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Abstract—Multilabel classification deals with problems in which 
an instance can belong to multiple classes. This paper uses error 
correcting codes for multilabel classification. BCH code and 
Random Forests learner are used to form the proposed method. 
Thus, the advantage of the error-correcting properties of BCH 
is merged with the good performance of the random forests 
learner to enhance the multilabel classification results. Three 
experiments are conducted on three common benchmark 
datasets. The results are compared against those of several 
exiting approaches. The proposed method does well against its 
counterparts for the three datasets of varying characteristics.  
 
Index Terms—multilabel data, multilabel classification, error 
correcting codes, BCH code, ensemble learners, random forests 

I.  INTRODUCTION 

Singlelabel classification refers to learning from a 
collection of instances that each is related to only one label l 
from a set of labels L. Multilabel classification, on the other 
hand, refers to learning from a set of instances that each is 
associated with a set of labels Y  L [1]. A sample multilabel 
dataset is shown is Table I. It consists of three instances. 
Each instance contains four features. There are three classes 
L = {C1,C2,C3}. Each instance belongs to one class or 
multiple classes. 

 
TABLE I. 

SAMPLE MULTILABEL DATASET 
Inst Features C1 C2 C3 
1 F11 F12 F13 F14 0 1 1 
2 F21 F22 F13 F24 1 1 0 
3 F31 F32 F13 F34 0 0  1 

 
Multilabel classification has received some attentions in 

the past several years. A number of methods have been 
developed to tackle multilabel classification problems. Some 
key methods are reviewed in the following. 

According to Brinker et al. [2], Binary Relevance (BR) 
considers the prediction of each label as an independent 
binary classification task. It trains a separate binary relevance 
model for each possible label using all examples related to 
the label as positive examples and all other examples as 
negative examples. For classifying a new instance, all binary 
predictions are obtained and then the set of labels 
corresponding to positive relevance classification is 
associated with the instance. 

Zhang and Zhou [3] report a multi-label lazy learning 
approach which is derived from the traditional k-Nearest 
Neighbour (kNN) and named ML-kNN. For each unseen 
instance, its k nearest neighbors in the training set are 
identified. Then, based on statistical information gained from 
the label sets of these neighboring instances, maximum a 
posteriori principle is used to determine the label set for the 
unseen instance. 

Zhang and Zhou [4] present a neural network-based 
algorithm that is Backpropagation for Multi-Label Learning 
named BP-MLL. It is based on the backpropagation 
algorithm but uses a specific error function that captures the 
characteristics of multi-label learning. The labels belonging 
to an instance are ranked higher than those not belonging to 
that instance. 

Tsoumakas and Vlahavas [5] propose RAndom K-
labELsets (RAKEL) which is an ensemble method for 
multilabel classification based on random projections of the 
label space. An ensemble of Label Powerset (LP) classifiers 
is trained on smaller size of label subset randomly selected 
from the training data. The RAKEL takes into account label 
correlations by using single-label classifiers that are applied 
on subtasks with manageable number of labels and adequate 
number of examples per label. It therefore tackles difficulty 
of learning due to a large number of classes associated with 
only a few examples. 

Several other important works can be also found in [6-11]. 
The main motivation behind the work reported in this paper 
is our desire to improve the performance of the multilabel 
classification methods. This paper explores the use of error 
correcting code for multilabel classification. It uses the Bose, 
Ray-Chaudhuri, Hocquenghem (BCH) code and Random 
Forests learner to form a method that can deal with 
multilabel classification problems improving the 
performance of several popular exiting methods. The 
description of the theoretical framework as well as the 
proposed method is given in the following sections. 

II.  BOSE, RAY-CHAUDHURI, HOCQUENGHEM CODE 

Bose, Ray-Chaudhuri, Hocquenghem (BCH) Code is a 
multilevel, cyclic, error-correcting, variable-length digital 
code that can correct errors up to about 25% of the total 
number of digits [12-13]. The original applications of BCH 
code were limited to binary codes of length 2m-1 for some 
integer m. These were extended later to the nonbinary codes 
with symbols from Galois field GF(q). Galois field is a field 
with a finite field order (number of elements). The order of a 
Galois field is always a prime or a power of a prime number. 
GF(q) is called the prime field of order q where the q 
elements are 0,1, …, q-1. 

