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ABSTRACT

Given a hyperspectral image, unmixing tries to estimate the

spectral responses of the latent constituent materials and their

corresponding fractions. Recently, Nonnegative Matrix Fac-

torization (NMF) has been widely applied to solve the hyper-

spectral unmixing problem because of its plausible physical

interpretation. In this paper, we propose a novel method, Mul-

tilayer Manifold and Sparsity constrained Nonnegative Ma-

trix Factorization (MMSNMF), for hyperspectral unmixing.

In this approach, Multilayer NMF decomposes a hyperspec-

tral image iteratively at several layers. In order to consider

both the manifold structure of hyperspectral image and the

sparsity of abundance matrix, we impose a graph regulariza-

tion term and a sparsity regularization term on both the spec-

tral signature matrix and the abundance matrix. Experimental

results on both synthetic and real data validate the effective-

ness of the proposed method in hyperspectral unmixing.

Index Terms— NMF, hyperspectral unmixing, sparsity,

manifold structure,graph regularization

1. INTRODUCTION

Unmixing has played an important role in the preprocessing

step of hyperspectral image analysis due to the limited spa-

tial resolution of imaging sensors[1]. This technique has at-

tracted more and more attention in both remote sensing and

ground-based applications[2, 3]. The goal of hyperspectral

unmixing is to decompose an image into a collection of spec-

tral signatures, called endmembers, and their corresponding

proportion, called abundance, at each spatial location.

Nonnegative Matrix Factorization (NMF)[4, 5] is a pop-

ular linear unmixing method to deal with the blind source

separation (BSS) problem, which has been widely applied to

hyperspectral unmixing. NMF-based hyperspectral unmixing
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tries to estimate an endmember matrix and an abundance ma-

trix, and uses their product to approximate to the original hy-

perspectral image. In order to make use of prior knowledge,

various constraints have been imposed on NMF approaches to

achieve different goals. Minimum volume constrained NMF

(MVCNMF)[6] was proposed from a convex geometric point

of view to drive the virtual endmembers to enclose the data

cloud but with minimum volume. Wang et al.[7] employed

endmembers dissimilarity as a constraint, which is used to

measure the difference between endmember signatures and to

force the signatures to be smooth. In order to take advantage

of the sparsity of abundances in hyperspectral image, Qian et

al.[8] proposed a sparsity constrained NMF (SNMF) unmix-

ing method. In SNMF, each mixing pixel can be represented

by a linear combination of only few endmembers by applying

a L1/2 regularizer on the abundance matrix. Jia et al.[9] also

imposed sparsity constraints on the NMF model, but further

incorporated a piecewise smoothness term.

Alternatively, to consider the geometric data structure

of hyperspectral images, Lu et al.[10] proposed a graph-

regularized L1/2-NMF (GLNMF) method for hyperspectral

unmixing. GLNMF tries to impose the manifold regular-

ization and sparseness constraints on the abundance matrix.

Cichocki et al.[11] proposed a multilayer NMF (MNMF), in

which multilayer structure is used to decompose the original

data matrix. Rajabi et al.[12] further extended this approach

by adding a sparsity constraint to both spectral and abundance

matrix in each layer. However, one of the disadvantages in

this approach is that it has neglected the geometric manifold

structure of both spectral signatures and abundance fractions

in each layer, which is an important property of the hyper-

spectral data.

In this paper, we propose a novel unmixing method,

namely Multilayer Manifold and Sparsity constrained Non-

negative Matrix Factorization (MMSNMF), which takes full

advantage of the latent manifold structure and sparseness of

hyperspectral images, simultaneously. In each layer, we in-



corporate dual Laplacian graphs that capture manifold struc-

tures in both spectral and spatial domain, and an L1/2 sparsity

constraint for spectral signatures as well as abundance frac-

tions. Experimental results show that the proposed method

can obtain promising performance in hyperspectral unmixing.

