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Abstract: Precise meanings of thermophysical processes taking place in air gaps have decisive
importance in composite cladding structure systems’ calculation and modeling. The climatic load
conditions in Kazakhstan can significantly affect the microclimate of premises in general. In this work,
a review study is carried out to obtain the relevant scientific literature on enclosing structures with air
gaps under various climatic conditions. The review mainly covers research institutes from Sweden,
Norway, France, Saudi Arabia, Russia, and China. On the issue of the air gap parameter’s influence
on thermophysical processes, 16 papers were analyzed, and on the issue of air infiltration, 12 papers
were analyzed. However, the review shows a lack of research in this area under various climatic
conditions. At the same time, experience has shown that the principle of multilayer protection from
climatic influences creates a favorable microclimate in buildings, but due to a possible temperature
drop, wall structures made of composite building materials can be quite favorable under some
conditions, and under others they may be less favorable. Therefore, working out a new energy-saving
design with air gaps for climatic conditions with large temperature fluctuations during summer and
winter is an urgent task.

Keywords: heat-insulating material; air gap and channel; thermophysical processes; air infiltration;
cladding; composite building materials

1. Introduction

Intensive growth in the consumption of electricity and power resources over the
past decades has resulted in difficulties arising from environmental contamination and
misallocation of power resources, as well as an increase in the cost of maintaining energy
complex facilities [1–4]. This is especially reflected in servicing residential buildings for
the comfortable residence of the population. According to evidence [5], buildings expend
about 30% of all finite energy worldwide; in the European Union, this figure is greater than
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40% of the common energy expendable [6]. The reason for this is that more than 80% of the
energy goes into heating buildings [7]. Against outside environmental conditions, there is
a need to specify temperature regimes suitable for people to reside in buildings.

In Kazakhstan, according to the government technical standard SN RK 2.04-04-2011,
“Government standards in construction, architecture, urban planning”, the estimated air
temperature in residential building premises during a cold spell is about 20 ◦C in living
rooms at a relative air moisture of 30–45%, and in summer these figures are 22 ◦C and
50–60%, respectively [8]. Given the peculiarity of the climate of Kazakhstan, which is
characterized by its continentality and includes a large fluctuation between winter and
summer temperatures (Figures 1 and 2) [9,10], maintaining a favorable climate in the
building premise requires special care, especially given that the heat loss occurring in
residential buildings is up to 40% through facing walls, up to 30% through venting systems,
up to 25% through doors and windows, up to 20% through roofs, and up to 6% through
basements [11]. The development of power-efficient wall claddings is still a hot topic.
Taking into account the insulation of walls and roofs can generally save up to 77% of the
energy used for heating [12,13].
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To solve heat loss problems, enclosing structures with air spaces or ventilating façade
structures (a similar name is often found in most sources) have recently been widely used.
In Kazakhstani territory, the system of “venting façades” appeared at the end of the 1990s
and immediately received recognition and good reviews from customers and contractors.

Venting façades are used to improve the thermotechnical and aesthetic characteristics
of building façades. The design is presented in the form of a system of holding brackets,
lathing profiles in two directions, a layer of insulation, and facing material. The latter
can be natural stone, ceramic granite, metal panel, etc. Glass wool, stone wool, extruded
polystyrene foam, or other materials are used in the insulation.

Air space is a characteristic element of venting façades. Due to the pressure difference,
air circulates between the layers, ensuring the removal of moisture and condensate. In
addition, the air space acts as a temperature buffer, reduces heat loss, and promotes air
permeability through the enclosing structure. Systems with air gaps use noncombustible
and nonflammable materials to meet fire safety requirements. The requirements for me-
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chanical properties and thermal insulation density reduce the possibility of turbulent flows
that deform the insulant fiber and prevent shrinkage.
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Air spaces may be applied for thermal insulation of walls, since air in an enclosed
space is an imperfect heat conductor [14], and condensed construction materials hinder heat
transfer by radiation, conduction, and convection. Heat transfer at the interface between
air and the rigid layers of a wall structure is a more complicated phenomenon than heat
transfer within a rigid layer [15]. Given these circumstances, after multiple investigations,
the United States Department of Energy recommended using air gaps in building structures
to increase their energy efficiency [16].

