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ABSTRACT

Due to the emergence of new technologies, the whole electricity system is undergoing transformations on a scale and pace never observed
before. The decentralization of energy resources and the smart grid have forced utility services to rethink their relationships with customers.
Demand response (DR) seeks to adjust the demand for power instead of adjusting the supply. However, DR business models rely on customer
participation and can only be effective when large numbers of customers in close geographic vicinity, e.g., connected to the same transformer,
opt in. Here, we introduce a model for the dynamics of service adoption on a two-layer multiplex network: the layer of social interactions
among customers and the power-grid layer connecting the households. While the adoption process—based on peer-to-peer communica-
tion—runs on the social layer, the time-dependent recovery rate of the nodes depends on the states of their neighbors on the power-grid
layer, making an infected node surrounded by infectious ones less keen to recover. Numerical simulations of the model on synthetic and
real-world networks show that a strong local influence of the customers’ actions leads to a discontinuous transition where either none or all
the nodes in the network are infected, depending on the infection rate and social pressure to adopt. We find that clusters of early adopters
act as points of high local pressure, helping maintaining adopters, and facilitating the eventual adoption of all nodes. This suggests direct
marketing strategies on how to efficiently establish and maintain new technologies such as DR schemes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122313

The electricity system is in the midst of large transformations,
and new business models have emerged quickly to facilitate
new modes of operation of the electricity supply. The so-called
demand response seeks to coordinate demand from a large num-
ber of users through incentives, which are usually economic such
as variable pricing tariffs. Here, we propose a simple mathe-
matical framework to model consumer behaviors under demand
response. Our model considers at the same time social influence
and customer benefits to opt into and stay within new control
schemes. In our model, information about the existence of a con-
tract propagates through the links of a social network, while the
geographic proximity of clusters of adopters influences the likeli-
hood of participation by decreasing the likelihood of opting out.

The results of our work can help to make informed decisions in
energy demand management.

I. INTRODUCTION

The study of dynamical processes on complex networks is a
well established branch of complex systems science that aims at
understanding the complex interplay between the dynamics of the
process and the topology of the underlying network.1,2 Networks
encompass a powerful approach, in which a system can be repre-
sented by considering its connectivity patterns, encoding in this way
all the interactions between the different units composing it into a
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compact framework.3–5 Systems composed by units that interact in
different ways can be analogously represented by considering their
multilayered interactions.6–10 The highly versatile essence of the net-
work representation allows one to use it as a structure for processes
of very different nature, which can ultimately be used to model
real-world phenomena. Among the most studied processes on net-
works, together with synchronization11 and random walks,12 are the
dynamics of spreading phenomena in a population, such as the
spreading of diseases,13 norms, innovation adoption,14,15 or knowl-
edge diffusion.16 Adoption dynamics becomes increasingly relevant
when implementing new business models, e.g., for the Internet of
Things or smart grids.17

When dealing with adoption or spreading processes, the typi-
cal approach is to divide the individuals of a population into a finite
number of classes or compartments. In the simplest possible case,
we have only two classes. Individuals or agents can either be in the
susceptible (S) or in the infected (I) class, with the latter being the
class of those who have an infection or have adopted a technology
and are, therefore, potentially contagious for the rest of the popula-
tion. Here, we focus on the Susceptible–Infected–Susceptible (SIS)
model, one of the simplest compartmental models that can be built
as it uses just these two classes. The SIS is indeed suitable for mod-
eling the dynamics of those diseases that can infect an individual
more than once, such as common cold. In the SIS model, all individ-
uals are initially assigned to the S class, with the exception of a small
initial seed of infected nodes. Infected individuals can then pass the
infection to the susceptible ones by means of contacts, i.e., through
the links of the network. More precisely, an infectious node can pass
the infection to a neighbor according to a given rate of infection
β . In turn, infected individuals spontaneously recover with a rate
µ and then can get infected again. This contagion dynamics goes
typically under the name of simple contagion to stress the fact that
a susceptible node in contact with more than one infected neighbor
can get an infection by means of independent exposures. The mod-
eling approach just described is not only restricted to the spreading
of viruses, but can also cover a broader class of phenomena, such as
smart-grid technologies or the spread of behaviors such as obesity,18

happiness,19 or smoking.20

However, when dealing with phenomena that involve social
contagion, it turns out that sometimes the simple contagion frame-
work is not the most appropriate way to model the system under
study. This is because the standard SIS model does not capture
the basic dynamics of social influence and reinforcement nor the
nonlinear nature of technological learning/adoption processes.21,22

This has been confirmed by relatively recent investigations on
adoption patterns in online social networks.23–27 Therefore, com-
plex contagion28,29 has been proposed as an alternative description
in which, for example, threshold mechanisms are introduced in
order to account for the effects of peer pressure and social reinforce-
ment mechanisms.30 The fundamental difference between simple
and complex contagions relies on the fact that in the latter setting,
multiple exposures from different sources are required for a trans-
mission event to happen. This idea has also been further extended
in the recently introduced simplicial contagion model, in which a
simplicial complex instead of a graph is used as the underlying struc-
ture of social systems to encode high-order (higher than pairwise)
interactions among individuals.31 Another way of including social

effects into the contagion process consists either in allowing the
dynamics of infection to depend on some local properties of the
node and their neighborhood or alternatively in letting nodes con-
trol for their connections.32–37 Ultimately, the introduction of local
effects into the contagion dynamics allows one to effectively intro-
duce mechanisms of awareness,38–42 trust,43 and risk perception.44

All the models mentioned above focus on one of the two
aspects of the dynamics of a spreading process, that is, the con-
tagion mechanism. This is generally controlled by means of the
infection parameter β , which might eventually be node-dependent
if local effects are considered. In the case of simple contagion, the
parameter β mediates two-body interactions, with a corresponding
process S + I → 2I, while in the case of complex and simplicial con-
tagion, one-to-many-body and group interactions are considered,
respectively. Conversely, less attention has been devoted to the other
aspect, that is, the recovery mechanism. The recovery rate parameter
µ is typically considered constant for all the nodes, and it is usually
absorbed into an effective infection rate β/µ. Nevertheless, recent
results have shown that heterogeneity in recovery rates can have
dramatic effects on the type and position of epidemic transitions,
implying that heterogeneous infectious periods are as important as
structural heterogeneity in the network when processes of disease
spreading are considered.45,46 However, even when node-dependent
recovery rates are endowed, the recovery remains a single-body type
of process (I → S).

In this work, we investigate the effects of dynamical recovery
rates in a model of adoption dynamics on a multiplex network.47

The key feature of our model is the presence of a time- and node-
dependent recovery mechanism that is not a spontaneous process
but depends on the states of the neighboring nodes. Following
the analogy with the processes of complex contagion, we name
complex recovery the one-to-many-body recovery process of our
model. Moreover, in the model, spreading and recovery processes
are implemented on the different layers of a multiplex network.
Within our problem of interest, that is, the adoption of a new service
within the smart power grid, a model considering the local effects of
neighbors seems more relevant than a simple SIS model.

