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Nonlinear Function Estimation
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Kernel-Based Adaptive Filtering
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Kernel-Based Adaptive Filtering
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• d̂n = ψn(un) :=
∑
hn,jκ(un,uj), un ∈ R

L

• Assume the use of Gaussian kernel:

κ(u,v) := exp
(
−ζ ‖u − v‖2

)
, ∀u,v ∈ R

L, ζ > 0
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A Small Width Results in...
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a huge number of center points to be used

for a reasonable approximation!
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A Large Width Results in...
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a large amount of estimation errors!

The choice of the kernel parameter is important!
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Why to Use Multiple Kernels?

• In the single kernel approach, the kernel width should be small enough to

express rapid changes

The multikernel approach reduces the number of center points

to be used by allocating an individual shape for each center point
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Why to Use Multiple Kernels?

• In the single kernel approach, the kernel width should be small enough to

express rapid changes

The multikernel approach reduces the number of center points

to be used by allocating an individual shape for each center point

• The function to be estimated could be time-varying

⇒ It would be difficult to select an adequate kernel parameter

prior to adaptation!

The multikernel approach changes the kernel shape adaptively.
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Why to Use Multiple Kernels?

• In the single kernel approach, the kernel width should be small enough to

express rapid changes

The multikernel approach reduces the number of center points

to be used by allocating an individual shape for each center point

• The function to be estimated could be time-varying

⇒ It would be difficult to select an adequate kernel parameter

prior to adaptation!

The multikernel approach changes the kernel shape adaptively.

• Our multikernel approach is fully adaptive.

• It has a higher degree of freedom (larger # of parameters rnM)

compared to the typical MKL techniques (rn +M).

rn = “# of center points” and M = “# of kernels”.



10

Two Key Issues in Kernel AF

1. Algorithm Design

• NLMS Algorithm

• Affine Projection Algorithm

• Adaptive Parallel Subgradient Projection Algorithm

2. Sparsification Technique

= how to select data (centers of Gaussian) to be used in estimation

• Kivinen et al., IEEE TSP 2004

• Engel et al., IEEE TSP 2004

• Liu and Pŕıncipe, EURASIP JASP 2008, Chen et al., IEEE TNNLS 2011

• Slavakis et al., IEEE TSP 2008, IEEE TSP 2009

• Richard et al., IEEE TSP 2009, Parreira et al., IEEE TSP 2012

A classification of algorithms:

”RKHS projection approach” and ”parameter-space projection approach”
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MKNLMS-CS Algorithm (1/2)

Sparsification Technique (Dictionary Design)

• J CS
n ⊂ {0, 1, 2, · · · , n}: dictionary at time n

i ∈ J CS
n ⇔ ui is in the dictionary

• J CS
0 := ∅ (Initialization)

• Multiple kernels: κ1, κ2, · · · , κM (kernel index set M := {1, 2, · · · ,M})

• Admission rule: If the coherence criterion is satisfied:

‖Kn‖max := max
m∈M

max
j∈J CS

n

|κm(un,uj)| ≤ δ (δ > 0),

then un is inserted into the dictionary; i.e., J CS
n := J

(CS)
n−1 ∪ {n}

• limn→∞

∣∣J CS
n

∣∣ <∞ provided that the input space U ⊂ R
L is compact

Richard et al., “Online prediction of time series data with kernels,” IEEE Trans.

Signal Process., vol. 57, no. 3, pp. 1058–1067, Mar. 2009.
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MKNLMS-CS Algorithm (2/2)

Algorithm Design

• Our estimator: ψn(u) =
∑

m∈M

∑

j∈J CS
n

h
(m)
j,n κm(u,uj), u ∈ U

• d̂n = ψn(un) =
∑

m∈M

∑

j∈J CS
n

h
(m)
j,n κm(un,uj) = tr

(
HT

nKn

)
= 〈Hn,Kn〉

– [Hn]j,m := h
(m)
j,n

– [Kn]j,m := κm(un,uj)

• Update equation (step size η ∈ [0, 2], regularization parameter ρ > 0):

Hn+1 := Hn + η
dn − 〈Hn,Kn〉

‖Kn‖
2 + ρ

Kn = Hn + η′ (PΠn
(Hn) − Hn)

where PΠn
(Hn) is the projection of Hn onto the hyperplane

Πn := {H : 〈H ,Kn〉 = dn}.