A traditional multilayer cladding is shown in Figure 3. The standard [17] specifies
very generally accepted characteristics of thermophysical processes, but does not take into
account many geometric and physical indicators of structures. As a disadvantage, it can
be noted that the norm does not sufficiently cover indicators such as the nature of the gap
(closed and/or venting) and the geometric indicator of the air gaps and channels, including
the width, height, and location of the channels themselves (horizontal or vertical).

The study of thermophysical processes occurring in a multilayer enclosure with the
subsequent elaboration of a new energy-saving design for Kazakhstani climate will solve a
number of energy-saving issues that are covered by the norms and laws of the Republic of
Kazakhstan: Energy Efficiency and Energy Saving Law; Environmental Code; Requirement
for security of buildings and structures, building materials and products; Requirement for
energy efficiency of buildings, structures and their elements which are enclosing structures’
part; Law on architectural, urban planning and construction activities. In this regard, the
following research questions are posed before the work:

a. To develop the cladding’s multilayer wall structure, taking into account the availabil-
ity of air gaps, as well as to study the influence of the venting layer parameter on
thermophysical processes taking place in the multilayer structure.

b. To research the thermophysical processes in the developed multilayer energy-saving
structure of the building cladding, taking into account air permeability.

To reply to these research matters, a systemic survey of the research literature was
conducted using various library databases, and according to historians, the first hinged
façades appeared in medieval Norway several centuries ago [18–20].
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Figure 3. Traditional multilayer structure of a cladding with an air gap.

2. Methodology

In review studies on thermophysical processes in venting and closed air gaps of
a multilayer enclosing structure, a literature search technique developed on the basis
of [21–23] was determined, where five stages of searching for relevant literature were used
(Table 1):

Table 1. Stage names.

No. Stage Number Stage Name

1 1st stage Specifying the research matter
2 2nd stage Specifying appropriate investigations
3 3rd stage Investigate choice
4 4th stage Data graph
5 5th stage Correlating, generalizing, and reporting the results

A basic algorithm for conducting a literature review is shown in Figure 4.
The search for literature research was performed using such databases as Web of

Science, Scopus, ScienceDirect, Google Scholar, Search Crossref, Index Copernicus, World-
Cat, CyberLeninka, E.lanbook, and Elibrary. After the list of required articles was found
according to Figure 4, they were included in the literature section. Thus, as a result of the
search, a list of review literature was made from 85 relevant articles, of which 57 were
excluded for the following reasons, for example:

X The articles consider a wet-type façade without an air gap [24–26];
X The articles deal with the issue of thermal modernization and/or venting façades

with heat-retaining phase transition materials [27–29];
X The articles consider only a venting façade; a closed gap is not shown [30–32];
X The articles deal with the issue of enclosing structures for only one climatic zone, i.e.,

hot or cold [33–36].

Since the climate of the territory has a high thermal gradient between the summer and
winter seasons, an additional literature search was carried out regarding the research issues
indicated in Section 1.
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3. Literature Review Results
3.1. Review of Studies Carried Out in the Field of Claddings, Taking into Account the Influence of
the Venting Layer Parameter on Thermophysical Processes

In the studies [37], full-scale field experimental tests and tests of ventilation drying
processes on the wall structure model [38,39] were carried out appreciating the gap’s air
change rate. As a result of comparing studies, data were obtained that were consistent with
each other. Measurements also showed that a 40 mm wide gap provides 20–25 times higher
drying potential compared to a 5 mm wide gap. In [40], the effect of wind on air pressure
in the air gap was considered. Field experiments, laboratory experiments, and calculations
were carried out. The findings showed that the geometry of the details and the air cavity
near its openings strongly influence the pressure differentials in the air cavity and that the
computational techniques are less relevant for complicated cavity geometries. The paper
found that in cold climates, it would be enough to apply an initial wind speed of 10 m/s at
a height of 10 m over the earth for computations covering the heating season.

