
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008 2007

Multilayer Obstacle-Avoiding Rectilinear Steiner
Tree Construction Based on Spanning Graphs

Chung-Wei Lin, Shih-Lun Huang, Kai-Chi Hsu, Meng-Xiang Lee, and Yao-Wen Chang, Member, IEEE

Abstract—Given a set of pins and a set of obstacles on routing
layers, a multilayer obstacle-avoiding rectilinear Steiner minimal
tree (ML-OARSMT) connects these pins by rectilinear edges
within layers and vias between layers and avoids running through
any obstacle to construct a Steiner tree with a minimal total
cost. The ML-OARSMT problem is very important for many
very large scale integration designs with pins being located in
multiple routing layers that contain numerous routing obstacles
incurred from IP blocks, power networks, prerouted nets, etc.
As a fundamental problem with extensive practical applications
to routing and wirelength/congestion/timing estimations in early
design stages, it is desired to develop an effective algorithm for
the ML-OARSMT problem to facilitate the design flow. However,
there is no existing work on this ML-OARSMT problem. In this
paper, we first formulate the ML-OARSMT problem with rectan-
gular obstacles and then identify key different properties of this
problem from its single-layer counterpart. Based on the multilayer
obstacle-avoiding spanning graph, we present the first algorithm
to solve the ML-OARSMT problem. Our algorithm can guarantee
an optimal solution for any two-pin net and many multiple-pin
nets. Experiments show that our algorithm results in 33% smaller
total costs on average than a construction-by-correction heuristic
which is widely used for Steiner-tree construction in the recent
literature.

Index Terms—Layout, physical design, routing, Steiner tree.

I. INTRODUCTION

G IVEN A SET of pins and a set of obstacles on routing

layers, a multilayer obstacle-avoiding rectilinear Steiner

minimal tree (ML-OARSMT) connects these pins by rectilinear

edges within layers and vias between layers and avoids running

through any obstacle to construct a Steiner tree with a minimal

total cost.

Manuscript received January 20, 2008; revised May 17, 2008. Current
version published October 22, 2008. This work was supported in part by the
National Science Council of Taiwan under Grants NSC 96-2628-E-002-248-
MY3, NSC 96-2628-E-002-249-MY3, NSC 96-2221-E-002-245, and NSC 96-
2752-E-002-008-PAE, by Etron, by Incentia, by SpringSoft, and by TSMC. An
earlier version of this paper was presented at the 2007 IEEE/ACM International
Conference on Computer Aided Design [7]. This paper was recommended by
Associate Editor L. Scheffer.

C.-W. Lin, S.-L. Huang, and M.-X. Lee were with the Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan (e-mail: enorm@eda.ee.ntu.edu.tw; aaron@eda.ee.ntu.edu.tw; bo27@
eda.ee.ntu.edu.tw).

K.-C. Hsu was with the Department of Electrical Engineering, National
Taiwan University, Taipei 106, Taiwan. She is now with Raydium Semicon-
ductor Corporation, Hsinchu 300, Taiwan (e-mail: kethy@eda.ee.ntu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering and Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan (e-mail: ywchang@cc.ee.ntu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2006095

The ML-OARSMT problem is of particular importance for

modern very large scale integration (VLSI) designs. First of

all, a port may have two output pins on adjacent layers at

the same location; therefore, it can be used to facilitate the

cell placement in any orientation. A router should select a

preferred layer to connect the port so that the routing resource

can be utilized efficiently, including many routing constraints

such as the total wirelength, timing delay, number of vias,

and design rules. Moreover, most pins of standard cells are

located in lower layers, while many pins of macro cells are

located in higher layers. Therefore, the router should be able to

connect all the pins of a net, no matter on which layers these

pins are. Furthermore, a router should also consider routing

obstacles incurred from IP blocks, power networks, prerouted

nets, feature patterns for manufacturability improvement, etc.

As a fundamental problem with extensive practical applications

to routing and wirelength/congestion/timing estimations, it is

desired to develop an effective algorithm for the ML-OARSMT

problem.

However, the rectilinear Steiner minimal tree problem on a

plane (on a layer), even without the obstacle and multilayer

considerations, is a well-known NP-complete problem [3], and

the presences of obstacles and multilayers further increase the

complexity. There is no existing work on this ML-OARSMT

problem in the literature. Without considering obstacles, Yildiz

and Madden [13] first addressed the Steiner tree construction

on multiple layers. They extended an existing single-layer (SL)

rectilinear Steiner tree heuristic and considered preferred rout-

ing restrictions and layer-specific routing and via costs.

On the other hand, the SL-OARSMT problem, which

only considers an SL, has received dramatically increasing

attention in recent years [2], [4]–[6], [8]–[12]. These works

can be classified into two major categories including 1) the

construction-by-correction approach and 2) the connection

graph-based approach. The construction-by-correction ap-

proach constructs a Steiner or a spanning tree for a net first

and then replaces the edges overlapping obstacles with edges

around the obstacles. However, it may lose the global view of

the obstacles and remove the overlaps locally around the obsta-

cles. As a result, the solution quality may be limited. In contrast,

the connection graph-based approach is first to construct a

connection graph by pins and obstacle boundaries, which

guarantees at least a desired SL-OARSMT to be embedded

in the graph. Then, some search techniques are applied to find

the desired SL-OARSMT from the connection graph. Unlike

the construction-by-correction approach, this approach has a

more global view of both pins and obstacles. Consequently,

this approach can often obtain much better solution quality.

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

2008 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Additionally, the switchbox rectilinear Steiner tree (SRST)

problem is a special case of the SL-OARSMT problem. The

SRST problem is to construct an optimal rectilinear Steiner

tree interconnecting terminals on the perimeter of a switch-

box without crossing any obstacles inside the switchbox.

Chiang et al. [1] presented an algorithm to find an opti-

mal solution for the SRST problem with an exponential-time

complexity.

