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The four-flux model is a method to solve light radiative transfer problems in planar, possibly multilayer structures. 

The light fluxes are modeled as two collimated and two diffuse beams propagating forwards and backwards 

perpendicularly to the layer stack. In the present contribution, we develop a four-flux model relying on a matrix 

formalism to determine the reflectance and transmittance factors of stacks of components by knowing those of 

each individual component. This model is also extended to generate the bidirectional scattering distribution 

function (BSDF) of the stack by considering an incoming collimated flux in any direction, and by taking into account 

the directionality of the diffuse fluxes exiting from the material at the border components of the stack. The model is 

applied to opaque Lambertian backgrounds with flat or rough interface, for which analytical expressions of the 

BSDF are obtained. © 2015 Optical Society of America 

OCIS codes: (290.4210) Multiple scattering; (290.1483) BSDF, BRDF and BTDF; (230.4170) Multilayer; (000.3860) Mathematical methods in 
physics.  
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1. Introduction 
Predicting the visual appearance of objects, by carrying out an 

acceptable computation effort, is often a challenge because of the 

variety of materials and surface finishes, and the complexity of the 

multiple optical phenomena occurring within the material layers. 

Accurate prediction is however crucial for the digital design of objects. 

It requires modeling the multiple reflections and scattering of light at 

the interfaces and within the turbid media composing the material. A 

radiometric approach consists in writing the balance for the absorbed 

and scattered fluxes by introducing the properties of single scattering. 

In the general tridimensional case, the multiple scattering is mostly 

solved by Monte Carlo methods where each individual photon event is 

described with probabilities. For specific material structures, especially 

stacks of planar layers, one can solve the radiative transfer equation 

(RTE) [1]. This integro-differential equation takes into account both 

the spatial position and the orientations of the incident and scattered 

fluxes. However, as it is complex to solve, many resolution techniques 

and approximations have been suggested. One common 

approximation is not to take into account explicitly lateral scattering 

within the material. Therefore, the equation depends only on one 

spatial dimension, namely the depth z within the stack. Regarding the 

angular distribution of light, it can be discretized into N annular solid 

angles. This N-flux model was first proposed by Mudgett and Richards 

[2] in the case of azimuthally isotropic scattering and generalized by 

Stamnes et al. [3] under the so-called discrete ordinate method. N can 

exceed 20 [2] but small N values present the advantage of simple 

expressions for the reflectance and the transmittance factors. For N=2, 

only two hemispherical fluxes with constant radiance propagate 

towards positive and negative z. In that case, the RTE has analytical 

solutions, well known as the Kubelka-Munk formulas [4,5]. This two-

flux model was also extended to determine the diffuse reflectances and 

transmittances of stacks of scattering layers [6]. Whereas the Kubelka-

Munk model is the result of the continuous integration of the RTE, the 

Kubelka 1954 model can be interpreted as the corresponding discrete 

summation. The correspondences between the continuous and 

discrete two-flux approaches have already been discussed [7,8,]. 

However, considering two diffuse fluxes is not possible when the 

incident light is collimated and a part of it becomes diffuse. The four-

flux model with two additional collimated fluxes propagating 

perpendicularly to the planar layers towards positive and negative z 

directions improves the reflectance and transmittance predictions in 

case of collimated illumination. Resolutions of the RTE according to the 

four-flux approach with various boundary conditions were proposed 
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by Beasley et al. [9], Mudgett and Richards [2] and Ishimaru [10]. The 

formulation proposed by Maheu et al. [11,12] became the main 

reference when compared with exact calculations for specific cases 

[13], or after comparisons with Monte Carlo simulations [14]. In their 

formulation, Maheu et al. introduced an average path length parameter 

which can take values from 1 for a collimated flux to 2 for a perfect 

isotropic radiation. They also introduced a forward scattering ratio. 

The determination of these parameters was discussed by several 

authors [15-20]. The four-flux model can be expressed by using a 

matrix formalism as suggested by Rozé et al. in the case of multilayer 

[21]. Recent formulations [22,23] also enable predicting interface 

effects. The four-flux model can be used for various scattering systems 

as illustrated by recent publications [24-27]. However, even if the four-

flux approach is much easier to use than more elaborated models, the 

simplicity of the two-flux approximation is still often preferred. For this 

reason, intermediate models between two-flux and four-flux have also 

been proposed [28-30].  