If ‖Kn‖max ≤ δ, the following modifications are required:

– Kn → K̄n := [KT

n k̄n]
T k̄n := [κ1(un,un), κ2(un,un), · · · , κM(un,un)]

T

– Hn → H̄n := [HT

n 0M ]T
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MKNLMS-BT Algorithm — Rough Idea

• Unlike MKNLMS-CS, it has no admission control.

Namely, all the data are inserted temporarily.
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MKNLMS-BT Algorithm — Rough Idea

• Unlike MKNLMS-CS, it has no admission control.

Namely, all the data are inserted temporarily.

Step 1: The coefficient matrix Hn is augmented, and then updated by projection

onto a bounded instantaneous-error hyperslab.
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MKNLMS-BT Algorithm — Rough Idea

• Unlike MKNLMS-CS, it has no admission control.

Namely, all the data are inserted temporarily.

Step 1: The coefficient matrix Hn is augmented, and then updated by projection

onto a bounded instantaneous-error hyperslab.

Step 2: Such coefficients that have relatively minor contribution are removed

in blockwise fashion by block soft-thresholding

⇒ Computational efficiency and memory saving

Suppose these vectors have small norms.

data

kernels
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MKNLMS-BT Algorithm — Rough Idea

• Unlike MKNLMS-CS, it has no admission control.

Namely, all the data are inserted temporarily.

Step 1: The coefficient matrix Hn is augmented, and then updated by projection

onto a bounded instantaneous-error hyperslab.

Step 2: Such coefficients that have relatively minor contribution are removed

in blockwise fashion by block soft-thresholding

⇒ Computational efficiency and memory saving

Remove them and then...

data

kernels
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MKNLMS-BT Algorithm — Rough Idea

• Unlike MKNLMS-CS, it has no admission control.

Namely, all the data are inserted temporarily.

Step 1: The coefficient matrix Hn is augmented, and then updated by projection

onto a bounded instantaneous-error hyperslab.

Step 2: Such coefficients that have relatively minor contribution are removed

in blockwise fashion by block soft-thresholding

⇒ Computational efficiency and memory saving

Move over!

data

kernels
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MKNLMS-BT Algorithm — Derivation

• Cost function (time-varying):

Θn(X) :=
1

2
d2(X, Cn)

︸ ︷︷ ︸
=: Θ

(1)
n (X)

+λ

rn∑

i=1

wi,n ‖xi‖

︸ ︷︷ ︸
=: Θ

(2)
n (X)

, n ∈ N

X = [x1 x2 · · ·xrn] ∈ R
M×rn

where

Cn :=
{
X ∈ R

M×rn : |εn(X)| ≤ ǫ
}

(bounded instantaneous-error hyperslab).

Here

– the estimation-error function εn(X) := 〈X,Kn〉 − dn, X ∈ R
M×rn

– the error bound ǫ ≥ 0

• Θ
(2)
n is nondifferentiable but “proximable”

• Adaptive Proximal Forward-Backward Splitting Method

[Murakami et al., ICASSP 2010]

H̃n+1 :=prox
µΘ

(2)
n

(
Hn − µ∇Θ(1)

n (Hn)
)
, n ∈ N, µ ∈ (0, 2)
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Proximity Operator

The proximity operator of Θ
(2)
n of index µ (Moreau ’62):

prox
µΘ

(2)
n

(X) := argmin
Y ∈RM×rn

Θ(2)
n (Y ) +

1

2µ
‖X − Y ‖

=

rn∑

i=1

max

{
1 −

λµwi,n
‖xi‖

, 0

}
xie

T

i,n (block soft-thresholding)

X := [x1 x2 · · · xrn] ∈ R
M×rn
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Proximity Operator

The proximity operator of Θ
(2)
n of index µ (Moreau ’62):

prox
µΘ

(2)
n

(X) := argmin
Y ∈RM×rn

Θ(2)
n (Y ) +

1

2µ
‖X − Y ‖

=

rn∑

i=1

max

{
1 −

λµwi,n
‖xi‖

, 0

}
xie

T

i,n (block soft-thresholding)

X := [x1 x2 · · · xrn] ∈ R
M×rn

H̃n+1 :=prox
µΘ

(2)
n

(
Hn − µ∇Θ(1)

n (Hn)
)

︸ ︷︷ ︸
=: [g1,n g2,n · · · grn,n]

, n ∈ N, µ ∈ (0, 2)
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Proximity Operator

The proximity operator of Θ
(2)
n of index µ (Moreau ’62):

prox
µΘ

(2)
n

(X) := argmin
Y ∈RM×rn

Θ(2)
n (Y ) +

1

2µ
‖X − Y ‖

=

rn∑

i=1

max

{
1 −

λµwi,n
‖xi‖

, 0

}
xie

T

i,n (block soft-thresholding)