Nevertheless, none of these existing works considers the

presences of obstacles and multilayers at the same time. There

are several differences between the SL-OARSMT problem and

the ML-OARSMT one.

1) For the SL-OARSMT problem, the shortest path between

two pins can be constructed by considering only the pins

and corners of obstacles. However, for the ML-OARSMT

problem, considering only pins and corners of obstacles

cannot always find the shortest path.

2) The SL-OARSMT problem only needs to consider the

wirelength on a layer, but via costs should be included

for the ML-OARSMT problem.

As a result, direct extensions of these existing methods to

the ML-OARSMT problem may have limited solution quality

or even generate some infeasible solutions. In this paper, we

first formulate the ML-OARSMT problem with rectangular

obstacles and then develop an effective and efficient algorithm

to deal with the problem. Our algorithm consists of four steps:

It first constructs a multilayer obstacle-avoiding spanning graph

(ML-OASG), then constructs a corresponding spanning tree,

converts the spanning tree into a rectilinear one, and finally

turns the rectilinear tree into a rectilinear Steiner tree. Our

work has the following distinguished features (and theoretical

findings).

1) This is the first work in the literature for the

ML-OARSMT problem.

2) The ML-OASG is significantly different from the SL

counterpart presented in [6]. To guarantee an optimal

SL-OARSMT for any 2-pin net and many multiple-pin

nets, it suffices to consider the vertices induced from

the pins and corners. However, this property does not

hold for ML-OASG. Therefore, we need to develop a

more sophisticated method with a more global view to

guarantee this optimality.

3) For the SL-OARSMT problem, the completeness of a

spanning graph helps the wirelength reduction signif-

icantly [6]. For the ML-OARSMT one, however, the

completeness decreases the flexibility of transforming a

slant edge into rectilinear edges. With this finding, we

can significantly prune the solution space to speed up

the processing. Our empirical results show a 3.5 times

speedup due to this finding; furthermore, the redundant

solution pruning does not affect the solution quality be-

cause it induces a much smaller essential solution space.

Experiments show that our algorithm results in significantly

smaller total costs (including wirelength and via costs) than a

heuristic of the construction-by-correction approach by 33% on

average.

Fig. 1. For each vertex v being the center, the plane is divided into eight
regions in [14], and it suffices to connect v to at most one vertex in each region
for the Steiner minimal tree construction.

The rest of this paper is organized as follows. Section III

formulates the ML-OARSMT problem. Section IV presents our

ML-OARSMT algorithm and its time complexity. Section V

reports the experimental results. Finally, we conclude this paper

in Section VI.

II. BACKGROUND

Zhou [14] first introduced the spanning graph for VLSI

Steiner minimal tree construction. Given a set of vertices on

the plane, a spanning graph is a graph over the vertices that

contains a minimal spanning tree. Since the spanning graph is

sparse, it incurs lower time complexity for the tree construction.

As shown in Fig. 1, for each vertex v being the center, the

plane is divided into eight regions; for the Steiner minimal tree

construction, it suffices to connect v to at most one vertex in

each region because the distance between any two vertices in a

region must be smaller than the maximum distance from v to ei-

ther of the two vertices. Based on the spanning graph, Zhou [14]

developed an efficient and effective Steiner tree algorithm with

the time complexity O(n lg n).

III. PROBLEM FORMULATION

We define an obstacle, a pin vertex, and a via as follows.

Definition 1: An obstacle is a rectangle on a layer. No two

obstacles overlap with each other, but two obstacles could be

point touched at the corner or line touched on the boundary.

See layer 2 in Fig. 2(a) for two overlapped obstacles and

layer 1 for point- and line-touched obstacles.

Definition 2: A pin vertex is a vertex on an arbitrary layer. A

pin vertex must not locate inside any obstacle, but it could be at

the corner or on the boundary of an obstacle.

See layer 2 in Fig. 2(b) for an illegal instance with two pin

vertices inside an obstacle and layer 1 for a legal instance with

a pin vertex at the corner and others on the boundary of an

obstacle.

Definition 3: A via on layer z is an edge between (x, y, z)
and (x, y, z + 1). (x, y, z) and (x, y, z + 1) must not locate

inside any obstacle, but they could be at the corner or on the

boundary of an obstacle.

See illegal vias inside an obstacle between layers 2 and 3 in

Fig. 2(c) and legal ones between layers 1 and 2. Moreover, no

edge of the ML-OARSMT can intersect with any obstacle as

shown on layer 2 in Fig. 2(d). However, in practice, to maintain

the space between an obstacle and an edge, an obstacle may be

modeled as a larger one, so an edge could be point touched at

the corner or line touched on the boundary of an obstacle as

shown on layer 1 in Fig. 2(d).

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

LIN et al.: OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION BASED ON SPANNING GRAPHS 2009

Fig. 2. (a) Illegal obstacles (layer 2) and legal obstacles (layer 1). (b) Illegal
pin vertices (layer 2) and legal pin vertices (layer 1). (c) Illegal vias (between
layers 2 and 3) and legal vias (between layers 1 and 2). (d) Illegal edges
(layer 2) and legal edges (layer 1).

Let Cv be the cost of a via, Nl be the number of layers,

P = {p1, p2, . . . , pm} be a set of pin vertices for an m-pin

net, O = {o1, o2, . . . , ok} be a set of k obstacles, and n be

the size of P ∪ {corners in O} for the problem; we have n ≤
m + 4k since each obstacle has four corners. Furthermore,

without obstacles, the connection cost between vi and vj can

be computed by |xi − xj | + |yi − yj | + |zi − zj | × Cv .

Considering rectilinear routes which use rectilinear edges

within layers and vias between layers, we define the

ML-OARSMT problem as follows.

• Problem: ML-OARSMT: Given constants Cv and Nl,

a set P of pins, and a set O of obstacles, construct a

multilayer rectilinear Steiner tree to connect the pins in

P such that no tree edge or via intersects an obstacle in O

and the total cost of the tree is minimized.