In the present study, we use the four-flux model without specifically 

focusing on the resolution of the RTE. In Section 2, we adopt a matrix 

formalism to calculate the reflectance and transmittance factors of a 

superposition of optical components (interfaces and propagating 

media). This approach can be seen as an extension of the Kubelka 

model [6] to four fluxes. The main contribution of this study, presented 

in Section 3, consists in adapting the four-flux matrix model in order to 

generate families of bidirectional scattering distribution factors (BSDF) 

by considering an incident collimated flux in any direction and 

directional diffuse fluxes exiting the material. The bidirectional transfer 

matrices are described for the particular cases of highly scattering 

(Lambertian) and of non-scattering (transparent) components in 

Section 4. We consider flat or rough dielectric interfaces in Section 5. 

The complete method is finally presented in Section 6 to determine the 

BSDF in the special cases where a flat or a rough interface is at the top 

of an opaque Lambertian background.  

2. Four-flux matrix model 
The four-flux model considers a parallel planar structure of material 

and therefore reduces the radiative transfer equation to a problem 

with one spatial dimension. It can be presented as a special case of the 

N-flux model [2] where the radiation field for each position in the stack 

of layers is composed of two collimated beams Ic and Jc and two 

isotropic diffuse beams Id and Jd. The fluxes propagate perpendicularly 

to the plane, forwards (Ic and Id) and backwards (Jc and Jd).  

 

 

Fig. 1. Flux transfers between two components represented by thin 

arrows. Bold arrows correspond to fluxes. 

A multilayer material can be described as a succession of interfaces 

and media. Each component of the stack, interface or medium, gives 

rise to flux transfers: front side reflectance r, back side reflectance r’, 
forward transmittance t and backward transmittance t’. They can be 

collimated-to-collimated (label cc), diffuse-to-diffuse (label dd) or 

collimated-to-diffuse (label cd) transfers. Figure 1 represents the flux 

transfers for a stack of two components.  

Let us consider the component labelled k. The fluxes labelled by 

superscripts k and 1k  are related according to the following 

equations where, for sake of writing simplicity, we omit the label k in 

the transfer factors: 
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It is easy to verify that these equations express the relationships shown 

in Figure 1.  

2.1. Matrix formulation 

The system of equations (1) can be presented under two possible 

matrix equations. The first matrix equation, used to solve the RTE [31] 

in a multi-angle approach, is shown in Appendix A. We consider here 

the second matrix equation, which focuses on the transfer nature 

(collimated-to-collimated, diffuse-to-diffuse and collimated-to-diffuse) 

and is therefore specific to the four-flux approach: 
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The matrix on the left-hand side can be inverted if 0cc ddt t  . By left-

multiplying both member of Eq. (2) with the inverse of the left-most 

matrix, we obtain the following equation exhibiting the transfer matrix 

of the considered component, which is written for convenience under 

a 2×2 block form: 
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where each block is a 2×2 matrix. The two blocks on the diagonal, 

corresponding to collimated-to-collimated transfers (xx = cc) and 

diffuse-to-diffuse transfers (xx=dd), are  
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and the left-bottom block, corresponding to collimated-to-diffuse 

transfers (cd), is 
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From a given transfer matrix, the reflectances and transmittances of 

the component (or stack of components) can be obtained provided 

 11 0cc , M  and  11 0dd , M . Let us express for example to front-

side reflectance and the front-to-back transmittance for the different 

tupes of transfers. For collimated-to-collimated (xx=cc) and diffuse-to-

diffuse (xx=dd) transfers, they are given by: 
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and, for collimated-to-diffuse transfers, they are given by  
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2.2. Matrix multiplication 

In order to obtain the transfer matrix representing a stack of components, the components’ individual transfer matrices are 
multiplied by respecting the stacking order of the components. With 

two components characterized by matrices M1 and M2, from front to 

back, the transfer matrix of the two components together is: 
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   

M M 0
M M

M M M M M M
 (8) 

Applying the 2x2 matrix multiplication 1 2xx xxM M  and the formulas (6) 

yields, for collimated-to-collimated (xx=cc) or diffuse-to-diffuse (xx=dd) 

transfers, the global transmittances and reflectances of the two 

component stack: 
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Applying the 2x2 matrix operation 1 2 1 2cd cc dd cdM M M M  and the 

formulas (7) yields, for collimated-to-diffuse transfers, 
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If either collimated-only or diffuse-only fluxes are considered, the 

model becomes the two-flux model described by its corresponding 2x2 

matrices (either Mcc or Mdd). Similar relations as equations (9) were 

derived by Stokes [32] in order to predict the specular reflectances and 

regular transmittances of stacks of glass plates, and later by Kubelka 

[6] to predict the diffuse reflectances and transmittances of stacks of 

strongly scattering layers. 