In order to have a clearer perspective on smart power grids,
and thus better understand the motivations behind our model, let us
now spend a few words on the rapid changes that the electrical sup-
ply system is currently undergoing. To reach the ambitious climate
goals set out in Paris,48 distributed generators are being installed
and centrally controlled infrastructures are being replaced by decen-
tralized ones so that the generation of energy can be decarbonized.
New business models have then emerged to facilitate new modes of
operation of the electricity supply, for example, via concepts such as
smart grids.49–51 Within a smart grid, the different actors (agents or
components) of the electrical system, ranging from fossil fuel plants
and solar panels to industrial and household consumers, need to
communicate and coordinate in order to allow a smooth and stable
operation of the grid. One important instrument of a smart grid is
the demand response (DR) offered from the consumer side. Instead
of consuming electricity whenever the consumer wishes, they might
enter a contract, guaranteeing that a certain share of consumption
will be shifted to periods of low demand. Certain consumption is
easily shifted; e.g., water can be heated and stored in hot water
tanks for usage throughout the day or electrical cars can be charged
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flexibly, given they are sufficiently charged for the next journey. DR
can be offered in a static scheme with fixed low-demand periods,
such as during the night, or it may be implemented as a dynami-
cal scheme, which constantly updates the consumption based on the
actual available supply and demand by other customers.

Consumers are typically motivated to follow the DR scheme by
price incentives. Previous studies based on game-theory and opti-
mization approaches have shown that time-varying prices might be
able to align the optimal schedule of individual power consumption
with the global optimum of the system.52 If prices are also based on
the consumption level, these mechanisms can be efficiently used by
single companies via scheduling games in order to minimize energy
costs.53 Other studies have investigated the effects of increasing
participation in DR schemes on the different market participants.54

An important point is that, in order for DR schemes to be effec-
tive, a sufficiently large share of households is required. First, any
business addressing households will not be profitable if only a very
few participate. Even more importantly, large groups of consumers
could act similarly to a virtual power plant55 by providing power via
demand control as a service to the grid. This is specifically prof-
itable if many customers in a given region are part of the contract
and can provide power within one distribution grid branch. Pre-
vious studies have found that consumers require positive feedback
to stay within demand control contracts.56 Hence, agents, i.e., cus-
tomers opting into demand control contracts should be rewarded,
e.g., by being paid a share of their contribution towards stabilizing
the grid and reducing operational costs. Since large clusters of local
consumers can act easily as a virtual power plant, we assume that
rewards for agents geographically surrounded by other agents opted
into the contract could be higher.

In our work, we study the dynamics of signing contracts under
DR schemes by modeling the system as a multiplex network, where
the social layer of the customers and the layer of physical con-
nections among households (as given by the power grid at the
distribution level) are considered at the same time and coupled
together. The adoption dynamics driving the contract signature is
based on social influence mediated one-to-one social interactions.
Therefore, we make use of epidemic spreading on the social net-
work, where the contagion process consists of the standard simple
contagion (modelling the word of mouth). Contrarily, the recov-
ery probability depends on the local dynamics on the power-grid
layer where economic incentives are implicitly included. The basic
idea we want to model here is that a power supplier will benefit
from having a cluster of individuals who signed the contract within a
localized geographical area, and in turn, it will provide a better offer
to the customers. This additional benefit, combined with the social
effect of being surrounded by agents of the same type, will make the
customers who signed less keen to opt out.

This paper is structured as follows: In Sec. II, we introduce
the Adoption Dynamics Model (ADM), explaining, in particular, the
presence of a complex recovery (CR) mechanism in the model and
its motivation. In Sec. III, we present analytic results of the ADM
in a mean-field approximation. In Sec. IV, we discuss the results of
numerical simulations of the model on two synthetic network struc-
tures, namely, a duplex formed by two Erdős–Rényi random graphs,
as well as another duplex consisting of a small-world network and
a regular 2D lattice. In Sec. V, we focus on the application to the

smart grid by using the street network as a proxy for the power-grid
network at the distribution level. Although not entirely representa-
tive of the real distribution of electricity, such a network encodes the
geographical proximity of the households; thus, it provides a more
realistic representation. Finally, we investigate the effects of the ini-
tial conditions on the temporal dynamics of the model. Conclusions
and future perspectives are summarized in Sec. VI.

II. THE ADOPTION DYNAMICS MODEL

Our model of adoption dynamics is formulated in terms of a
multilayer network framework.6–10 In particular, we consider a mul-
tiplex network EG = {(V , Eα)}α=1,2 formed by two layers (a duplex
network), composed by N = |V| nodes and Kα = |Eα| links. Every
node i = 1, . . . , N represents a household, and it has an identical
replica (i, α) at each layer α. Contrarily, the nodes interact in differ-
ent ways, according to the specific layer and have different structural
patterns. In particular, the two layers represent the following two
different types of interactions:

(1) Social layer. The top layer (layer α = 1) represents the
social network among the individuals, which are living
in the households—or street areas—that we consider to
be nodes. The topology of this layer is described by

the binary adjacency matrix A[1] ≡ {a[1]
ij }, whose nonzero

entries represent existing social links. We denote as k[1]
i

=
∑

j a[1]
ij the degree of the node i ∈ V at layer 1 so that 〈k[1]〉

gives the average degree of this layer.
(2) Power-grid layer. The bottom layer (layer α = 2) represents the

physical connections among households as given by the power
grid at the distribution level. While the nodes are the same as
the nodes of layer 1, the connections are described by another

binary adjacency matrix A[2] ≡ {a[2]
ij }. Analogously to the case of

the first layer, we denote as k[2]
i =

∑

j a[2]
ij and 〈k[2]〉 the degree

of node i and the average degree at layer 2.

Notice that as many other infrastructural networks, the power-
grid layer can be represented as a spatial network,57 where the nodes
(a household or a street in this case) and the links are embedded
in a geographical space. The connectivity of the social layer is usu-
ally more complex. In fact, it is reasonable to assume that social ties
are present at two different levels: the first one is related to physical
proximity, which brings neighbors to interact more, while the sec-
ond level includes long-range social links connecting people living
in different areas of the city or in other cities.

Our purpose is to build a model of the dynamics of signing
contracts under DR schemes, which we will name the Adoption
Dynamics Model (ADM). Hence, at each time t, each node i of
the network is characterized by a binary state variable xi(t) ∈ {0, 1}.
Such a variable represents the state of household i with respect to
the contract at time t, with 1 indicating the user has signed a con-
tract and 0 indicating the user has not signed a contract yet or
has opted out. Nodes change their states according to a Suscepti-
ble–Infected–Susceptible (SIS) dynamics that takes place over the
links of the first layer. We assume that the states 0 and 1 correspond,
respectively, to the susceptible (S) and infected (I) states of the SIS.
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In this way, each node represents a group of individuals living
in a household, and each edge of the social layer stands for a social
connection along which the infection can spread, i.e., a susceptible
node can opt in being convinced by one of its social links. Each sus-
ceptible node has as many channels of infection per unit time as the
number of infected neighbors at the social layer 1. The transition

S + I
β
−→ 2I is determined by the transmission rate β , which enters

directly in the pairwise interactions between susceptible and infected
nodes. In our model, the parameter β can be seen as a measure of the
social or advertising pressure that convinces customers to opt into a
contract. In this way, the probability pi(t) of a node i to get infected
at time t reads as

pi(t) = 1 −
∏

j

[1 − βa[1]
ij xj(t)], (1)

where the product on the right-hand side gets contributions from
all the infected neighbors of node i at the social layer 1 and is equal
to the probability that node i is not infected by any of its infected
neighbors.