The study [41] adduces an imitation of an innovative venting enclosing wall structure
applying exhaust indoor air. The structure’s computational model was developed, which
was confirmed by experimental tests. The material influence in the cladding’s venting
structure and the air flow effect in the cavity on the external structure’s thermal properties
were also investigated. The findings showed that the venting cladding design possesses
superior energy-saving indicators compared to the conventional one. The work [42] de-
scribes the possibility of adding one more air chamber, parallel to the current one, both
connected with the lower part of the façade, with an installation at the top to control the
air flow in the chambers in relation to the temperature between the building’s outside and
inside. For this purpose, a peer study of the energy performance, as well as the thermal
and hydrodynamic properties of the offered two-chamber system, the customary venting
façade system with a closed connection, was carried out in different seasons. The findings
showed that the offered system increases efficiency by 38% compared to a customary
venting façade with a closed seam. However, the difference in the geometric dimensions
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of the gap itself was not taken into account in this work. The paper [43] experimentally
investigated the thermal performance of venting façades under standard Mediterranean
summer meteorological conditions by applying a high-scale test building. The results
of the experiments showed that the heat flow reduction strongly hinges on the external
rain screen finishing, the availability of ventilation grills and open seams, as well as the
cladding’s air gap thickness. However, the study’s aim [44] was to provide an idea of the
advantages of multilayer thermal insulation in buildings arranged in aggregate with two
air spaces. A numerical technique was developed to specify the effect of air gap thickness
on the total thermal resistance of a multilayer wall. A total of nine different configurations
were chosen as the initial state, where the theoretical thermal resistances were computed
and compared, resulting in an empirical polynomial equation that computes the total wall
complex thermal resistance, based on two air space thickness values. A study that reported
a reduction in heat losses due to the effective selection of an air gap’s parameters, thermal
insulation, was performed in Malaysia [45]. It was demonstrated that heat losses reduced
by 24% and 26% when a 2 cm air gap and 3–5 cm thermal insulation were used in place
of an enclosure excluding air gap or thermal insulation. The manuscript [46] examined
the efficiency of applying façades involving closed air gaps in a sweltering climate. Three
enclosure types were simulated—excluding thermal insulation, applying an air gap as
thermal insulation, and including a foam insulating layer. It was deduced that closed gaps
in sweltering climates are less impactful than in cold ones. The manuscript [47] is dedicated
to the force of closed air gaps in double walls on the enclosure’s heat-insulating properties.
Six double-wall patterns involving 1–6 cm thick gaps were tentatively investigated. It
was deduced that an increase in gap thickness results in an asymptotic increase in the
enclosure’s thermal resistance; the effective gap thickness is 6 cm, which reduces heat losses
by 19.45% against a 1 cm gap. In the study [48], the authors described the advantages of
a customary venting façade system, where it was noted that the availability of a venting
air gap can significantly improve the thermal insulation layer’s moisture state. The con-
densation zone shifts into the outer heat-insulating layer, which borders the venting air
gap. The placement of the thermal insulation on the outside increases the wall array’s heat
storage capacity. In [49], two types of façades were considered: hinged venting façades
and wet façades. It was shown that hinged façades are mounted faster than “wet” ones,
and also that their soundproofing properties are much higher than those of wet façades
and the initial readings are increased by several times. A comparison was also made on
the maintenance of façades and on their protection from moisture. It was shown that
hinged venting façades are superior to “wet” ones in frost resistance, sound insulation, and
thermal insulation due to the absence of aqueous solutions in the composition and thicker
layers of insulants, which is very important for areas with a cold, humid climate. The
article [50] considers the features of applying only venting double skin façades to provide
better thermal and visual comfort conditions, which were proposed as flexible building
systems to improve the performance of enclosing structures. The investigation carried out
by the authors of the manuscript [51] included design approaches and pilot research on
the thermal insulation characteristics of closed gaps. Constructive solutions for ceilings
and coatings of external walls, insulated with screen thermal insulation, were presented.
The outcomes of the calculations and pilot research showed that applying screen thermal
insulation will essentially increase the heat transfer resistance and energy efficiency of
enclosing structures in buildings, resulting in a relatively low cost of construction and
installation. In [52], a comparative analysis of façade systems was carried out. As an
example, three façade options were chosen: a traditional façade, a plaster insulated façade,
and a venting façade. As a result of the analysis, a venting standard façade (Figure 3) was
presented as the most effective façade.

In general, it can be seen that there are practically no studies on thermophysical
processes occurring in venting air gaps that take into account the presence of an additional
closed gap in a multilayer wall structure (combined design). The impact of air gap width on
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the thermophysical processes occurring in the multilayer combined structure of a cladding
also requires additional research.