BCH codes are cyclic codes and can be specified by a 
generator polynomial. For any integer m ≥ 3 and t < 2m−1, 
there exists a primitive BCH code with the following 
parameters: 

 
                                                                        (1) 

  
 

© 2009 ACADEMY PUBLISHER



FULL PAPER 
                                 International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009 

 

114 
 

The code can correct t or fewer random errors over a span 
of 2m-1 bit positions. The code is called a t-error-correcting 
BCH code over GF(q) of length n. This code is specified as 
follows: 

1. Determine the smallest m such that GF(qm) has a 
primitive nth root of unity β. 

2. Select a nonnegative integer b. Frequently, b=1. 
3. Form a list of 2t consecutive powers of β: 

. Determine the minimal 
polynomial with respect to GF(q) of each of these 
powers of β.  

4. The generator polynomial g(x) is the least common 
multiple (LCM) of these minimal polynomials. The 
code is a (n, n- deg(g(x))) cyclic code.  

 
Due to the fact that the generator is constructed using 

minimal polynomials with respect to GF(q), the generator 
g(x) has coefficients in GF(q), and the code is over GF(q). 
Two fields are involved in the construction of BCH codes. 
GF(q) is where the generator polynomial has its coefficients 
and is the field where the elements of the codewords are. 
GF(qm) is the field where the generator polynomial has its 
roots. For encoding purpose, it is adequate to work only with 
GF(q). However, decoding requires operations in GF(qm). 

For binary BCH codes, let α be a primitive element in 
GF(2m). For 1≤ i ≤ t , let  Φ2i-1(x) be the minimum 
polynomial of the field element α2i−1. The degree of Φ2i-1(x) 
is m or a factor of m. The generator polynomial g(x) of t-
error-correcting BCH codes of length 2m-1 is given by: 

                                                                            (2) 
 
The first explicit decoding algorithm for binary BCH 

codes was Peterson’s algorithm that was useful only for 
correcting small numbers of errors. Berlekamp introduced 
the first truly efficient decoding algorithm for both binary 
and nonbinary BCH codes. This was further developed by 
Massey and is usually called the Berlekamp-Massey 
decoding algorithm. 

Consider a BCH code with n = 2m-1 and generator 
polynomial g(x). Suppose a code polynomial c(x) = c0 + c1 x 
+ ... + cn-1 xn-1 is transmitted. Let r(x) = r0 + r1 x + ... + rn-1 xn-1 
be the received polynomial. Then, r(x) = c(x) + e(x), where 
e(x) is the error polynomial. To check whether r(x) is a code 
polynomial, r(α) = r(α2) = ... = r(α2t) = 0 is tested. If yes, then 
r(x) is a code polynomial, otherwise r(x) is not a code 
polynomial and the presence of errors is detected. The 
decoding procedure includes three steps: syndrome 
calculation, error pattern specification, and error correction. 

III.  RANDOM FORESTS 

Ensemble learning refers to the algorithms that produce 
collections of classifiers which learn to classify by training 
individual learners and fusing their predictions. Growing an 
ensemble of trees and getting them vote for the most popular 
class has given a good enhancement in the accuracy of 
classification. Random vectors are built that control the 
growth of each tree in the ensemble. The ensemble learning 
methods can be divided into two main groups: bagging and 
boosting. 

In bagging, models are fit in parallel where successive 
trees do not depend on previous trees. Each tree is 

independently built using bootstrap sample of the dataset. A 
majority vote determines prediction. In boosting, models are 
fit sequentially where successive trees assign additional 
weight to those observations poorly predicted by previous 
model. A weighted vote specifies prediction. 

A random forest [14] adds an additional degree of 
randomness to bagging. Although each tree is constructed 
using a different bootstrap sample of the dataset, the method 
by which the classification trees ate built is improved. 

A random forest predictor is an ensemble of individual 
classification tree predictors.  For each observation, each 
individual tree votes for one class and the forest predicts the 
class that has the plurality of votes. The user has to specify 
the number of randomly selected variables m_try to be 
searched through for the best split at each node. Whilst a 
node is split using the best split among all variables in 
standard trees, in a random forest the node is split using the 
best among a subset of predictors randomly chosen at that 
node. The largest tree possible is grown and is not pruned. 
The root node of each tree in the forest contains a bootstrap 
sample from the original data as the training set. The 
observations that are not in the training set are referred to as 
“out-of-bag” observations. 