Note that an edge is allowed to pass through the boundary

between two line-touched obstacles, according to this formu-

lation. To deal with rectilinear obstacles, the formulation can

be modified so that an edge is not allowed to pass through the

boundary between two line-touched obstacles. If the formula-

tion is modified, edges of this type should be removed from the

spanning graph, and our algorithm can still work well.

Throughout this paper, we represent the bottom-left, top-left,

top-right, and bottom-right corner vertices of an obstacle oi

by ci,1, ci,2, ci,3, and ci,4 with their coordinates being

(xi,min, yi,min, zi), (xi,min, yi,max, zi), (xi,max, yi,max, zi), and

(xi,max, yi,min, zi), respectively. Moreover, C =
⋃k

i=1
{ci,j},

j = 1, 2, 3, and 4.

IV. ALGORITHM

Our algorithm consists of four steps which are presented as

follows.

1) An ML-OASG is constructed to connect all vertices

in P ∪ C. The construction is much different from the

Fig. 3. Four steps for ML-OARSMT construction.

SL counterpart in [6], even on a single layer. See Fig. 3(b)

for an example of the ML-OASG.

2) A multilayer obstacle-avoiding spanning tree

(ML-OAST) is constructed to connect all pin vertices by

selecting edges from the ML-OASG. See Fig. 3(c) for an

example of the ML-OAST.

3) A multilayer obstacle-avoiding rectilinear spanning tree

(ML-OARST) is constructed by transforming each slant

edge of the ML-OAST into rectilinear edges. See

Fig. 3(d) for an example of the ML-OARST.

4) An ML-OARSMT is finally constructed by removing

redundant vertices, merging overlapping edges, and in-

troducing Steiner points. See Fig. 3(e) for an example of

the ML-OARSMT.

The following sections detail the four steps.

A. ML-OASG Construction

In this step, we construct an ML-OASG which is defined as

follows.

Definition 4: An ML-OASG is an undirected graph con-

necting all vertices in P ∪ C, and no edge intersects with an

obstacle in O.

1) Difficulties: It is not feasible to directly extend the

single-layer obstacle-avoiding spanning graph (SL-OASG)

construction in [6]. The SL-OASG can guarantee a rectilinear

shortest path between two vertices, resulting in an optimal

SL-OARSMT solution in some cases. Its SL-OASG is con-

structed by the following rules.

1) SL-OASG Connection Rule 1: The SL-OASG is con-

structed on all pin and corner vertices.

2) SL-OASG Connection Rule 2: Two vertices are con-

nected if 1) there is no other vertex inside or on the

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

2010 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 4. (a) A trivial extension from the SL-OASG construction will construct
an edge between the two vertices, but (b) it may result in an infeasible solution.

Fig. 5. (a) If an ML-OASG is constructed only on pin and corner vertices,
(b) the resulting total cost is 4 + Cv , (c) while the optimal total cost is 2 + Cv .
(d) For another instance, (e) the resulting total cost is 3 + r, (f) while there is
a solution with the total cost 3 + 2Cv . If r ≫ Cv , the difference will be very
significant.

boundary of the bounding box of the two vertices and 2)

there is no obstacle inside the bounding box of the two

vertices.

Therefore, a trivial extension to the ML-OARSMT prob-

lem is to construct an ML-OASG based on the SL-OASG

Connection Rule 2. As shown in Fig. 4(a), because the two

vertices satisfy the SL-OASG Connection Rule 2, there will be

an edge between them. However, different from the spanning

graph in [6] which can transform slant edges into arbitrary

L-shaped edges, the extended method may result in an infea-

sible solution which has an edge overlapping an obstacle as

shown in Fig. 4(b). Thus, we have the following finding from

this case.

Theorem 1: The SL-OASG Connection Rule 2 may result in

infeasible solutions for the ML-OARSMT problem.

On the other hand, it is not sufficient to use the SL-OASG

construction in [6] which is only applied on pin and corner ver-

tices (SL-OASG Connection Rule 1). If an ML-OASG is con-

structed only on pin and corner vertices as shown in Fig. 5(a),

it will result in an ML-OARSMT as shown in Fig. 5(b), which

has a larger total cost 4 + Cv than the optimal total cost 2 + Cv ,

as shown in Fig. 5(c). See Fig. 5(d) for another example where

all pin vertices and obstacles are on the same layer, and the

obstacle’s length and width are r unit and 1 unit, respectively.

If an ML-OASG is constructed only on pin and corner vertices,

it will result in an ML-OARSMT as shown in Fig. 5(e) with the

total cost of 3 + r which is an optimal solution on a single layer.

Fig. 6. (a) Given an instance, if an extension deals with layers one by one and
connects between layers by the shortest paths, (b) the cost for the connections
between layers will be up to 10 + 2Cv (vias and red edges). (c) Considering
multiple layers at the same time, the cost for the connections between layers is
7 + 2Cv .

Fig. 7. Example vertex projection between layers.

However, there is an ML-OARSMT with the total cost 3 + 2Cv

as shown in Fig. 5(f). If r ≫ Cv , the difference between the two

solutions will be very significant. From these two examples, we

have the following finding.

Theorem 2: SL-OASG Connection Rule 1 cannot guarantee

a rectilinear shortest path between two vertices.

Another extension to the ML-OARSMT problem is to deal

with layers one by one. The SL-OARSMT construction in [6]

can be applied on each layer, and some heuristics can be used

to connect those SL-OARSMTs. However, given an instance

where the SL-OARSMTs are far from each other layer by layer

as shown in Fig. 6(a), if the connections between layers are

decided by shortest paths, the cost for connections between

layers will be up to 10 + 2Cv (vias and red edges) as shown in

Fig. 6(b), which is not what we desire during the ML-OARSMT

construction on each layer. Considering multiple layers at the

same time, there is a smaller cost for connections between

layers is 7 + 2Cv (vias and red edges) as shown in Fig. 6(c).