3.2. Review of Studies Carried Out in the Field of the Process of Moving Air through a Multilayer
Wall Structure of a Cladding

In [53], the authors, based on the model of a porous medium and the method of
numerical simulation, studied the internal flow of the environment in the outer wall of
building implements and built a computational model of water microflow from cracks. The
impact of wind pressure, height, and local structure on the crack flow was analyzed. The
findings showed that initial water velocity is associated with wind pressure and building
height. The study [54] presents an air penetration prediction model with additional holes.
The enclosing structure was divided into impermeable and permeable parts, and it was
supposed that the air leakage paths were evenly and continually arranged in the permeable
shell. A linear arrangement of pressure across the building façade was supposed, and the
air flow rate was unified in the horizontal and vertical planes to theoretically forecast the
air penetration rate. The realizability of the offered model was examined by collating the
air penetration rates modeled by this model with those specified by applying the trace gas
attenuation technique in a pressurized building. The initial test findings showed that this
model is mathematically forceful and admissive of simulating building air infiltration in a
full range of scenarios. A sound compromise was identified between the examined and
simulated findings. This study can ensure primary theoretical support for the analysis of the
effectiveness of air tightness in buildings. In the manuscript [55], based on the findings of
computations and the likelihood for each scenario, statistical indicators of the contemplated
air penetration rates were defined. The findings showed that the average yearly penetration
rate was 0.26 h−1 with a typical deviation of 0.11 h−1. In addition, the penetration rate was
positively related to wind speed, negatively related to dwelling capacity, and insensitive
to floor level. When the location of neighboring buildings ensured a free way for wind,
the penetration rate was larger. In [56], the authors proposed a simplified method for
predicting the rate of penetration of winter air into buildings of large areas caused by joint
wind forces and buoyancy. This technique relies on a theoretical indoor space model and
outdoor CFD wind modeling. Against the full-scale CFD model inside and outside, the
simplified method forecasts the air penetration rate with a mean absolute deviation of 5.4%
(maximum: 11.0%). The authors of [57] consider the issue of defining the air flow via cracks
in enclosing structures by applying computational methods. Based on the investigation of
the data received within the exterior check, it was detected that many apartment buildings
have considerable physical deterioration, which is mainly manifested by the presence of
cracks. A special focus was placed on the assumptions adopted for the design scheme.
Based on continuity and dynamics equations, a mathematical model was received that
allowed for forecasting air flow via a crack. In [58], numerical modeling was carried out to
determine the characteristics of the flow inside the air gap of the hinged façade system and
longitudinal filtration through the heat-insulating layer caused by wind effects. According
to the simulation results, it was found that the air stream velocity in the hinged façade
system’s air gap is on average 1–3 m/s, and filtration with an indicator of 0.001–0.003 m/s
was established in the heat-insulating layer. As shown by the numerical study [59], the
presence of even such a low rate in the insulant layer has a significant impact on the thermal
properties enclosing structures. In [60], the author studied the process of heat transfer
through a porous external enclosing structure during infiltration and exfiltration. To define
the level of thermal shutdown of enclosures with air permeability, the author took into
account not only the coefficient of thermal conductivity but also the porosity of the material.
The calculations performed taking into account the porosity of the material showed that
the temperature values obtained for the inner enclosure surface and its resistance to heat
transfer correlate much better with the experimental values and are not overestimated.
In the study performed by the authors of the work [61], an assessment was made of the
heat storage capacity of an energy-active structure of the external wall, which has a system
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of passive use of solar energy, considering the conditional outside air temperature. The
interrelation between the heat and mass transfer of an energy-active wall with the heating
system and natural ventilation of the building has been shown; according to the calculation
model, the temperature value of the heated air leaving the venting air gap in a certain
amount allowed for approximately estimating the efficiency of heat recovery brought about
by the accumulating structural layer [62–72].

The infiltration process is entailed by the difference in air pressure between the shell
element’s outer and inner surfaces. Wind later strengthens penetration, and high-rise
buildings possess a stack effect that draws air into the lower part of the building and forces
it up [62,72–77].

To decrease intermediate condensation and aeration, two membrane layers must be
applied along the outer shell of the LSF building [72–79]. The first barrier, known popularly
as the vapor seal, must be arranged on the warm insulation layer side. This keeps moisture
from the air from getting inside the LSF elements and keeps condensation from forming on
colder, usually steel, elements. The windproof membrane must be arranged on the cold
side and must be vapor-permeable to enable moisture to come out of the LSF elements [80].
The most prevalent air leakages discovered in field observations in the literature were at
the joints between an external wall and a floor or ceiling, an external wall and a door or
window, and an external wall and openings in barrier films [80]. Sealing strips must also be
applied in combination with the aforementioned membranes to improve overall tightness.