The transition I
γi(t)
−−→ S is controlled by the parameter γi(t),

which represents the probability that node i recovers at time t,
becoming susceptible again. Instead of the spontaneous recovery,
the 1-body process typically adopted in the modeling of infectious
diseases, here, we consider a complex recovery (CR) mechanism,
which is a many-body process. Namely, instead of using a constant
recovery probability µ0 equal for all nodes, here, we introduce a
time-dependent recovery probability γi(t), which can also vary from
node to node. In particular, we assume that γi(t) is a function of
the properties of the neighborhood of node i at time t at the power-
grid layer 2. In this way, we want to model that individuals are less
likely to opt out of a contract with a specific energy supplier if their
neighbors, in the power grid, have signed a contract with the same

company. This can be seen as an effect of a particular bonus that an
energy supplier is able to offer to an individual, which is part of a
cluster of customers. We thus implement the CR by defining γi(t) as

γi(t) = (1 − θ)µ0 + θµi(t), (2)

where the parameter θ ∈ [0, 1] controls for the importance of local
interactions in the recovery transition with respect to a standard
constant recovery parameter µ0. Notice that, for θ = 0, no local
effects are considered for the recovery, and the model corresponds
to the standard SIS model with a constant recovery probability µ0.
Contrarily, if θ = 1, the recovery is completely determined by the
dynamical term µi(t), which is node-dependent and that coevolves
in time together with the spreading process at layer 1.

We consider now the case in which µi(t) = µi,h(t) is a function
of the network hop-distance h at layer 2. Namely, we define µi,h(t)
as

µi,h(t) =

(

1 −
|I [2]

i,h (t)|

|N [2]
i,h |

)

µ0, (3)

where N
[2]
i,h ⊆ V is the set of nodes of EG, which are within h hops

from i on layer 2, and I
[2]
i,h (t) = N

[2]
i,h ∩ {j ∈ V : xj(t) = 1} is the sub-

set of these nodes, which are infected at time t [Fig. 1(a), bottom
panel]. Notice that the highest possible recovery probability in the
expression above is equal to µ0, the same as the static case, but when
node i is completely surrounded by infectious neighbors, µi,h(t) goes
to zero. This becomes clear when inserting Eq. (3) into Eq. (2),
leading to

γi(t) = µ0

(

1 − θ
|I [2]

i,h (t)|

|N [2]
i,h |

)

. (4)

FIG. 1. Illustration of the Adoption Dynamics Model (ADM). The two layers of the multiplex network stand for the social ties (layer 1, top) and connections in the power
grid (layer 2, bottom). Susceptible and infected nodes are colored in blue and red, respectively. (a) The spreading dynamics takes place on layer 1 according to a standard
mechanism of simple contagion, where a susceptible node i can get infected by each one of its infected neighbors with an independent probability β . (b) Contrarily, an infected
node recovers with a node-dependent and dynamically changing recovery probability, which depends on the states of the neighbors at layer 2. The shaded regions highlighted
in green indicate the subset of nodes at distance h hops from i (the case h = 2 is shown here), which are considered for the computation of the dynamical recovery rate
µi(t) [see Eq. (3)].
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In the simplest case, in which h = 1, we can write Eq. (4)
directly in terms of the elements of the adjacency matrix A[2] as

γi(t) = µ0

(

1 − θ

∑

j a[2]
ij xj(t)

∑

j a[2]
ij

)

. (5)

Finally, we denote the density of infected (adopters) individu-

als at time t as ρ(t) = I(t)/N =
∑N

i=1 xi(t)/N, which represents our
macroscopic order parameter. At time t = 0, all individuals are sus-
ceptible, with the exception of a seed ρ0 = ρ(t = 0) ≪ 1 of infected
nodes (early adopters).

III. MEAN-FIELD ANALYTICAL RESULTS

The density of infected individuals and the infection thresh-
old as a function of the different control parameters of the ADM
can be obtained analytically in a mean-field (MF) approximation.
The MF approximation works well under the homogeneous mixing
hypothesis, assuming, therefore, that the individuals with whom a
susceptible individual has contact are chosen at random from the
whole population. Furthermore, we also assume that all individuals
have approximately the same number of contacts at each time and
that all contacts transmit the disease with the same probability. As
a consequence, instead of considering the specific topology of the
two layers, we only focus on average degree properties so that we
can write an equation for the temporal evolution of the density of
infected individuals ρ(t) as

dtρ(t) = −〈γi(t)〉ρ(t) + β〈k[1]〉ρ(t) [1 − ρ(t)] . (6)

With this approach, we are assuming that each node of the
social network has the same degree, equal to the average degree 〈k[1]〉
of the social network at layer 1. 〈γi(t)〉 denotes the average recovery
probability computed over all nodes.

For the particular case in which only the first neighbors are
considered (h = 1), we can derive a MF expression for 〈γi(t)〉, by
approximating Eq. (3) as

〈µi,h=1(t)〉 ≈

(

1 −
〈k[2]〉ρ(t)

〈k[2]〉

)

µ0 = [1 − ρ(t)] µ0. (7)

Notice that if a local treelike structure is assumed for A[2], the
same MF approximation would hold for any h,

〈µi,h(t)〉 ≈

(

1 −
〈k[2]〉

h
ρ(t)

〈k[2]〉h

)

µ0 = (1 − ρ(t)) µ0. (8)

Using these results for Eq. (2) and by substituting 〈γi,h(t)〉 into
Eq. (6), we can write the final MF expression for the temporal
evolution of the density ρ(t) of infected nodes, which reads as

dtρ(t) = −µ0[1 − θρ(t)]ρ(t) + β〈k[1]〉ρ(t)[1 − ρ(t)]. (9)

After defining λ = β〈k[1]〉/µ0 and rescaling the time as
t′ = µ0(λ − θ)t, we obtain the equivalent equation:

dt′ρ(t′) = ρ(t′)(ρ∗
2 − ρ(t′)), (10)

with

ρ∗
2 =

λ − 1

λ − θ
. (11)

The associated steady state equation dt′ρ(t′) = 0 has, therefore,
up to two acceptable solutions in the range ρ ∈ [0, 1]: a trivial solu-
tion ρ∗

1 = 0, corresponding to the absorbing state in which there is
no epidemic (no adopters) and all nodes have recovered and a non-
trivial solution ρ∗

2 , which depends on the parameters of the model as
follows:

A. Case θ =0

Let us first consider the case θ = 0 in which local dynami-
cal effects are neglected. This case corresponds, as expected, to the

standard SIS model; thus, we recover the solution ρ
∗[θ=0]
2 that reads

as

ρ
∗[θ=0]
2 = 1 −

1

λ
= 1 −

µ0

β〈k[1]〉
. (12)

The solution ρ
∗[θ=0]
2 is acceptable, i.e., non-negative, when

λ ≥ 1, recovering in this way the standard epidemic threshold
λ[θ=0]

c = 1.
Linear stability analysis shows that the solution ρ∗

1 = 0 is sta-
ble only when λ < λ[θ=0]

c . Contrarily, for values of λ ≥ λ[θ=0]
c , the

absorbing state ρ∗
1 = 0 becomes unstable, while ρ

∗[θ=0]
2 becomes

stable; i.e., the epidemic takes place.