Given the complex expressions of the collimated-to-diffuse reflectance 

and transmittance (Eqs. (10) and (11)), even with two components 

only, the matrix formalism is much more convenient. However, the 

matrix computation is valid only when the following condition is 

satisfied for each component:  

 0
cci ddi

t t    (12) 

For example with an opaque component, this condition cannot be 

satisfied. In these cases, the matrix calculations are first performed 

with the literal expressions of these transmittances. They are then set 

to zero at the very final step of the calculation. 

 

 

3. Extension of the four-flux matrix model to express 
the BSDF of component stacks 
In its original expression [11], the four-flux model assumes collimated 

and isotropic hemispherical diffuse fluxes propagating perpendicular 

to the stack of layers. In order to define BSDF models from the four-flux 

matrix method presented in Section 2, some adaptations are needed. 

The BSDF expresses the bidirectional reflectance and transmittance 

distribution functions (BRDF and BTDF), for which the incident 

illumination is assumed to be a unique collimated flux in any direction i 

of the upper hemisphere, not only at the normal incidence. Moreover, 

the diffuse fluxes exiting the material from the border components of 

the stack are not assumed necessarily Lambertian and can therefore 

depend on the output direction o of the upper hemisphere for BRDF 

and of the lower hemisphere for BTDF. 

The radiometric definitions and relations used in this section are 

detailed in the literature, for example in Refs [33,34]. 

3.1. BSDF configuration 

According to the definition of the BSDF, the incident illumination is 

assumed to be a collimated flux in the incident direction i. There is no 

incident diffuse flux or upward incident flux. In the case of the system 

represented in Figure 1, this means that 0 2 2 0d c dI J J   . The 

scattered light is captured in every direction o. Figure 2 explicits the 

notations.  

 

Fig. 2: Useful notations for defining the BSDF. 

3.2. Collimated fluxes related to the incident direction 

The collimated incident beam is defined for a freely chosen orientation 

i within the upper hemisphere. The collimated fluxes after multiple 

reflections and transmissions remain within the incident plane. 

Knowing the different refractive indices, the directions of the 

downward fluxes are defined from the incident direction i and by Snell’s refraction law. The direction of each upward flux is deduced 
from the direction of the corresponding downward flux according to Snell’s reflection law. 
3.3. Directional diffuse output transfers  

In the original four-flux model, the diffuse fluxes are assumed to be 

hemispherical with angle-independent radiance (i.e. Lambertian). In 

our approach, we make an exception for the diffuse fluxes exiting the 

material from the first or from the last component of the stack. 

Therefore, the reflectance and transmittance factors to be chosen 

depend on the position of the component in the stack. Directional light 

that exits the stack of components is diffused according to the BRDF 

and the BTDF of the bordering components. Table 1 defines the 

collimated-to-diffuse and diffuse-to-diffuse transfer factors to be used 

according to the definitions by Nicodemus et al. [33]. For the sake of 

simplicity, we specify vector i only when the incident light is 

collimated, and/or vector o only when light is captured in one 

direction (see Tables 1 and 2). 
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Incident 

direction
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direction
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(BRDF)
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dωo

Zenithal angle θ
Azimuthal angle φ
Elementary solid angle dω



Table 1: Collimated-to-diffuse and diffuse-to-diffuse reflectance 

and transmittance factors of a component according to its 

position in the component stack. The greyed cells are non-useful 

situations according to the assumptions presented in Section 3.1. 

 

 
By knowing the BRDF and the BTDF of a component, we can define its 

reflectance or transmittance factors according to the formulas given by 

Table 2 [33]. For a stack of components, according to Table 1, and after 

the matrix multiplications, one can deduce the BRDF  rf ,i o  and 

BTDF  tf ,i o of the stack: 
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r
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i o
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
i o

i o  (13) 

where the bidirectional reflectance and transmittance factors,  cdr ,i o  

and  cdt ,i o , are given by Eqs (7).  

Moreover, in the case where part of the incident collimated flux 

remains collimated after exiting the border components, the specular 

reflectance  ccr i  and the regular transmittance  cct i , given by 

Eq. (6) with xx cc , have to be added to the BSDF, formally by using 

Dirac delta functions [35]. 