To avoid these problems, the SL-OASG on a layer should

consider more essential vertices which may be on the same

layer or on the other layers. Thus, we propose an algorithm

so that some vertices are projected between layers and within

a layer without overlapping with any obstacles. As a result,

we can construct better ML-OARSMTs and find a rectilinear

shortest path of any two vertices in our ML-OASG.

2) Vertex Projection Between Layers: Fig. 7 shows an

example vertex projection between layers from layer 2

to 1. At the beginning, O = {o1, o2}, s = 2, t = 1, Vs =

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

LIN et al.: OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION BASED ON SPANNING GRAPHS 2011

{c1,1, c1,2, c1,3, c1,4, p1}, and Vt = {c2,1, c2,2, c2,3, c2,4}. As

shown in Fig. 7(a), because the projected vertices of c1,1, c1,2,

c1,3, and c1,4 are not inside any obstacle, the four projected

vertices are inserted into V1 (the vertex set of layer 1) and V (the

vertex set of the spanning graph) (lines 16–19). Moreover, the

edges between c1,1, c1,2, c1,3, and c1,4 and their projected ver-

tices on layer 1 are inserted into E (the edge set of the spanning

graph), respectively (line 20). On the other hand, the projected

vertex of p1 is inside o2 (line 3); therefore, the algorithm sets

u1, u2, u3, and u4 (lines 4–7) and checks if each of them is

inside any obstacle or not as shown in Fig. 7(b). Because u1,

u2, and u3 are not inside any obstacle (line 9), they are inserted

into V2 (the vertex set of layer 2) and V , while their projected

vertices on layer 1 are inserted into V1 and V (lines 9–14).

Moreover, the edges between u1, u2, and u3 and their projected

vertices on layer 1 are inserted into E, respectively (line 15).

Finally, after the vertex projection between layers, the vertices

on layers 1 and 2 are shown in Fig. 7(c).

Fig. 8. Example vertex projection within a layer. We focus on the projection
of p1.

3) Vertex Projection Within a Layer: Fig. 8(a) shows an

example vertex projection within layer 2. We focus on the

projection of p1, and similar operations are performed for each

vertex. As shown in Fig. 8(b), u3 and u4 are set because they are

the projected vertices of p1 within layer 2 (lines 2–5). For u3,

because the projected vertex on layer 1 is not inside an obstacle,

u3 is inserted into V2 (the vertex set of layer 2) (lines 7–10). On

the other hand, u4 is not inserted into V2 because its projected

vertex on layer 1 is inside an obstacle (lines 7–9). Finally, after

the vertex projection within layer 2, only u3 is inserted into V2

for p1 as shown in Fig. 8(c).

4) ML-OASG Construction: Because there is a tradeoff be-

tween the completeness of the ML-OASG and the computa-

tional efficiency, we use a parameter Tn as the threshold for

the total number of pin and corner vertices n. If n > Tn, the

iteration at line 5 is performed only once (lines 14–15), and

the vertex projection within a layer (lines 8 and 12) is not

performed. For each iteration at line 5, there are two passes for

the vertex projections—one is a bottom–up pass (lines 6–9),

and the other is a top–down pass (lines 10–13). After the vertex

projections, we apply the SL-OASG construction in [6] for each

layer (lines 16–17).

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

2012 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 9. Two vertex projections provide paths for vertices to escape from an
obstacle (a) on the different layer and (b) on the same layer.

We assume V as the vertex set of the ML-OASG, i.e., V

includes all vertices in P ∪ C and all added vertices by the

vertex projections. The two vertex projections provide paths

for vertices to “escape” from obstacles as shown in Fig. 9.

Thus, by our ML-OASG construction, we can claim that, if

n ≤ Tn, the ML-OASG implies a rectilinear shortest path of

any two vertices in V , i.e., a rectilinear shortest path of any

two vertices can be obtained by transforming slant edges in

the ML-OASG to rectilinear edges. To prove this property,

we define the neighbors and the territory of a vertex as

follows.

Definition 5: A vertex f ∈ V is a neighbor of a vertex v ∈ V

if 1) v and f are on the same layer and no other vertex in V or

obstacle is inside or on the boundary of the bounding box of v

and f , or 2) v and f are on adjacent layers and they have the

same x- and y-coordinates.

Note that, since only vias can be used for connections be-

tween layers, we use the second condition to strengthen the

definition of a neighbor in [6].

Definition 6: A vertex g is in the territory of a vertex v ∈ V

if no other vertex in V or obstacle is inside the bounding box of

v and g.

Note that g is not necessarily in V , and the territory of a

vertex is not necessarily a closed region.

Lemma 1: If n ≤ Tn, given a source s ∈ V , a target t ∈
V (s �= t), and any of their rectilinear shortest paths RSP(s, t),
there must exist a neighbor f of s such that the rectilinear

shortest length δr(s, t) = δr(s, f) + δr(f, t).
Proof: By the definition of a territory in Definition 6, t is

outside or on the boundary of the territory of s; therefore, any

of their rectilinear shortest paths RSP(s, t) must intersect the

boundary of the territory. Assuming that the intersecting vertex

is u, we prove this lemma by the following three cases.

1) s and u are on the same layer, and the following edge

from u to t of RSP(s, t) is also on the same layer.

Consequently, this case degenerates into the SL one, and

thus, this lemma is proved in [6].

