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Abstract

Molecular self-assembly using DNA as a structural building block has proven to be an efficient route

to the construction of nanoscale objects and arrays of increasing complexity. Using the remarkable

“scaffolded DNA origami” strategy, Rothemund demonstrated that a long single-stranded DNA from

a viral genome (M13) can be folded into a variety of custom two-dimensional (2D) shapes using

hundreds of short synthetic DNA molecules as staple strands. More recently, we generalized a

strategy to build custom-shaped, three-dimensional (3D) objects formed as pleated layers of helices

constrained to a honeycomb lattice, with precisely controlled dimensions ranging from 10 to 100

nm. Here we describe a more compact design for 3D origami, with layers of helices packed on a

square lattice, that can be folded successfully into structures of designed dimensions in a one-step

annealing process, despite the increased density of DNA helices. A square lattice provides a more

natural framework for designing rectangular structures, the option for a more densely packed

architecture, and the ability to create surfaces that are more flat than is possible with the honeycomb

lattice. Thus enabling the design and construction of custom 3D shapes from helices packed on a

square lattice provides a general foundational advance for increasing the versatility and scope of

DNA nanotechnology.

Introduction

One of the prominent goals in molecular and nanoscale engineering is to achieve rationally

designed 3D structures with high predictability and efficiency. Conventional methods for 3D

nanofabrication thus far have relied on top-down lithographic approaches. For example, ion-

beam lithography can produce features with nanometer resolution,1 but is characterized by

slow throughput, which makes it impractical for large-area manufacturing. DNA-based

nanofabrication offers many unique advantages in 3D nanopatterning over conventional

methods, due to the fact that DNA is an information-carrying polymer. DNA can be

programmed to assume specific robust branched shapes on the nanoscale, and intermolecular

interactions of DNA can be programmed using base pairing to link components together to
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form stick figures, 2D lattices, and 3D lattices that can organize functional chemical species

on the nanoscale.2

Extending the advantage of sequence and spatial address-ability inherent in DNA

nanostructures, 2D DNA nanoarrays have recently been used to display custom-designed

surface patterns for the purpose of detection and organization of other molecules such as

proteins and nanoparticles.3–7 Ever since the introduction of the DNA-origami concept,8 it has

been an attractive goal to transform the design principle of 2D DNA origami into 3D folding

strategies. Recently, successes in this direction have been achieved, for example with the

honeycomb-pleated method mentioned above.9 As another example, origami of a hollow-box-

like structure in cubic10,11 and tetrahedral12 shapes has been demonstrated by linking discrete

2D arrays assembled on a single scaffold such that they collectively enclose a three-

dimensional volume. In the latter three examples, as well as in the original Rothemund-style

origami, the helices are arranged on a single layer of a square lattice. Therefore a more direct

extension of these 2D origami to 3D solid structures would invoke stacking of flat sheets of

helices in alignment with a square rather than a honeycomb lattice, although this would be

feasible only if the arrangement of charged DNA helices at such a high density was stable and

kinetically accessible. Thus we were motivated to determine experimentally whether this

would be a viable approach.

Design

The strategy to assemble the square-lattice DNA solid blocks is displayed in Figure 1. For

illustration purposes, only a small portion of the cuboid structure is shown, where 12 parallel

helices, each 32 base pairs (bp) long, are arranged into a 3 by 4 square lattice viewed from the

end. This is achieved conceptually by folding a plane of parallel DNA double helices (labeled

numerically in Figure 1a) into multiple layers such that helices all fall into a square lattice. In

turn, this square-lattice arrangement of double helices can be conceived as the result of first

laying down a scaffold strand in a raster pattern as an array of antiparallel helices (numbered

sequentially in Figure 1b). Next, complementary staple strands are wound in an antiparallel

direction around the scaffold strands to assemble B-form double helices that have initial

geometrical parameters of 2.0 nm diameter, 0.34 nm per bp rise, and 33.75° per bp average