Table 2: Expressions of the different reflectance or transmittance 

factors in function of the BRDF or BTDF f, where 
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In contrast with more elaborated models based on the multiangle 

scattering approach [36], we assume that the diffuse fluxes lose their 

directionality within the stack. In many systems, this limitation has a 

weak influence when at least one component of the stack is sufficiently 

scattering to make the assumption acceptable. But even when it is not 

the case, the directionality of the collimated fluxes is preserved within 

the stack, and the directionality of the diffuse fluxes is conserved at the 

extreme components of the stack. A more restrictive limitation, but 

intrinsic to the four-flux approach, is the fact that the angular spreading 

of the collimated fluxes is not rendered.  

4. Transfer matrices for Lambertian and non-
scattering components 
Among the optical components, the Lambertian scattering as well as 

the non-scattering components are interesting limit cases. Their 

presence in a stack enables important simplifications of the prediction 

method, especially when the border components of the stack are non-

scattering. 

 

Fig. 3: Flux transfers (a) for a Lambertian component, (b) for a non-

scattering component.   

4.1. Lambertian component 

For a Lambertian component, light is uniformly scattered over the 

hemisphere, independently of the orientation of the incident light. It is 

worth noting that it is an ideal case [37]. Consequently, an incident 

collimated light is entirely transformed into diffuse light and 

0cc cct r   (Figure 3a). However, to fulfill the condition (12), we 

artificially define a transmittance 
cc

t , which we will set to zero 

hereafter, and the following matrix Mcc: 

1 01

0 0
cc

cc
t

 
  

 
M    (14) 

The assumption of a Lambertian component implies that the 

reflectance and transmittance factors are identical for a collimated or a 

diffuse incident light flux, and for every output direction o: 
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i

i o i o
  (15) 

Therefore, the transfer matrix for a Lambertian component is 

independent of its position in the stack according to Table 1. Assuming 

0cc ddt t  , the collimated-to-diffuse transfer matrix (Eq. (5)) can be 

expressed as 

 

1 dd

cc dd

cd

dd dd dd dd dd

cc dd
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For example, we can define a perfectly Lambertian rough interface or a 

perfectly Lambertian medium. In the last case, the medium is generally 

considered as symmetrical and: 

 
First  

component 

Intermediary  

component 

Last  

component 

cd
r  

Bidirectional reflectance  

factor  ,
cd

r i o  
Directional-hemispherical reflectance factor  cd

r i  

cd
r  Directional-hemispherical reflectance factor  cd

r i   

dd
r   Bihemispherical reflectance factor 

dd
r  

dd
r  Bihemispherical reflectance factor 

dd
r   

cd
t  Directional-hemispherical transmittance factor  cd

t i  
Bidirectional transmittance  

factor  ,
cd

t i o  

cd
t  

Bidirectional transmittance  

factor  ,
cd

t i o  

Directional-hemispherical 

transmittance factor  cd
t i  

 

dd
t   

Bihemispherical transmittance  

factor 
dd

t  

Hemispherical-directional 

transmittance factor  dd
t o  

dd
t  

Hemispherical-directional 

transmittance factor  dd
t o  

Bihemispherical transmittance  

factor 
dd

t   
 

Reflectance/transmittance factors 
Directionality 

dependency 

Expressions as a function  

of  the BRDF/BTDF  ,f i o  

Bidirectional factor 

, , 
cd cd cd

r t t  
 ,i o   ,f i o  

Directional-hemispherical factor 

, , , 
cd cd cd cd

r r t t   
 i   

2

, cos
o o

f d


  i o  

Hemispherical-directional factor 

, 
dd dd

t t  
 o   

2

, cos
i i

f d


  i o  

Bihemispherical factor 

, , , 
dd dd dd dd

r r t t   
  

2 2

1
, cos cosi i o of d d

 

   
   i o  

c
J
1

c
I
0

d
J
0

d
J
1

d
I
0

d
I
1

dd
r

dd
t

dd
r

dd
t

dd
r

dd
r

dd
t

dd
t cc

t

c
J
0

c
J
1

c
I
0

c
I
1

cc
r

cc
t

cc
r

cc
t

d
J
0

d
J
1

d
I
0

d
I
1

dd
r

dd
t

dd
r

dd
t

 

(a) 

(b) 



 
cd dd cd dd

cd dd cd dd

r r r r

t t t t

   
    

  (17) 

We can check that the superposition of Lambertian components is also 

Lambertian as its transfer matrix verifies the conditions (14) and (15). 

