiative
coupling between adjacent subcells of the PSR for simplicity.

Fig. 3 shows efficiency as a function of the number of sub-
cells for these cases. We show that a traditional tandem stack is
less efficient than the air gap structure. Although there is a
higher radiative coupling for the traditional tandem stack (B >
0.9), there is increased light trapping in the air gap structure
and so the air gap tandem stack has smaller dark currents and a
higher overall efficiency. We also verify previous literature by
showing that the selective reector case is more efficient than
the traditional and air gap tandem stack cases because the
selective reectors increase light trapping by providing the
benets of a back reector. In contrast to previous literature, we
show that structures with radiative coupling and back reectors
(B > 0, PSR) are the most efficient for 2–20 subcells. For low
numbers of subcells (<20), the selective reectors only act as
back reectors and do not restrict emission because the spectral
windows encompass the majority of the radiatively emitted
photons. Essentially all radiatively emitted photons in the
selective reector case escape the multijunction cell without
being recycled and so the dark current is not signicantly
reduced. This is further corroborated by the fact that the effi-
ciencies for this case are equivalent to our case with no radiative
coupling (spectrum-splitting via external optics, B ¼ 0), which
we have also identied as the worst case in our previous model.
By contrast, radiative coupling (B > 0) allows these photons to be
reconverted, thus boosting the current in lower bandgap

Energy Environ. Sci. This journal is © The Royal Society of Chemistry 2014
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subcells and providing higher efficiencies (up to 1.5% absolute
increase) than the selective reector case, as shown in Fig. 3.
Even the PSR design, which has a concentration <1 because of
its geometry, outperforms the selective reector case because
radiatively emitted photons can be recycled within the same
subcell and coupled among other subcells. This combined light
trapping and radiative coupling also explains why the structure
performs closely to the example B¼ 1/2 case even though in this
case B is less than 1/4. Thus a spectrum-splitting design that
incorporates back reectors for each subcell with radiative
coupling between subcells and/or light trapping could provide a
signicant increase in efficiency over previously studied
designs.16,21,22,33,34

Our analysis and experimental results show the important
role of radiative coupling and how spectral window and optical
environment dictate the performance of subcells in a multi-
junction cell. As the number of subcells increases, the photon
ux each subcell receives will decrease, reducing the power it
converts, and this dependence is exacerbated when there is a
lack of photon recycling between subcells. However, if subcells
can radiatively couple into other subcells, this reduction is less
signicant. Additionally, we studied maximum efficiencies of
multijunction ensembles and have shown that for 2–20 sub-
cells, even higher efficiencies can be obtained than what was
previously thought possible by including both radiative
coupling between subcells and a back reector on each subcell,
as exemplied here by the PSR geometry. Therefore spectrum-
splitting designs that allow for radiative coupling between
subcells and have back reectors on every subcell will lead the
next generations of ultra-high efficiency multijunction cells.

Experimental

Alta Devices provided thin-lm, exible GaAs solar cells for the
experimental portion of this study. The light I–V response of the
cell was measured under 100 mW cm�2 of simulated AM1.5 G
illumination using a Keithley 238 high current source measure
unit. A longpass lter was placed above the cell to block higher
energy photons in the input spectrum, varying the spectral
width. The lters used blocked wavelengths shorter than 430
nm (Chroma ET430lp), 550 nm (Newport 10LWF-550-B), 580 nm
(Chroma HQ580lp), 630 nm (Chroma HQ630lp), 650 nm
(Thorlabs FEL650), 700 nm (Thorlabs FEL700), and 850 nm
(Thorlabs 850 nm).
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