X := [x1 x2 · · · xrn] ∈ R
M×rn

H̃n+1 :=prox
µΘ

(2)
n

(
Hn − µ∇Θ(1)

n (Hn)
)

︸ ︷︷ ︸
=: [g1,n g2,n · · · grn,n]

, n ∈ N, µ ∈ (0, 2)

1. Projection onto Cn: ∇Θ
(1)
n (Hn) = Hn − PCn

(Hn)
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Proximity Operator

The proximity operator of Θ
(2)
n of index µ (Moreau ’62):

prox
µΘ

(2)
n

(X) := argmin
Y ∈RM×rn

Θ(2)
n (Y ) +

1

2µ
‖X − Y ‖

=

rn∑

i=1

max

{
1 −

λµwi,n
‖xi‖

, 0

}
xie

T

i,n (block soft-thresholding)

X := [x1 x2 · · · xrn] ∈ R
M×rn

H̃n+1 :=prox
µΘ

(2)
n

(
Hn − µ∇Θ(1)

n (Hn)
)

︸ ︷︷ ︸
=: [g1,n g2,n · · · grn,n]

, n ∈ N, µ ∈ (0, 2)

1. Projection onto Cn: ∇Θ
(1)
n (Hn) = Hn − PCn

(Hn)

2. Block soft-thresholding prox
µΘ

(2)
n
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Proximity Operator

The proximity operator of Θ
(2)
n of index µ (Moreau ’62):

prox
µΘ

(2)
n

(X) := argmin
Y ∈RM×rn

Θ(2)
n (Y ) +

1

2µ
‖X − Y ‖

=

rn∑

i=1

max

{
1 −

λµwi,n
‖xi‖

, 0

}
xie

T

i,n (block soft-thresholding)

X := [x1 x2 · · · xrn] ∈ R
M×rn

H̃n+1 :=prox
µΘ

(2)
n

(
Hn − µ∇Θ(1)

n (Hn)
)

︸ ︷︷ ︸
=: [g1,n g2,n · · · grn,n]

, n ∈ N, µ ∈ (0, 2)

1. Projection onto Cn: ∇Θ
(1)
n (Hn) = Hn − PCn

(Hn)

2. Block soft-thresholding prox
µΘ

(2)
n

3. Remove the zero row vectors and then move over

J BT
−1 := ∅ and J BT

n := {j ∈ J BT
n−1 : hj,n 6= 0} ∪ {n}
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Block Soft-Thresholding

data

kernels
Gn = g1,n g2,n grn,n
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Block Soft-Thresholding

data

kernels
Gn = g1,n g2,n grn,n

λµν

0 < ν ≪ 1
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Block Soft-Thresholding
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kernels
Gn = g1,n g2,n grn,n
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Block Soft-Thresholding

data

kernels
Gn = g1,n g2,n grn,n

λµν

λµ

0 < ν ≪ 1
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Block Soft-Thresholding

data

kernels
Gn = g1,n g2,n grn,n

λµν

λµ

0 < ν ≪ 1

• prox
µΘ

(2)
n

(Gn) =

rn∑

i=1

max

{
1 −

λµwi,n∥∥gi,n
∥∥ , 0

}
gi,ne

T

i,n, wi,n :=

{
ν, if

∥∥gi,n
∥∥ > τ

1, otherwise
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Computational Complexity

KNLMS MKNLMS-CS MKNLMS-BT

Multiplication (L + 3)rn (L + 3M)rn (L + 5M)rn

Exponential rn Mrn Mrn

Memory (L + 1)rn (L +M)rn (L +M)rn

• L: Dim. of the input vector un

• M : # of kernels

• rn: Dictionary size at the nth iteration

The complexity of the proposed algorithm is low!
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Numerical Example A

• Online Prediction of the following time-series data

– Mackey-Glass chaotic time series characterized by the following

differential equation: dx(t)/dt = −0.1x(t) + 0.2x(t− 30)/
[
1 + x(t− 30)10

]
.

• The signals are corrupted by additive Gaussian noise with zero mean and

standard deviation 0.04.