B. Case θ =1

Let us consider now the other extreme case, θ = 1, in which
only the local effects are considered in the CR, and, therefore, the
recovery phase is purely dynamical. Also, in this case, the second
solution of the stationary state equation becomes trivial and reads as

ρ
∗[θ=1]
2 = 1. Thus, the system presents two stationary solutions, and

it is easy to show that their stability changes at the same epidemic
threshold as for θ = 0 so that λ[θ=1]

c = λ[θ=0]
c = λc. For λ < λc, ρ∗

1

is stable and ρ∗
2 is unstable, while for λ > λc, we have the oppo-

site case. Therefore, contrarily from the completely nonlocal case
(θ = 0), here, the system undergoes an explosive transition from the
healthy to endemic state, where all individuals are adopters.

C. General case

In the most general case, the second solution ρ∗
2 , given by

Eq. (11), depends on both the rescaled infectivity λ (therefore, on
the average degree 〈k[1]〉) and on θ , the parameter, which controls
for the local effects of the CR. Notice that the solution is accept-
able if ρ∗

2 ∈ [0, 1], which implies again λ ∈ [1, ∞]. Therefore, for
any θ , the transition from the healthy to endemic state happens at
the same epidemic threshold λc = 1, but the density of infected in
the endemic state varies with θ . The stability of the fixed point ρ∗

2

can be easily investigated by defining the second term in Eq. (9)
as F(ρ) = λρ[1 − ρ] and then checking the sign of the derivative
of F(ρ). Since F′(ρ)|ρ=ρ∗

2
= 1 − λ does not depend on θ , ρ∗

2 always
represents a stable fixed point for the dynamics.

IV. NUMERICAL RESULTS ON SYNTHETIC NETWORKS

We present here numerical simulations of the ADM on various
synthetic duplex networks. In each case, the simulations are per-
formed for different realizations of the networks, stopping each run
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FIG. 2. Numerical simulations of ADM (h = 1) on a duplex network formed by
two ER networks with N = 900 and 〈k〉 = 10. The average fraction of infected
nodes is plotted against the rescaled infectivity λ = β〈k[1]〉/µ0. Different curves
(and colors) correspond to different values of the parameter θ , which controls
for the strength of the local effects in the complex recovery process, as defined
in Eq. (2). The case θ = 0 corresponds to the standard SIS model. Simulations
(points) are plotted together with the analytical mean-field (MF) solution of Eq. (9)
(continuous lines).

whenever an absorbing state is reached. Alternatively, if a stationary
state is reached, the stationary density of infected is computed by
considering an average over the last 100 time steps. Each run starts
with different initial conditions, given by randomly placing a seed of
ρ0 infectious nodes (usually 1% of the nodes), and then, we average
the results over all the runs. Throughout all the numerical simula-
tions presented in this paper, we restrict for simplicity to the case
h = 1.

The first system we have considered is a duplex with N = 900
nodes formed by two Erdős–Rényi (ER) random graphs having
average degrees 〈k[1]〉 = 〈k[2]〉 = 〈k〉 = 10. Figure 2 shows the sta-
tionary density of infected ρ∗, obtained by averaging the prevalence
curves for different realizations of the numerical simulations, as a
function of the rescaled infectivity λ = β〈k[1]〉/µ0. Different curves
correspond to different values of the parameter θ , which controls
for the local effects in the CR process. Indeed, the case θ = 0 is
equivalent to the standard SIS model with a spontaneous recovery,
where a nonzero density of infected nodes in the stationary state
appears for values of λ larger than a critical value λc = 1. By increas-
ing θ , the density of infected nodes in the endemic state ρ∗ > 0
increases and the transition becomes steeper and steeper, until the
extreme case θ = 1. In this latter case, i.e., when the recovery is
purely dynamical, the systems undergoes a discontinuous transition
from the absorbing state ρ∗ = 0 with no adopters to the opposite
state ρ∗ = 1. Notice that the transition occurs at the same critical
threshold λc = 1. Figure 2 also shows the continuous curves repre-
senting the analytical prediction in the MF approach, as given by
Eq. (11). The match between curves and points confirms the accu-
racy of the MF approximation in reproducing the dynamics of the
ADM in the case of random graphs and also its ability to capture the
different types of transitions the ADM exhibits when the value of θ

is changed.

FIG. 3. Numerical simulations of the ADM (h = 1) on a duplex network formed by
a 2D lattice and a SW network with N = 2500 nodes, 〈k[2]〉 ≈ 4, and p = 0.01.
The average fraction of infected nodes is plotted against the rescaled infectiv-
ity λ = β〈k[1]〉/µ0. Different curves (and colors) correspond to different values
of the parameter θ . Simulations (points) are plotted together with the curves
obtained with the discrete-time Markov chain (MC) approach as given by Eq. (B5)
(continuous lines).

As a second system, we have considered a slightly more realis-
tic synthetic duplex network. In particular, we model the power-grid
layer as a 2D lattice (N = 2500, 〈k[2]〉 ≈ 4) and we couple it to a
social layer, which is obtained from the same 2D lattice, by rewiring
each of its links at random with a probability of p = 0.01. It is worth
clarifying that we will call this layer small-world (SW), given the
similarity of the rewiring mechanism with the original small-world
model proposed by Watts and Strogatz.58 The rewiring mechanism,
adopted only at layer 1, breaks the regularity of the lattice by intro-
ducing social connections between nodes that are not first neighbors
at the level of the power-grid network in layer 2. The results obtained
are shown in Fig. 3. We notice a few differences with respect to the
results reported in Fig. 2. In particular, we observe that the thresh-
old λc slightly increases when the value of θ changes from θ = 0 to
θ = 1, and this behavior is not captured neither by the analyt-
ical predictions in the MF approximation nor by a more accu-
rate discrete-time Markov chain (MC) approach (see Appendix
B), whose curves are shown as continuous lines. Such differences
might be due to the strong correlations between nodes induced
by the underlying latticelike structure of SW networks and to the
limitations of the MC approach caused by the time discretization.59,60

V. NUMERICAL RESULTS ON REAL-WORLD

NETWORKS

In Sec. IV, we explored the model on two synthetic duplex
networks. With the first, we observed the phenomenology on two
random graphs, while in the second, we considered a more real-
istic—yet synthetic—structure composed by a lattice and a SW
network. Here, we make a further step in this direction by consider-
ing street networks61 from the real world as proxies for power-grid
networks at the distribution level and a multilayer adaptation of the
well-known Waxman random graph model62 to represent the social
layer. With this approach, the spatial nature of the street network is

Chaos 30, 013153 (2020); doi: 10.1063/1.5122313 30, 013153-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

used both to embed the power grid into the physical space and to
shape the connectivity patterns of the social layer. Due to the use of
the Waxman model, the social connections decay exponentially with
the distances on the network, which in turn are affected by the phys-
ical constraints imposed by the morphology of the territory. More
details on the procedure to construct the street network layer and
the social layer are given in Appendix A.