The rest of the paper is organized as follows. Section 2 in-

troduces the background of hyperspectral unmixing based on

NMF. Section 3 presents the MMSNMF approach. To verify

the effectiveness of the proposed method, the experimental

evaluations are presented in Section 4. Finally, conclusions

are drawn in Section 5.

2. RELATED WORK

In this section, we introduce how to employ NMF to linearly

unmix the hyperspectral image.

Suppose that a hyperspectral image X ∈ RL×I contains

c spectral signatures where xi ∈ RL×1 is an observed vec-

tor at i-th pixel with L spectral bands. NMF aims to find

an endmember matrix A ∈ RL×N and an abundance matrix

M ∈ RN×I to approximate the origin nonnegative matrix

using a linear mixing model:

X = AM + E (1)

where E ∈ RL×I denotes the additive noise, and N is the

number of endmembers. Thus, the objective function of NMF

can be expressed as:

min
A,M

O(A,M) = 1

2
‖X −AM‖

2

F

s.t. A ≥ 0,M ≥ 0
(2)

where ‖·‖F denotes the Frobenius norm. NMF has been eas-

ily extended by adding different constraints, such as MVC-

NMF, SNMF, GLNMF and DGNMF[13]. Similarly, our

method is also based on the standard NMF.

3. THE PROPOSED METHOD

In this section, we first describe the structure of Multilayer

NMF[11, 12]. Then the objective function of the proposed

method and the corresponding iterative updating rules are de-

scribed.

3.1. The Multilayer Structure

In multilayer structure, the optimization sub-problem in each

layer can provide more accurate estimation than the initial es-

timation of endmembers and abundance matrices by VCA. It

can also avoid getting stuck in local minima during optimiza-

tion process[11]. In the first layer, the original data matrix is

decomposed into matrices A1 and M1. Then the result of the

first layer (M1) is used as the input data for the second layer,

which is further decomposed into A2 and M2. This decom-

position process is repeated to reach the maximum number of

layers (P ). Fig.1 shows the structure of the multilayer NMF.

Meanwhile, we can give the mathematical definition of mul-

tilayer NMF as follows:

X = A1M1, M1 = A2M2, ..., MP−1 = APMP (3)

Thus, the endmember signature matrix and the abundances

matrix can be written as follows:
{

A = A1A2...AP

M =MP
(4)

Fig. 1 The structure of multilayer NMF

3.2. MMSNMF

Previous studies[14, 15] have shown that not only data points,

but also features are sampled from some low-dimensional

manifolds in many pattern recognition tasks. Meanwhile, it

has been pointed out that hyperspectral data lies on a low-

dimensional submanifold embedded in the high-dimensional

ambient space[10]. Thus, not only the abundances lie on

a nonlinear low dimensional manifold, namely abundance

manifold, but also the endmembers lie on a nonlinear man-

ifold, namely endmember manifold. Therefore, we employ

two graphs, i.e., abundance graph and endmember graph to

characterize the geometric structures of the two manifolds,

respectively.

Given a data set X = [ x1, · · · , xI ] ∈ RL×I , an abun-

dance graph GA = {X,WA} can be constructed with data

set X , where WA denotes a weighted matrix. The elements

of the matrix WA can be defined as:

WA
ij =

{

1 if xi ∈ Np(xj) or xj ∈ Np(xi)

0 otherwise
(5)

where Np(xj) is the set of p nearest neighbors of xj , LA =
DA −WA is the Laplacian matrix, DA is a diagonal matrix

and DA

ii
=

∑

j W
A
ij .

Meanwhile, we also need to construct an endmember

graph GM = {XT ,WM} whose vertices correspond to

XT = [xT1 , · · · , x
T
L] ∈ RI×L. Thus, the elements of the

weighted matrix WM can be defined as:

WM
ij =

{

1 if xTi ∈ Np(xTj ) or xTj ∈ Np(xTj )

0 otherwise
(6)



where LM = DM −WM is the Laplacian matrix, DM de-

notes a diagonal matrix and DM
ii =

∑

j W
M
ij .