Since an individual tree is unpruned, the terminal nodes 
can contain only a small number of observations. The 
training data are run down each tree. If observations i and j 
both end up in the same terminal node, the similarity 
between i and j is increased by one. At the end of the forest 
construction, the similarities are symmetrised and divided by 
the number of trees. The similarity between an observation 
and itself is set to one. The similarities between objects form 
a matrix which is symmetric, and each entry lies in the unit 
interval [0, 1]. Breiman defines the random forest as [14]: 

 
A random forest is a classifier consisting of a collection of 
tree-structured classifiers },1),,({ K=Θ kh kx  where }{ kΘ  
are independent identically distributed random vectors and 
each tree casts a unit vote for the most popular class at 
input x. 
 
Fig. 1 displays a pseudo-code for the random forest 

algorithm. A summary of the random forest algorithm for 
classification is given below [15]: 

• Draw K bootstrap samples from the training data. 

• For each of the bootstrap samples, grow an unpruned 
classification tree, with the following modification: 
at each node, rather than choosing the best split 
among all predictors, randomly sample m of the 
predictors and choose the best split from among 
those variables. 

• Predict new data by aggregating the predictions of 
the K trees, i.e., majority votes for classification, 
average for regression. 
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Figure 1.  Pseudo-code for the random forest algorithm. 

The random forest approach works well because of: (i) the 
variance reduction achieved through averaging over learners, 
and (ii) randomised stages decreasing correlation between 
distinctive learners in the ensemble. The generalisation error 
of a forest of tree classifiers depends on the strength of the 
individual trees in the forest and the correlation between 
them. Using a random selection of features to split each node 
yields error rates that compare to AdaBoost [16] An estimate 
of the error rate can be obtained, based on the training data, 
by the following [15]: 

• At each bootstrap iteration, predict the data that is 
not in the bootstrap sample, called ``out-of-bag'' data, 
using the tree which is grown with the bootstrap 
sample. 

• Aggregate the out-of-bag predictions. On the 
average, each data point would be out-of-bag around 
36.8% [17] of the times. Calculate the error rate, and 
call it the “out-of-bag” estimate of error rate. 

With regard to the 36.8%, the random forest forms a set of 
tree-based learners. Each learner gets different training set of 
n instances extracted independently with replacement from 
the learning set. The bootstrap replication of training 
instances is not the only source of randomness. In each node 
of the tree the splitting attribute is selected from a randomly 
chosen sample of attributes. As the training sets of individual 
trees are formed by bootstrap replication, there exists on 
average %8.361

≈
e

 of instances not taking part in construction 

of the tree [17]. The random forest performs well compared 
to some other popular classifiers. Also, it has only two 
parameters to adjust: (i) the number of variables in the 
random subset at each node, and (ii) the number of trees in 
the forest. It learns fast. 

IV.  PROPOSED METHOD 

This paper explores the utilization of an error correcting 
code and random forests learner for multilabel classification. 
The proposed method is called MultiLabel Bose, Ray-
Chaudhuri, Hocquenghem Random Forests (ML-BCHRF). 
The block diagram description of the ML-BCHRF is shown 
in Fig. 2. 

The method first transforms the set of labels L using the 
Bose, Ray-Chaudhuri, Hocquenghem (BCH) encoding 
algorithm. For a k class dataset, each set of labels that is 
associated with an instance containing k binary values is 
treated as a message codeword and is transformed into an n 
bit binary values where n > k. the n bit binary word is called 
the encoded message. Then, the multilable classification 
problem is decomposed into n binary classification problems. 

Next, n random forests classifiers are developed one for each 
binary class. After that, the n classification decisions of n 
binary classifiers are transformed using the BCH decoding 
algorithm and again k binary values are obtained. Therefore, 
the advantage of the error-correcting properties of the BCH 
code is incorporated into the system that helps correct 
possible misclassification of some individual n binary 
classifiers. 
 
 

 
Figure 2.  Block diagram description of the proposed ML-BCHRF method. 