twist (or 32 bp per 3 turns; these parameters can be adjusted in the spatial model later). This

initially imposed double-helical twist density implies a slight underwinding compared to the

preferred 34.3° per bp or 10.5 bp per turn; this underwinding would be predicted to lead to a

compensatory global right-handed twist of the entire structure.13 In the square lattice, each

double helix has up to four nearest neighbors and is designed to link to each with antiparallel

strand crossovers. For explanatory purposes, here we assume that only staple strands, and not

the scaffold strand, cross over between adjacent helices. Every 8 bp, the staple strand of a given

double helix completes a rotation of 8 bp/(10.67 bp/turn) = 0.75 turns. Thus every 8 bp, that

staple strand is positioned to cross over to one of its four neighbors; that is, starting from 0 bp

as “north”, then moving away from the viewer by 8 bp gives a clockwise rotation of 0.75 turns

to “west”, moving 16 bp away gives a rotation of 1.5 turns to “south”, moving 24 bp away

gives a rotation of 2.25 turns to “east”, and moving 32 bp away gives a rotation of 3.0 turns

back to “north”. Thus adjacent helices share crossovers every 32 bp, and the positions of the

crossovers are restricted to periodic intersection or “crossover” planes, labeled from i to iv,

spaced at 8 bp intervals as illustrated in the scheme views in Figure 1b and section views in

Figure 1c. The crossover pattern in the fifth plane is exactly the same as that of the first plane;

thus it is labeled as i again. As with the honeycomb-pleated designs, alternate routing paths of

the scaffold strand can be chosen to achieve the same overall target structure, as long as every

designed helix is visited.
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To create a desired cuboid shape, the dimensions of the target cuboid first must be specified,

and these are determined by the number of layers, the number of helices per layer, and the

length of each DNA helix. The maximum potential size of the structure is limited by the length

of the scaffold strand. Unpaired scaffold bases often are introduced at the ends of helices (as

unpaired loops) to minimize undesired multimerization. A longer unpaired loop is also needed

to span the distance from the starting point of the first helix to the ending point of the last helix

if the scaffold strand has a circular loop topology. Alternatively, if a seam8 composed of

scaffold crossovers is implemented on the inside of the structure, then a circular scaffold path

can be accommodated without the need for the long unpaired loop.

Next, the crossovers of the staple strands between neighboring helices in the cuboid are

assigned at the locations of the intersection planes, following the patterns as shown in Figure

1b and c. These crossovers are labeled on the 2D scheme (Figure 1b) as thin lines, indicating

direct connectivity of the phosphate backbone. Nick points are then introduced to break the

staple strands into appropriate lengths ranging from 32 to 45 nucleotides (nt) long. Finally, the

actual sequence of the scaffold strand is threaded on the target scaffold path so that the Watson–

Crick-complementary sequences of the staple strands can be determined.

Results and Discussion

Four different cuboid shapes with various dimensions were designed and tested experimentally.

The number of folded layers of the DNA helical planes ranges from 2 to 8, as illustrated in

Figure 2a–d. The dimensions of the cuboids, m × n × d, where m is the number of layers, n is

the number of helices per layer, and d is the number of base-paired helical turns, are 2 × 21 ×

15.75, 3 × 14 × 15.75, 6 × 12 × 7.5, and 8 × 8 × 9.0, respectively, which are translated into the

length scale marked in the figures (assuming 3.5 nm per helical turn and 2.0 nm per helical

diameter with no gap between helices). The scaffold used is the single-stranded M13mp18

(purchased from New England Biolabs, cat # N4040S), which is 7249 nt long, or else a variant

with a site-directed insertion in the multiple cloning site that results in a final construct that is

8064 nt long.9 Target structures were designed so that 90–97% of the scaffold strand should

be paired with staple strands. The remaining scaffold material was designed as unpaired loops

at the ends of the helices. The 8 × 8 × 9.0 designs were implemented with a custom computer

program. The 2 × 21 × 15.75, 3 × 14 × 15.75, and 6 × 12 × 7.5 designs were aided by the

computer software caDNAno,14 which we modified to support this square-lattice design (the

original version only supported the honeycomb-lattice pattern of antiparallel helices).