To take the manifold structure of the abundance fractions

and the spectral signature into account, the dual graph regu-

larization and L1/2 regularizer are incorporated to into multi-

layer NMF. As a result, the objective function of MMSNMF

for the l-th layer can be represented as follows:

Ol =
1

2
‖Xl −AlMl‖

2

F + λA ‖Al‖1/2 + λM ‖Ml‖1/2
+ βA

2
Tr(ATLA

l A) +
βM

2
Tr(MTLM

l M)
(7)

where λA and λM denote the regularization parameters to

balance the sparsity of the spectral signature and the abun-

dance fractions. βA and βM are the dual graph regularization

parameters. In this model, the first term is used to measure

the reconstruction error. The second and third terms are de-

signed to force the sparseness of the endmember matrix and

the abundance matrix. The last two terms are used to explore

both the abundance manifold and the endmember manifold of

hyperspectral images.

Let (ψik)l and (ϕjk)l be the Lagrange multipliers for con-

straints (Aik)l ≥ 0and (Mjk)l ≥ 0, respectively. We take the

partial derivatives of Lagrange Ll over Al and Sl of Eq. (7)

as follows:

∂Ll

∂Al
= −XlM

T
l +AlM

T
l Ml ++

λA

2
A

−
1

2

l + βAL
A
l Al +Ψ

(8)
∂Ll

∂Ml
= −AT

l Xl +AT
l AlMl +

λM

2
M

−
1

2

l + βML
M
l Ml +Φ

(9)

Using Karush-Kuhn-Tucker conditions (ψikAik)l = 0 and

(ϕjkMjk)l = 0, we can obtain:

(−XlM
T
l +AlM

T
l Ml ++

λA

2
A

−
1

2

l + βAL
A
l Al). ∗Al = 0

(10)

(−AT
l Xl +AT

l AlMl +
λM

2
M

−
1

2

l + βML
M
l Ml). ∗Ml = 0

(11)

From Eq. (10) and Eq. (11), the following update rules can

be derived:

Al ← Al. ∗
XlM

T
l + βAAlW

A
l

AlM
T
l Ml +

λA

2
A

−
1

2

l + βAAlD
A
l

(12)

Ml ←Ml. ∗
AT

l Xl + βMMlW
M
l

AT
l AlMl +

λM

2
M

−
1

2

l + βMMlD
M
l

(13)

4. EXPERIMENTS

In this section, we carry out some experiments to verify the

effectiveness of the proposed method in hyperspectral unmix-

ing. The proposed method is compared with VCA[16], NMF,

L1/2-NMF[8] and Multilayer NMF (MNMF)[12]. The Spec-

tral Angle Distance (SAD) and Abundance Angle Distance

(AAD) are used to evaluate the performance of the unmixing

methods. Their detailed definitions can be found in[12].

4.1. Synthetic Data

We first evaluated the proposed method on a synthetic data.

To generate the synthetic data, we randomly selected six spec-

tral signatures from the USGS digital spectral library[17].

This synthetic data are generated by the following steps.

First, we generate a 64× 64 image and then divide it into 8×
8 blocks Second, each block is filled up by only one type of

signature randomly chosen from the candidate signatures, and

then a low pass filter of size 9× 9 is applied to generate the

mixed data. For pixels with abundances larger than 80%, the

abundances are replaced with a mixture of all endmembers

with equally distributed abundances.

To evaluate the robustness of the proposed method in the

presence of noise, a zero-mean Gaussian noise is added to the

synthetic data. The signal-to-noise ratio (SNR) can be defined

as:

SNR = 10 log10
E[xTx]

E[eT e]

where x and e represent the observation and noise of a pixel,

respectively and E[·] denotes the expectation operator.

In the first experiment, we evaluate the performances of

all methods in hyperspectral unmixing under the same noise.