4.2. Non-scattering component 

Without scattering, the collimated fluxes cannot be transferred into 

diffuse fluxes (Figure 3b). Therefore: 

 2 2cd ,
M 0   (18) 

For example, a non-scattering component can be a perfect plane 

interface or a non-scattering medium. In the last case, the light cannot 

be reflected by such a medium 
 0cc cc dd ddr r r r    

 and the 

matrices Mcc and Mdd are then diagonal.  

For  the  special  case  of  a  non-scattering  component,  the  diffuse-to-

diffuse reflectances or transmittances are the integrals of the 

collimated beams in all directions of the upper or lower hemisphere, 

and can then be directly expressed from the corresponding collimated-

to-collimated  transfer factors: 
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where h is r, r’, t or t’. 
It is worth noting that the transfer matrix for the superposition of non-

scattering components verifies Equation (18). The resulting 

component is therefore also non-scattering. The reflectances and 

transmittances can be determined by operating independently with 

the 2x2 transfer matrices Mcc and Mdd. However, the diffuse 

reflectances and transmittances obtained by diffuse-to-diffuse transfer 

matrix multiplication (Eqs. (9) with xx=dd) is a crude approximation 

for non-scattering components. One needs to calculate first the 

collimated-to-collimated reflectances and transmittances (Eqs. (9) 

with xx=cc), and integrating then over the hemisphere (Eq. (19)).  

4.3. Scattering components surrounded by non-scattering 
components 

When several components are superposed, sub-stacks of non-

scattering components are first regrouped and their corresponding 

transfer matrices are determined. The expressions of their diffuse-to-

diffuse transmittance factors depend if they are boundary component 

or not according to Table 1. In the case that the non-scattering sub-

stack is the first component, the hemispherical-directional  ddt o  is: 

     2

dd cc
t t n o o   (20) 

where n is the refractive index ratio between the initial and final media.  

If it is the last component of the stack, the hemispherical-directional 

 ddt o  is: 

    2

dd cc
t n to o    (21) 

The factor 21 n in equation (20), respectively the factor 2
n  in 

equation (21), is related to the conservation of the optical extent and 

takes into account the extension of the light beam towards a less 

refractive medium, respectively the contraction of the light beam 

towards a more refractive medium [34]. 

 

 

Fig. 4: (a) Bidirectional reflectance factor  cdr ,i o  of a non-scattering 

component (index 1) on a scattering component (index 2), (b) 

bidirectional transmittance factor  cdt ,i o  of a scattering component 

(index 1) on a non-scattering component (index 2) 

 

A non-scattering component presents the advantage to preserve the 

bidirectional reflectance factor, respectively transmittance factor, 

when it is the first or the last component. Let us consider a non-

scattering component (index 1) on any scattering component (index 2) 

as represented in Figure 4a. By using equation (11) and the properties 

of the non-scattering component 1 (Eqs (18) and (20)), the resulting 

bidirectional reflectance factor  cdr ,i o can be expressed in terms of 

the one of the component 2,  2 2 2cdr ,i o : 
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where the directions i2 and o2 are related to the directions respectively i and o according to Snell’s refraction law.  
With similar considerations, we can obtain the bidirectional 

transmittance factor for any scattering component (index 1) on a non-

scattering component (index 2) as represented in Figure 4b:  
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where the direction o1 is related to the outgoing direction o according 

to the Snell’s refraction law.  
5. Transfer matrices for flat and rough interfaces 
As the first and the last components mainly influence the BRDF and 

BTDF of a layered material, the scattering responses of these two 

components must be analyzed carefully. These border components are 

most often interfaces. We present the corresponding four-flux matrices 

for a flat or a rough interface between two dielectric media labeled 0 

and 1, with respective refractive indices n0 and n1. The relative 

refractive index of the interface is denoted as 1 0n n n . 

5.1. Flat interface 

A flat interface is a non-scattering component, which does not enable 

any collimated-to-diffuse light transfer. Therefore, the 2×2 matrix cdM  

is a zero matrix. The collimated-to-collimated transfers are given by the 

Fresnel formulae as functions of the incident direction i. By calling 

 01ccr R i  and  01cct T i , and by considering  
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o
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the collimated-to-collimated transfer matrix can be written according 

to formulas (5) and (24):  
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Regarding the diffuse-to-diffuse transfer matrix, the bihemispherical 

reflectance factor rdd is obtained by the angular integration of equation 

(19) [38]:  
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The other bihemispherical reflectance and transmittance factors can 

then be easily deduced from rdd by the relations: 
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These bihemispherical factors only depend on the refractive index 

ratio n and can be expressed analytically [39]. 