For the formation of each designed DNA cuboid, the 174 to 221 staple strands (desalted

oligodeoxyribonucleotides, custom ordered on 96-well plates from Bioneer for the 2 × 21 and

3 × 14 designs and from Integrated DNA Technology for the 6 × 12 and 8 × 8 designs) were

mixed with the scaffold strand in 5-fold or 10-fold molar excess. A one-pot reaction (see below

for details of thermal ramp) allowed hybridization of the scaffold strand with the hundreds of

staple strands that direct its folding into the target shape. The annealed mixtures were subjected

to agarose-gel electrophoresis. Next, rapidly migrating bands corresponding to monomeric,

well-folded species were excised from the gel and recovered by physical extraction using a

Freeze-N-Squeeze column (see experimental details in the Supporting Information). The

purified structures were imaged by transmission electron microscopy (TEM) after negative

staining by uranyl formate or directly imaged by cryo-EM where the native conformations of

the structures might be better preserved in vitreous ice during the quick freezing. Successful

folding for the 6 × 12 and 8 × 8 designs was observed at the following conditions: 1 × TAE•Mg

buffer (pH 8.0) that contains 20 mM Tris•acetate, 1 mM EDTA, and 12.5 mM Mg2+, and

thermal annealing by rapid heating to 90 °C followed by slow cooling to 4 °C over 48 h (6 ×

12 design) or 24 h (8 × 8 design). Successful folding for the 2 × 21 and 3 × 14 designs was

observed at the following conditions: 5 mM Tris + 1 mM EDTA (pH 8.0), 16 mM MgCl2, and
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a thermal annealing ramp from 80 to 60 °C over the course of 80 min, followed by a ramp from

60 to 24 °C over the course of 172 h.

The four objects displayed in Figure 2 demonstrate the generality of this square-lattice origami

approach in constructing the multilayered 3D DNA nanostructures, with increasing number of

DNA layers (2, 3, 6, or 8 layers). TEM images of negatively stained samples show both the

side view and top views of the assembled products corresponding to the designed structures.

High-resolution zoom-in images clearly reveal the number of helices per layer and number of

layers in each structure. The images also show increased contrast with increasing number of

layers, consistent with the expected constructive reinforcement. The top-view images of the

two-layer structure have the lowest contrast due to the thinness of the particles. The estimated

yields of each structure were 56%, 89%, 27%, and 59% for two-, three-, six-, and eight-layer

structures, respectively (see Supporting Information for methods of estimating yield used here

in comparison to methods for estimating yield for previously analyzed honeycomb

structures14).

The side views of the two-layer and three-layer structures display significant global twisting,

while the six-layer and eight-layer structures do not. This behavior can be understood on the

basis of a global relaxation in response to local underwinding of double helices.13 In the square-

lattice structures, the initially imposed double-helical twist density is set as 10.67 bp/turn (i.e.,

8 bp per 0.75 turns). If the preferred double-helical twist density for B-DNA is 10.5 bp/turn,

then the double helices in the square lattice are underwound. The bundle of double helices will

adopt a global right-handed twist in order to relieve the strain of the local underwinding. The

magnitude of the global twist should vary inversely with the torsional stiffness of the structure

and vary directly with the amount of torque. The torsion constant J for a cuboid as a function

of cross-sectional dimensions can be approximated with the following formula:15

where a is the long width of the cross section and b is the short width of the cross section. The

torsional stiffness of each object should vary inversely with the length. We can estimate the

normalized torsional stiffness of the 2 × 21 × 15.75, 3 × 14 × 15.75, 6 × 12 × 7.5, and 8 × 8 ×