2) s and u are on the same layer, and the following edge

from u to t of RSP(s, t) is a via. We assume that the

following edge from u to t is (u, u′). Without loss of

generality, we also assume that u′ is on the upper layer

of u. If there is no obstacle inside or on the boundary

of the bounding box of s and u′, the vertex projections

Fig. 10. (a) Because f is a neighbor of v, there must exist an edge between
them in the ML-OASG, and (b) the edge can directly be transformed to
rectilinear edges with the rectilinear shortest length between v and f .

must make a vertex s′ ∈ V where s′ is on the upper layer

of s, and s′ is connected to s by a via. On the other

hand, if there is an obstacle inside or on the boundary

of the bounding box of s and u′ (s and the obstacle are on

different layers because there is an edge from s to u), the

vertex projections must make a vertex s′ ∈ V where s and

s′ are on the same layer, and there is no obstacle inside or

on the boundary of the bounding box of s′ and u′. Once

s′ is decided, δr(s, u
′) = δr(s, s

′) + δr(s
′, u′) is trivial,

resulting in δr(s, t) = δr(s, u
′) + δr(u

′, t) = δr(s, s
′) +

δr(s
′, t). Finally, s′ is trivially a neighbor of s; therefore,

this lemma thus follows.

3) s and u are on different layers. Because s and u must have

the same x- and y-coordinates, by Definition 6, s and u

are on adjacent layers, and u must be in V after the vertex

projections. Then, by Definition 5, u is a neighbor of s,

i.e., f = u. �

Lemma 2: If n ≤ Tn, given a vertex v ∈ V , for any neighbor

f of v, there must exist an edge between v and f in the

ML-OASG, i.e., a rectilinear shortest path between v and f is

implied by the ML-OASG.

Proof: We prove this lemma by the following two cases.

1) v and f are on the same layer. Because the SL-OASG

construction in Section IV-A4 exactly constructs an edge

between a vertex and its neighbor on the same layer,

there must exist an edge between v and f as shown in

Fig. 10(a). By the definition of neighbors in Definition 5,

since no obstacle is inside the bounding box of v and f ,

the edge between v and f can directly be transformed

to rectilinear edges with the rectilinear shortest length as

shown in Fig. 10(b).

2) v and f are on adjacent layers. By the definition of

neighbors in Definition 5, they have the same x- and

y-coordinates. Therefore, there is an edge constructed

by the vertex projection between the two layers in

Section IV-A2, and the edge is the rectilinear shortest

length between v and f . �

Theorem 3: If n ≤ Tn, the ML-OASG implies a rectilinear

shortest path of any two vertices in V .

Proof: For any pair of vertices s and t and any of their

rectilinear shortest paths RSP(s, t) by Lemma 1, there must

exist a neighbor f of s such that δr(s, t) = δr(s, f) + δr(f, t)
as shown in Fig. 11(a) and (b). By Lemma 2, a rectilinear

shortest path of s and f is implied by the ML-OASG as shown

in Fig. 11(c).

As shown in Fig. 11(d), we still need to prove that a rec-

tilinear shortest path of f and t is implied by the ML-OASG

to complete the proof. However, because f and t are both in

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

LIN et al.: OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION BASED ON SPANNING GRAPHS 2013

Fig. 11. (a) and (b) For any pair of vertices s and t and any of their rectilinear
shortest paths, by Lemma 1, there must exist a neighbor f of s such that the
rectilinear shortest length δr(s, t) = δr(s, f) + δr(f, t). (c) By Lemma 2, a
rectilinear shortest path of s and f is implied in the ML-OASG. (d) By repeating
the proof, a rectilinear shortest path of f and t is implied in the ML-OASG.

V , after similar proofs (the number of proofs is finite because

δr(s, t) �= ∞ and δr(s, f) > 0), it is reduced to prove that a

rectilinear shortest path between the vertex t and itself (t)
is implied by the OASG. It is trivial, and the theorem thus

follows. �

Note that Tn is a parameter set by the user. Moreover, we also

claim that the number of vertices in the ML-OASG is O(n).
Theorem 4: The number of vertices in the ML-OASG is

O(n).
Proof: The number of added vertices by each vertex pro-

jection is O(n). If n > Tn, the vertex projections are performed

O(1) times; if n ≤ Tn, the number of vertices is bounded by

Tn. Therefore, the number of vertices in the ML-OASG is

O(n). �

We consider the two cases for the ML-OASG construction

for the following reasons.

1) If the number of vertices is small, a rectilinear shortest

path between any two vertices is very important. For

example, when the number of vertices is 2, a rectilinear

shortest path between these two vertices is an optimal

solution of the ML-OARSMT problem. Therefore, to

make these vertices projected completely, we need both

of the projections and perform them until the ML-OASG

is not changed.

2) If the number of vertices is large, the computational

efficiency should be maintained by reducing the size of

the ML-OASG. Therefore, we perform the iteration only

once and remove the vertex projection within a layer in

this case. When the size of the ML-OASG is reduced, we

can improve the efficiency of finding a desired tree topol-

ogy from the ML-OASG. There is another reason why

we remove the vertex projection within a layer. When we

transform slant edges into vertical and horizontal edges

in Section IV-C, we can use some heuristics to determine

the positions of Steiner vertices and maximize the edge

overlaps. However, the vertex projection within a layer

may result in many rectilinear edges, which significantly

decreases the flexibility of transforming slant edges into

vertical and horizontal edges. This phenomenon does

not happen for the SL-OARSMT problem because the

completeness of SL-OASG mainly relies on the slant

edges that do not decrease the flexibility of transforming

slant edges into rectilinear edges.

From the aforementioned analysis, we have the following

observation.

Observation 1: If the number of vertices is large, the com-

putational efficiency can be much improved by removing the

Fig. 12. Three cases in the SL-OARST construction for a slant edge and its
neighboring edge. The graphs in (a), (c), and (e) are transformed into those in
(b), (d), and (f), respectively.

Fig. 13. When m = 3, a rectilinear Steiner tree is one of the two topologies:
(a) Two simple paths between pin vertices or (b) three pin vertices connected to
a single Steiner vertex.

vertex projection within a layer, and the effectiveness is almost

not affected.