We restrict our attention to a neighborhood of the city of
London [see Fig. 4(a)], defined by using a hierarchical percolation
approach, as introduced in Arcaute et al.63 The method gives rise
to neighborhoods at different scales arising from the density of the
street intersections. In the case of London, some scales reveal its
composition in terms of historical villages, corresponding now to
differentiated neighborhoods. By selecting an appropriate scale, this
method allows us to focus on a relatively small portion of the city, as
a targeted adoption campaign would do, while keeping at the same
time the computational cost at a reasonable level. For the details of
the method, see Appendix A and Ref. 63. The resulting duplex net-
work has N ≈ 3000 nodes, with an average degree of 〈k[1]〉 ≈ 10 at
the social layer and 〈k[2]〉 ≈ 3 at the power-grid layer. The associated
degree distributions are shown in Fig. 4(b). As in the previous cases,
we investigate the density of infected individuals in the stationary
state as a function of the rescaled infectivity. The plots reported in
Fig. 4(c) confirm similar results to those obtained with synthetic net-
works. In particular, a clear change in the nature of the transition is
observed also when more realistic network structures are used both
at the grid and at the social layer. Associated with the sudden tran-
sitions at large values of θ , we have also observed the appearance
of hysteresis loops. An example is shown in the inset plot for the
case θ = 0.9. In Sec. V A, we will explore these phenomena more in
detail.

In what follows, we briefly investigate the effects of initial con-
ditions in the evolution of the density of infected nodes.64 Most of
the existing literature targets this problem within the domain of
infectious diseases spreading, which translates into looking for opti-
mal immunization strategies, i.e., key nodes to vaccinate in order to
limit the spread.65–67 Here, we investigate the temporal aspect of the
infection dynamics as a function of the initial conditions. This will
be done in two different ways since we can control for both the num-
ber and position in the network of the initial adopters, i.e., of those
nodes who will initiate the spreading.

A. Varying the size of the initial seed

We start considering a set of randomly placed infectious
nodes, as before, whose size at time 0 is controlled by the density
ρ(t = 0) = ρ0. We then simulate the ADM with different values of
the parameters (λ, θ) for different initial densities ρ0 in the range
(0, 0.6]. Results are shown in Fig. 5. Each panel corresponds to a
given pair of parameters (λ, θ), while different curves within the
same panel display the temporal evolution of the density of infected
nodes when considering different ρ0 (see the color bar on the right-
hand side). Rows indicate different values of θ , moving from the
standard SIS model with no dynamical recovery [θ = 0, (a)–(c)],
to the other extreme case in which the recovery process completely
depends on the local dynamics of the neighboring nodes [θ = 1,
(g)–(i)]. An intermediate case with θ = 0.5 is also considered [pan-
els (d)–(f)]. Similarly, we use three values of the infectivity λ: one
below the epidemic threshold [λ = 0.7, (a), (d), and (g)], one close
to the epidemic threshold [λ = 0.9, (b), (e), and (h)], and one above
the epidemic threshold [λ = 1.3, (c), (f), and (i)]. Trivial effects are
found when we are below and above the threshold. In particular,

FIG. 4. ADM (h = 1) on a real-world duplex network in which a street network is used as a proxy for the power grid. (a) A central neighborhood in London is selected by using
a hierarchical percolation approach (blue zone). The degree distributions of the street network and the coupled social network constructed from it are shown in panel (b). (c)
The average fraction of infected nodes obtained by means of numerical simulations is plotted against the rescaled infectivity λ = β〈k[1]〉/µ0. Different curves (and colors)
correspond to different values of the parameter θ , which controls for strength of the local effects in the CR process, as defined by Eq. (2). The inset shows the hysteresis
loop, which appears close to the threshold for θ = 0.9.
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FIG. 5. Effect of the initial density of adopters on the temporal evolution of the spreading. Each panel shows the densities of infectious nodes for different sizes of the initial
seed of infectious adopters ρ(t = 0) = ρ0 and for different values of (θ , λ). (a)–(c) refer to the standard SIS model, without local effects, while (g)–(i) represent the other
extreme case in which the recovery process is completely controlled by the local dynamics. Different scales have been adopted for panels (b), (e), and (h) due to the proximity
of the epidemic threshold λc, which makes the runs last longer.

FIG. 6. Effect of the position of the initial seed of adopters in the ADM on the real-world duplex network with parameters: λ = 0.9, θ = 1. The temporal evolution of the
densities of infectious nodes is shown for the two considered scenarios: (a) a clustered seed of infectious nodes on the power-grid layer and (b) a randomly placed seed
of infectious nodes. Different colors correspond to different sizes of the initial seed of infectious ρ0 (single realizations are plotted as continuous lines, while dashed lines
represent their average). The actual positions of the seeds are shown, for each ρ0, in the top and bottom maps, representing, respectively, the clustered and the random
scenario. Infectious nodes are depicted in red.
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in the first case [panels (a), (d), and (g)], the higher the ρ0 the
longer it takes to the system to reach the absorbing state ρ∗ = 0.
Similarly, when high values of λ are considered [panels (c), (f), and
(i)], what matters is the distance between the initial density of the
seed ρ0 and the final stationary state, which in turn depends on θ .
However, close to the threshold, the strong dynamical effects of the
CR process create a bistable region [panel (h)], in which the initial
density of infectious nodes ρ0 determines whether the systems will
end up in the absorbing states without adopters (ρ∗ = 0) or with all
adopters (ρ∗ = 1). Notice that such bistability is not present in the
MF formulation presented in Sec. III.

B. Varying the position of the initial seed

To better understand the phenomenology of the ADM close
to the threshold, we fix the parameters to the latest case (λ = 0.9,
θ = 1) and explore the effects of the initial position of the seed,
while still varying its size. To do this, we consider a different sce-
nario in which the initial adopters form a cluster in the power-grid
layer. This cluster corresponds to a smaller neighborhood within the
considered area, and it is selected with the same hierarchical perco-
lation approach used in the construction of the real-world multiplex
network, but for smaller percolation thresholds (see Appendix A for
more details). We will compare this scenario with the standard case
in which the initial seed of adopters is placed at random instead.

The results are shown in panels (a) and (b) of Fig. 6, respec-
tively. In each case, the temporal evolution for the density of infected
nodes is plotted for different values of ρ0 (different colors). Shaded
curves are different realizations of the ADM, while their average is
represented by the dashed thick lines. As a reference, we also add
the maps showing the exact position of the seed of infectious nodes
(depicted in red) for each scenario and for the different values of
ρ0 considered. Maps for the clustered seed and randomly placed
seed are shown in the top and bottom row, respectively. Different
behaviors emerge from the two scenarios. Indeed, the prevalence
curves seem to fluctuate more when the seed is placed at random
[panel (b)]. Interestingly, this phenomenon is in contrast with the
results of the MF formulation and the simulations of the ADM on
synthetic ER networks discussed in Secs. III and IV. As a result,
when a density ρ0 = 0.2 of initial adopters is considered, fluctua-
tions are so strong that, even with exactly the same (random) initial
positions of adopters, the system can end up in either the absorbing
state ρ∗ = 0 or in the state ρ∗ = 1. If clustered seeds are consid-
ered instead [panel (a)], the same seed size ρ0 = 0.2 always drives
the system to the absorbing state with all adopters (ρ∗ = 1). In this
scenario, the critical value for ρ0, which separates the two basins of
attractions, seems to be better defined: see the curves for ρ0 = 0.03
and ρ0 = 0.1. Finally, it is worth noticing that for this last seed size,
ρ0 = 0.1, the initial placement completely determines the final state
of the system. Indeed, only 10% of clustered adopters are enough to
drive the system towards the full adoption case, while this does not
happen if a seed of the same size is placed at random.