Here, the signal-to-noise ratio (SNR) is set to 20. Similar

to MNMF, the sparseness regularization parameter λA of the

proposed method is set as:

λA = λ0e
−

−t

τ

where t denotes the number of iterations and τ is a constant

parameter. In this experiment, we set the parameters as fol-

lows: λ0=0.1, τ =25, P=10, Tmax =300, λM = 2λA and

βA = βM = 0.5. The experimental process is repeated 10

times and then the average performance is taken as the final

result. Fig. 2 shows the unmixing results in terms of mean

and standard deviation of the criteria. It can be seen that the

proposed method has achieved the best performance among

all methods.

In the second experiment, we evaluate the performance of

the proposed method under different noise. Table 1 shows the

results of all methods under different SNR. It can be found

that the root mean square errors of both SAD and AAD of the

proposed method are superior to those from the other methods

no matter how the SNR changes.

4.2. Real Remote Sensing Data

The third experiment is carried out on the Jasper Ridge

dataset[18]. We conduct the unmixing experiment on a

subimage with 100×100 pixels whose ground truth is given[19].

The first pixel corresponds to the pixel (105, 269) in the orig-

inal image. After we remove some water absorption bands,



(a) SAD

(b) AAD
Fig. 2 Performances of different methods

such as 1–3, 108–112, 154–166 and 220–224, 198 bands

are left in the subimage. In total, 4 types of endmembers

including road, soil, water and tree are used.

In this experiment, the setting of the parameters is the

same as the previous experiments. Fig. 3 shows the results

of abundance estimation on the Jasper Ridge data. From the

1st to the 4th column, they are the abundances of road, wa-

ter, tree and soil. The first row displays the ground truth for

the abundance fractions of the endmembers, and the second

row shows the abundance maps of endmembers estimated by

our method. Both figures are in grayscale, in which a dark

pixel indicates that the abundance of the relative endmember

is low, and vice versa. Table 2 shows the root mean square er-

rors of SAD of the endmember estimation with all the unmix-

ing methods. The results demonstrate that the average perfor-

mance of the proposed method is better than other compari-

son methods. The main reason is that our proposed method

not only takes into account the sparsity of hyperspectral im-

age, but also discovers the manifold structure of the spectral

signatures and the abundance fractions in each layer.
5. CONCLUSION

In this paper, a novel method, called multilayer manifold
and sparsity constrained nonnegative matrix factorization, is
proposed to take advantage of intrinsic manifold structure

Table 1 The result of different SNR

(a) SAD

SNR VCA NMF L1/2-NMF MNMF MMSNMF

15 0.4481 0.1111 0.1038 0.0917 0.0903

20 0.4295 0.0715 0.0662 0.0698 0.0647

25 0.468 0.0882 0.0832 0.0809 0.0773

30 0.3916 0.0926 0.0900 0.0814 0.0797

35 0.5049 0.0744 0.0716 0.0635 0.0613

40 0.5129 0.0443 0.0430 0.0429 0.0396

Avg 0.4592 0.0804 0.0763 0.0717 0.0688

(b) AAD

SNR VCA NMF L1/2-NMF MNMF MMSNMF

15 0.5576 0.3640 0.3665 0.3656 0.3618

20 0.4695 0.3263 0.3256 0.3272 0.3246

25 0.5078 0.3468 0.3461 0.3444 0.3432

30 0.3211 0.1920 0.1919 0.1909 0.1903

35 0.3477 0.1822 0.1819 0.1811 0.1803

40 0.4032 0.2465 0.2325 0.2332 0.2314

Avg 0.4345 0.2763 0.2741 0.2737 0.2719

Fig.3 Abundance maps of different endmembers

of the hyperspectral images. In each layer, the proposed
method enforces both manifold and sparsity constraints on
the spectral signatures and abundance fractions. Compared
with other state-of-the-art methods, the superiority of the pro-
posed method in hyperspectral unmixing has been validated
on both synthetic and real data.

References

[1] N. Keshava, “A survey of spectral unmixing algorithms,” Lin-

coln Laboratory Journal, vol. 14, no. 1, pp. 55–78, 2003.