Note that, to deal with rectilinear obstacles, the formulation

can be modified so that an edge is not allowed to pass through

the boundary between two line-touched obstacles. If the formu-

lation is modified, edges of this type should be removed from

the spanning graph, and those properties are still held.

B. ML-OAST Construction

We define an ML-OAST as follows.

Definition 7: An ML-OAST is an undirected tree connecting

all pin vertices without intersecting with any obstacle.

We extend the SL-OAST construction in [6] and modify the

cost of an edge between vi and vj from |xi − xj | + |yi − yj | to

|xi − xj | + |yi − yj | + |zi − zj | × Cv .

C. ML-OARST Construction

In this step, we transform each slant edge of the given

ML-OAST into vertical and horizontal edges to obtain an

ML-OARST.

Definition 8: An ML-OARST is an undirected graph con-

necting all pin vertices by rectilinear edges within layers and

vias between layers without intersecting with any obstacle.

Because we use vias between layers in our ML-OAST, we

only need to consider edges within layers. We extend the SL-

OARST construction in [6] and modify some cases, trying to

maximize edge overlaps so that the total cost can be reduced.

Three cases for a slant edge e and its neighboring edge e′ need

to be considered as shown in Fig. 12. There are two possible

transformations for (vb, vd) in Fig. 12(d) and (f). Different

from [6] which randomly chooses one of them, we decide it

in another iteration to further reduce the total cost.

D. ML-OARSMT Construction

In this step, we construct an ML-OARSMT. The definition of

a redundant vertex in [6] is modified because only vias can be

used for connections between layers.

Definition 9: A redundant vertex is a two-degree nonpin

vertex, and the two edges connecting to it are parallel on a layer.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

2014 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

TABLE I
COMPARISONS ON THE TOTAL COST (WIRELENGTH AND VIA COSTS) AND CPU TIME (SECONDS) BETWEEN

THE CC ALGORITHM AND OURS. “Imp.” IS THE IMPROVEMENT ON THE TOTAL COST

Fig. 14. Final routing result of ind2 under Cv = 3, where a pin vertex is
represented by a solid circle. (a)–(e) show the results of layers 2–6, respectively.
Layer 1 is not shown because there is not any route on it. (f) All pin vertices are
projected onto a plane, without showing the obstacles.

For a redundant vertex, we merge the two edges connecting

to it. Moreover, we also remove overlapping edges and mark

Steiner vertices.

In the following, we give theorems for the optimality of

our algorithm. Note that these theorems give sufficient but not

necessary conditions for an optimal solution, i.e., more optimal

solutions may still be generated in other cases. Note that the

optimality is not guaranteed by using any extended method

mentioned in Section IV-A1.

Theorem 5: If m = 2 and n ≤ Tn, our constructed

ML-OARSMT is an optimal solution.

Proof: By Theorem 3, the ML-OASG implies a rectilinear

shortest path of any two vertices in V . Hence, its corresponding

path in the ML-OASG is constructed in Section IV-B, and this

rectilinear shortest path is trivially constructed in Sections IV-C

and IV-D. �

Note that Tn is a parameter set by the user. When m = 3, a

rectilinear Steiner tree is one of the two topologies: two simple

paths between pin vertices as shown in Fig. 13(a) or three

pin vertices connected to a single Steiner vertex as shown in

Fig. 13(b). We can construct an optimal OARSMT for the first

topology.

Theorem 6: If m ≥ 3, n ≤ Tn, and the topology of an opti-

mal solution contains only simple paths between pin vertices,

our constructed OARSMT is an optimal solution.

Proof: These simple paths are rectilinear shortest paths

between vertices in the ML-OASG. These rectilinear shortest

paths are generated for the same reasons in Theorem 5. �

Most nets in a real case are two- or three-pin nets, which

makes the aforementioned properties more important for prac-

tical applications. Moreover, when m is very large, the prob-

ability that the topology of an optimal solution contains only

simple paths between pin vertices is small. Thus, in such a case,

Tn does not need to be set too large.

Finally, since the number of vertices after the vertex projec-

tion is O(n) from Theorem 4, the time complexity of each

step is the same as those in [6]. Therefore, the overall time

complexity of our algorithm is O(n3) in the worst case and

O(n2 lg n) for practical applications [the expected number of

edges in the spanning graph is O(n lg n)], where n is the total

number of pin and corner vertices.

V. EXPERIMENTAL RESULTS

We implemented our algorithm in the C/C++ language on

a 2.8-GHz AMD-64 machine with 8-GB memory under the

Ubuntu 6.06 operating system. There are totally ten benchmark

circuits, five test cases (ind1–ind5) from Synopsys and five

random test cases (rt1–rt5) generated by us. Their parameters

are listed in Table I. Both ind4 and ind5 have two obstacles

covering an entire layer, and there is only a layer between

them. Therefore, the routing is only allowed on one layer.

Considering the ratios of m and k in industrial test cases, we

set the ratios of m and k to 2.5, 5, and 10 to generate the five

random cases. Given the constraints on the areas and the aspect

ratios of obstacles, their positions, lengths, and widths were

randomly generated without overlapping each other. Moreover,

the positions of pin vertices were also randomly generated

without locating inside any obstacle.

We set the parameter Tn of our algorithm to 10. Because

there is no previous work targeting on this problem, we com-

pared our algorithm with another algorithm, called CC, based

on the construction-by-correction approach. It first constructs

a 3-D minimum spanning tree for all pin vertices and then

transforms slant edges into rectilinear edges to form an initial

Steiner tree. Finally, it replaces the edges overlapping obstacles

with edges or vias around the obstacles with a smaller cost.