VI. SUMMARY AND CONCLUSIONS

In this work, we have introduced and studied both numerically
and, when possible, analytically a mathematical model of spreading

on a network with a dynamical recovery mechanism of the nodes,
which is a function of the network state. Our original purpose is
to reproduce the dynamics of service adoption in demand response
management,68–71 in which the behavior of a customer is influenced
by its social contacts, in addition to also depending on the specific
spatial configuration of other customers in close proximity within
the power-grid service area. For this reason, we consider a duplex
network with a social layer and a power-grid layer. The adoption
process is modeled as an epidemic spreading on the social layer,
with a recovery rate of the nodes that depends on the states of their
neighbors on the power-grid layer. In this way, the dynamics tends
to preserve clusters of infected individuals by making an infected
node surrounded by nodes in the same state less keen to recover.

Results suggest that the more the recovery of the nodes depends
on the local influence of peers (large values of θ), the more discon-
tinuous the transition from nonadopters (healthy) to full adoption
(fully infected network) becomes. In simulations on real-world net-
works, such as the London network, we also noted that the final state
of the system is not uniquely defined by the infection and recovery
parameters β and µ, but the initial conditions can have a substan-
tial impact on the spreading dynamics, with clustered seeds in the
power-grid layer more likely leading to full network infection. We
have found that a mean-field approximation captures the simula-
tion results nicely for Erdős–Rényi networks, while more advanced
analytical descriptions might be necessary to characterize our model
on more realistic and complex network structures.

While we motivated our model from the electricity demand
management, other applications that rely on local customer
resources should follow similar dynamics.72 This could, for example,
include car sharing or citizen science projects. The main message we
can derive for all such systems from the analysis of our model is the
following. In any real application case, we would first need to deter-
mine the strength of the local influence of other customers, i.e., the
magnitude of the parameter θ in our model. If such local influence
is weak, a smooth transition to a nonzero density of adopters takes
place when the infectivity is above a given threshold. When the local
influence is strong instead, we observe a sudden transition and the
appearance of an intermediate (hysteresis) region, where as soon as
a critical mass is reached, (almost) everyone would adopt the new
technology.

Our results also show that strong local influence is key to deter-
mine adoption, hence giving insights on how to strategically plan
on the nodes to be targeted initially. Namely, reaching out to cus-
tomers who are physically spread out in the power-grid layer, or
explicitly targeting social clusters, which are not defined spatially,
is more likely to fail than starting the adoption process from clusters
in the power-grid layer, which provides the positive feedback-loop
for the consumers. In fact, a cluster of “adopters” on the power-
grid layer is likely to stay within the contract and will also convince
their neighbors to join. Therefore, this strategy will in most cases
lead to a higher penetration of the new technology. Advertise-
ment should take this into account, e.g., by explicitly advertising
within local communities. Alternatively, businesses might try to
reshape the infection and recovery process itself. Already commonly
adopted “hire a friend” schemes try to build a positive feedback
among customers, which can directly strengthen the infection pro-
cess. Our results suggest that alternative “hire a neighbor” schemes,
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specifically designed to target neighbors in the power-grid layer,
could also positively contribute, this time by altering the recovery
dynamics.

The presented approach can easily be extended into multiple
directions. On the one hand, one could further improve the accuracy
of the network topologies, for example, by modeling the social net-
work as a crossover between scale-free and spatial networks, as pro-
posed in Ref. 73 or by directly using real-world friendship data. Fur-
ther analytical development might also be required in this direction.
On the other hand, different variations of the model are also possi-
ble. For instance, the dynamical recovery term µi(t) could include
influences from nodes h = 2, or more, hops away. Alternatively, it
could rely on Euclidean distances calculated on the physical space or
other distance functions more realistically mapping consumer deci-
sions. Another natural extension might involve the introduction of
other, both exogenous and endogenous, effects as additional contri-
butions to the adoption dynamics. These could include, for example,
mass media exposure74 and the explicit introduction of economic
factors such as the price of energy or price incentives. Finally, in this
paper, we focused on demand control for households, specifically
neglecting industrial consumers, as they follow very different rules
and require independent business models, which also more likely
follow different adoption schemes. Future work should extend the
present framework to nonhousehold customers.
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APPENDIX A: CONSTRUCTION OF MULTIPLEX

NETWORKS

Here, we describe the methodology used to construct the real-
world inspired multiplex networks. We constructed the power-grid
layer at the distribution level by taking as a proxy the street net-
work in its primal approach,61 i.e., by representing crossroads as
nodes connected by streets. According to our ADM, each node
corresponds to a household; hence, we approximate the household
connectivity in the distribution grid by the street network formed by
intersection points linked by streets.

The street network was constructed starting from the same data
set used in Ref. 63 the Ordnance Survey (OS) MasterMap.75 The
data set consists of a clean street network for the entire Britain,

in which roundabouts have been replaced by single intersections
and in which each edge comes with an associated weight repre-
senting the length of the street (for more details, see Ref. 63). We
first restricted our data set to the Greater London Authority by
retaining only those points (nodes) falling within the boundaries
of the LSOA (Lower Super Output Area).76 Then, we selected a
smaller neighborhood in central London by following the hierarchi-
cal percolation method proposed in Ref. 63. The method produces
a clustering on the nodes based on a single parameter ǫ, which
acts as a percolation threshold on the street distance between the
points. More precisely, given a threshold ǫ, the graph is divided into
different connected components corresponding to the subgraphs
induced by the thresholding on the nodes at a distance smaller than
ǫ (see Ref. 63 for more details). The resulting network, correspond-
ing to the largest connected component obtained for a threshold of
ǫ = 89 m, is composed of N = 3379 nodes and K[2] = 4602 links.

We constructed the geographical social network starting from
the well-known Waxman random graph model.62 In the standard
model, nodes are initially placed at random over a plane and then
connected in pairs with a probability that decays exponentially with
their distance. Here, we modified the model in two ways: (i) nodes
are not placed at random, but the geographical position of each
node on the social layer corresponds to the position on the power-
grid layer and (ii) instead of considering the geographical distance
between the nodes, we considered the network distance. Notice
that, being the network embedded in space, the network distance is
already shaped by the particular spatial displacement of the nodes.
More precisely, the model works as follows.

Given the set of nodes (and their position), let us call d[2](i, j)
their distance in layer 2 (the power-grid layer). Then, the probability
that i and j are connected in layer 1 is given by

P[1](i, j) = α exp
[

−d[2](i, j)/αL[2]
]

, (A1)

where L[2] denotes the diameter of layer 2 and α is a tunable model
parameter.

We constructed the network for the social layer by linking the
nodes of the grid layer according to the probability given by Eq. (A1),
with α tuned in order to obtain a reasonable number of influ-
ential household connections (α = 0.003). The resulting network
has K[1] = 17 183 links, corresponding to an average of 〈k[1]〉 ≈ 10
connections per household.