9.0 blocks as 1.0, 2.1, 24, and 19, respectively. Thus the 6 × 12 × 7.5 and 8 × 8 × 9.0 designs

should be about 10 times more stiff than the 3 × 14 × 15.75 design. Furthermore, the total

internal torque experienced by the 3 × 14 × 15.75 design would be expected to be significantly

greater than for the 6 × 12 × 7.5 or 8 × 8 × 9.0 designs, since the underwound helices on the

extremities of the block will contribute, by virtue of a larger mechanical advantage, a larger

torque than the ones near the middle, and the average distance from the center is greater for

the extended designs. Taken together, the combination of less internal torque and much greater

torsional resistance would be expected to manifest as very little noticeable global compensatory

twisting for the 6 × 12 × 7.5 and 8 × 8 × 9.0 designs.

We sought to diminish the global twisting observed for the 3 × 14 × 15.75 design by introducing

targeted deletions to reduce the initially imposed double-helical twist density to 10.5 bp/turn.

This was implemented by removing a single bp from all helices in a cross section of the structure

every 64 bp. TEM imaging revealed that global twisting was reduced; however a significant

amount of global twisting still was evident. This was surprising, as 10.5 bp/turn was previously

found to result in no global twist for honeycomb-lattice designs.13 Next we sought to overwind

the double helices past 10.5 bp/turn to eliminate the residual global twisting. We constructed

two more versions of the 3 × 14 × 15.75 design, with initially imposed double-helical twist

densities of 10.44 and 10.39 bp/turn, respectively. The former was achieved by removing four
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bp evenly spaced along the 192-bp length ((192 − 4)/(24 × 0.75) = 10.44), while the latter was

achieved by removing five bp evenly spaced along the 192-bp length ((192 − 5)/(24 × 0.75) =

10.39).

To make visualization of global twisting more obvious, we programmed the structures to form

ribbons consisting of head-to-tail multimers (Figure S2). We folded the structures, gel-purified

monomeric particles, and then added staple strands that bridge the front and back ends such

that homomultimers should form. We verified that the 10.5 bp/turn design retains a right-

handed global twist by imaging ribbons with the TEM goniometer turned to +40° and then

again with the TEM goniometer turned to −40° (i.e., counterclockwise rotation) and observing

the nodes of the ribbons moving upward.13 No systematic global twist could be discerned with

the 10.44 bp/turn and 10.39 bp/turn designs. Why the local double-helical twist density has to

be slightly overwound to eliminate global twist in square-lattice designs is unclear. One

speculative possibility is that global twisting stiffness may have two components, perhaps

related to the presence of crossover junctions: a soft mode for small-amplitude twists and a

hard mode for larger-amplitude twists. In this model, when the average double-helical twist

density is 10.5 bp/turn, the sum of right-handed global twisting over the slightly underwound

segments, mainly absorbed by the soft mode, is not fully compensated by the left-handed global

twisting of the highly overwound segments, which saturate the soft mode and enter the hard

mode. An analogous model has been discussed for two-component stretching of dsDNA.16

To further reveal the 3D conformation of a square-lattice-based design, we investigated the

eight-layer DNA-origami structure using cryo-EM imaging in which the structure might be

better preserved in native conformation during quick freezing. We observed interesting internal

structure that we can account for as described below. In our default design strategy, some staple

breaks must be implemented between crossovers 8 bp apart. For the two-layer and three-layer

structures, very few such breaks need to be incorporated. However, for the six-layer design,

many such breaks must be used. We observed significantly lower yield for these structures.

Introducing these breaks may be destabilizing for the structure. Alternatively, simply having

a large number of layers with our default crossover pattern may be destabilizing, irrespective

of the position of the breaks.

For the 8 × 8 design, we avoided the implementation of such staple breaks by omitting many

crossovers in the core of the block (Figure 3b). For this design, we observed a high yield of

well-folded structures. These results suggest that omitting crossovers produces more relaxed

structures that are easier to realize or else that the omission of staple breaks positioned between

crossovers 8 bp apart could improve folding quality as well. Future systematic studies will be

required to determine the relative importance of these staple breaks toward affecting folding

efficiency.