According to equations (20) and (21), if the flat interface is the first or 

the last component of the stack, the hemispherical-directional 

transmittance factors can be calculated as:  

     2

01dd
t T n o o   (28) 

    2

01dd
t n To o   (29) 

5.2. Rough interface 

Any model describing the BSDF of a rough interface can be used in the 

four-flux model presented in this article. We adopt the microfacet 

model described by Walter et al. [35]. The roughness parameter σ 
becomes an additional index for all transfer factors. We assume that 

the incident collimated flux is completely converted into diffuse fluxes. 

Hence, the collimated-to-collimated transfers are assumed to be zero 

(Eq. (14)). The bidirectional reflectance factor is defined as  
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and the bidirectional transmittance factor as: 
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where Dσ is the distribution of the microfacet normals, G is a 

shadowing-masking term, and the directions rh  and th are defined as 

 r   h i o i o  and  0 1 0 1t n n n n   h i o i o . 

All entries of the transfer matrix are reflectance and transmittance 

factors that can be calculated according to the position of the 

component within the stack (Table 1), and to the angular distribution 

of the incident flux on both faces (relations of Table 2). For example, 

the following equation gives the expression of the bihemispherical 

reflectance factor 01r  as a function of the directional-hemispherical 

reflectance factor  01r  i : 

  
2

01 01

0

2

i

/

i i
r r sin d



 


 

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Appendix B shows the calculated directional-hemispherical and the 

bihemispherical factors of a rough interface for various roughness 

parameter values, and presents a way to preserve the energy at the 

interface. 

6. Flat or rough interface on an opaque Lambertian 
background  
As case studies, we consider a flat or a rough interface on the top of an 

opaque Lambertian background (Figures 5a and 5b). These systems 

involve only two components and the matrix calculations result in 

compact analytical relations.  

 

Fig. 5: (a) Perfectly flat interface on a Lambertian background, (b) 

microfacet rough interface on a Lambertian background, (c) 

distribution of interfaced Lambertian microfacets. 

The calculation consists in multiplying the transfer matrix of the 

interface described in Section 5 by the transfer matrix of the opaque 

Lambertian background defined in Section 4.2. As a Lambertian 

component, the substrate matrix must verify the relations (14) and 

(16). The background diffuse reflectance is denoted as 
dd cdr r   . 

Although the substrate is opaque, we artificially assume that 0cct   

and 0ddt   (Eq. (12)) while 0cd cd cc ddt t t t       and 

0cd cc ddr r r     . The transfer matrices of the opaque Lambertian 

background can then be written as: 
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6.1. Flat interface on a Lambertian background 

As the first component of the stack, the transfer matrices for the plane 

interface are (Eqs. (25)-(28)): 
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The resulting transfer matrix is obtained by multiplying the interface 

matrix (34) with the background matrix (33). We obtain the following 

matrices for the stack of the two components: 
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From these matrices, using Eqs. (6) and (7), we can deduce the transfer 

factors of the interfaced background. Then, by setting 0cc ddt t   

(these latter were artificially maintained non-zero), we obtain that the 

transmittances are zero as expected since the material is opaque. The 

overall collimated-to-collimated reflectance corresponds to the 

specular reflectance  01R i  of the flat interface. Finally, the collimated-

to-diffuse reflectance rcd of the interfaced background enables 

deducing the BRDF without its specular component thanks to Eq. (13): 

        01 012

10

1

1
r

f , T T
rn




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i o i o  (36) 

This analytical relation was firstly obtained by Elias et al. [40] and can 

be interpreted as a bidirectional extension of the earlier spectral 

reflectance model by Williams and Clapper [41] for gelatin-based 

photographic color prints assuming a non-absorbing gelatin layer. The 

Saunderson correction [42] deals with the same system (flat interface 

on a Lambertian background) but in the more basic two-flux approach 

for diffuse light beams. The bidirectional calculation can be easily 

extended to the case of a stack of non-scattering components instead of 

a single flat interface either by using the four-flux matrix formalism, or 

by replacing the interface regular transmittances T01 and internal 

diffuse reflectance r10 of Eq. (36) by the equivalent factors of the non-

scattering multilayer [43]. The model can be also generalized to non-

Lambertian background by using Eq. (22), which allows calculating the 

BRDF of a flat interface on the top of any substrate whose bidirectional 

reflectance factor is known. 