• dn is predicted with un := [dn−1, dn−2, · · · , dn−L]T (L = 10)

• NLMS: η = 2.0 × 10−2

• KNLMS: η = 0.2, ρ = 3.0 × 10−2, ζ = 3.5

• MKNLMS-CS: η = 0.2, ρ = 6.0 × 10−2, ζ1 = 0.5, ζ2 = 6.5, (I) δ = 0.5, (II) δ = 0.8

NOTE: Good kernel parameter is ζ = 1.0
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MSE Learning Curve

0 500 1000 1500 2000

10
−2

10
−1

10
0

Number of Iterations

M
S

E

 

 

KNLMS (II)

NLMS

MKNLMS−CS (I) MKNLMS−CS (II)

KNLMS (I)

The average dictionary sizes: (I) r̄ = 18.7 and (II) r̄ = 6.0



32

Impact of Dictionary Size on MSE

5 10 15 20 25 30 35

10
−2

10
−1

M
S

E

 

 

KNLMS (CASE 1)

KNLMS (CASE 2)

MKNLMS−CS (CASE 1)

MKNLMS−CS (CASE 2)

Dictionary size rn

• Case 1: a good kernel parameter is unavailable
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Impact of Kernel Parameter on MSE
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The average dictionary sizes: (a) r̄ = 10.1 and (b) r̄ = 15.1.
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Numerical Example B

• Online Prediction of the chaotic laser time series from the Santa Fe time

series competition (L = 40)

• KNLMS: η = 0.1, ρ = 3.0 × 10−2, ζ = 1/2σ2 with σ := 0.9, δ = 0.476

• MKNLMS-BT: µ = 0.1, ζ1 = 0.4, ζ2 = 3.0, ǫ = 0, λ = 3.0 × 10−2
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Evolution of Dictionary Size
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- Complexity and memory usage

• KNLMS: 3215, 2996

• MKNLMS-BT: 1775, 1433 (More efficient due to smaller rn)
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Advantages of Multikernel Approach

1. The use of multiple kernels brings a considerable gain either (i) in the case

that the dictionary size is not sufficiently large or (ii) in the case that an

inappropriate kernel is employed. From another viewpoint, the multikernel

approach is relatively insensitive to the choice of parameters determining the

dictionary size and the kernels themselves. This suggests that the multikernel

approach only requires rough tuning of the parameters, and hence it can

alleviate the computational burdens for finding good values of the parameters.

2. The multikernel approach significantly outperforms the single-kernel

approach when applied to nonstationary data, even though the parameters for

the single-kernel approach are carefully tuned. It should be mentioned that

good parameter values could be time-dependent due to the nonstationarity of

data.
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Advantages of Multikernel Approach (Cont.)

3. The multikernel approach could attain comparable, or even better,

performance with a smaller value of rn compared to the single-kernel approach.

When the input-space dimension L is large, the complexity and memory usage

of the multikernel approach could be lower than that of the single-kernel

approach.

In addition, the major advantage of MKNLMS-BT over MKNLMS-CS is given

as follows.

4. For nonstationary data, the MKNLMS-BT algorithm attains reasonable

performance with a fairly small dictionary size, while the KNLMS and

MKNLMS-CS algorithms increase the dictionary size considerably as time goes

by. As a result, the complexity of MKNLMS-BT could be lower than those of

KNLMS and MKNLMS-CS.
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Conclusion

1. This paper has presented a study on the multikernel approach to

nonlinear adaptive filtering.

2. A pair of fully adaptive algorithms using multiple kernels have been

proposed.

3. The MKNLMS-CS algorithm exploits the coherence-based criterion for

dictionary designing, while the MKNLMS-BT algorithm exploits the

weighted block soft-thresholding operator.

4. The remarkable advantages of the proposed algorithms have been

demonstrated, including

(a) insensitivity to the choice of the kernel parameters (as well as the

coherence threshold) and

(b) significant performance gains and potential computational/

memory efficiency for nonstationary data.
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Open Issues

• Analyzing the performance of the approach and proving theoretically that

it achieves low estimation error with a smaller number of center points.

• Finding killer apps.
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• Published article:

M. Yukawa, ”Multikernel adaptive filtering”, IEEE Trans. Signal Processing,

vol. 60, no. 9, pp. 4672–4682, September 2012.

• References for MKNLMS-BT:

1. P. L. Combettes and V. R. Wajs, “Signal recovery by proximal

forward-backward splitting”, SIAM Journal on Multiscale Modeling and

Simulation, vol. 4, pp. 1168–1200, 2005.

2. Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A

sparse adaptive filtering using time-varying soft-thresholding

techniques,” in Proc. IEEE ICASSP, pp.3734–3737, 2010.

• More recent results:

M. Yukawa and R. Ishii, ”An efficient kernel adaptive filtering algorithm

using hyperplane projection along affine subspace”, European Signal

Processing Conference (EUSIPCO) 2012, to be presented.

Thank you for your kind attention!