We also verified the generated ML-OARSMTs by a verification

program to ensure that all pin vertices were connected without

intersecting any obstacle.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

LIN et al.: OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION BASED ON SPANNING GRAPHS 2015

TABLE II
COMPARISONS ON THE TOTAL COST AND CPU TIME (SECONDS) BETWEEN THE VPWAL ALGORITHM AND OURS

Table I lists the total costs of these algorithms under the

conditions Cv = 3 and Cv = 5. Fig. 14 shows the resulting

layout for the test case ind2 under Cv = 3. Considering the total

cost, the average improvements over CC on the total cost are

33.74% and 33.62% under Cv = 3 and Cv = 5, respectively.

Furthermore, the improvement over the CC algorithm can be up

to 71.81% (for ind4). Since an optimal solution gives a lower

bound for any solution for this ML-OARSMT problem, these

improvements are highly significant. Our algorithm achieves

such significant improvements because it is constructed not

only on pin and corner vertices but also some essential ver-

tices that lead to more desired solutions. Moreover, the vertex

projections provide our ML-OASG with a more global view of

obstacles and multilayers.

We also observed that the CC algorithm has a particularly

larger total cost when its initial Steiner tree overlaps large

obstacles, indicating that the CC algorithm lacks the global

view of obstacles. Another observation is that the CC algo-

rithm may have a larger total cost under Cv = 3 than that

under Cv = 5 (for ind2, ind3, and rt3). It is because the value

of Cv may change the topology of the initial Steiner tree,

resulting in different overlapping conditions with obstacles.

Thus, after the correction stage, the results become unstable.

This is another evidence to point out that the CC algorithm

indeed lacks the global view of obstacles. On the other hand,

our algorithm always has a smaller total cost under Cv = 3
than that under Cv = 5, indicating that it is indeed stable

to consider obstacles. Furthermore, there is another reason-

able result that our algorithm uses fewer vias when Cv = 5,

showing that the via cost is also well handled by our

algorithm.

Table I also compares the CPU times of these algorithms.

Although the CC algorithm is faster, its solution quality is rela-

tively poor. Our algorithm is sufficiently efficient. For example,

when the respective numbers of pin vertices and obstacles reach

500 and 100 (ind4), our algorithm takes less than 9 s and

achieves 71.81% improvement over the CC algorithm. By the

least squares fitting on the log–log axes where the CPU time is

plotted as a function of the input size n, the slope of the fitting

line is 2.17, implying that the empirical time complexity of our

algorithm is close to O(n2.1). It is far under the theoretical

worst case complexity of O(n3) and closer to the practical

analysis O(n2 lg n) in Section IV-D.

There is another experiment where the same test cases are

used and Cv is set to 5 (the results are similar if Cv = 3
although not presented here). Because we set the parameter

Tn of our algorithm to 10, the vertex projection within a layer

is not performed for these test cases. On the other hand, the

comparative algorithm, called VPWAL, performs the vertex

projection within a layer for these test cases. Table II shows the

comparisons on the total cost and CPU time. Our algorithm has

an average of 3.58 times speedup to achieve a smaller total cost

in seven test cases, while the VPWAL algorithm takes much

more time but has smaller total cost only in two test cases. This

experiment justifies Observation 1 in Section IV-A4 that, if the

number of vertices is large, the computational efficiency can

be much improved by removing the vertex projection within

a layer, and the effectiveness is almost not affected. This is

because reducing the size of the ML-OASG is beneficial to

the efficiency of finding a good tree topology from the

ML-OASG, and the vertex projection within a layer results

in many vertical and horizontal edges, which significantly

decreases the flexibility of the ML-OARST construction. Note

that this phenomenon does not happen for the SL-OARSMT

problem because the completeness of SL-OASG mainly relies

on the slant edges that do not decrease the flexibility.

Note also that a near-optimal Steiner tree algorithm might

perform well if nets overlap with very few (or even no) obsta-

cles. However, there is a tradeoff. Using a near-optimal Steiner

tree algorithm may increase the risk of losing the global view

of the obstacles. This phenomenon becomes more significant

when there are more obstacles on the plane or the sizes of

obstacles are large.

VI. CONCLUSION

In this paper, we have formulated the ML-OARSMT

problem. We have also identified some special properties of the

ML-OARSMT problem and shown the infeasibility of directly

extending a previous SL-OARSMT to the ML-OARSMT prob-

lem with optimality guarantee. With these properties in mind,

we have developed a spanning-graph-based algorithm which

can guarantee an optimal solution for any two-pin net and many

multiple-pin nets. Experimental results have shown that it is

effective and efficient. Future work includes the consideration

of preferred directions, the restriction of via locations, and the

construction of a timing-driven routing tree.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

2016 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

ACKNOWLEDGMENT

The authors would like to thank Ms. C.-F. Shen and

Mr. S.-L. Wang of Synopsys, Taiwan for their valuable help

with this paper.

REFERENCES

[1] C. Chiang, M. Sarrafzadeh, and C. K. Wong, “An algorithm for exact rec-
tilinear Steiner trees for switchbox with obstacles,” IEEE Trans. Circuits

Syst. I, Fundam. Theory Appl., vol. 39, no. 6, pp. 446–455, Jun. 1992.
[2] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan, “An O(n log n) al-

gorithm for obstacle-avoiding routing tree construction in the λ-geometry
plane,” in Proc. ISPD, 2006, pp. 48–55.

[3] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree problem
is NP -complete,” SIAM J. Appl. Math., vol. 32, no. 4, pp. 826–834,
Jun. 1977.

[4] Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An-OARSMan:
Obstacle-avoiding routing tree construction with good length perfor-
mance,” in Proc. ASP-DAC, 2005, pp. 7–12.

[5] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang, “Efficient
obstacle-avoiding rectilinear Steiner tree construction,” in Proc. ISPD,
2007, pp. 127–134.

[6] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang, “Obstacle-
avoiding rectilinear Steiner tree construction based on spanning graphs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4,
pp. 643–653, Apr. 2008.