6.2. Rough interface on a Lambertian background 

By using the notations introduced in Section 5, the transfer matrices for 

the rough interface as first component of the stack are written: 
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where Tcc is the collimated-to-collimated transmittance of the rough 

surface, firstly assumed to be non-zero. 

After multiplying the rough interface matrix (37) by the opaque 

Lambertian background matrix (33), we obtain: 
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From these matrices, using Eqs. (7) and (13), and by setting 

0cc cc ddT t t    (artificially maintained non-zero during the 

calculations), we can deduce the corresponding BRDF with no 

additional specular term: 
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r
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The first term of Eq. (39) is the BRDF of the rough interface (single 

scattering). The second term is due to the multiple reflections between 

the inner face of the rough interface and the Lambertian background. 

As far as we could see in the literature, such analytical expression for 

this system has never been published. However, as explained in 

Appendix B, usual microfacet models strongly underestimate the 

internal diffuse reflectance 10r  . To compensate for this energy loss at 

the interface, we assume this reflectance to be independent of the 

roughness (see 10 101r t    in figure B2-b). Consequently, we apply 

Equation (39) by replacing 10r  by the internal diffuse reflectance 10r  of 

a flat interface.  

6.3. Interfaced Lambertian facets  

It is interesting to compare the configuration described by equation 

(39) and Figure 5b with the one described by Figure 5c, developed in a 

previous work [44], with the same microfacet slope distribution. The 

corresponding BRDF can be written as: 
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  (40) 

where the integral sums up the radiances related to every microfacet 

normal m in the hemisphere. 

It can be first noted that both models are equivalent for a flat interface

 0 with the expression given in equation (36). Moreover, the first 

term  01r , i o , due to surface scattering, is similar for both equations 

(39) and (40). It corresponds to a Cook-Torrance-like specular lobe 

[45] whose expression is given in equation (30). We therefore focus 

the comparison on the second term of equations (39) and (40), due to 

volume scattering.  

When a Lambertian background has a flat interface, its volume BRDF 

trends rapidly towards zero at grazing incident angles (see Figure 6 for 

0 ). This effect is reduced when considering a rough interface 

superposed over the Lambertian background (Figure 6a). The 

resulting volume BRDF tends to the one of a Lambertian reflector 

when the roughness increases. This BRDF is azimuthally isotropic, 

which is not the case for the distribution of interfaced Lambertian 

facets (Figure 6b). The variation of the volume BRDF depends on the 

observation angle: it decreases when observation is the part of the 

hemisphere containing the specular direction (θo>0 in Figure 6b) but it 



increases for grazing angles towards the backscattering direction (θo<0 

in Figure 6b). This difference between both models is striking even 

when there is no refractive index change  1n   between media. In 

that specific case, the figure 5b (Eq. (39)) is equivalent to the flat 

Lambert background while the figure 5c (Eq. (40)) corresponds to a 

distribution of Lambertian microfacets, and is therefore equivalent to 

an Oren-Nayar-like model [46]. 

 

Fig. 6: Volume BRDF in the incident plane, assuming a Beckmann 

distribution for Dσ and the corresponding Smith shadowing-masking 

function for G [47,48], with 60i    (backscattering direction at 

60o    and specular direction at 60o   ), 1 5n . and different roughness parameters σ, (a) rough interface on a Lambertian 

background (second term of equation (39) with 10 10r r ), (b) 

distribution of interfaced Lambertian facets (second term of equation 

(40)). 