The omission of crossovers we implemented leaves behind an uneven distribution of the

remaining crossovers in the 8 × 8 square lattice (Figure 3c). We define the z-axis as the helical

axis, and the other two axes as x and y, respectively. In our design, many helices that are adjacent

in the x-direction do not share any crossovers; thus electrostatic repulsion will cause them to

bow away from each other. Consistent with our design, the cryo-EM images reveal that there

are three distinguishable populations of particle views: (1) Particle views corresponding to the

xz-projection of the 8 × 8 square lattice (Figure 3d). In the averaged cryo-EM image, we can

clearly see some larger spaces between two neighboring slices of DNA helices at the positions

with a low number of crossovers summed along the y-axis (low numbers indicated by red

numerals). (2) Particles corresponding to the yz-projection of the 8 × 8 square lattice (Figure

3e). Due to the even distribution of crossovers between helices that are adjacent in the y-

direction, the spaces between two neighboring slices of helices appear uniform at every

position. (3) Particle views corresponding to the xy-projection of the 8 × 8 square lattice (Figure
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3f). This image clearly shows a 90° angle between the rows of helices arrayed along the x- and

y-axes. However, only a small number of 8 × 8 structures could be found in this orientation;

thus we could not generate accurate averaged images for this class of particle views. On the

basis of these cryo-EM images, we estimated the effective diameter of the double helix in the

structures as the width of the cuboids divided by the number of helix layers, which gives a

result of 2.6 nm (±0.1 nm SD) per helix. Assuming an unhydrated helical diameter of 2.0 nm

(although the hydrodynamic helical diameter17 has been estimated as 2.2 to 2.6 nm), this

observation suggests the presence of interhelical gaps produced by electrostatic repulsion on

the order of 0.6 nm, smaller than the 1.0 nm gap size estimated for Rothemund’s flat 2D origami

and larger than the one observed in the 3D origami packed on the honeycomb lattice. This is

possibly due to the longer distances between the crossover points along a pair of adjacent

helices, i.e., three turns in the square-lattice design and two turns in the honeycomb-lattice

design. Apparent differences in effective helix diameter between architectures may originate

in part from staining artifacts (e.g., cavities where large amounts of positively charged stain

accumulate, or flattening).13 Here the cryo-EM imaging should better resemble the native

parameters.

Discussion and Conclusion

In summary, we have achieved the design and construction of multilayer 3D DNA

nanostructures using the scaffolded-DNA-origami strategy with DNA helices packed on a

square-lattice geometry. The new design parameters learned here provide us knowledge for

building a more diverse set of 3D nanostructures. We expect that the square-lattice 3D objects

should be more stable if cross-sectional area or volume is a constraint, since material density

is higher. One might also anticipate that square-lattice structures should be more resistant to

compression. Although further studies are needed to better understand their mechanical

properties at a single-molecule level, we believe the multilayer structures developed here may

find great potential in controlling the precise orientation of guest macromolecules by carving

geometrically defined cavities across the layers. For example, arrays of microscopic features

comprising different proteins are extremely important for proteomics and bioagent screening.

Deposition of proteins onto electrodes has also been used to achieve efficient electron transfer

from protein to the electrode for detection, energy, and environmental applications (e.g.,

electron transfer plays a pivotal role in biological functions essential to life, such as

photosynthesis, respiration, and metabolic pathways; use of electroactive enzymes requires

good contact of the enzyme with the electrode surface18). Conventional patterning techniques

such as microcontact printing, spot arraying, or dip-pen nanolithography19 lack precise control

of the protein orientation on and the distance from the surface. As a result, ligand-binding sites

presented by the immobilized proteins can face up, down, or parallel to the surface such that

only a small percentage of the protein molecules are functional. We believe our multilayer-