[7] C.-W. Lin, S.-L. Huang, K.-C. Hsu, M.-X. Lee, and Y.-W. Chang, “Effi-
cient multi-layer obstacle-avoiding rectilinear Steiner tree construction,”
in Proc. ICCAD, 2007, pp. 380–385.

[8] C.-H. Liu, Y.-H. Chou, S.-Y. Yuan, and S.-Y. Kuo, “Efficient multilayer
routing based on obstacle-avoiding preferred direction Steiner tree,” in
Proc. ISPD, 2008, pp. 118–125.

[9] J. Long, H. Zhou, and S. O. Memik, “An O(n log n) edge-based algo-
rithm for obstacle-avoiding rectilinear Steiner tree construction,” in Proc.

ISPD, 2008, pp. 126–133.
[10] Z. C. Shen, C. C. N. Chu, and Y.-M. Li, “Efficient rectilinear Steiner tree

construction with rectilinear blockages,” in Proc. ICCD, 2005, pp. 38–44.
[11] Y. Shi, P. Mesa, H. Yu, and L. He, “Circuit simulation based obstacle-

aware Steiner routing,” in Proc. DAC, 2006, pp. 385–388.
[12] P. C. Wu, J. R. Gao, and T. C. Wang, “A fast and stable algorithm for

obstacle-avoiding rectilinear Steiner minimal tree construction,” in Proc.

ASP-DAC, 2007, pp. 262–267.
[13] M. C. Yildiz and P. H. Madden, “Preferred direction Steiner trees,”

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 11,
pp. 1368–1372, Nov. 2002.

[14] H. Zhou, “Efficient Steiner tree construction based on spanning graphs,”
in Proc. ISPD, 2003, pp. 152–157.

Chung-Wei Lin received the B.S. degree in com-
puter science and information engineering and the
M.S. degree in electronics engineering from the
National Taiwan University, Taipei, Taiwan, in 2005
and 2007, respectively.

His research interests include routing-related
topics and design for manufacturability/reliability.

Mr. Lin was the recipient of the Presidential
Award from the National Taiwan University for six
semesters during his college years. He is an honorary
member of the Phi Tau Phi Scholastic Honor Society

of Taiwan.

Shih-Lun Huang received the double B.S. degree
in computer science and electrical engineering from
National Tsing Hua University, Hsinchu, Taiwan, in
2006 and the M.S. degree in electronics engineering
from National Taiwan University, Taipei, Taiwan,
in 2008.

He is currently in the army for his compulsory mil-
itary service. His research interests include routing-
related topics and design for manufacturability/
reliability.

Mr. Huang is an honorary member of the Phi Tau
Phi Scholastic Honor Society of Taiwan.

Kai-Chi Hsu received the B.S. degree in com-
puter science from National Tsing Hua University,
Hsinchu, Taiwan, in 2006 and the M.S. degree in
electrical engineering from National Taiwan Univer-
sity, Taipei, Taiwan, in 2008.

She is currently with the Raydium Semiconductor
Corporation, Hsinchu. Her research interests include
routing for analog integrated circuits.

Meng-Xiang Lee received the B.S. degree in electri-
cal engineering from the National Central University,
Taoyuan, Taiwan, in 2006 and the M.S. degree in
electronics engineering from National Taiwan Uni-
versity, Taipei, Taiwan, in 2008.

He is currently in the army for his compulsory
military service. His research interests include very
large scale integration electronic design automation,
large-scale routing, and floorplanning for multiple-
supply-voltage designs.

Yao-Wen Chang (S’94–A’96–M’99) received the
B.S. degree from National Taiwan University, Taipei,
Taiwan, in 1988 and the M.S. and Ph.D. degrees from
the University of Texas, Austin, in 1993 and 1996,
respectively, all in computer science.

He is currently a Professor with the Department
of Electrical Engineering and the Graduate Institute
of Electronics Engineering, National Taiwan Univer-
sity. He is also currently a Visiting Professor with
Waseda University, Kitakyushu, Japan. He was with
the IBM T. J. Watson Research Center, Yorktown

Heights, NY, in the summer of 1994, and the faculty of National Chiao Tung
University, Hsinchu, Taiwan, from 1996 to 2001. His current research interests
include VLSI physical design, design for manufacturability/reliability, and
design automation for biochips. He has coauthored one book on routing and
more than 140 ACM/IEEE conference proceeding/journal papers and has been
working closely with the industry on projects in these areas.

Dr. Chang is a member of the IEEE Circuits and Systems Society, ACM,
and ACM/SIGDA. He is an Editor for the Journal of Information Science and

Engineering. He is currently an Associate Editor for the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.
He currently serves on the ICCAD Executive Committee, ACM/SIGDA Phys-
ical Design Technical Committee, and the organizing committees of ISPD and
FPT. He has served on the technical program committees of ASP-DAC (Topic
Chair), DAC, DATE, FPL, FPT (Program Co-Chair), GLSVLSI, ICCAD,
ICCD, IECON (Topic Chair), ISPD, SOCC (Topic Chair), TENCON, VLSI-
DAT (Topic Co-Chair), etc. He is currently an independent board director of
Genesys Logic, Inc. and a member of the board of governors of Taiwan IC De-
sign Society. He was a winner of the 2006 ACM ISPD Placement Contest and
the 2008 ACM ISPD Global Routing Contest; Best Paper Awards at ICCD-95
and the 2007 and 2008 VLSI Design/CAD Symposia; and 12 Best Paper Award
Nominations from DAC (four times), ICCAD (twice), ISPD (three times), ACM
TODAES, ASP-DAC, and ICCD. He has also been the recipient of many
awards for research performance, such as the 2007 Distinguished Research
Award, the inaugural 2005 First-Class Principal Investigator Award, the 2004
Dr. Wu Ta You Memorial Award from the National Science Council of Taiwan,
and the 2004 MXIC Young Chair Professorship from the MXIC Corp.; and for
excellent teaching from National Taiwan University (four times) and National
Chiao Tung University.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