APPENDIX B: DISCRETE-TIME MARKOV CHAIN

APPROACH

In the discrete-time Markov chain approach, the probability of
node i to be infected at time t Prob [xi(t) = 1] = πi(t) is a random
variable, and it is assumed that for different nodes, these probabili-
ties are independent.77 The equation for the discrete-time evolution
of πi(t) can then be written as

πi(t + 1) = (1 − qi(t))(1 − πi(t)) + (1 − γi(t))πi(t), (B1)

where the two terms of the right-hand side are, respectively,

• the probability that node i, susceptible at time t, gets infected by a
neighbor and

• the probability that node i, infected at time t, does not recover.
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qi(t) represents the probability of node i not being infected by any
of his neighbors at time t, and it can be written in terms of the adja-
cency matrix A[1] of layer 1, which controls the contacts between
nodes i and j, as

qi(t) =
∏

j

1 − βa[1]
ij πj(t), (B2)

while the recovery probability γi(t), for the case h = 1, is given by

γi,h=1(t) = µ0

(

1 − θ

∑

j a[2]
ij πj(t)

∑

j a[2]
ij

)

. (B3)

Finally, the stationary state πi(t + 1) = πi(t) is given by

πi = (1 − qi) + (qi − γi)πi. (B4)

The system of equations given by (B4) is then solved numeri-
cally, and the density of infected is obtained by taking the average
over all the nodes,

ρ =
1

N

∑

i

πi. (B5)

The limitations of this approach have been discussed in Refs.
59 and 60. Moreover, in our specific case, the underlying lattice-
like structure of the network topologies used in Sec. IV can break
the assumption that the probabilities πi(t) and πj(t) of two different
nodes to be infected are independent.
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26B. Mønsted, P. Sapieżyński, E. Ferrara, and S. Lehmann, “Evidence of complex
contagion of information in social media: An experiment using Twitter bots,”
PLoS ONE 12, e0184148 (2017).
27G. Iñiguez, Z. Ruan, K. Kaski, J. Kertész, and M. Karsai, “Service adoption
spreading in online social networks,” in Complex Spreading Phenomena in Social
Systems (Springer, 2018), pp. 151–175.
28D. Centola and M. Macy, “Complex contagions and the weakness of long ties,”
Am. J. Sociol. 113, 702–734 (2007).
29D. Guilbeault, J. Becker, and D. Centola, “Complex contagions: A decade in
review,” in Complex Spreading Phenomena in Social Systems (Springer, 2018),
pp. 3–25.
30L. Böttcher, J. Nagler, and H. J. Herrmann, “Critical behaviors in contagion
dynamics,” Phys. Rev. Lett. 118, 088301 (2017).
31I. Iacopini, G. Petri, A. Barrat, and V. Latora, “Simplicial models of social
contagion,” Nat. Commun. 10, 2485 (2019).
32T. Gross, C. J. D. D’Lima, and B. Blasius, “Epidemic dynamics on an adaptive
network,” Phys. Rev. Lett. 96, 208701 (2006).
33D. H. Zanette and S. Risau-Gusmán, “Infection spreading in a population with
evolving contacts,” J. Biol. Phys. 34, 135–148 (2008).
34S. Risau-Gusmán and D. H. Zanette, “Contact switching as a control strategy
for epidemic outbreaks,” J. Theor. Biol. 257, 52–60 (2009).
35J. Gómez-Gardeñes, L. Lotero, S. Taraskin, and F. Pérez-Reche, “Explosive
contagion in networks,” Sci. Rep. 6, 19767 (2016).
36P. Tuzón, J. Fernández-Gracia, and V. M. Eguíluz, “From continuous to
discontinuous transitions in social diffusion,” Front. Phys. 6, 21 (2018).
37H.-W. Lee, N. Malik, F. Shi, and P. J. Mucha, “Social clustering in epidemic
spread on coevolving networks,” Phys. Rev. E 99, 062301 (2019).
38S. Funk, E. Gilad, C. Watkins, and V. A. Jansen, “The spread of awareness and
its impact on epidemic outbreaks,” Proc. Natl. Acad. Sci. U.S.A. 106, 6872–6877
(2009).
39S. Funk, E. Gilad, and V. Jansen, “Endemic disease, awareness, and local
behavioural response,” J. Theor. Biol. 264, 501–509 (2010).
40Q. Wu, X. Fu, M. Small, and X.-J. Xu, “The impact of awareness on epidemic
spreading in networks,” Chaos 22, 013101 (2012).
41C. Granell, S. Gómez, and A. Arenas, “Dynamical interplay between aware-
ness and epidemic spreading in multiplex networks,” Phys. Rev. Lett. 111, 128701
(2013).
42B. Steinegger, A. Cardillo, P. De Los Rios, J. Gómez-Gardeñes, and A. Arenas,
“Interplay between cost and benefits triggers nontrivial vaccination uptake,” Phys.
Rev. E 97, 032308 (2018).
43H. Wu, A. Arenas, and S. Gómez, “Influence of trust in the spreading of
information,” Phys. Rev. E 95, 012301 (2017).
44F. Bagnoli, P. Lio, and L. Sguanci, “Risk perception in epidemic modeling,”
Phys. Rev. E 76, 061904 (2007).

Chaos 30, 013153 (2020); doi: 10.1063/1.5122313 30, 013153-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1140/epjst/e2016-60274-8
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1007/BF00240425
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1016/j.jedc.2003.04.002
https://doi.org/10.1109/SURV.2011.101911.00087
https://doi.org/10.1056/NEJMsa066082
https://doi.org/10.1136/bmj.a2338
https://doi.org/10.1056/NEJMsa0706154
https://doi.org/10.1103/PhysRevLett.112.098702
https://doi.org/10.1038/srep04343
https://doi.org/10.1126/science.1185231
https://doi.org/10.1073/pnas.1116502109
https://doi.org/10.1098/rsif.2014.0694
https://doi.org/10.1371/journal.pone.0184148
https://doi.org/10.1086/521848
https://doi.org/10.1103/PhysRevLett.118.088301
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1007/s10867-008-9060-9
https://doi.org/10.1016/j.jtbi.2008.10.027
https://doi.org/10.1038/srep19767
https://doi.org/10.3389/fphy.2018.00021
https://doi.org/10.1103/PhysRevE.99.062301
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1016/j.jtbi.2010.02.032
https://doi.org/10.1063/1.3673573
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevE.97.032308
https://doi.org/10.1103/PhysRevE.95.012301
https://doi.org/10.1103/PhysRevE.76.061904