As a result of the review, it can be seen that studies of air movement through enclosing
structures are scarce and require additional research, as well as the development of a
new energy-saving multilayer cladding, taking into account air infiltration in different
climatic environments.

4. Discussion

The literature review showed that the literature aimed at studying façade structures
has a rich archive. We would especially like to note claddings with a “wet” façade. However,
since this work was aimed at studying claddings with air gaps, and some sources considered
hinged venting façade structures, the corresponding studies on the influence of the venting
gap parameter on the thermophysical processes occurring in the structure amounted to
16 works, and the number of studies related to the air transfer through the enclosing
structures amounted to 12 works.

Many of these manuscripts use a single climatic condition (hot or cold) of the gap
for computations or simulations, excluding studies with comprehensive citations and
studies that point out whether they correspond to real conditions. In any case, these
manuscripts demonstrate the need for further study of thermophysical processes in air
gaps and air infiltration.

Moreover, the appropriate literature presented in this review comes from a fairly low
number of researchers from several research institutes in Sweden, Norway, France, Saudi
Arabia, Russia, and China. In practice, only 7 experimental studies were identified on the
impact of air gap parameter on thermophysical processes at the appropriate scales and
climate, 7 studies related to process modeling, and 2 studies on analysis and review. In the
air infiltration direction, a total of 12 papers were identified, of which 8 papers were related
to modeling and 4 papers were based on experimental studies. It should be noted that
some investigations lack faithful pictures of study parameters, such as an exact structure
design or climate data for the study period, making it difficult to reproduce or validate
the findings. The investigations are also too diverse to directly compare the findings with
each other.

It was also found that the wider international literature touches these issues to a
greater or lesser degree, depicting investigations that cover the environmental conditions of
cold or hot climates separately, which may not fully appreciate the merits of the proposed
design solutions for venting enclosing structures in the climatic conditions of the Republic
of Kazakhstan, where the temperature load difference is quite large (Figures 1 and 2) [9,10].
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Given these circumstances, for a complete understanding, it is necessary to carry out
computations according to [17] in diverse weather conditions, for example, at the absolute
minimum temperature of the outside air, at the absolute maximum temperature of the
outside air, at the medium temperature of the coldest five days with 0.92 occurrence, and at
the medium April temperature [81,82], which is the authors’ initial research in this direction.
We would also like to note that when reviewing the literature of local scientific research
institutes in this area, relevant works were not found.

5. Conclusions

This investigation revealed that the volume of research on thermophysical processes
in air gaps in venting building façade systems, as well as air transfer through venting
enclosing structures, is scarce. There is a universal lack of comparable investigations and
quantitative findings. Research is limited by the fact that studies on venting façade systems
for cold climates are carried out mainly in Norway and Sweden, and for hot climates mainly
in South Asia, and regions with large temperature differences remain largely unexplored.

The consequence of the lack of research is that, at present, there is no reliable infor-
mation on the ongoing thermophysical processes in the gaps and the air transfer through
claddings in different climatic conditions, taking into account the temperature difference.
Experience shows that the principle of multilayer protection against climatic influences
creates a favorable microclimate in buildings, but due to the possible temperature differ-
ence, wall structures may be favorable in some conditions, while in others, they may not be
effective enough. At present, it is hard to forecast how designs can be improved to handle
these problems, as climatic loads in air spaces have not been well investigated.

In this connection, the following work must be carried out taking into account the
simulation in the software package and confirm the obtained simulation results with
the condition of experimental verification of the data, where the collection of sensor data
should be carried out from fragments of the developed wall structure (experimental models)
located in different climatic zones for a sufficient period of time to obtain the full scope of
information. The relationship between the outside climate - for example, as described in
the climate data in the simulations- and the climatic conditions of the air gaps needs to be
additionally explored. The sensor data can be compared with climate data to appreciate
the correlation between the outside climate and the cavity microclimate and to define
required corrections when applying climate data to model venting and closed air gap
conditions. Such modeling is necessary for a complete assessment of the processes occurring
in multilayer enclosing structures involving air gaps or channels in order to create a
favorable microclimate in buildings, including long-term wear of the structure itself.
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