7. Conclusion  
The methodology presented in this article opens new perspectives to 

solve radiative transfer problems. We adapt the four-flux model by 

describing a material as a stack of discrete components. We introduce 

a 4x4 transfer matrix that described for each component of the stack, 

collimated-to-collimated, diffuse-to-diffuse and collimated-to-diffuse 

flux transfers both in transmittance and reflectance. Stacks of 

components are built by carrying out the corresponding matrix 

multiplications. Special matrices describe a Lambertian or a non-

scattering component, a flat or a rough interface, and a border 

component given by its BRDF and BTDF. By construction, the 4x4 

transfer matrix can be reduced to 2x2 matrices, and the two-flux 

models for either collimated-only or diffuse-only beams are special 

cases of this four-flux model. The use of four-flux is justified as soon as 

at least one component induces collimated to diffuse light transfers, 

and particularly for translucent materials where the two-flux models 

fail. We also extend the four-flux to obtain the BSDF of multilayer 

systems. A restriction of the model is the directionality loss of the 

diffuse fluxes within the stack. However, in most common cases, this 

limitation has a negligible impact, because the model accounts for the 

directionality of the collimated fluxes at every position within the stack, 

and for the directionality of the diffuse fluxes for the most external 

scattering components of the stack. Another restriction is that the four-

flux approach does not describe the progressive angular broadening of 

the collimated beams. However, the method is easy to use, offers 

compact matrix expressions and quick computations. For computer 

graphics, it allows to generate families of virtual BSDF for a 

superposition of components knowing the BSDF of each component. 

We apply the method for a flat and a rough interface on an opaque 

Lambertian background. Although systems with only two components 

are relatively basic, they offer a wide variety of physical based 

reflectance models from matte to glossy materials. We intend to apply 

this methodology to more complex systems, where the compact matrix 

formalism will be an attractive feature.  

Appendix A: Another transfer matrix 
The transfer matrix chosen in the article focuses on the nature of the 

light transfers (labelled cc, dd or cd). After rearrangement of the flux 

order for the vectors, another matrix relation, alternative to relation (2)

, can be obtained:  
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By introducing the 2x2 matrices T, R, T’ and R’, the matrix relation can 

be rewritten by block: 
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By assuming 0cc ddt t  , the matrix of the left side is inverted and left-

multiplied to the matrix of the right side:  
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Given the 2x2 block matrices Mij of the transfer matrix, the following 

matrix relations can be obtained: 
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This transfer-matrix formalism was classically used to solve the 

radiative transfer equation with NxN block matrices [31]. Let us note 

that both matrix expressions (Eqs. (2) and (41)) are related by 

permutation matrices. 
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Appendix B: Energy preservation for a microfacet 
rough interface 

We consider a rough interface between two media with 1 5n . , 

whose bidirectional transfer factors are given by the equations (30) 

and (31). The function Dσ is the Beckmann distribution and the 

corresponding shadowing-masking function G is the one described by 

Smith [47] and generalized by Bourlier et al. [48]. Figure B1 shows the 

different directional-hemispherical factors. As expected, the rougher 

the surface is, the more Lambertian these resulting factors are. The 

differences with the flat interface  0  are more pronounced at 

grazing incident angles from the less to the more refractive medium 

(Figure B1a). The differences are much more important in the opposite 

direction due to the effect of total reflection for a large part of the 

incident hemisphere (Figure B1b). 

 

Figure B1: Directional-hemispherical reflectance (solid lines) or 

transmittance (dashed lines) factors of rough interfaces as a function of 

the incident angle θi for different roughness parameters σ with n=1.5 

(a) from medium 0 to medium 1, (b) from medium 1 to medium 0.  

 

From relations similar to equation (32), the different bihemispherical 

factors can be calculated and are represented in figure B2 in terms of 

the roughness parameter. The conservation of energy should give 

1r t  . This is however not the case because the microfacet models 

do not account for interactions with multiple facets. The energy loss 

increases steadily with the roughness parameter. It is relatively weak 

from medium 0 to medium 1 (3% loss for σ=0.6). It has a larger impact 

on the diffuse transmittance 01t   than on the diffuse reflectance 01r   

(Figure B2a). From medium 1 to medium 0, the loss is much more 

important (20% loss for σ=0.6). Due to the total reflections, it mainly 

impacts the diffuse reflectance 10r   (Figure B2b). Let us note that 

because of energy loss, 01r  continuously decreases with roughness 

parameter while 10t  is almost constant. 

As a physical description of the interactions with multiple facets seems 

to be very complex, these effects are mostly ignored, or empirically 

corrected. For example, Jakob et al. [36] suggest to reintroduce the 

energy loss as a diffuse radiation in reflection and transmission so that 

the energy is conserved. With the same idea, we suggest to firstly 

calculate 
01r  , respectively 

10t  , and then deduce 
01 011t r   , 

respectively 
10 101r t   , to preserve energy conservation. The 

internal diffuse reflectance 
10r   can then be considered as independent 

of the roughness, and can be approximated by the internal diffuse 

reflectance 
10r  of a flat interface. 

 

Fig. B2: Bihemispherical factors of a rough interface in terms of the 

roughness parameter σ with n=1.5 (a) from medium 0 to medium 1, 

(b) from medium 1 to medium 0.  
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