Chaos ARTICLE scitation.org/journal/cha

45G. F. de Arruda, G. Petri, F. A. Rodrigues, and Y. Moreno, “Impact of the dis-
tribution of recovery rates on disease spreading in complex networks,” Phys. Rev.
Research 2, 013046 (2020).
46A. Darbon, D. Colombi, E. Valdano, L. Savini, A. Giovannini, and V. Colizza,
“Disease persistence on temporal contact networks accounting for heterogeneous
infectious periods,” R. Soc. Open Sci. 6, 181404 (2019).
47A. Czaplicka, R. Toral, and M. San Miguel, “Competition of simple and
complex adoption on interdependent networks,” Phys. Rev. E 94, 062301
(2016).
48CoCCU, The 21st Conference of the Parties to the United Nations Framework,
“The Paris Agreement,” see https://unfccc.int/process-and-meetings/the-paris-
agreement/the-paris-agreement (2015).
49V. Giordano and G. Fulli, “A business case for smart grid technologies: A
systemic perspective,” Energy Policy 40, 252 (2012).
50J. Rodríguez-Molina, M. Martínez-Núñez, J.-F. Martínez, and W. Pérez-Aguiar,
“Business models in the smart grid: Challenges, opportunities and proposals for
prosumer profitability,” Energies 7, 6142–6171 (2014).
51B. Schäfer, M. Matthiae, M. Timme, and D. Witthaut, “Decentral smart grid
control,” New J. Phys. 17, 015002 (2015).
52N. Li, L. Chen, and S. H. Low, “Optimal demand response based on utility max-
imization in power networks,” in 2011 IEEE Power and Energy Society General
Meeting (IEEE, 2011), pp. 1–8.
53A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia, “Autonomous demand-side management based on game-theoretic energy
consumption scheduling for the future smart grid,” IEEE Trans. Smart Grid 1,
320–331 (2010).
54C.-L. Su and D. Kirschen, “Quantifying the effect of demand response on
electricity markets,” IEEE Trans. Power Syst. 24, 1199–1207 (2009).
55D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system inte-
gration of distributed energy resources,” IET Renew. Power Gener. 1, 10–16
(2007).
56P. Siano, “Demand response and smart grids—A survey,” Renew. Sustain.
Energy Rev. 30, 461–478 (2014).
57M. Barthélemy, “Spatial networks,” Phys. Rep. 499, 1–101 (2011).
58D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
Nature 393, 440–442 (1998).
59P. G. Fennell, S. Melnik, and J. P. Gleeson, “Limitations of discrete-time
approaches to continuous-time contagion dynamics,” Phys. Rev. E 94, 052125
(2016).
60E. Valdano, M. R. Fiorentin, C. Poletto, and V. Colizza, “Epidemic thresh-
old in continuous-time evolving networks,” Phys. Rev. Lett. 120, 068302
(2018).
61S. Porta, P. Crucitti, and V. Latora, “The network analysis of urban streets: A
primal approach,” Environ. Plann. B Plann. Des. 33, 705–725 (2006).

62B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Com-
mun. 6, 1617–1622 (1988).
63E. Arcaute, C. Molinero, E. Hatna, R. Murcio, C. Vargas-Ruiz, A. P. Masucci,
and M. Batty, “Cities and regions in Britain through hierarchical percolation,”
Royal Soc. Open Sci. 3, 150691 (2016).
64P. D. Karampourniotis, S. Sreenivasan, B. K. Szymanski, and G. Korniss, “The
impact of heterogeneous thresholds on social contagion with multiple initiators,”
PLoS ONE 10, e0143020 (2015).
65R. Pastor-Satorras and A. Vespignani, “Immunization of complex networks,”
Phys. Rev. E 65, 036104 (2002).
66M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and
H. A. Makse, “Identification of influential spreaders in complex networks,” Nat.
Phys. 6, 888 (2010).
67F. Morone and H. A. Makse, “Influence maximization in complex networks
through optimal percolation,” Nature 524, 65 (2015).
68C. S. Bale, N. J. McCullen, T. J. Foxon, A. M. Rucklidge, and W. F. Gale, “Har-
nessing social networks for promoting adoption of energy technologies in the
domestic sector,” Energy Policy 63, 833–844 (2013).
69V. Rai and S. A. Robinson, “Agent-based modeling of energy technology adop-
tion: Empirical integration of social, behavioral, economic, and environmental
factors,” Environ. Model. Softw. 70, 163–177 (2015).
70V. Rai and A. D. Henry, “Agent-based modelling of consumer energy choices,”
Nat. Clim. Chang. 6, 556–562 (2016).
71L. X. Hesselink and E. J. Chappin, “Adoption of energy efficient technologies
by households—Barriers, policies and agent-based modelling studies,” Renew.
Sustain. Energy Rev. 99, 29–41 (2019).
72K. Nyborg, J. M. Anderies, A. Dannenberg, T. Lindahl, C. Schill, M. Schlüter,
W. N. Adger, K. J. Arrow, S. Barrett, S. Carpenter, F. Stuart Chapin III,
A.-S. Crépin, G. Daily, P. Ehrlich, C. Folke, W. Jager, N. Kautsky, S. A. Levin, O. J.
Madsen, S. Polasky, M. Scheffer, B. Walker, E. U. Weber, J. Wilen, A. Xepapadeas,
and A. de Zeeuw, “Social norms as solutions,” Science 354, 42–43 (2016).
73M. Barthélemy, “Crossover from scale-free to spatial networks,” Europhys. Lett.
63, 915 (2003).
74J. L. Toole, M. Cha, and M. C. González, “Modeling the adoption of innovations
in the presence of geographic and media influences,” PLoS ONE 7, e29528 (2012).
75OS MasterMap Integrated Transport Network Layer [GML geospatial data];
coverage: Great Britain, updated January 2010, ordnance Survey, GB; using:
EDINA Digimap Ordnance Survey Service; © Crown Copyright and Database
Right (February 2016); Ordnance Survey (Digimap Licence).
76“LSOA boundaries,” London Datastore (2011), see https://data.london.gov.uk/
dataset/super-output-area-population-lsoa-msoa-london.
77S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno, “Discrete-
time Markov chain approach to contact-based disease spreading in complex
networks,” Europhys. Lett. 89, 38009 (2010).

Chaos 30, 013153 (2020); doi: 10.1063/1.5122313 30, 013153-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevResearch.2.013046
https://doi.org/10.1098/rsos.181404
https://doi.org/10.1103/PhysRevE.94.062301
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://doi.org/10.1016/j.enpol.2011.09.066
https://doi.org/10.3390/en7096142
https://doi.org/10.1088/1367-2630/17/1/015002
https://doi.org/10.1109/TSG.2010.2089069
https://doi.org/10.1109/TPWRS.2009.2023259
https://doi.org/10.1049/iet-rpg:20060023
https://doi.org/10.1016/j.rser.2013.10.022
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1038/30918
https://doi.org/10.1103/PhysRevE.94.052125
https://doi.org/10.1103/PhysRevLett.120.068302
https://doi.org/10.1068/b32045
https://doi.org/10.1109/49.12889
https://doi.org/10.1098/rsos.150691
https://doi.org/10.1371/journal.pone.0143020
https://doi.org/10.1103/PhysRevE.65.036104
https://doi.org/10.1038/nphys1746
https://doi.org/10.1038/nature14604
https://doi.org/10.1016/j.enpol.2013.09.033
https://doi.org/10.1016/j.envsoft.2015.04.014
https://doi.org/10.1038/nclimate2967
https://doi.org/10.1016/j.rser.2018.09.031
https://doi.org/10.1126/science.aaf8317
https://doi.org/10.1209/epl/i2003-00600-6
https://doi.org/10.1371/journal.pone.0029528
https://data.london.gov.uk/dataset/super-output-area-population-lsoa-msoa-london
https://doi.org/10.1209/0295-5075/89/38009

	I. INTRODUCTION
	II. THE ADOPTION DYNAMICS MODEL
	III. MEAN-FIELD ANALYTICAL RESULTS
	A. Case ==0
	B. Case ==1
	C. General case

	IV. NUMERICAL RESULTS ON SYNTHETIC NETWORKS
	V. NUMERICAL RESULTS ON REAL-WORLD NETWORKS
	A. Varying the size of the initial seed
	B. Varying the position of the initial seed

	VI. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX A: CONSTRUCTION OF MULTIPLEX NETWORKS
	B. APPENDIX B: DISCRETE-TIME MARKOV CHAIN APPROACH