For classification of a new instance, its features are 
independently presented to n binary classifiers.  Then the n 
classification decisions of n binary classifiers are 
transformed into k binary values using the BCH decoding 
algorithm. The error-correcting is applied during this 
transformation that helps correct possible misclassification of 
some individual n binary classifiers. The bits of the k 
resultant binary values that are ‘1’ indicate that the instance 
belong to the associated class. 

V.  EXPERIMENTAL RESULTS 

To evaluate ML-BCHRF, its performance was evaluated 
against a number of exiting methods on three different 
datasets. These are among the popular benchmark datasets 
for multi-label classification. Their characteristics are 
presented in Table II. 

The ML-BCHRF employs the random forest learner as its 
base classifier. The random forest learner has two important 
parameters, called number-of-trees-to-grow and number-of-
variables-at-each-split, that can be varied to get the best 
number of tree within the forest for the specific training data. 

 
TABLE II. 

CHARACTERISTICS OF BENCHMARK DATASETS 
Dataset Features Classes Train Testing 
Scene 294 6 1211 1196 
Yeast 103 14 1500 917 

Mediamill 120 101 30993 12914 

 
In the first experiment, we trained and tested the ML-

BCHRF on the Yeast dataset. The (63, 16) BCH encoder was 
used and two dummy bits were added to the label set making 
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it have 16 binary bits. We used number-of-trees-to-grow = 
60 and number-of-variables-at-each-split = 20. However, 
these two parameters can be varied to achieve better results. 
The ML-BCHRF results were compared against those of 
MMP [6], AdaBoost.HM [7], ADTBoost.HM [8], LP [5], BR 
[2], RankSVM [9], ML-KNN [3], RAKEL [5], 1vsAll SVM 
[10], and ML-PC [11] found in the literature. Table III shows 
the experimental results for the Yeast dataset. 

 
TABLE III. 

RESULTS FOR YEAST 
Method Hamming Loss 

MMP 0.297 
ADTBoost.HM 0.215 
AdaBoost.HM 0.210 
LP 0.202 
BR 0.199 
RankSVM 0.196 
ML-KNN 0.195 
RAKEL 0.193 
1vsAll SVM 0.191 
ML-PC 0.189 
ML-BCHRF 0.188 

 
In the second experiment, we trained and tested the ML-

BCHRF on the Scene dataset. The (31, 6) BCH encoder was 
used. We used number-of-trees-to-grow = 60 and number-of-
variables-at-each-split = 20. The ML-BCHRF results were 
compared against those of BR [2], LP [5], RAKEL [5] found 
in the literature. Table IV shows the experimental results for 
the Scene dataset. 

In the third experiment, we trained and tested the ML-
BCHRF on the Mediamill dataset. The (255, 107) BCH 
encoder was used and six dummy bits were added to the 
label set making it have 107 binary bits. We used number-of-
trees-to-grow = 60 and number-of-variables-at-each-split = 
20. The ML-BCHRF results were compared against those of 
LP [5], BR [2], ML-KNN [3], RAKEL [5] found in the 
literature. Table V shows the experimental results for the 
Mediamill dataset. 
 

TABLE IV. 
RESULTS FOR SCENE 

Method Hamming Loss 
BR 0.114 
LP 0.099 
RAKEL 0.095 
ML-BCHRF 0.074 

 
The experimental results show that ML-BCHRF has 

performed better than its reported counterparts. It has 
performed very well for three datasets of varying 
characteristics. The reason for the demonstrated performance 
relates to the mixture of: (i) the error correcting capability of 
the BCH code, and (ii) the superior performance of the 
random forest learner. 
 

TABLE V. 
RESULTS FOR MEDIAMILL 

Method Hamming Loss 
LP 0.046 
BR 0.038 
ML-KNN 0.031 
RAKEL 0.030 
ML-BCHRF 0.028 

 

VI.  CONCLUSION 

A method was proposed that BCH-encodes labels and then 
decomposes the problem into binary classification. One 
random forests classifier is developed for each binary class. 
The classification decisions are BCH-decoded using the 
BCH decoding algorithm and again k binary values are 
obtained.  The experimental results show that the proposed 
method has performed better than its reported counterparts. 
Future work will include experiments in which the 
parameters of the random forests learner could be varied for 
achieving better results. 
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