square-lattice DNA origami nanostructures can be used to direct the organization of protein

nanoarrays with precise control of the protein orientation, height from surface, local

environment, and two-dimensional addressable position. Given the fact that there has been

considerable progress in DNA-directed self-assembly of other materials, it is foreseeable that

programmable 3D nanoassemblies may soon realize their great potential as promising

biomimetic materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Design of multilayer three-dimensional DNA origami on a square lattice. (a) Helical DNA

model of the 3D origami square-lattice structure. The scaffold strand is in gray and the staple

strands are in three shades of blue. This model is equivalent to the cylinder model shown on

the right. Each cylindrical rod represents one DNA double helix. The numbers labeled at the

helical ends indicate the order of the scaffold-strand segments that thread through the helices.

(b) Layout and connectivity of the scaffold strand (gray) and the staple strands (colored), in an

unfolded two-dimensional scheme of the target shape. Phosphate linkages that form crossovers

between adjacent helices are shown as curved lines. The positions of the crossover points of

the staple strands are labeled from i to iv, which are spaced apart at 8-bp intervals. (c) Three-

dimensional cylinder model of the folded target shape. The square-lattice arrangement of

parallel helices is revealed in cross-sectional slices (i–iv) that are parallel to the xy-plane spaced

at 8-bp intervals and repeating every 32 bp. Staple crossovers are shown as white lines linking

two adjacent helices at each cross section.
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Figure 2.

3D DNA origami solid blocks. (a) Two-layer structure. (b) Three-layer structure. (c) Six-layer

structure. (d) Eight-layer structure. The 3D perspective cylinder view and the projections of

the top view and the side view are shown. Each cylinder represents a DNA double helix. For

the 8-layer block in d, the end-view projection is shown. On the right are the representative

transmission electron microscope (TEM) micrographs of negatively stained particles observed.

The scale bars are 20 nm. For imaging, samples were adsorbed for 30 s onto glow-discharged

grids (carbon-coated grid, 400 mesh, Ted Pella) and stained with 0.7% uranyl formate. Excess

stain was wicked away by touching with a piece of filter paper, then dried at room temperature.
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The samples were imaged with a Philips CM200 microscope, operated at 200 kV in the bright

field mode.
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Figure 3.

Cryo-EM images of the 8 × 8 square lattice. (a) Three-dimensional cylinder model of a

hypothetical 8 × 8 square lattice with all default staple crossovers intact. Cross-sectional slices

i to iv (parallel to the xy-plane, spaced at 8-bp intervals) reveal that each slice retains 28

crossovers (short line in red), evenly distributed across the xy-plane. The crossovers in i and

iii sectional slices are parallel to the xz-plane, while the crossovers in ii and iv sectional slices

are parallel to the yz-plane. (b) 3D cylinder model of an 8 × 8 square lattice in which crossovers

have been systematically omitted from i and iii sectional slices. This design decreases the

density of crossovers parallel to the xz-plane. (c) Diagram illustrating the distribution of

crossovers in the 8 × 8 square lattice along xy-, xz-, and yz-projections. As a result of the
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omissions of crossovers parallel to the xz-plane, the numbers of crossovers along lines parallel

to the y-axis are significantly smaller at certain positions (number of crossovers indicated in

red). (d) Left to right: predicted model of 8 × 8 square lattice in xz-projection; cryo-EM image

of a single particle; and averaged image of 45 particles showing the side view corresponding

to the xz-projection. (e) Left to right: predicted model of 8 × 8 square lattice in yz-projection;

cryo-EM image of a single particle; and averaged image of 70 particles showing the side view

coresponding to the yz-projection. (f) Cryo-EM image of a particle showing the end view

corresponding to the xy-projection. (g) Cross-section analysis of the images gives the width of

the construct from which the periodicity of the helices in the structure can be obtained. (h)

Narrow distribution of helical widths centered at 2.6 nm. Scale bars in d–g: 20 nm.
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