[2] J. Bioucas-Dias, A. Plaza, and N. Dobigeon, “Hyperspec-

tral unmixing overview: Geometrical, statistical, and sparse

regression-based approaches,” IEEE Journal of Selected Top-

ics in Applied Earth Observations and Remote Sensing, vol. 5,

no. 2, pp. 354–379, 2012.

[3] A. Goetz, G. Vane, and Solomon J., “Imaging spectrometry for

earth remote sensing,” Science, vol. 228, no. 4704, pp. 1147–

1153, 1985.

[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by



Table 2 Comparison between methods in terms of SAD

Endmember VCA NMF L1/2-NMF MNMF MMSNMF

Road 0.2588 0.1920 0.1941 0.1746 0.1734

Water 0.0330 0.0906 0.0827 0.0494 0.0481

Tree 0.1325 0.1534 0.1508 0.1324 0.1311

Soil 0.1176 0.1177 0.1130 0.0870 0.0857

Avg 0.1355 0.1384 0.1352 0.1190 0.1096

non-negative matrix factorization,” Nature, vol. 401, no. 6755,

pp. 788–791, 1999.

[5] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-

trix factorization,” Advances in Neural Information Processing

Systems 13, 2001, pp. 556–562, MIT Press.

[6] L. Miao and H. Qi, “Endmember extraction from highly mixed

data using minimum volume constrained nonnegative matrix

factorization,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 45, no. 3, pp. 765–777, 2007.

[7] N. Wang, B. Du, and L. Zhang, “An endmember dissimilar-

ity constrained non-negative matrix factorization method for

hyperspectral unmixing,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 6, no. 2,

pp. 554–569, 2013.

[8] Y. Qian, S. Jia, J. Zhou, and et al., “Hyperspectral unmix-

ing via L1/2 sparsity-constrained nonnegative matrix factoriza-

tion,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 49, no. 11, pp. 4282–4297, 2011.

[9] S. Jia and Y. Qian, “Constrained nonnegative matrix factoriza-

tion for hyperspectral unmixing,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 47, no. 1, pp. 161–173, 2009.

[10] X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, “Manifold regu-

larized sparse NMF for hyperspectral unmixing,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 51, no. 5, pp.

2815–2826, 2013.

[11] A. Cichocki and Z. Rafal, “Multilayer nonnegative matrix fac-

torisation,” Electronics Letters, vol. 42, no. 16, pp. 947–968,

2006.

[12] R. Rajabi and H. Ghassemian, “Spectral unmixing of hyper-

spectral imagery using multilayer NMF,” IEEE Geoscience

and Remote Sensing Letters, vol. 12, no. 1, pp. 38–42, 2015.

[13] L. Tong, J. Zhou, X. Bai, and Y. Gao, “Dual graph regularized

NMF for hyperspectral unmixing,” Proc. in DICTA, 2014.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral

techniques for embedding and clustering,” Advance Neural

Informaion Processing System (NIPS), vol. 14, 2001.

[15] F. Shang, L. Jiao, and F. Wang, “Graph dual regularization

non-negative matrix factorization for co-clustering,” Pattern

Recognition, vol. 45, no. 6, pp. 2237–2250, 2012.

[16] J. Nascimento and J. Dias, “Vertex component analysis: A fast

algorithm to unmix hyperspectral data,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898–910,

2005.

[17] R. Clark, G. Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly,

and S. Sutley, “USGS Digital Spectral Library Splib06a:U.S.

Geological Survey, Digital Data Series 231,” http://

speclab.cr.usgs.gov/spectral.lib06, 2007, On-

line.

[18] Envi-Tutorials, “Envi classic vegetation hyperspectral

analysis,” http://www.exelisvis.com/Learn/

WhitepapersDetail, 2013, Online.

[19] F. Zhu, Y. Wang, S. Xiang, B. Fan, and C. Pan, “Structured

sparse method for hyperspectral unmixing,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 88, pp. 101–118,

2014.


